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1. INTRODUCTION

Throughout this paper, all random variables are defined on a probability space (Ω,F ,P). Mean
convergence for sums (with or without) dependent random variables are surveyed by many authors.
The reader may refer to Antonini et al. [4], Ordòñez Cabrera et al. [13], Ordòñez Cabrera and Volodin
[14] and Rosalsky and Thành [15]. The important notion of uniform integrability (UI) allows us to
establish mean convergence and weak laws of large numbers. The classical notion of UI of a sequence
{Xn, n ≥ 1} of integrable random variables is defined by the condition

lim
t→∞

sup
n≥1

E|Xn|I(|Xn| > t) = 0.

The concept of UI has been generalized in several directions. Motivated by the classical notion of UI,
Chandra [6] used the condition

lim
t→∞

sup
n≥1

n−1
n∑

i=1

E|Xi|I(|Xi| > t) = 0

to propose the notion of Cesàro uniform integrability (CUI). The notion of CUI was extended by
Ordòñez Cabrera [12] to uniform integrability concerning an array of constants. Let {ani, 1 ≤ i ≤ n, n ≥
1} be an array of constants. Then, a sequence {Xn, n ≥ 1} of random variables is said to be {ani}-
uniform integrable ({ani}-UI) if

sup
n≥1

n∑
i=1

|ani| < ∞ and lim
t→∞

sup
n≥1

n∑
i=1

|ani|E|Xi|I(|Xi| > t) = 0.
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It is obvious that when ani = n−1, for 1 ≤ i ≤ n and n ≥ 1, {ani}-UI reduces to CUI. Thus, {ani}-
UI is weaker than CUI. For more details on the ways the various concepts of uniform integrability are
related to each other, we refer the reader to Thành [16].

In what follows, we present an example of {apni}-uniform integrability.
Example 1. Let the probability space be the Lebesgue interval, that is, the unit interval with the

Lebesgue measure. We define the sequence of random variables {Xn, n ≥ 1} and an array of constants
{ani, 1 ≤ i ≤ n, n ≥ 1} by

Xn(ω) =
1

lg n
IAn(ω), n ≥ 1 and ani =

{
1/n 1 ≤ i ≤ n

0 i > n,

where An = [0, n−1] and lg x = lnmax(x, e). By using Markov’s inequality and the fact that the series∑∞
i=1

1
i lg2 i

is convergent, for p ≥ 2 we can write

sup
n≥1

n∑
i=1

|ani|pE|Xi|pI(|Xi| > t)

≤ sup
n≥1

n∑
i=1

|ani|ptpP(|Xi| > t) + sup
n≥1

n∑
i=1

|ani|p
∞∫
t

pxp−1
P(|Xi| > x)dx

≤ 1

t
sup
n≥1

n∑
i=1

1

np

1

i lgp+1 i
+

1

(p− 1)tp(p−1)
sup
n≥1

n∑
i=1

1

np

1

i lgp
2
i

≤ 1

t
sup
n≥1

n∑
i=1

1

i lgp+1 i
+

1

(p− 1)tp(p−1)
sup
n≥1

n∑
i=1

1

i lgp i

≤ 1

t
sup
n≥1

n∑
i=1

1

i lg2 i
+

1

(p− 1)tp(p−1)
sup
n≥1

n∑
i=1

1

i lg2 i

≤ 1

t

∞∑
i=1

1

i lg2 i
+

1

(p− 1)tp(p−1)

∞∑
i=1

1

i lg2 i
≤ C

(
1

t
+

1

(p− 1)tp(p−1)

)
→ 0 as t → ∞.

Thus, the sequence {|Xn|p, n ≥ 1} of random variables is {apni}-UI for p ≥ 2.

The following counterexample shows that {|Xn|p, n ≥ 1} is {|apni|}-UI but {|Xn|q, n ≥ 1} is not
valid {|aqni|}-UI for 0 < q < p.

Example 2. Let {Xn, n ≥ 1} be a sequence of identically and bounded (P(|X| ≤ C) = 1) random
variables. Since E|X|αI[|X| > t] → 0 as t → ∞ for α > 0 and

∑∞
i=1 i

−2 < ∞,
∑∞

i=1 i
−1 = ∞, then

by taking ani = 1/i, 1 ≤ i ≤ n we can say {|Xn|2, n ≥ 1}-UI is {|a2ni|}-UI but {|Xn|, n ≥ 1} it is not
{|ani|}-UI.

Negatively associated (NA) random variables were introduced by Alam and Saxena [1] and
carefully studied by Joag and Proschan [11] and Block et al. [3]. As pointed out and proved by Joag
and Proschan, a number of well-known multivariate distributions possess the NA property. Negative
association has found important and wide applications in multivariate statistical analysis and reliability
theory. The applications of NA to probability, stochastic processes and statistics have been discussed by
many researchers.

Definition 1. A sequence X1,X2, . . . ,Xn of random variables is called NA if for every pair of
disjoint subsets A1 and A2 of {1, 2, . . . , n},

Cov(f1(Xi; i ∈ A1), f2(Xj ; j ∈ A2)) ≤ 0,

where the functions f1(Xi; i ∈ A1) and f2(Xj ; j ∈ A2)) are increasing in any variable (or decreas-
ing in any variable) and the covariance exists. An infinite family of random variables is NA if
each of its finite subfamilies is NA.
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The next dependence notion is the concept of negative superadditive dependence, which is weaker
than NA. Negatively superadditive-dependent (NSD) random variables were introduced by Hu [9]
as follows.

Definition 2. A random vector X = (X1,X2, . . . ,Xn) is said to be NSD if

Eφ(X1,X2, . . . ,Xn) ≤ Eφ(X∗
1 ,X

∗
2 , . . . ,X

∗
n),

where X∗
1 ,X

∗
2 , . . . ,X

∗
n are independent, X∗

i and Xi have the same distribution for each i, and φ is
a superadditive function such that the expectations given in the above equation exist. A sequence
{Xn, n ≥ 1} of random variables is said to be NSD if for each n ≥ 1, the vector (X1,X2, . . . ,Xn)
is NSD.

As shown by Hu [9], NSD does not necessarily imply NA. He also proposed an open problem
asking about the truth of the reverse implication: Is it true that NA implies NSD? Furthermore, he
provided some basic properties of NSD random vectors and established three structural theorems for
such vectors. Later on, Christofides and Vaggelatou [7] solved the open problem, showing that NA
implies NSD, we refer more details Amini et al. [2]. Therefore, the NSD structure is an extension of the
NA structure and is sometimes more useful.

We provide definition according to the Farlie–Gumbel–Morgenstern (FGM) random sequences that
we can apply to NSD.

Definition 3. A sequence {Xn, n ≥ 1} of random variables is called a FGM random sequence if
for n ≥ 1 and (x1, . . . , xn) ∈ R

n, we have

F (x1, . . . , xn) =
n∏

i=1

Fi(xi)

⎛
⎝1 +

∑
1≤i<j≤n

αij [1− Fk(xk)][1− Fj(xj)]

⎞
⎠ ,

where the parameters αij satisfy in conditions |αij | ≤ 1 and 1 +
∑

1≤i<j≤n

αij ≥ 0. Also, Fi is

cumulative distribution function of Xi.
Remark 1. For the parameters αij ≤ 0, FGM random sequence is NSD. On more details we refer

the reader to Mari and Kotz [8].
We also need basic definitions from the theory of regularly varying function. For a complete exposition

on the subject, the reader may consult Bingham et al. [5].
Definition 4. A measurable function U : [a,∞) → (0,∞) , a ∈ R, is called regularly varying at

infinity (zero) with exponent ρ, denoted as U ∈ RV∞(ρ) (U ∈ RV0(ρ)), if for all t > 0,

U(tx)

U(x)
→ tρ as x → ∞ (x → 0).

If ρ = 0, then we say that it is slowly varying at infinity (zero) and write U ∈ SV∞
(
U ∈ SV0

)
.

Throughout this paper, let C denote a positive constant not depending on n, let I(A) be the indicator
function of a set A and lg x = lnmax(e, x).

2. THE MAIN RESULT
We begin with some preliminary facts which are needed for the proof of our main result. The first

lemma is due to Hu [9].
Lemma 1. If X1,X2, . . . ,Xn are NSD random variables and g1(·), g2(·), . . . , gn(·) are non-

decreasing functions, then g1(X1), g2(X2), . . . , gn(Xn) are also NSD random variables.
In the second lemma, we state a Rosenthal-type maximal inequality for NSD random variables. It

can be found in Wang et al. [17].
Lemma 2 (A Rosenthal-type maximal inequality). Let {Xn, n ≥ 1} be a sequence of NSD random

variables with E|Xn|p < ∞, for some p > 1 and every n ≥ 1. Then, there exist positive constants
Cp and Dp depending only on p such that for every n ≥ 1,

E

(
max
1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣
p)

≤ Cp

n∑
i=1

E |Xi|p for 1 < p ≤ 2
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and

E

(
max
1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣
p)

≤ Dp

⎧⎨
⎩

n∑
i=1

E |Xi|p +
(

n∑
i=1

EX2
i

)p/2
⎫⎬
⎭ for p > 2.

Now, we present the main result that states the mean convergence for weighted sums of NSD random
variables.

Theorem 1. Let {Xn, n ≥ 1} be a sequence of NSD random variables with EXn = 0 for each
n ≥ 1.

(i) Let 1 ≤ p ≤ 2 and {ani, 1 ≤ i ≤ n, n ≥ 1} be an array of real numbers such that
max1≤i≤n |ani| → 0 as n → ∞. If {|Xn|p, n ≥ 1} is {|ani|p}-UI, then

max
1≤i≤n

∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣ Lp−→ 0, as n → ∞. (1)

(ii) Let p > 2 and {ani, 1 ≤ i ≤ n, n ≥ 1} be an array of real numbers such that ani ≤ 1,
supn≥1

∑n
i=1 |ani| < ∞ and max1≤i≤n |ani| → 0 as n → ∞. If {|Xn|p, n ≥ 1} is {a2ni}-UI, then

max
1≤i≤n

∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣ Lp−→ 0, as n → ∞. (2)

Proof. Without loss of generality, we suppose that ani ≥ 0, because we can use the identity
ani = a+ni − a−ni in the general case. Since the sequence {|Xn|p, n ≥ 1} is {|ani|p}-UI and ani ≥ 0,

lim
t→∞

sup
n≥1

n∑
i=1

apniE|Xi|pI(|Xi| > t) = 0.

For i ≥ 1 and fixed t > 0, set

Yi = −tI[Xi < −t] +XiI[|Xi| ≤ t] + tI[Xi > t],

Zi = Xi − Yi = (Xi + t)I[Xi < −t] + (Xi − t)I[Xi > t].

Since ani ≥ 0, by Lemma 1, we observe that {ani(Yi − EYi), i ≥ 1} and {ani(Zi − EZi), i ≥ 1} are
sequences of NSD random variables. Moreover, for k ≥ 1 let

Sk =

k∑
i=1

aniXi, S′
k =

k∑
i=1

ani(Yi − EYi), S′′
k =

k∑
i=1

ani(Zi − EZi).

Since EXi = 0, we can write Sk = S′
k + S′′

k .
First, we prove (i). By Cr and Lyapunov inequalities,

E

(
max
1≤i≤n

|Sk|p
)

≤ C

(
E

(
max
1≤i≤n

|S′
k|2

))p/2

+ CE

(
max
1≤i≤n

|S′′
k |p

)
.
= I1 + I2.

