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A B S T R A C T

Sulfur cathodes represent a promising solution to meet the growing demand for cost-effective, sustainable, and 
high-energy-density energy storage systems utilizing abundant elements. However, their commercialization re
mains challenging due to the complex metal‑sulfur reactions, which often involve solid-liquid phase transitions, 
as well as the dissolution and migration of polysulfides. Addressing these challenges requires a deeper under
standing and systematic optimization of these processes. In this study, we present a three-step zero-dimensional 
(0D) electrochemical model based on Nernst formulations and Butler–Volmer kinetics designed to simulate the 
performance of sulfur cathodes. Focusing on lithium‑sulfur batteries (LSBs) as a case study, the model in
corporates key phenomena, including the multiple electrochemical reactions involved in the conversion of sulfur 
to lithium sulfide, precipitation of S2− , and the shuttle effect. To validate the model, we utilize sulfur cathodes 
composed of Li2S supported on Ketjen Black (KB) and incorporating cobalt nanoparticles (Li2S-Co@KB). The 
developed model is employed to simulate discharge curve using a hybrid optimization approach combining 
Bayesian and the Nelder-Mead algorithms. The model’s predictive capability is evaluated by assessing its ability 
to replicate the experimental voltage profiles of LSBs. Additionally, the error between the simulated and 
experimental voltage curves is analyzed to demonstrate the model’s accuracy and reliability.

1. Introduction

Sulfur cathodes have attracted significant interest due to their high 
theoretical energy density, reliance on abundant resources, and poten
tial for cost-effectiveness and sustainability [1–3]. However, the opti
mization of LSBs for commercial use has been hindered by the 
complexity of sulfur redox reactions, involving multiple steps, the for
mation of often soluble polysulfides, the slow nucleation of solid species, 
and the inherent low electrical conductivity of sulfur and lithium sulfide 
[4–6].

Current research focuses on mitigating the polysulfide loss and 
enhancing sulfur utilization. This is achieved by employing porous sul
fur host materials with high electrical conductivity, polar sites for pol
ysulfide binding, and porous structures capable of accommodating 
volumetric changes while facilitating efficient ionic and electronic 
transport [7–11]. Despite extensive efforts, the complexity of the system 
has led to predominantly trial-and-error engineering approaches, hin
dering progress toward knowledge-driven design. Advancing the field 
requires a more rational approach, supported by the development of 

accurate models capable of simulating the intricate electrochemical 
behaviour of LSBs and extracting critical parameters at the cell level.

The sulfur redox processes in LSBs involve several electrochemical 
steps that translate into a nonlinear differential algebraic structure. The 
galvanostatic charge-discharge profiles are generally characterized by 
two discharge and charge plateaus (Fig. 1). The high voltage discharge 
plateau, at 2.3–2.4 V corresponds to the initial reduction of elemental 
sulfur (S8) to soluble higher-order lithium polysulfides (Li2Sx, where x =
4–8). This phase involves the dissolution of sulfur and the formation of 
long-chain polysulfides in the electrolyte. The low voltage discharge 
plateau, at 2.0–2.1 V, is associated with the further reduction of the 
higher-order polysulfides to shorter chain polysulfides and eventually to 
insoluble lithium sulfide (Li2S), involving a solid-phase deposition step. 
During charging, two plateaus, though closer in potential, 2.2–2.4 V, are 
also observed, corresponding to the gradual oxidation of Li2S back to S8. 
This process also involves polysulfide dissolution and a solid-phase 
nucleation step. However, unlike the discharge process, the oxidation 
during charging occurs more progressively, resulting in a smoother 
transition between the two plateaus [12–15]. Lithium polysulfides 
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(LiPSs) intermediates dissolved in the organic electrolyte can migrate to 
the anode side, leading to a loss of active material and a significant 
reduction in coulombic efficiency [16–18]. This migration, often 
referred to as the polysulfide shuttle effect, not only depletes the sulfur 
cathode but also causes parasitic reactions at the anode, further 
degrading overall battery performance and complicating its modelling 
[16,19,20].

Although computationally efficient, electric circuit models fail to 
capture the complex electrochemical phenomena in sulfur cathodes 
across diverse operating conditions [13,21,22]. In contrast, electro
chemical models provide a robust framework for simulating battery 
behaviour and understanding the internal electrochemical kinetics and 
ion transport. These models should incorporate detailed descriptions of 
the battery’s internal reactions, electrochemical kinetics, and charge 
transfer processes [23,24]. The success of a model-based approach relies 
on its capacity to replicate real battery behaviour and identify critical 
parameters essential for optimizing performance [21,24,25].

One-dimensional (1D) models capture both reaction kinetics and ion 
transport dynamics, offering a detailed representation of the system. 
However, their predictive applications are often limited by significant 
complexity and high computational costs [21,26]. In contrast, zero- 
dimensional (0D) models simplify the battery system by treating it as 
a single point without accounting for spatial variations in properties 
such as concentration, temperature, or potential within the battery 
volume. This simplicity enables 0D models to provide valuable insights 
into the kinetics of cathode reactions and phenomena like the shuttle 
effect while maintaining computational efficiency [26].

The first published 0D model for lithium‑sulfur batteries (LSBs) was 
developed by Mikhaylik and Akridge [27], which focused on examining 
the relationship between the polysulfide shuttle effect and the current 
rate. Their model employed a two-step reaction process and accounted 
for heat generation resulting from the shuttle effect. Subsequently, Xu 
et al. [26] conducted a comparative study of four 0D models, each 
representing different sets of possible redox reactions in LSBs. Addi
tionally, parameter identification and sensitivity analyses have been 
performed for various electrochemical models to evaluate the number of 
possible reaction pathways and identify the most critical parameters 
influencing battery performance.

Herein, we employ a 0D model adapted from the mathematical for
mulations proposed for the LSB electrochemical process in [21,26,28], 
with targeted modifications to capture key performance characteristics 
of typical LSBs while maintaining relatively low computational cost. 
Unlike the well-established two-step sulfur redox chain simplification 
[28], our model incorporates a more detailed three-step electrochemical 
reaction mechanism, explicitly including the polysulfide intermediate 
S2−

6 . This enhancement yields a discharge profile that better reflects 
experimental LSB behaviour, especially in the dip region, and enables 

more accurate modelling of shuttle effects and the evolution of inter
mediate species. To improve computational efficiency and solver sta
bility, the Butler–Volmer equations are linearized, enabling the model to 
be efficiently solved as a system of differential-algebraic equations 
(DAEs). Additionally, high-order polysulfide shuttling and precipitation 
processes are modeled using constant shuttle and precipitation rates. 
Experimental data used for model validation were obtained from our 
previous work on LSB cells featuring a sulfur cathode composed of Li2S 
supported on Ketjen Black (KB) with embedded cobalt nanoparticles 
(Li2S-Co@KB), which enhance electrochemical kinetics [3]. The 
modelling framework includes a scalable, physically informed parame
trization strategy to ensure strong alignment between simulated results 
and real coin cell measurements. After validating the model under 
various conditions and conducting a sensitivity analysis, we performed 
parameter identification using an advanced optimization procedure. A 
key innovation lies in the parameterization strategy, where the objective 
function emphasizes not only the overall output error but also the timing 
and features of the dip region. To solve this complex optimization 
problem, we employ a combination of particle swarm optimization and a 
hybrid approach integrating global (Bayesian optimization) and local 
(Nelder–Mead simplex) techniques. This approach shows promise as it 
enables systematic exploration of different battery models and the 
parameterization of new experimental materials during the research 
phase.

The article is structured as follows: Section 2 outlines the model 
framework, methods for determining initial conditions, and parameter 
identification. Section 3 presents a simulation study examining the ef
fects of shuttle and precipitation phenomena on discharge voltage per
formance and details the parameter identification process using 
experimental data. Finally, the findings of this work are summarized in 
Section 4.

2. Model

2.1. Model selection and improvement

0D models enable the simulation of complex electrochemical pro
cesses, such as the Li–S reaction at the cathode of LSBs, while main
taining low computational costs, which allows for the efficient screening 
of multiple parameters. These models have been demonstrated useful for 
the control and monitoring of the LSBs [26]. To accurately describe 
experimental electrochemical phenomena during LSB discharging, a 
three-step sulfur reduction mechanism is sufficient, striking a balance 
between computational simplicity and accuracy. The three-step model 
considered is described in Eqs. (1) to (3) [26]. 

H1 :
3
8
S8 + e− ⇌

1
2
S2−

6 (1) 

H2 : S2−
6 + e− ⇌

3
2
S2−

4 (2) 

L :
1
6
S2−

4 + e− ⇌
2
3
S2− (3) 

Where H1, H2, and L represent the reactions that take place in different 
regions of the discharge profile. This model focuses exclusively on the 
sulfur reactions occurring at the cathode, neglecting the anode over
potential by assuming an unlimited supply of lithium on the anode side. 
In the third stage of the model, the liquid-phase S2− species are formed 
and subsequently precipitate as solid Sp at approximately 2.1 V. The 
amount of precipitation is governed by the precipitation rate (kp) and 
the saturated mass of S2− (S2−

p ) in the electrolyte. Additionally, the 
shuttle effect is incorporated into the model through the shuttle rate (ks), 
which influences the mass evolution of dissolved polysulfide species 
during the high-voltage plateau [26]. Based on Faraday’s first law of 
electrolysis and incorporating the shuttle effect, Eqs. (4) to (8) describe 

Fig. 1. Schematics of an LSB cell and its charge and discharge profiles.
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the temporal evolution of sulfur species [26]. 

ẋ1 = −
3
8

nS8MS

neF
IH1 − ksx1 (4) 

ẋ2 =
1
2

nS6MS

neF
IH1 + ksx1 − ksx2 −

nS6MS

neF
IH2 (5) 

ẋ3 =
3
2

nS4MS

neF
IH2 + ksx2 −

1
6

nS4MS

neF
IL (6) 

ẋ4 =
2
3

nSMS

neF
IL − kpx5

(
x4 − S2−

p

)
(7) 

ẋ5 = kpx5

(
x4 − S2−

p

)
(8) 

where x1, x2, x3, x4 and x5 represent the mass of sulfur species S8, S2−
6 , 

S2−
4 , S2− , and Sp respectively, ẋ represents dx

dt, and other variables and 
parameters of (4)–(8) are defined in Table 1. The term ksxi in (4)–(6)
indicates the shuttle effect on the mass changes of high-order poly
sulfides. Similar to the polysulfide shuttling, the precipitation process is 
modeled by the constant rate kp in Eqs. (7) and (8).

The Nernst Eqs. (9)–(11) are employed to calculate the equilibrium 
potential of reactions [26]. 

EH1 = E0
H1 −

RT
F

(

−
3
8

ln
(

x1

nS8MSν

)

+
1
2

ln
(

x2

nS6MSν

))

(9) 

EH2 = E0
H2 −

RT
F

(

− ln
(

x2

nS6MSν

)

+
3
2

ln
(

x3

nS4MSν

))

(10) 

EL = E0
L −

RT
F

(

−
1
6

ln
(

x3

nS4MSν

)

+
2
3

ln
(

x4

nSMSν

))

(11) 

Where variables and parameters of (9)–(11) are defined in Table 1.
The reaction currents in the three-step electrochemical process are 

described by the Butler-Volmer equations. These equations detail the 
relationship between the reaction currents at the electrode-electrolyte 
interface and the overpotentials. The general form of this equation is 
as follows: 

I = I0
[

exp
(

βF
RT

η
)

− exp
(

−
(1 − β)F

RT
η
)]

(12) 

where β is known as the symmetry factor or charge transfer coefficient. 
The value of β is usually considered to be 0.5, which implies that the 
transition state is located midway along the reaction pathway and that 
the activation energy distribution between the oxidation and reduction 

steps is symmetric [29]. Assuming β = 0.5, the Butler-Volmer equations 
are expressed as follows: 

IH1 = 2I0
H1arsinh

(
neFηH1

2RT

)

(13) 

IH2 = 2I0
H2arsinh

(
neFηH2

2RT

)

(14) 

IL = 2I0
Larsinh

(
neFηL

2RT

)

(15) 

Where variables and parameters of (13)–(15) are defined in Table 1.
The driving force for initiating the reaction on the cathode side is a 

non-zero potential excess (overpotential), calculated as the difference 
between the Nernst potential and the cell voltage (V) [26]. 

ηH1 = V − EH1 (16) 

ηH2 = V − EH2 (17) 

ηL = V − EL (18) 

The conservation of charge dictates that relation (19) holds. 

I = IH1 + IH2 + IL (19) 

The model thus defines a system of DAEs comprising 5 differential 
equations, specifically Eqs. (4)–(8), and 10 algebraic equations, namely 
Eqs. (9)–(11) and (13)–(19), as outlined in (20). 

f(t, x, ẋ) = 0 (20) 

The system includes 15 variables, 5 differential (xi, for i: 1–5) and 10 
algebraic: 

x = [x1, x2, x3, x4, x5, IH1, IH2, IL,V, ηH1, ηH2, ηL,EH1,EH2,EL]
T (21) 

To simplify the model, sinh
(

neFηi
2RT

)

is replaced by its linear approxi

mation, i.e. neFηi
2RT , in Eqs. (13) to (15). This approximation is valid for 

LSBs, as the reactions typically occur at low voltages and small de
viations from equilibrium. This simplification enhances computational 
efficiency and ensures better stability and convergence of the numerical 
solver.

Generally, the first step in estimating the state parameters involves 
numerically solving the system of equations and comparing the output 
to experimental data. However, this system of equations poses chal
lenges for numerical solutions due to instabilities that arise when state 
variables approach zero. To address this, non-zero initial conditions for 
the low-order polysulfides are required. Since the model involves 5 
differential equations, 5 initial conditions must be specified to solve the 
system. It is assumed that the initial values of the voltage, the mass of 
sulfur (x1), and the mass of precipitated sulfur (x5) are known. Addi
tionally, the initial value of IH1 is assumed to be equal to the discharge 
current, and IL is considered to be zero. The initial condition for IH2 is 
obtained from Eq. (19), while ηi (for i:H1, H2, L) is calculated from (13) 
to (15), Ei from Eqs. (16) to (18), and x2, x3, and x4 from Eqs. (9) to (11). 
Assuming that the constant parameters of the 0D model are known, i.e. 
E0

i , I0
i , kp, ks, ar, ν, m and I, and that the initial conditions are provided, 

the 0D model can be solved. In this study, the system of DAEs is solved 
using the implicit Newton-Raphson method, which ensures robustness 
and convergence [30].

2.2. Experimental parametrization: bridging experimental data and model 
development

The LSB cells assembled and tested to validate the model consist of a 
Li2S-Co@KB cathode, a lithium metal anode, and an ether-based elec
trolyte. The Li2S-Co@KB cathode, developed based on our previous 

Table 1 
List of variables and parameters used in Eqs. (1)–(19).

Symbol Name Units

MS Sulfur molar mass (S8) g mol− 1

nSi(i : 8,6, 4,1) Number of sulfur atoms in LiPS –
ne Number of electrons per reaction –
F Faraday constant C mol− 1

R Gas constant J K− 1 mol− 1

T Temperature K
ks Shuttle rate s− 1

kp Precipitation rate g− 1s− 1

S2−
p Saturation mass of S2− g

E0
i (i : H1,H2, L) Standard potential V

I0i (i : H1,H2, L) Current density A m− 2

I Discharge current A
ar Reaction area m2

ν Electrolyte volume L
ηi(i : H1,H2, L) Overpotentials V
xi (i:1–5) Mass of sulfur species g
V Voltage V
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work [3], comprises Li2S as the active material supported on high- 
surface-area, highly conductive KB carbon, with cobalt nanoparticles 
added as a catalytic additive to enhance the Li–S reaction. The ether- 
based electrolyte is a solution containing 0.1 M LiTFSI, 1,2-dimethoxy
ethane (DME), 1,3-dioxolane (DOL) (v/v = 1:1), and 0.2 M LiNO3. To 
fabricate the cathode, the Li2S-Co@KB composite was mixed with PVDF 
and conductive carbon in an 8:1:1 weight ratio. The resulting slurry was 
cast onto aluminium foil, dried at 100 ◦C inside a glovebox, and punched 
into 12-mm discs to serve as the cathode. The assembled batteries were 
tested using a Neware BTS4008 battery tester. For initial activation, the 

batteries underwent one cycle at a 0.1C current rate, and the subsequent 
discharge profile was used for modelling. A schematic representation of 
the cell preparation process, from material synthesis to coin cell as
sembly, is provided in Fig. 2.

Since the coin cell data are small-scale and not directly suitable for 
modelling, scaling between the real sample and the simulation is 
required. To achieve this, as outlined in reference [26], the model cur
rent is assumed to be proportional to the actual battery current, scaled 
by a constant factor c, i.e. Imodel = c× Ibat.. This scaling factor is then 
used to determine the coefficients for other parameters, including mass, 

length, ar, ν, I0
i , and kp that are equal to c, c

1
3, c

2
3, c, c

1
3, and 1c respectively. 

These coefficients were incorporated into the model for the simulation 
process. In LSBs, the solubility of Li2S in ether-based electrolytes is very 
low [31,32]. Therefore, for this model, the saturation mass of S2− is 
assumed to be 0.0001 (g) [26]. Additionally, the electrolyte volume used 
during cell assembly was 10 μL, and after scaling, it was adjusted to 
0.012 L per cell. These assumptions ensure that the model reflects 
realistic conditions while maintaining computational simplicity.

2.3. Parameter identification

To estimate the parameters I0i , kp, ks,m and E0
i in the proposed 0D 

model, an optimization problem is formulated to ensure that the simu
lated voltage (Vsim) closely matches the experimental voltage (Vexp). The 
objective function is defined as the squared norm of the difference be
tween Vexp and Vsim, with particular emphasis on accurately capturing 
the dip point in the discharge curve, which represents the transition 
between the first and second flat regions. The equations governing the 
behaviour of the LSB are included as constraints in the optimization 
problem. By assigning weights to the error across different regions of the 
curve, the optimization prioritizes preserving the voltage dynamics in 
both flat regions and around the dip point. Additionally, the time of 
occurrence of the voltage dip point is included in the objective function 

Fig. 2. Schematic of Li2S-Co@KB coin cell assembly.

Fig. 3. Simulated galvanostatic discharge curves at two different currents and 
precipitation rates.

Fig. 4. a) Effects of precipitation on discharge curve. b) Effects of the LiPS shuttle on the discharge curve.

H. Mollania et al.                                                                                                                                                                                                                               Journal of Energy Storage 128 (2025) 117023 

4 



to ensure the model accurately reflects not only the voltage values but 
also their temporal evolution. The proposed optimization formulation 
for parameter identification is detailed in Eqs. (22) to (39).

Where N is the total number of experimental data points, wdip is the 
weight assigned to the dip point region, emphasizing its importance, and 
wother is the weight for the remaining regions of the curve. Vexp.,dip and 
Vsim.,dip are the experimental and simulated voltage values, respectively, 
within the dip region. Vexp.,other and Vsim.,other are the experimental and 
simulated voltage values outside the dip region. Additionally, wdip time 

represents the weight assigned to the time of occurrence of the dip point, 
ensuring that the temporal accuracy of the model is also prioritized. To 
identify the dip point region, the lowest value of voltage in the first half 
of the experimental/simulated data is considered as the centre or dip 
point of the experimental/simulated data. A predefined range is then 
established around this centre to capture the dip point region.

2.4. Solving methods

The optimization process for the model involves solving a complex 
problem constrained by numerous nonlinear differential and algebraic 
equations. To address this, two methods have been employed: (a) the 
Particle Swarm Optimization (PSO) method and (b) the hybrid Bayesian 
Optimization-Nelder-Mead Simplex (BO-NMS) method. Each method is 
detailed below.

2.4.1. PSO method
The PSO method operates by generating a population of candidate 

solutions, referred to as particles. These particles are evaluated and 
iteratively improved by moving through the search space based on their 
own best-known positions and the swarm’s collective best-known posi
tion. The process continues until a satisfactory solution is identified 
[33]. Each particle represents a set of specific values for the 9 unknown 
parameters defined in Eq. (38). To evaluate a particle, the optimization 

constraints, comprising the DAEs described in Eqs. (23) to (39), are 
solved using the implicit Newton-Raphson method. After solving the 
DAEs, the voltage curve is extracted, and the objective function or 
fitness, defined in Eq. (22), is computed. This process is repeated across 
multiple generations of particles, with the particles iteratively adjusted 
to converge on the optimal solution. Through these iterations, the PSO 
method seeks to identify the optimal values for the 9 parameters spec
ified in Eq. (38). However, the PSO method was not successful in all 
runs, and some runs failed to converge, leading to inconsistent results. 
As a result, an alternative approach was sought.

2.4.2. BO-NMS method
To overcome the limitations of PSO, the BO-NMS hybrid optimiza

tion method was employed. This method combines probabilistic (BO) 
and heuristic (NMS) approaches, leveraging the strengths of both. BO 
provides a probabilistic framework to explore the parameter space 
efficiently, while NMS refines the solution by performing local search 

optimizations. As with the PSO method, the unknown parameters are 
determined iteratively in the BO-NMS method. For each iteration, the 
DAEs of the 0D model are solved using the implicit Newton-Raphson 
method to compute the objective function. By alternating between 
global exploration and local refinement, the BO-NMS method effectively 
identifies the optimal solution, ensuring greater stability and conver
gence compared to PSO.

More in detail, BO is an advanced method for solving complex 
optimization problems without requiring gradient information. It works 
by approximating the objective function using probabilistic surrogate 
models, such as Gaussian processes, which are based on an initial sam
pling of data. A learning function is then used to intelligently select new 
points for evaluation. This acquisition function balances exploration, 
where unknown points are examined to improve knowledge about the 
objective function, and exploitation, which focuses on regions likely to 
provide the best value [34]. BO performs effectively in continuous do
mains with fewer than 20 dimensions and is robust against random noise 

MinzJ =

s.t. :
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

(
wdip

⃦
⃦Vexp.,dip − Vsim.,dip

⃦
⃦2

2 + wother
⃦
⃦Vexp.,other − Vsim.,other

⃦
⃦2

2

)
√

+ wdip,time ×
⃒
⃒texp,dip − tsim,dip

⃒
⃒

s.t.:

(22)

ẋ1(t) = −
3
8

nS8MS

neF
x6(t) − ksx1(t) ​ (23)

ẋ2(t) =
1
2

nS6MS

neF
x6(t) + ksx1(t) − ksx2(t) −

nS6MS

neF
x7(t) ​ (24)

ẋ3(t) =
3
2

nS4MS

neF
x7(t) + ksx2(t) −

1
6

nS4MS

neF
x8(t) ​ (25)

ẋ4(t) =
2
3

nSMS

neF
x8(t) − kpx5(t)

(
x4(t) − S2−

p

)
​ (26)

ẋ5(t) = kpx5(t)
(

x4(t) − S2−
p

)
​ (27)

x6(t) = 2I0H1ar

(
neFx10(t)

2RT

)
t=1,2,3,…,N (28)

x7(t) = 2I0H2ar

(
neFx11(t)

2RT

)
t=1,2,3,…,N (29)

x8(t) = 2I0Lar

(
neFx12(t)

2RT

)
t=1,2,3,…,N (30)

x10(t) = x9(t) − x13(t) t=1,2,3,…,N (31)
x11(t) = x9(t) − x14(t) t=1,2,3,…,N (32)
x12(t) = x9(t) − x15(t) t=1,2,3,…,N (33)

x13(t) = E0
H1 −

RT
F

(

−
3
8

ln
(

x1(t)
nS8MSν

)

+
1
2

ln
(

x2(t)
nS6MSν

))
t=1,2,3,…,N (34)

x14(t) = E0
H2 −

RT
F

(

− ln
(

x2(t)
nS6MSν

)

+
3
2

ln
(

x3(t)
nS4MSν

))
t=1,2,3,…,N (35)

x15(t) = E0
L −

RT
F

(

−
1
6

ln
(

x3(t)
nS4MSν

)

+
2
3

ln
(

x4(t)
nSMSν

))
t=1,2,3,…,N (36)

I = x6(t) + x7(t) + x8(t) t=1,2,3,…,N (37)
z =

[
E0

i , I0i , kp, ks,m
]

i = H1,H2,L (38)
x(t)=[S8(t),S2−

6 (t),S2−
4 (t),S2− (t),Sp(t), IH1(t), IH2(t), IL(t), 

V(t), ηH1(t), ηH2(t), ηL(t), EH1(t), EH2(t), EL(t)]T t=1,2,3,…,N (39)
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in the evaluations of the objective function [35]. The process is iterative, 
with the probabilistic model being updated after each evaluation, 
providing increasingly accurate estimates of the objective function.

The NMS algorithm, on the other hand, is a local heuristic search 
method that optimizes functions without requiring derivatives or gra
dients. At its core, the algorithm uses a simplex, a geometric structure 
with n + 1 vertices in n-dimensional space, which moves and scales 
iteratively to locate the minimum of the objective function [36,37]. NMS 
converges quickly with relatively few evaluations of the objective 
function. However, its performance is highly dependent on the initiali
zation of the simplex. Poor initialization can hinder search efficiency, 
making accurate initialization critical. In this study, BO is used to pro
vide an appropriate starting point for the NMS algorithm, ensuring 
effective convergence.

