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Abstract
In modern networking, software-dened networks (SDNs) have emerged as a pow-
erful paradigm that separates the control plane from the data plane, enabling cen-
tralized and distributed network management. SDNs provide exibility and e-
ciency in handling large-scale networks, aiming to optimize resource utilization, 
reduce energy consumption, and enhance quality of service (QoS). Given the rapid 
growth in data trac and the increasing need to minimize response time and energy 
consumption, developing ecient load balancing strategies has become a criti-
cal challenge to ensure network performance and stability. Load balancing plays a 
vital role in optimizing data trac distribution across servers and network nodes, 
preventing congestion, and improving system eciency. This is especially crucial 
in large and complex environments such as cloud data centers and distributed net-
works, where handling high request volumes eciently is essential. To address 
these challenges, this paper introduces SDN-PG, a novel dynamic load balancing 
strategy for SDNs that integrates policy gradient (PG), a reinforcement learning-
based optimization method, with dynamic voltage and frequency scaling to enhance 
energy eciency and network performance. SDN-PG dynamically optimizes traf-
c distribution by continuously adapting network policies to real-time uctuations, 
signicantly improving QoS while minimizing energy consumption. The proposed 
approach consists of three primary components. The rst component is a distribu-
tion policy learned via Policy Gradient, enabling adaptive load balancing decisions. 
The second component involves real-time network monitoring, allowing the system 
to track and respond to dynamic trac changes. The third component is an ecient 
decision-making mechanism, which leverages PG-based policies to reduce compu-
tational overhead and optimize response time. To validate its eectiveness, SDN-PG 
is compared against state-of-the-art methods, including CCA-PSO and DRL-SMS, 
through simulation experiments. The results demonstrate signicant improvements 
in key performance metrics. SDN-PG achieves a 45.47% and 46.22% reduction in 
response time, a 14.09% and 11.98% decrease in computational overhead, a 19.47% 
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and 16.38% improvement in energy eciency, and a 7.6% and 4.24% enhancement 
in load balancing eectiveness. These ndings highlight the practical applicability 
of SDN-PG in large-scale SDN environments, demonstrating its ability to eciently 
balance energy savings and QoS while maintaining optimal load distribution and 
network stability.

Keywords Software-dened network · Load balancing · Policy gradient · 
Reinforcement learning · Energy consumption · Dynamic voltage and frequency 
scaling

Mathematics Subject Classication 68W25 · 6806 · 68T01 · 68T05

1 Introduction

With the rapid growth of 4G, 5G, and 6G networks, along with the expansion of 
cloud infrastructures, data centers, and wide area networks (WANs), the volume of 
data trac and network services is increasing at an unprecedented rate. Traditional 
network architectures are no longer capable of managing this signicant inux of 
requests. Software-dened networks (SDNs) present an ecient solution for manag-
ing large-scale networks by decoupling the control plane from the data plane, ena-
bling greater control over the network infrastructure. This decoupling signicantly 
facilitates network management, enhances resource utilization, reduces capital and 
operational expenses, improves service quality, and increases network exibility. In 
modern SDNs, load balancing has emerged as a critical challenge in optimizing net-
work performance and ensuring the delivery of high-quality services. The objec-
tive of load balancing is to distribute incoming network ows across links, servers, 
and virtual machines (VM) in a way that ensures equitable utilization of all network 
resources, thereby maintaining operational eciency and stability [1, 2].

1.1  Challenges

Despite the advantages of SDNs, several critical challenges remain unresolved. 
First, most existing load balancing techniques rely on centralized controller archi-
tectures, which introduce a Single Point of Failure (SPoF) and limited scalability, 
making them unsuitable for large-scale networks such as cloud computing and data 
centers [3, 4]. Second, high energy consumption in SDN environments has become 
a major concern, particularly due to the increasing complexity of trac manage-
ment and the demand for real-time services [5, 6]. