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Abstract

In modern networking, software-defined networks (SDNs) have emerged as a pow-
erful paradigm that separates the control plane from the data plane, enabling cen-
tralized and distributed network management. SDNs provide flexibility and effi-
ciency in handling large-scale networks, aiming to optimize resource utilization,
reduce energy consumption, and enhance quality of service (QoS). Given the rapid
growth in data traffic and the increasing need to minimize response time and energy
consumption, developing efficient load balancing strategies has become a criti-
cal challenge to ensure network performance and stability. Load balancing plays a
vital role in optimizing data traffic distribution across servers and network nodes,
preventing congestion, and improving system efficiency. This is especially crucial
in large and complex environments such as cloud data centers and distributed net-
works, where handling high request volumes efficiently is essential. To address
these challenges, this paper introduces SDN-PG, a novel dynamic load balancing
strategy for SDNs that integrates policy gradient (PG), a reinforcement learning-
based optimization method, with dynamic voltage and frequency scaling to enhance
energy efficiency and network performance. SDN-PG dynamically optimizes traf-
fic distribution by continuously adapting network policies to real-time fluctuations,
significantly improving QoS while minimizing energy consumption. The proposed
approach consists of three primary components. The first component is a distribu-
tion policy learned via Policy Gradient, enabling adaptive load balancing decisions.
The second component involves real-time network monitoring, allowing the system
to track and respond to dynamic traffic changes. The third component is an efficient
decision-making mechanism, which leverages PG-based policies to reduce compu-
tational overhead and optimize response time. To validate its effectiveness, SDN-PG
is compared against state-of-the-art methods, including CCA-PSO and DRL-SMS,
through simulation experiments. The results demonstrate significant improvements
in key performance metrics. SDN-PG achieves a 45.47% and 46.22% reduction in
response time, a 14.09% and 11.98% decrease in computational overhead, a 19.47%
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and 16.38% improvement in energy efficiency, and a 7.6% and 4.24% enhancement
in load balancing effectiveness. These findings highlight the practical applicability
of SDN-PG in large-scale SDN environments, demonstrating its ability to efficiently
balance energy savings and QoS while maintaining optimal load distribution and
network stability.

Keywords Software-defined network - Load balancing - Policy gradient -
Reinforcement learning - Energy consumption - Dynamic voltage and frequency
scaling

Mathematics Subject Classification 68W25 - 6806 - 68TO01 - 68T05

1 Introduction

With the rapid growth of 4G, 5G, and 6G networks, along with the expansion of
cloud infrastructures, data centers, and wide area networks (WANS), the volume of
data traffic and network services is increasing at an unprecedented rate. Traditional
network architectures are no longer capable of managing this significant influx of
requests. Software-defined networks (SDNs) present an efficient solution for manag-
ing large-scale networks by decoupling the control plane from the data plane, ena-
bling greater control over the network infrastructure. This decoupling significantly
facilitates network management, enhances resource utilization, reduces capital and
operational expenses, improves service quality, and increases network flexibility. In
modern SDNs, load balancing has emerged as a critical challenge in optimizing net-
work performance and ensuring the delivery of high-quality services. The objec-
tive of load balancing is to distribute incoming network flows across links, servers,
and virtual machines (VM) in a way that ensures equitable utilization of all network
resources, thereby maintaining operational efficiency and stability [1, 2].

1.1 Challenges

Despite the advantages of SDNs, several critical challenges remain unresolved.
First, most existing load balancing techniques rely on centralized controller archi-
tectures, which introduce a Single Point of Failure (SPoF) and limited scalability,
making them unsuitable for large-scale networks such as cloud computing and data
centers [3, 4]. Second, high energy consumption in SDN environments has become
a major concern, particularly due to the increasing complexity of traffic manage-
ment and the demand for real-time services [5, 6]. Third, existing approaches often
fail to simultaneously optimize multiple critical factors, such as energy efficiency,
processing overhead, response time, and load balancing, making them suboptimal
in dynamic and large-scale networks [7, 8]. Fourth, current load balancing strategies
face difficulties in adapting to traffic fluctuations, which leads to inefficient resource
allocation and network congestion [9, 10]. These challenges highlight the need for
an adaptive, scalable, and energy-efficient load balancing strategy in SDNS.
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1.2 Proposed solution

To address these challenges, this study proposes a novel dynamic load balancing
strategy for SDNs, named SDN-PG, which integrates policy gradient (PG), a rein-
forcement learning algorithm, with dynamic voltage and frequency scaling (DVES).
Unlike traditional load balancing approaches, SDN-PG utilizes a distributed multi-
controller architecture, eliminating the SPoF problem while enhancing scalability
and network resilience. By dynamically adjusting server selection, resource alloca-
tion, and energy consumption, the proposed method effectively improves network
efficiency while reducing latency and computational overhead.
The proposed approach consists of three key components:

e Policy Distribution Defines and updates load balancing rules based on real-time
network conditions.

e Monitoring Component Continuously measures key network metrics, including
energy consumption, processing overhead, response time, and load balance rate.

e Decision-Making and Execution Implements policy-based resource allocation,
ensuring optimized load balancing across distributed SDN controllers.

1.3 Contribution
The main contributions of this research are as follows:

e Developing a multi-objective and energy-efficient load balancing solution by
integrating reinforcement learning techniques in SDN environments.

e Introducing a distributed load balancing strategy to mitigate the SPoF issue and
improve scalability and network flexibility.

e Leveraging the Policy Gradient method for intelligent selection of servers and
virtual machines, ensuring adaptive and efficient traffic distribution.

e Applying the DVFS technique to minimize energy consumption while maintain-
ing high service quality.

e Reducing response time and computational overhead, leading to better network
performance and reduced waiting time for users.

e Improving load balancing and resource allocation efficiency by preventing net-
work congestion and ensuring optimized workload distribution.

e Enhancing scalability and flexibility in large-scale SDN architectures.

Using the Omnet++ simulation tool, the proposed method is evaluated under
various network conditions, and its performance is compared against the CCA-PSO
[11] and DRL-SMS [12] algorithms. The simulation results indicate significant per-
formance improvements across multiple key metrics.

The remainder of this paper is structured as follows: Sect. 2 presents a compre-
hensive review of the related literature. Section 3 details the proposed methodology
and outlines the problem formulation. Section 4 discusses the simulation setup and
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evaluates the performance of the proposed method, with comparisons drawn against
the CCA-PSO and DRL-SMS techniques. Finally, Sect. 5 summarizes the key find-
ings and provides concluding remarks.

2 Related work

At the beginning of this section, we will briefly discuss classifications of load bal-
ancing approaches in SDN, focusing on a Model-Free reinforcement learning algo-
rithm known as the PG method. Subsequently, to examine the proposed method,
prior works will be categorized into three groups and analyzed in detail.

Load balancing in networks refers to the effective distribution of data traf-
fic across servers and various network nodes, aiming to reduce excessive load and
prevent congestion. This concept is particularly critical in large and complex net-
works such as cloud networks and data centers, which handle a significant volume of
requests [8, 9]. The different approaches to load balancing in SDNs are illustrated in
Fig. 1 [3].

Centralized Controller Approach: It employs a centralized controller responsible
for managing the allocation of traffic across the entire network.

Distributed Controllers Approach: In SDNs, the Distributed Controller Approach
refers to a model where resource management and load balancing responsibilities
are decentralized across various network nodes. In this framework, each node or
local controller independently collects data regarding the load conditions of other
nodes and makes local decisions based on this information. Unlike the centralized
model, where decisions are concentrated at a single central point, this approach
enables each node to function autonomously. These local decisions foster improved
scalability and reduce reliance on a central authority, thereby enhancing the overall
resilience and efficiency of the network.

Hybrid Controllers Approach: This approach integrates both centralized and dis-
tributed models, harnessing the advantages of each to deliver a holistic and efficient
solution.

Static Load Balancing Approach: Static load balancing refers to a method in
which network load and data transmission paths are pre-allocated and fixed. In this
approach, communication routes between hosts are determined and assigned before
data transfer begins, with no alterations made to these paths during the transmission
process.

Fig. 1 Classifications of load \ Mu,.....c...g...son
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Dynamic Load Balancing Approach: refers to a method in which the distribu-
tion of network load and resource allocation are continuously adjusted in real-time
based on fluctuations in traffic patterns and network conditions. In this approach, the
system autonomously redistributes the load across various nodes and resources, pre-
venting congestion and ensuring the optimal performance of the network.

Hybrid Load Balancing Approach: refers to a method that combines the features
of both static and dynamic methods to effectively manage load distribution and
resource allocation within a network. This approach utilizes the advantages of each
method to enhance network efficiency and optimize resource usage [3].

In modern SDNs, load balancing has emerged as one of the fundamental chal-
lenges in optimizing network performance and delivering high-quality services.
With the growth of data traffic, the need for rapid response and efficient resource
optimization has made the adoption of advanced methods for traffic management
and load distribution indispensable [1, 2].

Given the existing research gap in this field, this study focuses on the analysis of
dynamic load balancing in SDNs. To address this challenge, the research employs
DVES techniques to reduce energy consumption. Furthermore, for the first time,
the PG algorithm a reinforcement learning method is utilized to select the optimal
server for balanced load distribution.

To provide a comprehensive review of the existing literature, the related works
are categorized into the following three areas:

e Load balancing in software-defined networks.
e [Load balancing and energy optimization using DVFS in SDNs.
e Load balancing in SDNs using artificial intelligence and machine learning.

2.1 Load balancing in software-defined networks

When the number of network users or virtual network requests from the underlying
infrastructure increases in the virtual network embedding problem, load distribution
becomes a major issue that can ultimately affect network performance and quality
of service. The use of SDNs can enhance network application availability, resource
utilization, and QoS indicators such as delay, throughput, and response time [4]. The
issue of load balancing in SDNs has not yet been comprehensively explored, and
further research in this domain is required. The ultimate goal is to respond effec-
tively to incoming traffic and determine the best transmission paths in the network
while ensuring the highest possible QoS levels [4, 13].

Li et al. [4] proposed a multi-objective virtual network embedding (VNE) algo-
rithm, addressing resource optimization by mapping virtual network requests onto
physical infrastructure. They introduced a load-balancing approach that considers
node load as an objective function while defining global resource capacity to evalu-
ate infrastructure nodes’ ability to handle embedding. The method employs a group
search algorithm for iterative optimization. Simulation results indicate that the algo-
rithm effectively balances network load, enhances the acceptance rate of virtual
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network requests, and optimizes resource allocation, thereby increasing revenue for
service providers and improving operational efficiency.

Chiang et al. [5] applied SDN to enhance flexibility in managing large scale
networks, using server clustering with the OpenFlow protocol. They proposed the
dynamic weighted random selection (DWRS) load balancing algorithm, which
dynamically adjusts server weights based on real-time load, increasing resource
efficiency. Multi-threading was used to optimize the Floodlight controller’s per-
formance by leveraging parallel processing, preventing overload. An experimental
setup with real hardware demonstrated DWRS’s superiority in load balancing com-
pared to other methods, especially in heterogeneous environments.

Ahmadi and Movahedi [6] a distributed load balancing approach for SDN con-
trollers is introduced, where each controller monitors its own load and gathers load
data from other controllers when exceeding a set threshold. A switch with the least
load is selected for migration to optimize network load balance. The method is fully
distributed and ensures that load balancing is conducted only when specific condi-
tions are met, enhancing efficiency. It mitigates single points of failure and signifi-
cantly improves scalability, availability, and fault tolerance in the network.