To combine the strengths of BO and NMS, a hybrid optimization 
approach is employed. BO is applied iteratively, beginning with a high 
exploration ratio to thoroughly investigate the parameter space. As the 
optimization progresses, the exploration ratio is reduced, allowing the 
algorithm to focus on promising regions and refine the search for 
optimal points. In this study, BO was run twice using MATLAB, with a 
stopping criterion of 100 iterations for each run.

The results obtained from BO are then refined using the NMS algo
rithm. By initializing NMS with the near-optimal solution from BO, the 
algorithm starts close to the global optimum and can efficiently focus on 
smaller regions of the parameter space. The stopping criterion for NMS is 
set such that the algorithm halts if the change in the objective function 
value between two consecutive iterations is <10− 6. MATLAB’s 

fminsearch function is used to implement the NMS algorithm.
This hybrid approach combines the global search capability of BO 

with the localized refinement of NMS. BO ensures that the search begins 
in a promising region, while NMS quickly minimizes the error within 
that region, providing a robust and efficient solution to the parameter 
identification problem.

3. Results and discussions

3.1. Investigating the shuttle and precipitation effects using a zero- 
dimensional model

In this section, the behaviour of the model is examined by solving the 
DAEs while keeping the values of I0H1, I0H2, I0L, E0

H1, E0
H2, E0

L, and m con
stant, and varying kp, ks, and I. Fig. 3 illustrates the simulation results of 
battery voltage during discharge at C/5 and C/10 rates, using two 
different values of kp and assuming a theoretical capacity of 1675 mAh/ 
g. It should be mentioned that the presented model does not take into 
account mass transport limitations that arise at higher C-rates. In real 
LSBs, mass transport limitations lead to reduced sulfur utilization and 
premature discharge termination due to concentration gradients within 
the electrolyte and cathode. These additional spatial effects of mass 
transport limitations are not considered in the 0D model, which assumes 
uniform species distribution. As a result, the model represents the fresh 
cell behaviour under idealized well-mixed conditions without attempt
ing to predict capacity loss due to C-rate. Discharge simulations are 
performed to a predetermined initial sulfur mass, and the 

Fig. 5. Simulation of LSB variables during the discharge process, (a) Mass of sulfur species. (b) Mass of sulfur species over a portion of the time interval. (c) 
Overpotentials. (d) Reaction currents. (e) Nernst potentials.
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voltage–capacity profiles are used to qualitatively illustrate the impact 
of C-rate variation on discharge profiles. It should also be noted that 
both voltage profiles in Fig. 3, depict the theoretical capacity of the cell 
based on complete utilization of the initial sulfur mass.

As shown in Fig. 3, the voltages of the two typical plateaus in the 
discharge curve decrease as the discharge current increases. This 
behaviour arises from intrinsic physical limitations and unavoidable 
losses associated with diffusion and charge transfer reactions, which 
constrain the cell’s ability to deliver power. During discharge, ions must 
diffuse through the electrolyte to the electrode surfaces. At higher 
discharge currents, ions must diffuse faster to sustain the reaction. 
However, when the ion diffusion rate cannot keep up with the current 
demand, the reaction sites are inadequately supplied, causing a voltage 
drop in the cell. Additionally, the reaction kinetics, governed by the 
Butler-Volmer equation, play a crucial role in controlling charge transfer 
between the electrolyte and the electrode materials where the electro
chemical reactions occur. At higher discharge currents, the reaction 
overpotential, i.e. the additional voltage required to drive the reaction at 
a given rate, increases proportionally. This overpotential reflects an 
extra energy loss, further reducing the overall voltage of the cell. 
Together, these diffusion and reaction kinetics effects explain the 
observed voltage drop at higher discharge currents.

The dashed blue and black curves in Fig. 3 demonstrate that in the 
absence of precipitation (kp = 0), the voltage level of the upper plateau 
remains unchanged. When precipitation is included in the model, all its 
features become apparent, including the pronounced impact of precip
itation on the discharge voltage curves. Precipitated lithium sulfide can 
obstruct the discharge process in LSBs and significantly influences the 
internal resistance and voltage profile of the cell, particularly affecting 
the shape of the discharge curve in the lower voltage plateau. Precipi
tation directly contributes to both a voltage increase in the low plateau 
and the emergence of the dip point between the two plateaus. The dip 
point represents a sharp transition between two distinct sets of redox 
processes occurring during the discharge of the LSB [38].

The impact of varying kp on the voltage curve with constant current 
and constant ks is clearly illustrated in Fig. 4a. This figure shows that 
changes in kp specifically impact the second flat region of the voltage 
curve, while the first flat region remains unaffected, which aligns with 
findings reported in the literature [39]. In Fig. 4b, the effect of varying ks 
is analyzed at a constant current rate for two different values of kp. At a 
fixed kp, the voltage level of the second flat region remains unchanged 
regardless of variations in ks. However, the voltage level of the first flat 
region is influenced by ks, as highlighted by the blue and red curves, as 
well as the solid and dashed black lines.

As observed in Fig. 4b, and consistent with the model proposed by 
Mikhaylik and Akridge [27], ks acts as a scaling factor for the voltage 
response of the cell under constant precipitation and current rate con
ditions. The results presented in Fig. 3 and Fig. 4 further reveal that in 
the absence of precipitation (kp = 0), the discharge current and the 
shuttle effect primarly influence the battery behaviour [27]. Conversely, 
in the absence of the shuttle effect (ks = 0), the discharge current and kp 
affect the battery voltage response. Since both precipitation and the 
shuttle effect are typically present during discharge, the current, ks and 
kp collectively define the performance of a real LSB. Specifically, the 
discharge voltage at the upper plateau is primarily governed by the 
current and ks, while the discharge voltage at the lower plateau is 
determined by the current and kp.

Fig. 5 provides a detailed comparison of the changes in the mass of 
sulfur species, overpotentials, reaction currents, and Nernst potentials 
over time for three different scenarios: 1) kp = 50, representing a high 
precipitation rate; 2) kp = 0, representing no precipitation; and 3) a 
scenario where S2−

p increases under kp = 50, reflecting a rise in the 
saturation limit of S2− in the electrolyte.