To prove (1), we show that I1 → 0 and I2 → 0 as n → ∞. For I1, by Lemma 2 and the fact that |Yi| ≤ t
we obtain

I1 ≤ C

[
n∑

i=1

a2niE|Yi − EYi|2
]p/2

≤ C

[
n∑

i=1

a2niE|Yi|2
]p/2

≤ Ctp

[
n∑

i=1

a2ni

]p/2

= Ctp

[
n∑

i=1

apnia
2−p
ni

]p/2

≤ Ctp

[
sup
n≥1

n∑
i=1

apni

]p/2(
max
1≤i≤n

ani

)p(1−p/2)

. (3)
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For I2, note that |Zi| ≤ 2|Xi|I[|Xi| > t] and Lemma 2 allow us to write

I2 ≤ C
n∑

i=1

apniE|Zi − EZi|p ≤ C
n∑

i=1

apniE|Xi|pI[|Xi| > t]

≤ C sup
n≥1

n∑
i=1

apniE|Xi|pI[|Xi| > t]. (4)

Now, (3) and (4) show that

E

(
max
1≤i≤n

|Sk|p
)

≤ Ctp

[
sup
n≥1

n∑
i=1

apni

]p/2 (
max
1≤i≤n

ani

)p(1−p/2)

+ C sup
n≥1

n∑
i=1

apniE|Xi|pI[|Xi| > t]. (5)

Since supn≥1

∑n
i=1 a

p
ni < ∞, max1≤i≤n ani → 0 as n → ∞ and {|Xn|p, n ≥ 1} is {apni}-UI, we

immediately deduce (i) by letting n → ∞ and t → ∞, respectively, in (5).

Next, we prove (ii). Similar to the proof of (i), by Cr and Lyapunov inequalities we obtain

E

(
max
1≤i≤n

|Sk|p
)

≤ CE

(
max
1≤i≤n

|S′
k|p

)
+ CE

(
max
1≤i≤n

|S′′
k |p

)
.
= J1 + J2. (6)

For J1, by the Cr inequality, Lemma 2 and the fact that |Yi| ≤ t we can write

J1 ≤ C
n∑

i=1

apniE|Yi − EYi|p +C

(
n∑

i=1

a2niE|Yi − EYi|2
)p/2

≤ C

n∑
i=1

apniE|Yi|p + C

(
n∑

i=1

a2niE|Yi|2
)p/2

≤ Ctp

(
n∑

i=1

apni

)
+ Ctp

(
n∑

i=1

a2ni

)p/2

≤ Ctp

(
n∑

i=1

a2ni

)
+ Ctp

(
n∑

i=1

a2ni

)p/2

(by0 < ani ≤ 1)

≤ Ctp

⎧⎨
⎩
(
(sup
n≥1

n∑
i=1

ani)( max
1≤i≤n

ani)

)
+

(
(sup
n≥1

n∑
i=1

ani)( max
1≤i≤n

ani)

)p/2
⎫⎬
⎭ . (7)

For J2, similar to (4) we obtain

J2 ≤ C

⎧⎨
⎩

n∑
i=1

apniE|Zi − EZi|p +
(

n∑
i=1

a2niE|Zi − EZi|2
)p/2

⎫⎬
⎭

≤ C

⎧⎨
⎩

n∑
i=1

apniE|Zi|p + C

(
n∑

i=1

a2niE|Zi|2
)p/2

⎫⎬
⎭

≤ C

n∑
i=1

apniE|Xi|pI(|Xi| > t) + C

(
n∑

i=1

a2niE|Xi|2I(|Xi| > t)

)p/2

≤ C
n∑

i=1

a2niE|Xi|pI(|Xi| > t) + C

(
t2−p

n∑
i=1

a2niE|Xi|pI(|Xi| > t)

)p/2

(by 0 < ani ≤ 1)

≤ C sup
n≥1

n∑
i=1

a2niE|Xi|pI(|Xi| > t) + Ctp(1−p/2)

(
sup
n≥1

n∑
i=1

a2niE|Xi|pI(|Xi| > t)

)p/2

. (8)
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By (7) and (8),

E

(
max
1≤i≤n

|Sk|p
)

≤ Ctp

⎧⎨
⎩
(
(sup
n≥1

n∑
i=1

ani)( max
1≤i≤n

ani)

)
+

(
(sup
n≥1

n∑
i=1

ani)( max
1≤i≤n

ani)

)p/2
⎫⎬
⎭

+ C sup
n≥1

n∑
i=1

a2niE|Xi|pI(|Xi| > t) + Ctp(1−p/2)

(
sup
n≥1

n∑
i=1

a2niE|Xi|pI(|Xi| > t)

)p/2

. (9)

Since supn≥1

∑n
i=1 ani < ∞ and max1≤i≤n ani → 0 as n → ∞, {|Xn|p, n ≥ 1} is {a2ni}-UI, (ii) imme-

diately follows by letting n → ∞ and t → ∞, respectively, in (9). �

Remark 2. It is obvious that {ani}-UI is weaker than CUI. So, under the conditions of Theorem 1,
if {|Xn|p, n ≥ 1} is CUI, then the results (1) and (2) follow.

Remark 3. Since convergence in mean implies convergence in probability, all the obtained results
are also true for convergence in probability.

Let us present an example of a FGM sequence of random variables for which Theorem 1 be applied.
Example 3. Let {Xn, n ≥ 1} be a sequence of FGM random variables with the parameters

αij ≤ 0. Suppose Stationary sequence {Xn = Y · εn, n ≥ 1} random variables, where {εn, n ≥ 1} is
a sequence of i.i.d., independent of Y such that for each i ≥ 1, P (εi = 1) = P (εi = −1) = 1

2 , and Y

be the Pareto distribution FY (y) = 1− y−α, y ∈ [1,∞), α > 0. Since P(Y > t) ∈ RV∞(−α), then by
Theorem 1.5.11 (ii) in Bingham et al. (1987) we can write for large t

p

∞∫
t

yp−1
P(Y > y)dy =

1

α− p
tpP(Y > t),

now we have for p < α,

E|X|pI[|X| > t] = EY p
I[Y > t] = tpP(Y > t) + p

∞∫
t

yp−1
P(Y > y)dy

=
(α− p) + 1

(α− p)
tpP(Y > t) =

(α− p) + 1

(α− p)
tp−α → 0 as t → ∞. (10)

Let ani = n−θ, 1 ≤ i ≤ n, n > 1 and θp ≥ 1. Since max1≤i≤n |ani| = n−θ → 0 as n → ∞,
supn≥1

∑n
i=1 |ani| = supn≥1

1
nθ−1 < ∞ and by (10)

lim
t→∞

sup
n≥1

n∑
i=1

|ani|E|Xi|I(|Xi| > t) = lim
t→∞

sup
n≥1

1

nθ−1
E|X|I(|X| > t) ≤ lim

t→∞
E|X|I(|X| > t) = 0,

hence, random sequence {Xn = Y · εn, n ≥ 1} and real number sequence ani = n−θ, 1 ≤ i ≤ n satisfy
the assumptions of Theorem 1 (i). We can conclude for p < α, α > 0, and θp ≥ 1

Sn

nθ

Lp−→ 0 as n → ∞.

Also, according to the above it is easy to show that these sequence satisfy in Theorem 1 (ii), and we can
write for p < α, α > 0, and θ ≥ 1/2

Sn

nθ

Lp−→ 0 as n → ∞.

In what follows, the approach to the weighted law of large numbers the idea of Jajte [10] applied and
we discuss the assumptions that will be imposed on our weights in Theorem 1.

Let g : [0,∞) → R and h : [0,∞) → R be non-negative functions, and let φ(y) = g(y)h(y). Also,
assume that the following conditions are satisfied.

(A1) h(·) is non-decreasing and for some d ≥ 0, φ(·) is strictly increasing on [d,∞] with range [d,∞].

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 46 No. 4 2025
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(A2) A constant b > 0 exists such that for α ≥ 0,
n∑

i=1

1

hα(i)
≤ b

n

hα(n)
.

Remark 4. For the power functions h(x) = xq and g(x) = xp (φ(x) = xp+q), the requirements (A1)
and (A2) are valid for p+ q > 0 and αq < 1. Also the requirements (A1) and (A2) are valid for functions
h(x) = xq and g(x) = logp x (φ(x) = xq logp x) for p > 0 and αq < 1.

If we let ani = 1
g(n)h(i) for n ≥ 1 and 1 ≤ i ≤ n in Theorem 1, we obtain the following corollary.

Corollary 1. Let {Xn, n ≥ 1} be a sequence of NSD random variables with EXn = 0 for each
n ≥ 1, and assume that g(·), h(·), and φ(·) satisfy the conditions (A1)–(A2) and g(·) is strictly
increasing.