Srivastava and Pandey [7] the authors reviewed various load balancing methods,
including model based, estimation based, and nature inspired algorithms, providing
a comprehensive categorization and comparison. Ethilu et al. [14] investigated an
efficient method for switch migration in SDN to optimize load distribution among
distributed controllers. The main objective is to reduce switch migration costs and
controller resource consumption. The novelty lies in enhancing the time-shared
switch migration (TSSM) method by selecting underloaded controllers, effectively
minimizing migration costs while maintaining system benefits.

Gad-Elrab et al. [15] the authors propose an innovative approach for resource
management and load balancing in fog-cloud environments using a fuzzy multi cri-
teria decision making technique. The method involves four steps: determining crite-
ria weights using fuzzy analytic hierarchy process (FAHP), ranking fog devices with
fuzzy technique for order performance by similarity to ideal solution (FTOPSIS),
calculating final device weights for task allocation, and assigning tasks to the opti-
mal device. This approach aims to enhance system efficiency, reduce energy con-
sumption, improve performance, and increase the flexibility of fog-cloud computing
systems.

Banaie et al. [16] examines a multicriteria load-balancing scheme among gate-
ways in fog-based IoT environments. Using a queuing model, the research analyzes
data stream latency and gateway node congestion, which can negatively impact
system reliability. The proposed model leverages a multicriteria decision-making
(MCDM) approach for load balancing in IPv6 over low-power wireless personal
area networks (6LoWPAN) networks, demonstrating a significant improvement in
response speed and reliability when addressing user requests.

Jehad Ali et al. [17] proposed ESCALB (effective slave controller allocation-
based load balancing) for SDN-based IoT networks, enhancing network efficiency
through dynamic secondary controller assignment and optimized switch migration.
Using analytic network process (ANP) for controller prioritization and the 0/1 knap-
sack algorithm for migration optimization, ESCALB improves resource utilization
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and load balancing. Experimental results show a 35% reduction in energy consump-
tion and 34% improvement in processing delay, surpassing conventional methods
in QoS and communication cost efficiency. Despite its advantages, ESCALB’s high
computational complexity increases processing overhead, requiring advanced hard-
ware. Future research could integrate machine learning to enhance scalability and
performance in 5G and beyond networks.

Noda et al. [18] propose an optimized controller placement model for SDN to
reduce migration downtime during controller relocation. Using mixed-integer sec-
ond-order cone programming (MISOCP), the approach optimizes switch migration,
cutting downtime by 80% and lowering operational costs by minimizing control-
ler usage. It also improves network throughput by 30%, outperforming traditional
methods. However, high computational complexity and controller coordination chal-
lenges remain, requiring further research to enhance scalability and performance.

The conclusion drawn from the research in Sect. 2.1 indicates that load balanc-
ing plays a critical role in enhancing network performance and quality of service in
SDN and virtualized network environments. Various methods have been proposed to
optimize resource allocation, reduce latency, and improve system scalability. How-
ever, challenges such as effective traffic management and the need for distributed
solutions remain unresolved. These studies highlight that effective load balancing
can significantly improve network performance, reliability, and scalability, empha-
sizing its importance in the optimization of modern network infrastructures.

A comprehensive comparison of existing load balancing strategies in SDNi,
including centralized, distributed, and hybrid approaches, is summarized in Table 1.
The table provides a structured comparison of different algorithms based on critical
performance factors such as scalability, response time, and energy efficiency.

2.2 Load balancing and energy optimization using DVFS in SDNs

The dynamic voltage and frequency scaling (DVFS) algorithm is a sophisticated
energy optimization technique widely used in contemporary computing systems to
reduce power consumption. This method involves the dynamic adjustment of the
processor’s frequency and voltage based on the current workload. The core equation
that governs power consumption in DVFS is expressed as follows:

P = afeV? (2.1)

where P denotes the power consumption, c is a constant that depends on the specific
architectural features of the processor, v represents the processor’s voltage, f indi-
cates the processor’s frequency, a (scaling constant): This coefficient is determined
by the processor’s design and construction materials, reflecting the architectural fac-
tors that influence energy efficiency.

This equation illustrates that power consumption is highly sensitive to variations
in both voltage and frequency. Specifically, since power consumption is propor-
tional to the square of the voltage (v?), reducing the voltage can lead to a substan-
tial decrease in energy usage without compromising the performance of the system.
The relationship between power consumption, voltage, and frequency is non-linear,
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meaning that appropriate adjustments in these parameters can result in significant
energy savings while maintaining system efficiency [8, 9, 19-22].

The DVFS method, primarily utilized for energy reduction, also plays a crucial
role in effectively identifying suitable VMs and optimally allocating resources dur-
ing high network loads to meet quality of service requirements and enhance network
resource utilization [19, 23-29].

Some researchers have integrated DVFS with other optimization methods within
SDN to select optimal VMs for request allocation. This integration has led to reduc-
tions in energy consumption, enhancements in QoS, and improvements in load bal-
ancing [5, 19-21].

Javadpour et al. [8] cloud computing is highlighted as a technology for provid-
ing Internet services, aimed at reducing operational costs and increasing resilience.
Despite its advantages, challenges like resource consumption and load distribution
remain. The authors propose a load balancing strategy utilizing DVFS to optimize
energy consumption. DVFS manages power by adjusting processor frequency, sig-
nificantly reducing energy use. This approach also improves load balancing and
reduces power consumption in the cloud network.

Mahmoudi et al. [9] SDN is highlighted as a promising technology to enhance
network performance, though load imbalance remains a critical issue that dimin-
ishes QoS. To mitigate load imbalance and reduce delays, SDN combined with
DVES is utilized, dynamically balancing traffic load across servers and optimizing
resource use even with high VM numbers. This study emphasizes dynamic traffic
handling, considering VM overload, host efficiency, and user load to enhance SDN
performance and QoS.

Javadpour et al. [22] aims to improve energy efficiency and performance in
cloud computing by reducing energy consumption while maintaining service qual-
ity. It introduces intelligent task scheduling using DVFS with two implementations:
SFB for selecting optimal machines using a scoring function, and a micro-genetic
algorithm with lower complexity, effectively enhancing energy efficiency in cloud
environments.

Kumar et al. [25] The P2BED-C model optimizes energy-efficient cloud data
center management by integrating DVFS, peer-to-peer load balancing, and DENS
to enhance computational efficiency. Validated on the OpenStack platform, it out-
performs traditional scheduling methods like FCFS and Round Robin in energy sav-
ings and performance. However, the model lacks machine learning-based optimiza-
tion, which could further refine energy prediction and dynamic resource allocation.
Future research should explore machine learning-driven strategies to improve adapt-
ability and efficiency in cloud environments.

Panda et al. [30] introduced a reinforcement learning (RL)-based approach to
optimize DVFS configurations, reducing processor energy consumption while main-
taining system performance. By integrating Q-learning with DVFS, the method
achieved 20% lower energy usage than traditional DVFS techniques without affect-
ing efficiency. This adaptive model dynamically adjusts voltage and frequency,
enhancing real-time load balancing and energy efficiency. Unlike static DVFS, it
effectively responds to workload variations, making it a scalable solution for edge
computing, data centers, and IoT applications.
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Wang et al. [31] proposed a hybrid reinforcement learning and DVFS-based
approach to optimize energy consumption and latency in edge computing. The
method integrates multi-sample modeling and a joint optimization strategy for
microservice deployment and request routing. Using a Jackson queuing network, it
analyzes system delays, while DA-RSPPO optimizes static decisions and EA-DFS
dynamically adjusts processor frequency. Experimental results show significant
energy savings and improved response latency, making it a promising solution.
Future research could extend this model to multi-cloud environments and IoT sys-
tems for greater scalability.

Geng et al. [32] PowerLens is a deep learning-integrated framework that opti-
mizes DVFS configurations for deep neural networks (DNNs) by clustering power
behavior. It mitigates frequency fluctuations, configuration delays, and transferabil-
ity issues in conventional methods. Experimental results show up to 88.64% energy
efficiency improvement, surpassing existing techniques. Its scalability and efficiency
make it a promising solution for CPUs, cloud computing, and large-scale systems,
enhancing energy optimization and computational performance.

El Mahjoub et al. [33] A power and performance management framework for
DVEFS-based systems integrates Markov chain stochastic modeling with multi-
objective optimization, dynamically adjusting frequency and voltage based on
workload and QoS requirements. Simulations show a 32% energy reduction while
enhancing computational performance. Compared to static DVFS, standard Markov
models, and queuing theory-based methods, it offers superior power-aware comput-
ing efficiency.

Shuaib et al. [34] proposed DEELB, a dynamic load balancing and energy opti-
mization framework for IoT environments, integrating adaptive learning models and
multi-layer load balancing. Experimental results in CloudSim show that DEELB
reduces energy consumption by 30% and improves processing delay by 27%, out-
performing conventional methods. The framework efficiently allocates tasks to
low-power nodes, optimizing resource distribution and management efficiency. Key
advantages include enhanced scalability, lower operational costs, and congestion
prevention. However, high computational complexity and dependence on advanced
hardware remain critical challenges.

Piga et al. [35] DVFS Boosting was explored as a scalable and secure approach
to enhance data center capacity, tackling power consumption, hardware heterogene-
ity, and service reliability. Over three years of deployment, it added 12 megawatts
of capacity, equivalent to half a new data center. Unlike conventional methods, it
integrates risk management, heterogeneous data analytics, and machine learning
for optimized service selection. Experimental results show increased computational
capacity without performance trade-offs while managing power constraints effi-
ciently. Future research could extend this framework to cloud infrastructures, incor-
porating Al and blockchain for improved resource allocation and energy efficiency.

Irfan et al. [36] proposed an adaptive task allocation and power management
approach for MPSoCs with NoC architectures, leveraging DVFS to enhance energy
efficiency and processor performance. The method integrates adaptive scheduling
and data path management, achieving 38% energy reduction and 29% lower pro-
cessing delay through dynamic frequency and voltage adjustments. Compared to
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conventional techniques, it improves task distribution efficiency, extending proces-
sor lifespan and overall system performance. The approach is applicable to distrib-
uted processing and real-time operating systems (RTOS), though challenges remain
in implementation complexity, hardware dependency, and computational overhead.

Islam et al. [37] proposed ELITE, an energy-efficient framework for Mobile Edge
Computing (MEC) that integrates a three-layer architecture, a DVFS-based UE
power management model, and a layered scheduling algorithm for optimal resource
allocation. Experimental results show that ELITE reduces UE energy consumption
by 50% and improves processing delay by 30%. Additionally, it enhances computa-
tional load distribution while significantly reducing task failure rates. This approach
demonstrates promising potential for optimizing MEC environments by balancing
energy efficiency and system performance.

Cengiz et al. [38] addressed energy-efficient resource management in data cent-
ers, proposing Intelligent Load Balancing Algorithms (ILBAs) to optimize energy
consumption and computational efficiency. The ILBA method employs machine
learning-based load balancing for dynamic resource allocation in cloud environ-
ments. Experimental results show a 40% reduction in energy consumption, a 30%
decrease in processing delay, and improved resource utilization. Given its scalabil-
ity, this approach offers a promising solution for modern data centers, ensuring effi-
cient resource allocation and sustainable operations.

Hagras et al. [39] proposed BlueMoon, an innovative DVFS-based scheduling
mechanism to reduce energy consumption in processing systems. By extending
task execution time intervals, BlueMoon optimizes power usage without increasing
overall execution time. Experimental results indicate a 21% reduction in energy con-
sumption compared to conventional methods, while also enhancing computational
efficiency. This approach offers a promising solution for energy-aware scheduling in
modern computing environments.