As expected, at the beginning of the discharge process, S8 is 
sequentially consumed and converted into S2−

6 , then S2−
4 , followed by 

S2− , and finally precipitates as Sp (Li2S) when kp > 0. In contrast, when 
kp = 0, the final discharge product remains as S2− , with no Li2S pre
cipitation (Fig. 5a,b). The parameter S2−

p determines the onset of pre
cipitate formation and influences both the timing and the amount of 
precipitate formed during discharge. Higher values of S2−

p at kp = 50 
result in a delayed onset of Li2S precipitation.

Fig. 5c and d show the variations in overpotentials and reaction 
currents, respectively. The overpotential ηH1 remains constant regard
less of changes in kp. However, ηH2 and ηL exhibit a sharp change around 
the voltage dip point, which becomes more pronounced with higher kp. 
Similarly, the reaction currents IH2 and IL show significant peaks at kp =

50, whereas IH1 remains unaffected.
Fig. 5e presents the variations in the Nernst potentials EH1, EH2 and 

EL. These potentials differ from the battery terminal voltage at any given 
time by the amount of their corresponding overpotentials. The voltage 
dip point marks the onset of Li2S precipitation [38], and occurs 
approximately 5000 s after the start of discharge, coinciding with the 
observed increase in Sp.

It should be noted that the predicted discharge curve deviates 

Fig. 6. (a) Voltage sensitivity to the standard reduction potentials E0
H1, E0

H2, and 
E0

L. (b) Voltage sensitivity to the exchange current density I0
H1. (c) Voltage 

sensitivity to the exchange current density I0
H2. (d) Voltage sensitivity to the 

exchange current density I0L. (e) Voltage sensitivity to the precipitation rate 
constant kp.

Table 2 
Parameters estimated at two discharge current rates of 0.2C and 0.5C.

Predicted 
parameters

Values estimated 
by PSO @ 0.2C

Values estimated 
by BO-NMS @ 0.2C

Values estimated by 
BO-NMS @ 0.5C

E0
H1(V) 2.364 2.361 2.359

E0
H2(V) 2.257 2.257 2.200

E0
L(V) 2.105 2.104 2.054

I0H1(A/m2) 14.736 14.736 18.421
I0H2(A/m2) 3.728 3.669 9.210
I0L(A/m2) 0.434 0.442 1.602
kp (g− 1.s− 1) 23 32 140
ks (s− 1) 0.000105 0.000108 0.0001
m (g) 0.001059 0.001062 0.001099
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slightly from the actual behaviour of LSBs. For instance, at the end of the 
upper flat plateau, the model exhibits a steep voltage drop that is less 
pronounced in real LSBs. This discrepancy may be attributed to the 
reduced number of reaction steps included in the model. In this study, a 
three-step reaction mechanism is considered, which could be refined by 
increasing the number of steps in the sulfur conversion process to cap
ture more detailed dynamics. Additionally, the model only accounts for 
the precipitation of the lowest-order LiPS species, represented by 2Li+ +

S2− ⇌Li2S. By incorporating more comprehensive precipitation models, 
the accuracy of the model in simulating the lower flat region of the 
voltage curve could be significantly improved. Despite these limitations, 
the proposed 0D model demonstrates a good approximation of the key 
electrochemical processes occurring in LSBs. In the following section, 
the parameters of the fabricated battery are estimated to further validate 
the model’s accuracy.

3.2. Sensitivity analysis of different parameters

To further analyze the contributions of different parameters to the 
overall shape of the voltage curve, a sensitivity analysis was conducted 
involving varying one parameter at a time and calculating the partial 
derivatives of voltage with respect to selected thermodynamic and ki
netic parameters [26]. The results are shown in Fig. 6.

Fig. 6a displays the sensitivity of voltage to the equilibrium poten
tials E0

H1, E0
H2, and E0

L. The results indicate that the voltage profile is 
affected by E0

H1 firstly, where the high-voltage redox reactions are most 
active. After that E0

H2 affect the voltage up to the dip point region. 
Conversely, E0

L is only effective to the latter part of the discharge, where 
the voltage transitions into the lower voltage plateau. Thus, it is evident 
that accurate parameterization of equilibrium potentials is significant, 
especially with regard to the two-plateau behaviour of LSBs.

Fig. 6b shows that voltage sensitivity to I0
H1 was most pronounced 

during the early discharge period. Meanwhile, the voltage sensitivity to 
the I0H2 illustrated in Fig. 6c shows a more complex pattern, as it retains 
considerable sensitivity throughout the dip point region. The voltage 
sensitivity to the I0L illustrated in Fig. 6d, shows a steep jump in sensi
tivity, as the cell begins to enter the lower voltage plateau and maintain 
a high influence until full discharge. This emphasizes that measuring 
low-voltage kinetics correctly is critical to effectively model the 
behaviour of the cell as it approaches the end-of-discharge.

Finally, Fig. 6e shows voltage sensitivity with respect to the precip
itation rate constant kp. A peak appeared around the dip point region, 
but is quickly diminished suggesting a less critical role in the later stages 
of discharge.

Overall, each parameter demonstrates dominance within specific 
capacity ranges, reinforcing the physical consistency of the model and 
highlighting the necessity of precise calibration to accurately capture 
system behaviour across diverse operating conditions. This analysis also 
underscores the inherent limitations of the 0D modelling framework, 

which omits spatial effects such as mass transport and diffusion con
straints. These factors, while neglected here for computational effi
ciency, can significantly influence parameter sensitivities in real systems 
and should be considered in higher-dimensional modelling approaches.

3.3. Experimental parametrization

The parameters of the 0D model were estimated using both the PSO 
and the hybrid BO-NMS methods for two discharge current rates of 0.2C 
and 0.5C. Table 2 presents the parameters estimated using the BO-NMS 
optimization method, which provided more consistent and reliable re
sults, alongside the best results obtained from several PSO runs.

PSO is effective for non-convex optimization problems and does not 
rely on gradient information. However, in this study, PSO often faced 
challenges in adequately exploring the search space and adjusting pa
rameters effectively in regions with significant variations. Furthermore, 
PSO required substantially more computational time, up to three times 
longer than the hybrid BO-NMS method, to achieve comparable results. 
In contrast, BO-NMS proved to be more robust and computationally 
efficient. By combining the strengths of probabilistic exploration, stra
tegic exploitation, and precise local refinement, BO-NMS achieved a 
better balance across the optimization process. This balance allowed it 
to converge to optimal solutions more reliably and with a significantly 
lower computational burden compared to PSO, making it a more 
effective approach for parameter estimation in this study.