(i) Let 1 ≤ p ≤ 2. If for t > 0,

lim
t→∞

sup
n≥1

1

gp(n)

n∑
i=1

1

hp(i)
E|Xi|pI(|Xi| > t) = 0, (11)

then

max
1≤i≤n

∣∣∣∣∣ 1

gp(n)

k∑
i=1

1

h(i)
Xi

∣∣∣∣∣ Lp−→ 0, as n → ∞.

(ii) Let p > 2, ani = 1
g(n)h(i) ≤ 1, 1 ≤ i ≤ n, supn≥1

n
φ(n) < ∞ and n

φ(n) → 0 as n → ∞. If for t > 0,

lim
t→∞

sup
n≥1

1

gp(n)

n∑
i=1

1

h2(i)
E|Xi|pI(|Xi| > t) = 0, (12)

then

max
1≤i≤n

∣∣∣∣∣ 1

gp(n)

k∑
i=1

1

h(i)
Xi

∣∣∣∣∣ Lp−→ 0, as n → ∞.

Corollary 2. Let {Xn, n ≥ 1} be a sequence of NSD random variables with EXn = 0 for n ≥ 1.
If {|Xn|p, n ≥ 1} is CUI for 1 ≤ p < 2, then

max
1≤k≤n

∣∣∣∣
∑n

i=1Xi

n1/p

∣∣∣∣ Lp−→ 0, as n → ∞. (13)

Proof. In Corollary 1, let g(n) = n1/p, h(n) = 1 (φ(n) = n1/p) for 1 ≤ p < 2. Since {|Xn|p, n ≥ 1}
is CUI, easily (11) follows. Now, by applying Corollary 1 (i) we conclude (13). �

Corollary 3. Let {Xn,X, n ≥ 1} be a sequence of identically NSD random variables with
EX = 0 for n ≥ 1. If E|X|pI[|X| > t] → 0, t → ∞ for p > 1, then

max
1≤k≤n

∣∣∣∣∣ 1

lgp n

n∑
i=1

Xi

ip

∣∣∣∣∣ Lp−→ 0, as n → ∞. (14)

Proof. Because
∑n

i=1
1
ip < ∞ for p > 1, supn≥1

n
φ(n) = supn≥1

1
lgn < ∞ and n

φ(n) =
1

lgn →
0 as n → ∞, then by according Corollary 1 (i) and (ii), we obtain (14). �
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Fig. 1. The plot of Mn against n for Corollary 2.

3. SIMULATION STUDY

In this section, based on Corollary 2, we evaluate the numerical performance of

Mn = max
1≤k≤n

∣∣∣∣
∑n

i=1Xi

n1/p

∣∣∣∣ Lp−→ 0, as n → ∞. (15)

We generate an NSD sequence by

Xn = amYn + bmZn, n ≥ 1,

where am and bm are positive sequences, Yn and Zn are negatively dependent random variables
(corresponding to ρ < 0) with bivariate Normal distribution as

(Y,Z) ∼ N (μ1, μ2, σ1, σ2, ρ),

where the sequence {Xn, n ≥ 1} is NSD, as shown by Yu et al. [18].

The simulation procedure of the sequence {Xn, n ≥ 1} was straightforward. We used the R software
to compute Mn for n=10000 using 5000 replications of the sequence {Xn, n ≥ 1} for p = 1, 1.2, 1.5, 1.7
and am = bm = 1, μ1 = μ2 = 0, σ1 = σ2 = 1, and ρ = −0.5, where the conditions of Corollary 2 are
satisfied.

The convergence behavior of the sequence {Mn, n ≥ 1} is shown in Fig. 1. According to the figure,
the terms Mn fluctuate around zero and the range of changes is significantly reduced.
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13. M. Ordòñez Cabrera, A. Rosalsky, M. Unver, and A. I. Volodin, “On the concept of B-statistical uniform

integrability of weighted sums of random variables and the law of large numbers with mean convergence in
statistical sense,” Test 30, 83–102 (2021).
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