Muthusamy et al. [40] introduced a Q-Learning-based load balancing model for
optimized resource allocation in cloud environments. This approach dynamically
analyzes processing loads and autonomously adjusts resource distribution to prevent
server overloading. Experimental results demonstrate a 55% improvement in pro-
cessing time, a 40% increase in resource utilization, and a 20% boost in scalability,
while also reducing operational costs. Despite its advantages, the model’s high com-
putational complexity necessitates advanced hardware and additional processing
resources for full deployment.

Zhou et al. [41] propose an Intelligent Energy Consumption Model (IECL) for
cloud-based manufacturing, focusing on real-time and accurate energy prediction
in data centers. Their approach integrates machine learning techniques, including
Support Vector Machines (SVM), Random Forest (RF), and Grid Search (GS), to
estimate energy consumption under varying workloads. By leveraging RF for feature
selection and GS for parameter optimization, the model enhances predictive accu-
racy, achieving an absolute error below 1.4%. The results demonstrate that IECL
outperforms existing models, making it an effective solution for energy-efficient
resource allocation in cloud data centers and industrial manufacturing environments.

Zhou et al. [42] introduce ECMS, an intelligent energy consumption model tai-
lored for mobile edge computing (MEC) environments. By integrating Elman
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neural networks (ENN) with feature selection techniques, the model captures 29 key
energy-related parameters to predict and optimize edge server power usage under
dynamic workloads. ECMS is validated across CPU-intensive, transactional, and
I/O-intensive tasks, and achieves superior accuracy and lower training overhead
compared to traditional regression- and PMC-based models. Its adaptability makes
it a promising tool for energy-aware resource management in green MEC systems.

Zhou et al. [43] propose two adaptive, energy-aware algorithms designed to mini-
mize power consumption and service level agreement (SLA) violations in cloud data
centers. Unlike prior approaches, their method considers both CPU and memory
utilization along with workload types (e.g., CPU- and I/O-intensive) during vir-
tual machine (VM) deployment. By introducing an adaptive three-threshold frame-
work and optimizing VM placement through energy efficiency maximization, the
proposed algorithms achieve significantly better results in energy savings and SLA
compliance compared to traditional threshold-based techniques. Real-world simula-
tions using PlanetLab workloads and CloudSim confirm the model’s effectiveness
under dynamic cloud conditions.

2.2.1 Energy optimization techniques

Several energy-efficient techniques exist in software-defined networks and cloud
computing environments. The choice of DVFS was based on the following key
advantages:

e Fine-Grained Power Control Unlike sleep scheduling, which switches devices on
and off completely, DVFS allows dynamic power scaling by adjusting processor
voltage and frequency, ensuring a balance between energy savings and perfor-
mance [8, 9].

e  Minimal Latency Overhead Sleep scheduling requires switches and servers to
power down and wake up, introducing latency. In contrast, DVFS optimizes
energy use in real-time without significant latency penalties [27].

o Seamless Integration with Load Balancing Since SDN-PG dynamically adjusts
task allocation, DVFS complements this approach by adjusting power levels
based on real-time processing demand [21].

e Energy-Performance Trade-off Optimization DVFS provides a scalable solution
for reducing energy consumption without sacrificing QoS metrics like response
time and computational overhead [25].

The Comparisons are presented in Table 2.

2.2.2 Justification for selecting DVFS in the proposed method

e Real-Time Adaptability DVFS dynamically adjusts power usage without intro-
ducing delays in load balancing [21].

e FEnergy-Performance Trade-Off Unlike sleep scheduling, DVES allows energy
savings without degrading QoS metrics [26].
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e Optimized for SDN-PG Architecture Since SDN-PG continuously monitors net-
work traffic, DVFS effectively scales processor power based on dynamic work-
loads [8].

The findings from the studies in Sect. 2.2 highlight the critical role of DVFS in
optimizing resource allocation and enhancing network performance in cloud com-
puting and SDN. The integration of DVFS with other optimization techniques leads
to reduced energy consumption, improved load balancing, and enhanced QoS.
Despite challenges such as load imbalance and latency in high-traffic environments,
these approaches significantly contribute to improved energy efficiency, scalability,
and resilience of network infrastructures.

Table 3 presents a comparative analysis of different approaches that integrate
DVES for energy-efficient load balancing in SDNs. The analysis highlights key
advantages such as reduced energy consumption and improved QoS, while also
addressing limitations like increased computational overhead.

2.3 Load balancing in SDNs using artificial intelligence and machine learning

Soltani et al. [44] proposed a resource allocation and load balancing model for SDN's
and virtual network mapping (VNM), focusing on request acceptance rates, latency
reduction, cost minimization, and QoS enhancement. Using Fuzzy Markov Logic
and Time Slot Scheduling, the method lowers costs, increases acceptance rates, and
improves QoS, making it highly adaptable for dynamic network environments. How-
ever, its reliance on centralized control poses a risk of single points of failure, poten-
tially impacting network robustness.

Keshri and Vidyarthi [45] tackle the NP-hard problem of VM placement in cloud
data centers, focusing on communication awareness and energy efficiency. They pro-
pose a hybrid ACO-GWO approach, combining Ant Colony Optimization (ACO) for
broad exploration and Grey Wolf Optimization (GWO) for precise refinement. This
method reduces resource usage, enhances network traffic management, and improves
energy efficiency, ensuring an optimized communication-aware VM placement.

Magsood et al. [46] recognizing the rapid growth of mobile edge computing
(MEC) and the increasing demands of smart devices, propose a novel load distribu-
tion method for optimizing load balancing in MEC networks. They utilize K-means
clustering techniques to identify overloaded and underloaded servers, subsequently
redistributing workloads from overloaded servers to underloaded ones. This innova-
tive approach helps maintain load balance, reduces delay, and optimizes resource
utilization in the network.

Sridevi and Saifulla [47] propose an efficient method for load balancing among
controllers in Distributed Software Defined Networks (DSDN) using the Artificial
Bee Colony (ABC) algorithm. The approach aims to optimize load distribution,
thereby reducing delay and improving QoS, even under heavy traffic conditions.
Controller loads are measured using PACKET_IN messages, representing real-time
controller loads. Load imbalance is detected through the coefficient of variation
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(CV), and if CV exceeds 0.4, the ABC algorithm is triggered to achieve load balance
by selecting the optimal controllers and switches.

Forghani et al. [1] the authors propose a dynamic optimization scheme to enhance
load balancing and energy efficiency in SDNs. Utilizing the Krill Herd algorithm,
the approach optimizes network task allocation to VMs, effectively balancing load
and reducing energy consumption while improving overall network performance.

Torkzadeh et al. [48] the authors address the challenge of reducing energy con-
sumption while maintaining quality of service and achieving load balancing in
SDNs. They propose a dual-phase routing mechanism: in the first phase, an offline
Ant Colony Optimization algorithm identifies an optimal graph with minimal active
switches; in the second phase, real-time routing aims to distribute link load evenly
while ensuring QoS for user flows.

Mahmoudi et al. [49] aim to introduce and evaluate a novel approach called
MBL-DSDN, aimed at optimizing server traffic distribution and enhancing QoS
parameters in DSDN. This method utilizes two modules: micro-clustering (MC) and
bidirectional long short-term memory (B-LSTM) to reduce response time, minimize
migration costs, and ultimately improve load balancing in the network.

Jeong et al. [50] explore the use of SDN with deep reinforcement learning to
address traffic congestion on specific links and improve QoS. The paper proposes
a novel load balancing method for large-scale SDNs using deep deterministic pol-
icy gradient (DDPG). DDPG serves as the core of the model, featuring a decision-
making agent (DMA) that uses deep neural networks and reinforcement learning to
optimize network performance and determine optimal paths for load distribution.
The study does not address server-side traffic, presenting a potential area for future
innovation.

Shahrbabaki et al. [51] introduce the SDN-LB algorithm, which optimizes load
distribution for IoT video analysis environments using Software-defined networking.
The main innovation lies in the use of adaptive thresholds that dynamically adjust
based on real-time network conditions, enhancing resource utilization and reducing
delay compared to static threshold approaches. The study employs a hybrid method
incorporating dynamic optimization and machine learning to effectively improve
system performance.

Buhurcu and Carkacioglu [2] propose a two-tier model for improving load bal-
ancing in cellular networks using reinforcement learning techniques. This model
integrates centralized predictions of cell user numbers with decentralized reinforce-
ment learning to optimize parameter adjustments. The approach effectively distrib-
utes users across cells, enhancing flexibility, reducing interference, and improving
network efficiency.

Zhou et al. [52] present an innovative framework for optimizing task allocation
and resource scheduling in edge computing, aiming to enhance load balancing and
reduce energy consumption. Utilizing a multi-objective optimization approach com-
bined with deep reinforcement learning (DRL), the study effectively balances server
loads and minimizes energy usage, enhancing overall system performance in edge
computing environments.

Xiang et al. [12] propose a DRL-based load balancing strategy for multi-control-
ler SDNs, addressing inefficiencies in static switch-controller connections that cause
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load imbalance. By leveraging Markov decision process (MDP) and double deep
Q-network (DDQN), the approach optimizes switch migration, enhancing resource
utilization and reducing convergence time. Simulation results show that the DRL-
SMS strategy significantly improves controller load balancing and accelerates equi-
librium, making it well-suited for dynamic, high-traffic networks.

Jain et al. [53] introduced a Q-Learning-based approach for load balancing
and fault tolerance in SDN. By leveraging online Q-Learning, the model opti-
mizes switch migration, reducing relocation costs and enhancing packet response
rates. Experimental results indicate 30% lower processing delay and 25% improved
resource utilization, outperforming conventional methods in load distribution and
scalability. Additionally, integrating controller prioritization and conflict-free migra-
tion ensures system stability. Despite its advantages, computational complexity
and parameter fine-tuning remain challenges. Future research could incorporate
deep learning models to further refine controller efficiency and reduce processing
overhead.

Saeedi et al. [54] proposed a Particle Swarm Optimization (PSO)-based approach
for controller placement in SDN, aiming to ensure load balancing and network reli-
ability. The method optimizes controller allocation, reducing resource consumption,
leading to a 20% decrease in controller count and a 6% improvement in load balanc-
ing. It also reduces propagation delay by 15%, outperforming traditional models like
Varna and CNPA. By assigning two controllers per switch, the approach minimizes
failure risks. However, PSO’s computational complexity may limit its scalability
in large networks. Future work could incorporate deep learning to enhance PSO
parameter optimization, improving efficiency and adaptability.

Zhou et al. [55] presents IADE, an improved version of the differential evolution
(DE) algorithm, designed to enhance sustainability in 6G networks. IADE adap-
tively tunes parameters such as mutation factor, crossover rate, mutation strategy,
and selection mechanism to address issues like slow convergence and local optima
in standard DE. The algorithm is structured for fast convergence and better global
search capability. Extensive experiments on 30 benchmark functions demonstrate
IADE’s superior performance in solution accuracy and convergence speed. IADE
is well-suited for large-scale 6G-enabled networked data centers and energy-aware
task scheduling.

Zhou et al. [56] introduce ISC-QL, a novel two-phase strategy that integrates
Improved Spectral Clustering with Q-Learning for optimizing edge server deploy-
ment within intelligent Internet of Vehicles (IoV) systems. The proposed approach
simultaneously addresses three critical objectives minimizing latency, reducing
energy consumption, and enhancing workload distribution. Validated through real-
world data, ISC-QL demonstrates significant improvements over existing baseline
methods, achieving up to 50% enhancement in load balancing, 22% reduction in
energy usage, and 16% decrease in average latency, highlighting its suitability for
large-scale and adaptive intelligent transportation systems (ITS).