Fig. 7 compares the experimental discharge curves of the Li2S- 
Co@KB-based cell with the simulated curves generated using the BO- 
NMS estimated parameters at two different current rates. The 0D 
model successfully reproduces the key features of the discharge behav
iour, including the voltage dip point and the flat regions at both current 
rates. The simulated voltage closely aligns with the measured voltage 
dynamics, demonstrating the accuracy of the model. Additionally, the 
root-mean-square error (RMSE) between the simulated and experi
mental voltages is approximately 10 mV for both graphs over the 
measured points, indicating a high level of precision in capturing the 
battery’s discharge characteristics.

The error bars shown at the bottom of Fig. 7 highlight greater de
viations in the slope transition region between the high and low voltage 
plateaus. This error is attributed to the use of simplified Butler-Volmer 
equations, which assume that the concentrations of reactants and 
products remain constant and do not directly affect the current. How
ever, near the dip point, where transitions between phases occur, con
centration gradients can form due to precipitation or accumulation of 
species. In real electrochemical systems, the current is influenced not 
only by the overpotential but also by the concentrations of reactants and 
products at the electrode surface. To explicitly account for the depen
dence of the Butler-Volmer equation on the concentrations of sulfur 
species (as in Eqs. (13) to (15)), the exchange current density can be 
modified to include the actual concentrations of species at the electrode 
surface [21]. While this modification provides a more accurate 

Fig. 7. Comparison of the experimental discharge curves of a Li2S-Co@KB-based cell and the simulated discharge curve using parameters estimated through BO-NMS 
optimization at 0.2C (left) and 0.5C (right).
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representation of the electrochemical processes, it also increases the 
model’s sensitivity to initial conditions and significantly adds to the 
computational burden. Since the parameters identified using the 
simplified Butler-Volmer equations closely match experimental values 
and the key characteristics of the voltage curve are accurately captured, 
this error has been deemed acceptable and ignored in the current study.

Fig. 8 displays the weight changes of different sulfur species, reaction 
currents, overpotentials, and Nernst potentials at a discharge current 
rate of 0.2C. A comparison of the parameters estimated using the BO- 
NMS method at two different current rates is summarized in Table 2. 
The results reveal that at 0.5C, compared to 0.2C, the parameters E0

H1, 
E0

H2, and E0
L decrease slightly, reflecting an increase in polarization ef

fects and a larger deviation from equilibrium conditions. Among these, 
E0

H2 exhibited the most significant reduction, dropping from 2.257 V to 
2.200 V. This suggests that the intermediate polysulfide species (S2−

6 ) 
faces the greatest difficulty in maintaining equilibrium as the discharge 
rate increases, highlighting the thermodynamic challenges associated 
with operating LSBs at higher current rates.

As shown in Table 2, the parameters I0H1, I0
H2, and I0

L increase at higher 
discharge rates, indicating that faster kinetics are required to support the 
higher discharge rates. I0H1 rises from 14.736 to 18.421 A/m2, high
lighting the critical role of the early-stage polysulfide reduction 
(S8→S2−

6 ) in enabling the system to adapt to increased current demands. 
The subsequent increases in I0H2 and I0

L confirm that kinetic enhance
ments occur in the intermediate and late stages of discharge, supporting 
the overall performance of the battery under higher current conditions.

When the current rate is increased from 0.2C to 0.5C, kp rises from 32 
to 140 g− 1s− 1, while ks decreases from 1.08 × 10− 4 to 1.0× 10− 4 s− 1, 
indicating a significant reduction of the shuttle effect at the higher 
current rate.

This reduction can be explained by several factors: i) The faster 
reduction of dissolved polysulfides at the cathode during discharge 
leaves less material available to diffuse toward the anode; ii) The in
crease in kp accelerates the precipitation of solid-phase products, such as 
Li2S, which reduces the concentration of soluble polysulfides in the 
electrolyte and limits their mobility; iii) The shorter discharge time 
associated with higher current rates decreases the time available for 
polysulfides to diffuse to the anode, further suppressing the shuttle 
effect.

The increase in kp reflects the system’s ability to adapt to high cur
rent rates by facilitating the rapid conversion of dissolved polysulfides 
into solid products. However, this adaptation can come at a cost, as more 
rapid precipitation may occur inhomogeneously, potentially passivating 
the electrodes and reducing the utilization of active material. 

Conversely, the slight decrease in ks suggests improved control over 
polysulfide shuttling, contributing to better coulombic efficiency even at 
elevated reaction rates. Overall, the observed increase in I0H1, I0H2, and I0L 
and kp, coupled with a reduction in ks, highlights the LSB capability to 
support high current rates through the enhancement of reaction and 
precipitation kinetics while effectively mitigating the shuttle effect. 
However, the decrease in E0

H1, E0
H2, and E0

L underscores the presence of 
polarization issues due to resistive losses. This indicates that further 
optimization of the electrolyte composition and electrode structure is 
necessary to achieve efficient and stable operation at high discharge 
current rates.

It should be noted that by calibrating the model to achieve the same 
experimental specific capacity, variations in accessible sulfur mass are 
introduced as fitting parameters, which gives the ability to reproduce 
capacity trends without explicitly capturing transport limitations. In this 
way, the methodology focuses on data fitting of all parameters in the 
new C-rate instead of a direct physical model of internal processes. There 
are some mechanistic models in the literature [21,26] that attempt to 
account for dynamic changes in porosity and active surface area during 
discharge. This helps to better capture the evolution of electrode 
morphology and its impact on capacity, particularly during the second 
discharge plateau. However, to maintain computational efficiency and 
avoid the introduction of additional state variables that may compro
mise numerical stability, we approximate these effects by adjusting the 
utilized sulfur mass. Future work may involve incorporating lumped 
transport resistance elements such as electrolyte ionic resistance and 
solid-state diffusion limitations, and morphology-related parameters. 
These changes would improve the model’s ability to reproduce the 
voltage slope and duration of the second plateau and could also allow for 
a better representation of rate-dependent capacity loss at different cur
rent densities.