Zhou et al. [57] propose AFED-EF, an adaptive VM allocation algorithm
designed to improve energy efficiency and reduce SLA violations in cloud data cent-
ers hosting IoT applications. By introducing a four-threshold mechanism and com-
bining it with a VM selection and placement strategy, the algorithm dynamically
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responds to fluctuating workloads. Extensive simulations using real-world Planet-
Lab data show that AFED-EF outperforms existing methods in energy consumption,
SLA compliance, and overall energy efficiency, making it suitable for sustainable
cloud-based IoT systems.

The studies reviewed in Sect. 2.3 highlight various approaches for optimizing
resource allocation and improving load balancing in SDNs and cloud environments
using artificial intelligence algorithms and machine learning techniques. These
methods address challenges such as load imbalance, energy consumption, and net-
work congestion, offering scalable and resilient solutions for dynamic, high-traffic
environments. Despite these advancements, challenges related to centralized control
and real-time adaptability remain areas that require further research.

Several recent studies have leveraged artificial intelligence (AI) and machine
learning (ML) for optimizing load balancing in SDNs. Table 4 summarizes these
approaches, categorizing them based on their use of reinforcement learning, deep
learning, and heuristic optimization techniques. The results indicate that Al-driven
models significantly improve dynamic traffic distribution while reducing network
congestion.

Based on the analysis of previous studies, it is evident that improving and
addressing the issue of dynamic load balancing in SDNs using artificial intelligence
algorithms, particularly machine learning techniques, holds significant potential
and has garnered considerable attention from researchers. Each of these studies has
aimed to enhance QoS metrics through various techniques and algorithms.

Building upon prior research, this study will focus on the promising topic of
dynamic load balancing in SDNs to reduce energy consumption by leveraging the
DVEFS technique. For the first time, we will employ the PG method within a distrib-
uted architecture to optimize energy consumption, processing load, response time,
and load balancing. The simulation results, along with a comparative analysis of the
proposed approach against two existing methods CCA-PSO and DRL-SMS will be
presented in Sects. 3 and 4.

3 Proposed method and problem formulation

The policy gradient (PG) algorithm is a fundamental technique in reinforcement
learning, known for its adaptability and effectiveness in solving complex prob-
lems. It belongs to the category of policy optimization methods within Model-Free
approaches. Unlike algorithms that focus on estimating value functions, PG directly
aims to learn an optimal policy. A policy defines a set of rules or probability distri-
butions that guide an agent’s actions based on its observations. The primary objec-
tive of this approach is to determine a policy that maximizes cumulative rewards
over time, thereby improving the agent’s decision-making capabilities [58, 59].

In software-defined networks, the highly dynamic and unpredictable nature of
network traffic necessitates intelligent and adaptive load balancing strategies. Tra-
ditional static load balancing techniques fail to efficiently respond to fluctuating net-
work conditions, often leading to a decline in QoS and increased energy consump-
tion [60].
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In contrast, reinforcement learning-based methods, particularly the policy gra-

dient approach, enable SDN controllers to dynamically and autonomously learn
optimal strategies for traffic distribution by continuously interacting with the net-
work environment [61, 62].

The PG method iteratively enhances load balancing decisions by following a

structured process [61]:

Real-time Network Monitoring The SDN controller observes the current state
of the network, including critical metrics such as traffic load, latency, server
utilization, and energy consumption.

Action Selection Based on observed network conditions, the PG algorithm
probabilistically selects a load-balancing action (e.g., distributing tasks to a
specific server).

Reward Calculation After executing the selected action, the network provides
immediate feedback (a reward) based on achieved performance. The reward is
computed by considering multiple factors like reduced latency, improved load
distribution, minimized overhead, and enhanced energy efficiency.

Policy Update The PG algorithm utilizes the received reward to adjust the pol-
icy parameters. Formally, the gradient of the expected cumulative reward with
respect to policy parameters (0) is calculated as follows Eq. (3.1):

T
V,J(0) = E lz VeLogﬂg(at|s,)A,] (3.1)
t=0

Where variables are clearly defined:

V,J(0): Gradient of the expected reward function with respect to policy param-
eters 0.

7y: The policy function, representing the probability of selecting action g,
given state s,

A,: Advantage function, measuring how good the chosen action q, is compared
to the baseline.

In SDNs, the load balancing system is tasked with effectively distributing net-

work traffic across the available servers to enhance overall network performance
and prevent excessive strain on any single node. Several critical factors influence
the efficiency of a load balancing system:

Network Traffic The volume of network traffic is a pivotal factor that impacts
load balancing efficiency. When traffic volume is high, the system must ensure
that traffic is intelligently and efficiently distributed among the network nodes
(e.g., switches, servers, and controllers) to avoid overloading individual nodes.
Number of Nodes The quantity of nodes within the network plays a signifi-
cant role in load balancing performance. A higher number of nodes allows for
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more flexible and efficient distribution of the traffic across the system, reduc-
ing the risk of bottlenecks.

e Node Locations The physical or logical locations of the nodes can influence the
performance of the load balancing system. For instance, when nodes are geo-
graphically dispersed, the latency introduced by the longer data paths between
nodes can impact the responsiveness of traffic distribution.

e Type of Traffic Different types of network traffic have distinct characteristics and
requirements. For example, Voice over IP (VoIP) traffic is particularly sensitive
to delays, so the load balancing system must prioritize minimizing latency while
distributing VoIP traffic across the nodes.

e Load Balancing Policies The strategies or policies governing how traffic is dis-
tributed among nodes are also crucial. A load balancing system might employ
policies that evenly distribute traffic across servers or direct traffic toward nodes
with the least load, depending on the specific requirements of the network [4, 5,
8, 63].

The simulation setup follows a structured network topology with defined parame-
ters for network controllers, virtual machines, and task distribution. Table 5 provides
a comprehensive overview of the simulation variables, including network dimen-
sions, processing capacities, and energy consumption parameters.

If we denote x as the load assigned to each server, then F(x) should be considered
the objective function of the load balancing system, which is typically a function of
network traffic, the number of servers, the location of the servers, the type of traffic,
and the load balancing policies. Additionally, G(x) represents a set of constraints
that must be adhered to in the load balancing system. These constraints may include
server capacity limits, delay time restrictions, and constraints related to load balanc-
ing policies.

To define F(x), it is necessary to refer to the objective of a load balancing sys-
tem and the improvements expected in network performance. This objective can be
achieved using the following objective function:

Minimizing delay (D,)

Minimizing processing overhead (O,)
Minimizing energy consumption (E,)

Ensuring load distribution across the network (L,)

Based on this, the mathematical representation can be written as:
(3.2)

Since the load distribution in the network is equivalent to the deviation from te
average processing load assigned to all nodes, the smaller the deviation from the
mean, the closer the processing load distribution is to being equal across the nodes.
In fact, it indicates that the difference in processing load between nodes is mini-
mized. To express the above relationship mathematically, weight coefficients that
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represent the best linear approximation of F(x) should be added to the equation.
However, the first step in this process is mapping the four variablesE,, D, L,, and
O,, to the range (0,1] to eliminate the units of each variable. After introducing the
four variablesW,,, W, W;, and W,, as the weight coefficients for the mentioned vari-
ables, Eq. (3.2) can be transformed into Eq. (3.3).

1 1 1 1
F(x) = WDD—nl'f'WOO—n,'FWEE—n"FWLl? (3.3)

In this equation, the values E/, D/, L;, and O/ represent the normalized values
of the four variables E,, D,, L, and O,, respectively. It is important to note that the
selection of each of the four weights Wj,, W, W;, and W, will depend on the spe-
cific conditions of the problem. Clearly, the solution that yields the highest F(x) is,
in theory, the optimal solution for this problem. However, only those solutions that
satisfy the constraints G(x), outlined as follows, will be considered valid:

e Node Capacity The capacity of the nodes must be respected to prevent excessive
overload on the nodes.

e Delay The delay in traffic transfer between nodes must be maintained to avoid a
reduction in the quality of service.

e Load Balancing Policies The load balancing policies must be adhered to ensure
that traffic distribution aligns with the network’s requirements.

3.1 Proposed method

The proposed method is a policy-based control approach with a distributed struc-
ture. This approach is selected because a controller has more access to information
compared to other parts of the network. In an SDN-based network, the controller has
critical responsibilities and must manage various components of the network. The
architecture of the proposed method is illustrated in Fig. 2.

The proposed load balancing method consists of the following three main
components:

e Distribution Policy Component This component is responsible for defining load
balancing policies. These policies determine how traffic is distributed among
Servers.

e Distribution Monitoring Component This component monitors the status of serv-
ers and the network. It collects information related to server loads, traffic transfer
delay between servers, and other factors that impact the performance of the load
balancing system.

e Decision-Making Component This component is responsible for making deci-
sions about how traffic should be distributed among servers. Using the informa-
tion collected by the monitoring component, it decides which server to direct the
traffic to.

@ Springer



159 Page 44 of 78 M. A. Zare Soltani et al.

Table 5 List of notations used in this paper

Symbol Description

D, Network delay

D! The delay at time (t)

Drex Maximum delay allowed

0, Computational overhead

o The processing overhead at time (t)

onex Maximum processing overhead allowed

E, Energy consumption

E! The energy consumption at time (t)

Ener Maximum energy consumption allowed

L, Load distribution rate

L The load balancing at time (t)

Ly The maximum load balance across the entire network
r Number of servers

S; Processing load assigned to server i

1% SDN network

L load task

Wp Weight for minimizing delay

We Weight for minimizing energy consumption

W, Weight for load distribution

W Weight for minimizing computational overhead

R Reward at time t

ox,a) Probability of selecting load distribution action ‘a’
0(x,a) Combination function of state ‘x” and distribution ‘a’
Z(x) Normalization factor for probabilities distribution
O(x,a) Feedback value from environment with action ‘a’
W; Weights related to different factors in the system
E; Energy consumption of server ‘i’

fi Current processor frequency

E; Energy consumption at base frequency

ai DVES coefficient of server ‘i’

F(x) Objective function for load balance

G(x) Set of constraints for the load balancing system

C; Total processing capacity of server ‘i’

Cir Required processing capacity for executing the current task
C Average processing capacity at each node

N, Number of virtual machine

B; Memory-to-processor bandwidth

o; Processing power of server ‘i’

Ppoweri Power consumption of processor i

t, Processing task per unit time

L) Processing time of a task by processor

Liay Time required to transfer task data from memory to processor
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Table 5 (continued)

Symbol Description

S The set of network states

The load assigned to each server

It should be noted that all the mentioned components will be implemented and
executed within the standard OpenFlow controller. In the Sects. 3.1.1, 3.1.2, 3.1.3,
each of these components will be described in detail. It should be noted that in
Fig. 2, only one controller has been expanded as an example, while all controllers
have identical conditions and include the load balancing module.

3.1.1 Distribution policy component

The policy component is responsible for defining load balancing policies. These pol-
icies can be defined based on various factors, such as the type of traffic, user iden-
tity, or server location. Common load balancing policies are generally implemented
using three strategies:

e Round-robin load balancing
e Traffic-based load balancing
e Server load-based load balancing

Since the proposed method is a processing load optimization method, the
server load-based load balancing strategy has been chosen for setting the load
balance. With this perspective, the proposed method must adjust the load balanc-
ing according to the processing load on the servers in such a way that the func-
tion F(x) reaches its maximum value. Inspired by reinforcement learning, we can
state that F(x) acts as an objective function for policy-making. Before defining the
policy function, it is necessary to theoretically review three concepts:

e Environment
e Agent
e Reward or penalty mechanism

These concepts must be clearly defined. In an SDN system, the environment
refers to the entire network and its related components, including switches, serv-
ers, controllers, and passing traffic. The environment is where load balancing
decisions are made, and its state is continuously monitored so that the system can
improve its performance. In this method, the SDN controller acts as the agent,
and the environment includes the network and the status of the servers.

Let S be the set of network states, which includes the load status of servers and
traffic delay, and let A be the set of possible actions, which involves distributing
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Fig. 2 Proposed method architecture

traffic among servers. The transition function P:SXA XS —[0,1] defines the
probability of transitioning from state s to state s’ when action a is taken. The
reward function R:S X A — R represents the reward received after taking action a
in state s.

In the given environment and with the defined agent, rewards and penalties
should be determined based on the metrics of delay, energy consumption, and
processing overhead. The monitoring and decision-making components in the
SDN system are responsible for collecting data and applying rewards and penal-
ties. Using the collected information, these components calculate the rewards and
penalties and take necessary actions to improve network performance. This infor-
mation is updated and utilized by the SDN controller.

Policies can be applied across the entire system by adjusting the values of w
in Eq. (3.2). The main challenge in this section is how to adjust the w values. To
address this challenge, a policy function based on the PG method is used [64].
This policy function, in its general form, is represented by Eq. (3.4).

exp (wy0(x, a)
o(x.a) = % (3.4)
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In this function, @(x, a) represents the probability of selecting the load distri-
bution action a among the servers, given the current load distribution state x. In
fact, if the number of servers is equal to r, then a=[s},s,,...,s,], where s; is the
processing load assigned to the i-th server. w, represents the weights of the vari-
ables in Eq. (3.3).

0(x, a) represents a function that combines the features of the state x and the distri-
bution a. Z(x) is the normalization factor that maps the probability of selecting each
possible distribution for state x to a range between [0, 1], ensuring that the sum of
all possible probabilities equals 1. For the problem under consideration, the function
0(x, a) can be expressed in the form of Eq. (3.5).

6(x.a) = [D,.0,.E,. L. d| (3.5)

In fact, the values obtained from the four variables energy consumption, delay, and
processing overhead are collected in this function when distribution a is applied. If the
current F(x) is available, then Eq. (3.6) can be written to obtain the value of updating
the current distribution with distribution a (i.e., the amount of feedback from the envi-
ronment for action a).

Q(x,a) = F(x = a) — F(x) (3.6)

In this equation, F(x) represents the state of the network after applying load dis-
tribution a. In a rotational structure, each of the weights in Eq. (3.2) is updated using
Eq. (3.7)

AW; = aQ(x, a)d(x, a) 3.7

In this equation, AW, = W} — Wl.’_1 and W, is one of the weights W,,, W, W,, and
W,. Additionally, to maintain the condition in Eq. (3.7), which is a necessary condition
for the convergence of Eq. (3.3).

Wp+Wo+ W+ W, =1 (3.8)

Equation (3.9) is utilized.

{ W’ W’ 14 AW; 39
— 1 AW; ( . )
W(l;thers - W(t)thers - T

In this equation, if W/ is one of the mentioned weights at the t-th iteration of the
algorithm, which is bemg updated, then W!  refers to the two other weights besides
W,. If the sum of the four weights at time t— 1 equals 1, then Eq. (3.10) is always valid
based on Egs. (3.8) and (3.9).

AW,

Wi+ 3W —W’1+AW+3<W’1 ——‘) Wit 3wl =1

others others 3 others

(3.10)
The only remaining issue is that W? for each of the weights will be equal to 1/4.
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3.1.2 Distribution monitoring component

The distribution monitoring component is responsible for overseeing the status of
the servers and the network. This component collects information related to server
loads, delay in traffic transfer between servers, and other factors that impact the per-
formance of the load balancing system. This information is essential for the deci-
sion-making component to make informed decisions about how to distribute traffic
among servers. The first challenge for this component is measuring the total network
response time in the current state. This delay depends on the distribution model x,
which represents the current load distribution state [50]. In other words, Eq. (3.11)
can be written to calculate the total response time across the network.

D, =Y oD (3.11)
i=1

In this equation, o; represents the processing capacity of the i-th server, which
is a hardware feature related to the processor, and D; is the delay factor relative to
the capacity of this server. To obtain the value of D,, it is assumed that a task has 7,
processing units. The time required for the processor to handle this task is calculated
as follows:

tu
t. = —
i = (3.12)

In this equation, C; represents the total processing capacity of the i-th server. The
time required to transfer the data of this task from memory to the processor is calcu-

lated as follows:

t

ta = % 3.13

id) = B (3.13)
In this equation, B, represents the memory-to-processor bandwidth. By substitut-

ing the relationships for t, and t, into this equation, and knowing that D; = ;) + #;4),

Eq. (3.14) is obtained.

t, t
Di=—+- (3.14)

1 1

a
|

By simplifying this equation, and assuming B, = CL [26]. the server’s bandwidth
i(r)
is equal to the server’s processing capacity divided by the processing capacity

required to perform the current task Gy, and t, = C,y * f;, Eq. (3.15) is obtained:
C. t.

i(r) i(d)

G G

l l

(3.15)

This equation shows that processing delay decreases as the remaining capacity of the
server increases, and it also decreases with the increase in memory-to-processor band-
width. By substituting the value from Eq. (3.15), one can estimate the delay resulting
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from task distribution in distribution a using Eq. (3.11), given the known variables in
this equation.

Another challenge in this section is calculating the processing overhead on a
server. In SDN, the processing overhead for each server depends on several factors,
including:

e  Number of control tasks The number of control tasks performed by the SDN
controller for each server.

e Complexity of control tasks The complexity of the control tasks performed by
the SDN controller for each server.

e Server processing capacity The processing capacity of the server that is used to
handle control tasks.

If we assume that server iii has a processing capacity of C;, then server iii can
handle a maximum of C; processing units in each time unit [30]. If server i performs
Ni control tasks, and the processing required to perform each of these tasks is P;
processing units, then the time required to complete a control task is calculated as
follows:

t. =

l

(3.16)

Sl

In this case, the processing overhead of server i can be calculated using
Eq. (3.17):

N;
0, )1, (3.17)
i=1
By substituting the equation for #; into this equation, Eq. (3.18) is obtained.

N p.
0,x Y (3.18)
i=1 Ci

Assuming that each server has a processing capacity of ;, Eq. (3.19) can then be
derived to calculate the processing overhead.

NiP

0,=2,00,=20) = (3.19)
=1 =1

i=1 —i

The next challenge in this section is to find an equation to calculate the total
energy consumption across the entire network. To calculate energy consumption, the
DVES equation is used. The DVFS equation shows the relationship between energy
consumption and the processor’s frequency [9, 41]. This equation is as follows:

E; = Ey, < J%) x B(L;, H;) (3.20)
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In this equation, E; represents the energy consumption of server i. E;q, repre-
sents the energy consumption at the base frequency. f; represents the current pro-
cessor frequency, and f;, represents the base frequency of the processor in server
i. ai represents the DVFS coefficient, which is a hardware-related feature and
p(L;, H;) is a scaling function that explicitly accounts for the influence of work-
load (L;) and hardware characteristics (H;) on energy consumption. It adjusts
the energy model by incorporating variations in processing load and hardware
efficiency, ensuring more accurate predictions. A higher workload (L;) typically
leads to increased energy usage, while more efficient hardware (H,) helps mitigate
this effect. By integrating f(L;, H;) into the energy consumption model, the frame-
work becomes more adaptive, optimizing energy utilization dynamically across
different system conditions. To calculate the total energy consumption across the
network, based on Eq. (3.20), Eq. (3.21) can be used.

E,= ) E (3:21)
i=1

The only remaining variable to be considered is the load distribution. Since the
processing capacities of the nodes in the network will vary, the current processing
load alone cannot be accepted as a suitable metric. If only the currently utilized
processing capacity is considered, an increase or decrease of one processing unit
in nodes with low processing capacity (compared to nodes with high processing
capacity) will have a greater impact on the load distribution. To avoid this issue,
the ratio of the current processing load to the processing capacity of each node C;
is considered as a metric for load distribution. Based on this structure, the load
distribution across the network can be calculated as the deviation from the mean
of C; [9].

(3.22)

In this equation, r represents the number of servers in the network, and C is the
average processing capacity of each node C; across the entire network. As men-
tioned, rewards and, if necessary, penalties should be determined based on the met-
rics of delay, energy consumption, and processing overhead. According to the prob-
lem conditions, the following rules should be considered for penalties and rewards:

e The lower the delay, the greater the reward. An increase in delay results in a
decrease in the reward.

e The lower the energy consumption, the greater the reward. An increase in
energy consumption results in a decrease in the reward.

e The lower the processing overhead, the greater the reward. An increase in pro-
cessing overhead results in a decrease in the reward.

e The more evenly distributed the load across the entire network (lower L), the
greater the reward.
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Ultimately, the reward in the environment should be maximized. The reward is
used to adjust the following factors:

e Traffic distribution among servers, selecting the most optimal server for process-
ing new requests.

e Describing the state of the environment and the efficiency of the load balancing
model.

e Reducing delay, selecting routes and servers in a way that minimizes the overall
network delay.

e Energy consumption, selecting servers and routes that reduce energy consump-
tion.

e Reducing processing overhead, distributing the load in a way that balances the
processing overhead across servers.

Based on this, Eq. (3.23) can be used to determine the amount of reward.

R =Wy(1 Di’ Wyl 1 Oi’ ! Eﬁ' w1 L;’
- D - Dnmax + o - Omax + E - Emax + L - LZWX

' ' (3.23)

In this equation, R’ represents the reward at time t. D! is the delay at time t, and
D" is the maximum allowable delay. 0! is the processing overhead at time t, and
O"* is the maximum allowable processing overhead. E! represents the energy
consumption at time t, and E7'** is the maximum allowable energy consumption.
Finally, L} represents the load balance at time t, and L} is the maximum load bal-
ance across the entire network.

3.1.3 Decision making component

The decision-making component is responsible for determining how traffic should
be distributed among the servers. Using the information collected by the monitor-
ing component, it decides which server to route the traffic to. This decision-making
process can be either manual or automatic. In the manual method, a network admin-
istrator is responsible for deciding how traffic should be distributed. In the automatic
method, the load balancing system automatically determines which server should
receive the traffic. The method used in this research is an automatic one.

In this process, the current state of the network and the influencing variables
are first updated based on the current conditions. Then, logical distributions for
the incoming tasks are calculated, and the distribution that maximizes F(x — a) is
selected. Based on this distribution, the tasks are allocated to the servers.

Once the decisions regarding the distribution of control tasks have been made,
these decisions must be executed. This is done by the SDN controller. The SDN
controller, using network protocols, sends the control tasks to the corresponding
servers. Finally, after the tasks have been assigned to the servers, the network state is
updated, and the distribution policies are adjusted according to the new conditions.
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These policies are then communicated to other controllers via the controller respon-
sible for calculating and updating the policies.

The steps for decision-making using the proposed method are presented as pseu-
docode in Algorithm 1.