4. Conclusion

This study presents a three-step 0D model for predicting the char
acteristics of LSBs during discharge, demonstrating its effectiveness in 
capturing key features of the discharge voltage curve. The model em
ploys the Nernst equation to calculate the equilibrium potentials of 
electrochemical reactions and a Butler-Volmer approximation to 
describe the current-overpotential relationship, linking overpotentials 
to the total cell potential. Additionally, the model tracks the temporal 
changes in sulfur species due to production, consumption, the shuttle 
effect, and precipitation, inherently reflecting the impact of these phe
nomena on battery behaviour. The 0D model proves to be a valuable tool 
for studying the evolution of species concentrations and understanding 
the interplay between reaction kinetics and precipitation parameters, all 
while maintaining relatively modest computational demands. The pro
posed optimization methodology effectively parametrizes the 0D model 
for the as-synthesized Li2S-Co@KB cathode. By combining local refine
ment with targeted error weighting in a multistage Bayesian optimiza
tion framework, the approach addresses the limitations of PSO. This 
hybrid method ensures a well-targeted optimization process, achieving 
better convergence and improved model accuracy within shorter 
computational times. The model is particularly effective in accurately 
predicting the behaviour around the dip point in the voltage curve, a 
critical feature in LSBs associated with important electrochemical pro
cesses during discharge. Accurate prediction of the dip point voltage is 
essential for battery management systems, enhancing their ability to 
control and optimize battery performance. One valuable application of 
this model is in battery balancing, where the identification of variations 
in dip point behaviour can help detect imbalances among connected 
batteries. Overall, this work highlights the importance of advanced 
modelling techniques in accurately representing the real-world perfor
mance of LSBs, ensuring that critical regions of the voltage curve are 
well-represented. This enhances the predictive reliability and practical 

Fig. 8. Predicted Li2S-Co@KB battery variables during the discharge process at 
a current rate of 0.2C, (a) Mass of sulfur species. (b) Reaction currents. (c) 
Nernst potentials.
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applicability of the simulation model. The proposed model serves as a 
robust tool for describing the inner dynamics of LSBs, providing a strong 
foundation for developing diagnostic and predictive techniques. Such 
techniques can help materials scientists evaluate LSB cell performance 
across various applications and optimize new material candidates. 
Furthermore, the model can be readily extended to incorporate the 
voltage contributions of novel anodes paired with S-based cathodes or to 
assess the impact of different electrolytes, making it a versatile frame
work for advancing LSB technology.
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P. Chenevier, M. Oloomi-Buygi, Nanostructured Li2S cathodes for silicon–sulfur 
batteries, ACS Appl. Mater. Interfaces 15 (2023) 58462–58475, https://doi.org/ 
10.1021/acsami.3c14072.

[4] J. Jiang, Q. Fan, S. Chou, Z. Guo, K. Konstantinov, H. Liu, J. Wang, Li2S-based Li- 
ion sulfur batteries: Progress and prospects, Small 17 (2021) e1903934, https:// 
doi.org/10.1002/smll.201903934.

[5] S. Li, D. Leng, W. Li, L. Qie, Z. Dong, Z. Cheng, Z. Fan, Recent progress in 
developing Li2S cathodes for Li–S batteries, Energ. Storage Mater. 27 (2020) 
279–296, https://doi.org/10.1016/j.ensm.2020.02.010.

[6] M. Yu, S. Zhou, Z. Wang, W. Pei, X. Liu, C. Liu, C. Yan, X. Meng, S. Wang, J. Zhao, 
J. Qiu, A molecular-cage strategy enabling efficient chemisorption–electrocatalytic 
interface in nanostructured Li2S cathode for Li metal-free rechargeable cells with 
high energy, Adv. Funct. Mater. 29 (2019), https://doi.org/10.1002/ 
adfm.201905986.

[7] C. Zhang, B. Fei, D. Yang, H. Zhan, J. Wang, J. Diao, J. Li, G. Henkelman, D. Cai, J. 
J. Biendicho, J.R. Morante, A. Cabot, Robust lithium–sulfur batteries enabled by 
highly conductive WSe2-based superlattices with tunable interlayer space, Adv. 
Funct. Mater. 32 (24) (2022) 2201322, https://doi.org/10.1002/adfm.202201322.

[8] M. Li, D. Yang, J.J. Biendicho, X. Han, C. Zhang, K. Liu, J. Diao, J. Li, J. Wang, 
M. Heggen, R.E. Dunin-Borkowski, J. Wang, G. Henkelman, J.R. Morante, J. Arbiol, 
S.L. Chou, A. Cabot, Enhanced polysulfide conversion with highly conductive and 
electrocatalytic iodine-doped bismuth selenide nanosheets in lithium–sulfur 
batteries, Adv. Funct. Mater. 32 (26) (2022) 2200529, https://doi.org/10.1002/ 
adfm.202200529.

[9] H. Yuan, X. Chen, G. Zhou, W. Zhang, J. Luo, H. Huang, Y. Gan, C. Liang, Y. Xia, 
J. Zhang, J. Wang, X. Tao, Efficient activation of Li2S by transition metal 
phosphides nanoparticles for highly stable lithium–sulfur batteries, ACS Energ. 
Lett. 2 (2017) 1711–1719, https://doi.org/10.1021/acsenergylett.7b00465.

[10] S.F. Ng, M.Y.L. Lau, W.J. Ong, Lithium–sulfur battery cathode design: tailoring 
metal-based nanostructures for robust polysulfide adsorption and catalytic 
conversion, Adv. Mater. 33 (2021) 2008654, https://doi.org/10.1002/ 
adma.202008654.

[11] A. Eftekhari, D.-W. Kim, Cathode materials for lithium–sulfur batteries: a practical 
perspective, J. Mater. Chem. A 5 (2017) 17734–17776, https://doi.org/10.1039/ 
C7TA00799J.

[12] X. Yang, X. Li, K. Adair, H. Zhang, X. Sun, Structural design of lithium–sulfur 
batteries: from fundamental research to practical application, Electrochem. Energy 
Rev. 1 (2018) 239–293, https://doi.org/10.1007/s41918-018-0010-3.

[13] A. Fotouhi, D.J. Auger, K. Propp, S. Longo, Lithium–sulfur battery state-of-charge 
observability analysis and estimation, IEEE Trans. Power Electron. 33 (2017) 
5847–5859, https://doi.org/10.1109/TPEL.2017.2740223.

[14] D. Su, D. Zhou, C. Wang, G. Wang, Toward high performance lithium–sulfur 
batteries based on Li2S cathodes and beyond: status, challenges, and perspectives, 
Adv. Funct. Mater. 28 (2018), https://doi.org/10.1002/adfm.201800154.

[15] K. Yoo, M.-K. Song, E.J. Cairns, P. Dutta, Numerical and experimental investigation 
of performance characteristics of lithium/sulfur cells, Electrochim. Acta 213 
(2016) 174–185, https://doi.org/10.1016/j.electacta.2016.07.110.
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