Algorithm 1 The proposed method for decision-making in load distribution

Input: r number of server, V is SDN Network, L is load task)
Output: x The state of load distribution in the network
Initial Wo, Wg, Wb, Wip = 1/4
Do
Get new task L // Step 1: Receive a new incoming task L
// Step 2: Update current network metrics based on reports from servers
Update network delay D,, //(using servers’ delay reports)
Update computational overhead 0,, //(using servers’ overhead reports)
Update energy consumption E,, //(using servers’ energy reports)
Update load balancing metric LB //(using servers’ current load Lci reports)
// Step 3: Estimate the probability of taking each action using policy gradient (Eq. 3.4)
Estimate ¢(x,a) from Eq. (3.4)
// Step 4: Compute the change in policy weights (Aw) based on gradient estimation (Eq. 3.7)
Calculate Aw from Eq. (3.7)
Update w using Eq. (3.9) // Step 5: Update the policy weights (w) to adjust policy Gradient (Eq. 3.9)
Send Policy to all controllers // Step 6: Distribute updated policy to all controllers in SDN
all_distributions(L, r) // Step 7: Generate all possible distributions of task L across r servers
// Step 8: Evaluate each possible action (a;) to determine the optimal load distribution
For each action a; € A:
When transitioning from state x to a;:
Calculate D,, from Eq. (3.11) // Evaluate delay for action a;
Calculate 0,, from Eq. (3.19) // Evaluate overhead for action a;
Calculate E,, from Eq. (3.21) // Evaluate energy consumption for action a;
Calculate LB from Eq. (3.22) // Evaluate load balancing for action a;
Calculate F(x—a;) // Compute overall objective function value for current action a;
IF (F(x—a;) > F(x—a,,4,)) // Select action with the maximum objective function value
Qmax = A
End IF
End For
Update state X to a,,,, // Step 9: Update network state (x) to reflect the selected optimal action (@,,4,)
Update R, from Eq. (3.23) // Step 10: Calculate the reward (R;) based on chosen action (Eq. 3.23)
// Step 11: Distribute task L to servers according to the optimal selected distribution (@,4x)
Send task L to servers based on a4, distribution

While (V is working) / Repeat the above steps while the SDN network is operational
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Algorithm 2 describes how to obtain all possible distributions of L tasks among r
servers. This recursive algorithm finds all possible distributions for L —1 tasks and r— 1
servers. Then, for each distribution, it adds one task at the end and finally returns all
possible distributions.

Algorithm 2 Method for calculating the distribution of L tasks among r servers
(all_distributions)

// Recursive function to find all possible task distributions
Function all_distributions (L, r):
// Base case: If there are no tasks left, return empty distribution
IF (L ==0):
return [[]]
ELSE:
// Initialize empty list to store all possible distributions
distributions = []
// Tterate through all available servers (indexed from 0 to r-1)
For i in range(r):
// Recursively call function to distribute remaining (L - 1) tasks among remaining (r - 1) servers
For distribution in all_distributions(L - 1, r - 1):
// Combine current server (i) with previously computed distribution
distributions.append([i] + distribution)
// Return complete list of possible task distributions
return distributions
End IF

4 Simulation and results

In this section, the main focus is on simulating various load balancing methods in net-
works and analyzing the results obtained from them. Using the Omnet++ simulation
tool, the performance of load balancing algorithms under different conditions is evalu-
ated, and the results are compared. This section aims to demonstrate that selecting an
appropriate load balancing algorithm can significantly reduce delay, decrease process-
ing overhead, and improve network efficiency. On the other hand, these analyses help
identify the weaknesses of existing algorithms and offer new solutions to address the
growing challenges in SDN networks. Therefore, this chapter is presented in two parts:

e Simulation and its conditions
e Comparison of the results obtained from the simulation
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4.1 Simulation and its conditions

To accurately simulate the performance of SDN-based networks in simulation
environments, it is essential that the simulation tools have the capability to repre-
sent all key variables, including network load, data traffic, and network dynamics.
These simulations must be capable of modeling changes in network traffic, struc-
tural changes in network topology, as well as the operation of SDN controllers.
SDN simulation platforms must support a wide range of capabilities to create an
effective experimental environment for conducting SDN-related research. This
includes features such as support for standard SDN protocols like OpenFlow, the
ability to model network dynamics, and integration with network management
and monitoring tools.

In addition, to accurately evaluate the performance of SDN networks and
assess the efficiency of load balancing methods, it is necessary to analyze the
data obtained from simulations. This data includes parameters such as network
delay, resource utilization, energy consumption, and the degree of load balancing
in the network. Evaluating these variables helps researchers gain a better under-
standing of the performance of SDN networks and develop optimal solutions to
improve network performance. This data must be accurately modeled in accord-
ance with network conditions to ensure that the simulation results are reliable for
other researchers. Therefore, this section is divided into four parts:

Simulation variables

Simulation environment Analysis
Network Structure and Utilized Data
Computational Complexity Analysis

4.1.1 Simulation variables

When evaluating the performance of a load balancing system in SDN-based net-
works, four types of dependent variables are used to assess the proposed method:

e FEnergy Consumption Variable The energy consumption variable for proces-
sors in SDN networks is defined as the amount of energy consumed by net-
work devices during the implementation of the methods under consideration.
In the SDN network under study, this energy consumption is the cumulative
consumption of all network devices, including switches, controllers, and Fog
servers. The unit of measurement for this variable is microjoules (mj), which
is calculated using Eq. (3.21).

It should be noted that during the simulation, one of the requirements for calcu-
lating E; is determining the value of f in Eq. (3.19), which is highly dependent on the
base frequency f,. In other words, f = p,f;,, which shows that the current frequency
is a multiple of the base frequency. Considering that p; can be a value between 1 and
the maximum number of processes performed by the processor in a unit of time, it
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can be estimated that p; «x o;, which, as mentioned, is the processing capacity of the
processor. Based on this reasoning and considering that the duration of processor
usage (T)is T = %, according to the DVFES rule [9], we can state:

C.

E: = Ppoveri .1

i

In this equation, p,,,,,; represents the power consumption of the i-th processor.

e Response Time Variable (Delay) The response time variable in SDN networks
refers to the time required for a request to receive a response from the executor
of the request. This delay is composed of processing, sending, transferring, and
receiving information in the network using Eq. (3.15). In this study, the unit for
the response time variable in SDN networks is milliseconds (ms).

e Load Balance Variable Refers to the degree of load distribution across the net-
work. This variable is calculated by determining the standard deviation of pro-
cessing load distribution throughout the network using Eq. (3.22).

e Processing Overhead The amount of tasks that, in addition to the normal net-
work activities, are imposed on network processors by the load balancing method
under investigation is considered processing overhead using Eq. (3.19). The unit
for this variable is MIPS (Million Instructions Per Second).

These variables are measured based on changes in the following four inde-
pendent variables:

Number of controllers
Number of servers

Number of virtual machines
Number of tasks

4.1.2 Simulation environment analysis

In this research, OMNeT++ version 6.0.1 has been used. Figure 3 shows a view
of the default network in the OMNeT++ simulator.

The presented details pertain to the software aspects of the simulator; how-
ever, this simulation was implemented and run on a basic hardware environment
with the following specifications: an eighth-generation Core i5 processor with a
working frequency of up to 3 MHz, 16 GB of RAM, and Windows 10 operating
system.

4.1.3 Network structure and utilized data

The network structure and the data used in the simulation include the following ele-
ments, which are presented in Table 6.
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4.1.4 Computational complexity analysis

In this section, we will analyze the time complexity of the proposed method in com-
parison with the CCA-PSO [11] method from reference and the DRL-SMS method
from reference [12].

To compare the computational overhead, we analyze the time complexity of each
method in terms of the key parameters:

N: Number of controllers

M: Number of switches (servers)

V: Number of virtual machines (VMs)
L: Number of training iterations

D: Number of deep layers in DRL

S: Number of state variables

A: Number of possible actions

I: Number of PSO iteration

4.1.4.1 Computational cost of training versus decision-making in SDN-PG Rein-
forcement learning typically involves two phases:

e Training Phase Learning the best policy over multiple iterations.

e Decision-Making Phase Applying the learned policy for real-time load balanc-
ing.
Unlike Deep Reinforcement Learning (DRL)-based methods that require training

on large state-action spaces, Policy Gradient (PG) optimizes policies directly, mak-
ing training faster and less memory-intensive.
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Fig.3 A default network for implementing the methods under study using the Omnet++ 6.0.1 simulator
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e Training Time Complexity

e SDN-PG updates policies using: where J(8) is the reward function.

e FEach training step requires gradient computation over N controllers, M
switches (servers), and V Virtual Machines, yielding a training complexity of:
where L is the number of training steps.

e Decision-Making Time Complexity

e Once trained, SDN-PG makes decisions in real-time using the learned policy.

e Since it does not require iterative search or deep network inference, the deci-
sion-making time per action is O(1) (constant time).

e In contrast, CCA-PSO requires iterative particle updates, and DRL-SMS must
perform inference on a deep neural network, which can be computationally
costly.

The Computational Complexity Comparison of Load Balancing Methods can be
examined in Table 7.

The time complexity of the proposed SDN-PG algorithm can be expressed in two
distinct phases:

e Training Phase Complexity:
O(LXNXMxV)

e Decision-Making Phase Complexity:
o(1)

which reflects the constant time required for selecting an action using the learned
policy, without the need for iterative search or deep inference.

e Conclusion

The proposed SDN-PG algorithm has a linear training complexity relative to
the scale of the network, and a constant-time decision-making complexity,
making it highly efficient and suitable for real-time load balancing in large-
scale SDN environments.

e Key Findings

SDN-PG requires fewer training steps (L) than DRL-SMS.
SMS due to its direct policy optimization approach.

e SDN-PG is significantly faster in real-time decision-making compared to
CCA-PSO and DRL-SMS.

e Virtual Machines (V) introduce additional load-balancing complexity, but
SDN-PG effectively mitigates overhead by prioritizing active VMs for deci-
sion-making.
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e The number of servers (M) impacts processing time significantly, as each task
allocation requires server selection and load balancing.

4.1.4.2 Processing time and memory consumption of SODN-PG We conducted experi-
ments to measure decision-making latency and total memory usage during execution,
incorporating the impact of Virtual Machines (VMs) and Servers (S).

e Processing Time for Decision-Making
To evaluate decision-making latency, we measured:

e Time to assign a task to a VM and a controller (milliseconds per task).
e Comparison with CCA-PSO and DRL-SMS.

The Performance Comparison of Load Balancing Methods Based on Processing
Time can be examined in Table 8.

e Key Findings

e SDN-PG processes tasks 2.5x faster than CCA-PSO and 4x faster than DRL-
SMS.

e Processing time scales efficiently even as the number of tasks, servers, and
VM s increase.

e Optimized server selection and VM allocation reduce unnecessary decision-
making overhead.

e Memory Consumption Analysis
We also measured peak memory usage (MB) of each method during execution,

considering the storage of network states, VM assignments, and policy updates. The
results are presented in Table 9.

e Key Findings

e SDN-PG requires 43% less memory than CCA-PSO and 68% less than DRL-
SMS.
e DRL-SMS has the highest memory overhead due to deep learning inference.

Table 7 .Computatif)nal X Method Training complexity Decision-
complexity comparison of load making
balancing methods .
complexity
CCA-PSO O(IXNxM) O(NxM)
DRL-SMS O(LXDXxSxA) ODXxSxA)
SDN-PG (Proposed) O(LXNXMxV) O(1)
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e Efficient policy updates in SDN-PG prevent excessive memory consumption
from VMs and servers.

4.1.4.3 Comparison of results obtained from the simulation In this section, the
results of the load balancing and cache management in the proposed method are
compared with the CCA-PSO method from reference [11] and the DRL-SMS method
from reference [12]. The selection of CCA-PSO and DRL-SMS as benchmark meth-
ods was based on several key factors. One of the primary reasons for their selection
is their state-of-the-art performance in load balancing for SDNs. CCA-PSO (Capaci-
tated Controller Allocation with Particle Swarm Optimization) and DRL-SMS (Deep
Reinforcement Learning-based Switch Migration Strategy) are among the most
recent and extensively studied methods that address both load balancing and energy
efficiency in SDNs. Their demonstrated effectiveness in previous research makes
them strong references for comparison.

Another important factor is their relevance to multi-objective optimization, par-
ticularly in terms of QoS and energy efficiency. Unlike traditional heuristic-based
approaches such as Q-learning and Deep Q-Networks, CCA-PSO and DRL-SMS
explicitly optimize both load balancing effectiveness and energy efficiency. Given
that the objective of our study is to minimize energy consumption while maintaining
efficient load balancing, these two methods serve as appropriate baselines.

The similar computational paradigm and adaptability of these methods further
justify their selection. CCA-PSO is a metaheuristic optimization algorithm, which,
similar to our proposed SDN-PG approach, follows an iterative optimization pro-
cess. Likewise, DRL-SMS, similar to Policy Gradient, employs reinforcement learn-
ing techniques to enhance decision-making. These shared computational principles
allow for a fair comparison in terms of computational efficiency, convergence speed,
and adaptability.

Additionally, scalability and complexity considerations played a role in their
selection. Traditional heuristic-based methods, such as Q-learning and DQN, strug-
gle with state-space explosion and slow convergence in large-scale SDNs. In con-
trast, CCA-PSO and DRL-SMS offer better scalability and computational efficiency,
making them more practical for real-world SDN applications.

Lastly, the chosen benchmark methods cover two major approaches in optimi-
zation: heuristic/metaheuristic-based methods (CCA-PSO) and deep reinforcement
learning-based methods (DRL-SMS). Our proposed SDN-PG approach bridges the

Table 8 Performance comparison of load balancing methods based on processing time (ms/task)

Number of Number of tasks ~ Number of Number of SDN-PG CCA-PSO DRL-

controllers (N) servers (M)  VMs (V) (ms/task) (ms/task) SMS (ms/
task)

10 1000 50 50 2.1 54 7.2

50 5000 100 200 3.6 9.8 14.1

100 10,000 200 500 5.4 15.3 22.8
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Table 9 ' Performance ' Method Memory
comparison of load balancing usage
methods based on memory (MB)
consumption
SDN-PG 120
CCA-PSO 210
DRL-SMS 380

gap between reinforcement learning and heuristic-based optimization, making CCA-
PSO and DRL-SMS ideal reference points for comparative evaluation.

The main objective of this comparison is to evaluate the performance and effi-
ciency of these methods in data transmission and service execution. To perform
this comparison, the models and algorithms used in each method were fully imple-
mented in the simulation environment described in Sect. 4.1.2, Analysis. Then,
using the comparison criteria provided in Sect. 4.1.1, these methods were evaluated.

It is worth mentioning that the CCA-PSO and DRL-SMS load balancing methods
utilize the OpenFlow-based controller.

Based on what has been discussed, this section includes four parts:

Analysis of results based on energy consumption
Analysis of results based on response time

Analysis of results based on the load balancing rate ratio
Analysis of results based on processing overhead

Before analyzing these parts, we introduce the four scenarios considered for eval-
uating each variable. These four scenarios are presented in Table 10.

In these scenarios, one independent variable is selected as the primary variable
and is increased by its step size in each evaluation. In this case, the other vari-
ables are considered constant.

4.1.5 Analysis of results based on energy consumption

The energy consumption variable is of great importance in load balancing sys-
tems, as data distribution and transmission networks are usually dependent on
complex and sensitive networks. Reducing energy consumption means improving
network performance, reducing costs, and increasing the feasibility of implement-
ing the evaluated methods. To achieve this goal, precise traffic management and
comprehensive network analysis are essential.

In addition to traffic management, analyzing the network status plays a crucial
role in reducing energy consumption, as observed in the CCA-PSO and DRL-
SMS methods. Given the complexity and variability of node status in SDN net-
works, precise analysis of traffic patterns and identification of deviations allow for
the implementation of more effective strategies to optimize energy consumption.
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Furthermore, training the mentioned models with real data in SDN networks can
significantly improve the accuracy of detection.

In this section, considering the four scenarios defined above, the energy con-
sumption in network processors has been calculated. A summary of the comparison
between the proposed method and the two other methods is presented in Table 11.

Based on the result in Fig. 4, the effect of the number of controllers on energy
consumption is inverse, meaning that increasing the number of controllers reduces
energy consumption. It seems that increasing the number of choices increases the
likelihood of selecting an appropriate controller. Since the load balancing process is
performed at the controller, increasing the number of search agents can reduce the
waiting time for selecting the best server. The average energy consumption in the
proposed method compared to the two methods under study shows a reduction of
16.33% compared to CCA-PSO and 14.36% compared to DRL-SMS.

The results in Fig. 5 indicate that increasing the number of servers has a greater
effect on reducing energy consumption compared to increasing the number of con-
trollers. The average energy consumption in the proposed method compared to the
two methods under study shows an improvement of 20.53% compared to CCA-PSO
and 20.06% compared to DRL-SMS.

According to Fig. 6, increasing the number of servers has a greater effect on
reducing energy consumption compared to increasing the number of VMs, as the
distribution of network hardware resources, being the most influential parameter on
energy consumption, is more affected by the number of servers than the number of
VMs. The average energy consumption in the proposed method compared to the two
methods under study shows an improvement of 14.35% compared to CCA-PSO and
15.3% compared to DRL-SMS.

According to Fig. 7, given that the energy consumption variable has been col-
lected cumulatively throughout these scenarios, it is evident that the effect of the
number of tasks on energy consumption is direct. The average energy consump-
tion in the proposed method compared to the two methods under study shows a

Table 10 Scenarios evaluated for measuring dependent variables

Scenario Minimum value Step size Maximum value Other variables
Impact of number of 5 5 50 Number of servers fixed: 200
controllers Number of VMs fixed: 500
Number of tasks fixed: 10,000
Impact of number of 20 20 200 Number of controllers fixed: 50
servers Number of VMs fixed: 500
Number of tasks fixed: 10,000
Impact of number of 50 50 500 Number of controllers fixed: 50
VMs Number of servers fixed: 200
Number of tasks fixed: 10,000
Impact of number of 1000 1000 10,000 Number of controllers fixed: 50
tasks Number of servers fixed: 200

Number of VMs fixed: 500
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Table 11 Comparison and improvement of the proposed method based on energy consumption compared
to DRL-SMS and CCA-PSO methods

Number of control- Number of servers ~ Number of virtual Number
lers (%) (%) machines (%) of tasks
(%)
DRL-SMS 14.36 20.06 15.3 15.79
CCA-PSO 16.33 20.53 14.35 26.65
Fig.4 Analysis of the effect of —4&—Proposed Method === CCA-PSO DRL-SMS
increasing the number of con-
trollers on energy consumption 31.00

29.00

27.00
25.00
=
23.00 fss e meesmeaseege
21.00
19.00

17.00

15.00
5 10 15 20 25 30 35 40 45 50

NUMBER OF CONTROLLERS

ENERGY CONSUMPTION (MICROJOULES)

better performance of 26.65% compared to CCA-PSO and 15.79% compared to
DRL-SMS.

4.1.6 Analysis of results based on response time

In Table 12, the results of the response time calculations obtained from the proposed
method are presented alongside the results from the two other methods. A more
detailed analysis of these results will be provided in the following sections.

After analyzing the chart presented in Fig. 8, it can be seen that the effect of
the number of controllers on response time is inverse, meaning that increasing
the number of controllers reduces response time. It appears that increasing the
number of options improves the likelihood of selecting an appropriate controller.
Increasing the number of server selection agents (controllers) reduces the waiting
time for selecting the best server, which directly reduces response time. The aver-
age response time in the proposed method compared to the two methods under
study shows an improvement of 38.5% compared to CCA-PSO and 11.65% com-
pared to DRL-SMS.

In Fig. 9, the effect of the number of servers on response time is analyzed.
This effect is also inverse, meaning that increasing the number of servers reduces
response time. As before, it is evident that increasing the number of options can
improve server selection. These results also show that increasing the number of
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Fig.5 Analysis of the effect of —4— Proposed Method == CCA-PSO DRL-SMS
increasing the number of servers

on energy consumption 135
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Fig. 6 Analysis of the effect of —4— Proposed Method === CCA-PSO DRL-SMS
increasing the number of virtual
machines on energy consump-
tion
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servers has a greater impact on reducing response time compared to increasing the
number of controllers. The average response time in the proposed method compared
to the two methods under study shows a reduction of 57.09% compared to CCA-
PSO and 29.66% compared to DRL-SMS. The evidence for this claim is that the rate
of decrease in response time in the proposed method is —83.27, while this value is
—197.18 in the CCA-PSO method and — 126.18 in the DRL-SMS method.

By analyzing the results in Fig. 10, it is observed that the average response
time in the proposed method shows an improvement compared to the two methods
under study 49.89% improvement compared to CCA-PSO and 29.89% improve-
ment compared to DRL-SMS.

Additionally, observing the rate of decrease in response time indicates that the
proposed method demonstrates less dependency on the increase in data volume.

In Fig. 11, the effect of increasing the number of tasks assigned to the network
on response time can be observed. Given that the response time variable is col-
lected and calculated as the average response time across all tasks during these
scenarios, the number of tasks has a direct but weak effect on response time.
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Fig.7 Analysis of the effect of —4— Proposed Method == CCA-PSO DRL-SMS
increasing the number of tasks N
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Table 12 Comparison and improvement of the proposed method based on response time compared to
DRL-SMS and CCA-PSO methods

Number of control- Number of servers ~ Number of virtual Number
lers (%) (%) machines (%) of tasks
(%)
DRL-SMS 11.65 29.66 29.89 18.65
CCA-PSO 38.5 57.09 49.89 443

The average response time in the proposed method compared to the two methods
under study shows a reduction of 44.3% compared to CCA-PSO and 18.65% com-
pared to DRL-SMS.

4.1.7 Analysis of results based on load balancing

A summary of the load balancing calculations obtained from the proposed method,
along with the results from the two other methods, is presented in Table 13.
Analyzing the results presented in Fig. 12 reveals an inverse relationship between
the number of controllers and load balancing, meaning that as the number of con-
trollers increases, the load balance value decreases. A lower load balance value indi-
cates a more symmetrical and evenly distributed network load, which is essential for
maintaining overall system efficiency. This effect occurs because distributing net-
work traffic across a greater number of controllers helps prevent excessive conges-
tion on any single controller, leading to better load distribution across the network.
A decrease in the load balance value reflects a reduction in the disparity between
the load assigned to individual nodes and the average load across the entire network.
This suggests that the proposed method effectively minimizes load imbalances
among nodes, resulting in a more homogeneous distribution of traffic. Although
the performance of the proposed method is less favorable compared to the other
two methods, CCA-PSO and DRL-SMS, when the number of controllers is low, it
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Fig. 8 Analysis of the effect of —&— Proposed Method == CCA-PSO DRL-SMS
increasing the number of con-
trollers on response time 350
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demonstrates significant improvements in average load balance as the number of
controllers increases.

Quantitative results show that the proposed method improves load balancing by
2.48% compared to CCA-PSO and by 1.3% compared to DRL-SMS. These findings
indicate that the SDN-PG approach becomes increasingly effective in large-scale
deployments with a higher number of controllers, ensuring a more balanced and sta-
ble network load distribution.

Figure 13 illustrates an inverse relationship between the number of servers and
the load balancing value, indicating that as the number of servers increases, the load
balance value decreases. This trend suggests that having a larger number of servers
enhances the ability of the system to distribute tasks more efficiently, reducing the
overall load imbalance. The reason behind this effect is that a greater number of
available servers provides more options for task allocation, allowing the selection
of servers with lower loads, which leads to a more balanced distribution of network
traffic. Furthermore, according to Eq. (3.22), an increase in the denominator directly
results in a decrease in the load balance (LB) value. This mathematical relationship

Fig.9 Analysis of the effect of —&— Proposed Method —ll=CCA-PSO DRL-SMS
increasing the number of servers
on response time 2500

2000
1500

1000

RESPONSE TIME(MS)

500
—
0
20 40 60 80 100120140160 180 200
NUMBER OF SERVERS

@ Springer



159 Page 68 of 78 M. A. Zare Soltani et al.

Fig. 10 Analysis of the effect of —— Proposed Method == CCA-PSO DRL-SMS
increasing the number of virtual
machines on response time 1400
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further supports the observed trend, reinforcing the idea that increasing the number
of servers leads to improved load balancing. The experimental results indicate that,
on average, the proposed method achieves a 2.44% improvement in load balance
compared to CCA-PSO and a 1.46% improvement over DRL-SMS.

Although the proposed method does not show a substantial improvement in load
balancing when the number of servers is low, its effectiveness becomes more appar-
ent as the number of servers increases. Notably, when the number of servers exceeds
100, the proposed method demonstrates a superior load distribution trend compared
to the other two methods. This finding suggests that the SDN-PG approach is par-
ticularly advantageous in large-scale network environments, where a higher number
of servers allows for more efficient workload distribution and better overall network
stability.

Figure 14 illustrates the impact of the number of virtual machines (VMs) on load
balancing, revealing an inverse relationship—as the number of VMs increases, the
load balance value decreases. This suggests that a higher number of VMs improves

Fig. 11 Analysis of the effect of —4— Proposed Method === CCA-PSO DRL-SMS
increasing the number of tasks
on response time 240
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Table 13 Comparison and improvement of the proposed method based on load balancing compared to
DRL-SMS and CCA-PSO methods

Number of control- Number of servers ~ Number of virtual Number
lers (%) (%) machines (%) of tasks
(%)
DRL-SMS 1.3 1.46 10.75 3.45
CCA-PSO 2.48 2.44 19.07 6.67
Fig. 12 Analysis of the effect —o—Porposed Method == CCA-PSO DRL-SMS
of increasing the number of
controllers on load balancing » 1.12
w
2 11 '0‘\'
S 1.08
f
g 1.06 Y
3@ 104
23
S<= 102
-
o 1
N
-
<§( 0.98
o 5 10 15 20 25 30 35 40 45 50
o
z NUMBER OF CONTROLLERS

the system’s ability to distribute tasks more evenly, reducing workload imbalance.
Since VMs are the final processing units in the network, increasing their number
enhances task assignment flexibility. More available VMs allow for better task allo-
cation, minimizing congestion and ensuring a more balanced workload. The results
indicate that increasing VMs has a stronger effect on reducing load imbalance com-
pared to increasing the number of servers, as tasks are ultimately executed on VMs
rather than directly on servers. A comparative analysis shows that the proposed
method reduces load imbalance by 19.07% compared to CCA-PSO and 10.75%
compared to DRL-SMS.

Figure 15 illustrates the impact of increasing the number of tasks assigned to the
network on load balancing. The results indicate that as the number of tasks grows,
the load balancing process becomes more efficient, leading to a more even distribu-
tion of workloads across available virtual machines (VMs). Since the load balance
variable is calculated cumulatively across different scenarios, the overall load dis-
tribution improves as more tasks are processed. This improvement occurs because
the network adapts dynamically, ensuring that processing loads are proportionally
distributed based on the available VM capacity, preventing resource bottlenecks and
optimizing performance. A comparative analysis of the results shows that the pro-
posed SDN-PG method achieves a 6.67% improvement in load balance compared to
CCA-PSO and a 3.45% improvement over DRL-SMS. These findings suggest that

@ Springer



159 Page 70 of 78 M. A. Zare Soltani et al.

20 40 60 80 100120140160180200
NUMBER OF SERVERS
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the proposed method enhances workload distribution efficiency, particularly as net-
work task volume increases.

4.1.8 Analysis of results based on processing overhead

Ultimately, the results obtained from the simulation of the processing overhead for
the proposed method, along with the results from the two other methods, as shown
in Table 14, demonstrate the improvement of the proposed method.

According to Fig. 16, it can be said that the effect of the number of controllers
on processing overhead is direct. The reason for this is that increasing the number
of controllers leads to an increase in the number of times an algorithm must be exe-
cuted for load balancing. It appears that the main reason for the difference in the
amount of increased processing overhead among the methods is related to the time
complexity of each method, where the proposed method has a significant advan-
tage over the other two methods. The average processing overhead in the proposed
method compared to the two methods under study shows a reduction of 13.28%
compared to CCA-PSO and 12.51% compared to DRL-SMS.

In Fig. 17, the effect of the number of servers on processing overhead is analyzed.
This effect is also direct, meaning that increasing the number of servers increases
processing overhead. This increase occurs because adding more servers leads to
more processing required to select the most appropriate server. The difference in
the increase of processing overhead among the methods under study is due to dif-
ferences in the time complexity of each algorithm. The average processing over-
head in the proposed method compared to the two methods under study shows an
improvement of 10.79% compared to CCA-PSO and 8.83% compared to DRL-SMS.
Another reason for the improved performance of the proposed method compared
to similar methods is the reduction in the number of processes due to simplifying
the selection and learning policy. Although the proposed method has similar perfor-
mance to other methods with a small number of servers, the reduction in processing
overhead becomes more apparent as the number of servers increases.
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Fig. 14 Analysis of the effect of —&— Proposed Method == CCA-PSO DRL-SMS
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In Fig. 18, the effect of the number of VMs on processing overhead can be seen.
This effect is also direct but with weak dependency. It should be noted that select-
ing the number of VMs leads to an increase in the number of processes; however,
this weak dependency is due to the greater impact of the number of servers and
controllers on the number of processes. The average processing overhead in the
proposed method compared to the two methods under study shows a reduction of
13.67% compared to CCA-PSO and 10.73% compared to DRL-SMS. By observ-
ing the results in this chart, it can be concluded that the proposed method shows
greater stability compared to the other two methods. The range of variation in the
proposed method is 0.08, while in the CCA-PSO method it is 0.16, and in the DRL-
SMS method it is 0.15. Furthermore, the lower slope in the increase of processing
overhead indicates that the proposed method has a more stable performance.

In Fig. 19, the effect of increasing the number of tasks assigned to the network on
processing overhead is observable. It is evident that increasing the number of tasks
results in an increase in the number of processes, and consequently, an increase in
overall processing overhead in the network. However, the difference lies in the rate

Fig. 15 Analysis of the effect of —4—Proposed Method ~«=fli==CCA-PSO DRL-SMS
increasing the number of tasks
on load balancing « 26
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Table 14 Comparison and improvement of the proposed method based on processing overhead com-
pared to DRL-SMS and CCA-PSO methods

Number of control- Number of servers ~ Number of virtual Number
lers (%) (%) machines (%) of tasks
(%)
DRL-SMS 12.51 8.83 10.73 15.85
CCA-PSO 13.28 10.79 13.67 18.61
Fig. 16 Analysis of the effect of —4&— Proposed Method === CCA-PSO DRL-SMS
increasing the number of con-
trollers on processing overhead 24
g 2.2
s
2 2
w
T
Z 138
3
s 1.6
z
@n 1.4
(%]
wl
8 1.2
o
o
1

5 10 15 20 25 30 35 40 45 50
NUMBER OF CONTROLLERS

of increase among the methods. The average processing overhead in the proposed
method compared to the two methods under study shows a reduction of 18.61%
compared to CCA-PSO and15.85% compared to DRL-SMS. Another point indicat-
ing that the proposed method is more efficient than the other two methods is that the
average slope of increase in processing overhead with an increase in the number of
tasks is 0.18 for the proposed method, 0.2 for CCA-PSO, and 0.2 for DRL-SMS.
This suggests that, on average, as the number of tasks increases, the performance of
the proposed method will be better than the other two methods.

Overall, the findings suggest that as network load increases, SDN-PG demon-
strates better adaptability and stability in managing workload distribution, ensuring
improved efficiency in large-scale SDN environments.

5 Discussion: network resilience and real-world applicability

A robust load-balancing algorithm in Software-Defined Networks (SDNs) must
effectively handle network failures, dynamic traffic variations, and adversarial
threats. Unpredictable failures of controllers or switches, link congestion, and hard-
ware malfunctions can disrupt network performance, making real-time traffic redis-
tribution essential. Additionally, fluctuations in traffic volume, congestion surges,
and bursty workloads require adaptive mechanisms to maintain performance stabil-
ity. Moreover, SDNs are vulnerable to adversarial conditions such as Distributed
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Fig. 17 Analysis of the effect of —&— Proposed Method === CCA-PSO DRL-SMS
increasing the number of servers
on processing overhead 2.5

PROCESSING OVERHEAD(MIPS)
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NUMBER OF SERVERS

Denial of Service (DDoS) attacks or malicious traffic rerouting, which can overload
the network infrastructure and degrade service quality. Addressing these challenges
demands an intelligent, responsive load-balancing strategy that ensures network
resilience under dynamic and potentially hostile conditions.

The proposed SDN-PG approach enhances network robustness by integrating
multiple mechanisms to handle these challenges efficiently. It dynamically reallo-
cates controllers to mitigate failures, preventing traffic loss in case of sudden dis-
ruptions. Additionally, its adaptive load redistribution strategy continuously updates
traffic flow rules based on real-time monitoring, ensuring that performance remains
stable even under high-load fluctuations. To counter adversarial threats, SDN-PG
employs Al-driven anomaly detection, which effectively filters malicious traffic and
mitigates DDoS attacks. Experimental evaluations demonstrate its effectiveness in
real-world scenarios: SDN-PG successfully redistributed traffic within 35 ms dur-
ing simulated controller failures, dynamically adjusted routing policies to maintain
latency below 8 ms under a 200% traffic surge, and filtered 87% of DDoS attack
traffic, preventing network overload. These results highlight SDN-PG’s superior
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Fig. 19 Analysis of the effect of
increasing the number of tasks ——Proposed Method —#—CCA-PSO DRL-SMS
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resilience, making it a highly effective solution for maintaining stability, security,
and efficiency in large-scale SDN environments.

6 Conclusion

In conclusion, the proposed method demonstrates superior performance compared
to the CCA-PSO and DRL-SMS methods across the four variables under investi-
gation. The results indicate that increasing the network scale in the three variables
number of controllers, number of servers, and number of VMs leads to improved
efficiency of the proposed method relative to the other two methods. Additionally,
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Fig.20 Average improvement of the proposed method compared to CCA-PSO and DRL-SMS methods
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increasing the network load through additional tasks enhances the performance of
the proposed method compared to the mentioned methods.

The improvement in task distribution through the enhanced learning policy in
the proposed method has significantly reduced energy consumption compared to the
other two methods. Furthermore, reducing the number of processes and simplifying
the proposed method has had a positive impact on the response time and process-
ing overhead variables in the DSDN network. Additionally, the improvement in the
selection policy in the proposed method has resulted in better server selection at
each stage of task distribution. This feature makes the proposed method more effi-
cient in load balancing compared to the other methods under review.

The average performance improvement of the proposed method compared to the
two methods under study is illustrated in the chart in Fig. 20. Based on this chart, it
can be inferred that the proposed method is more efficient in the process of task dis-
tribution and load balancing than the CCA-PSO and DRL-SMS.
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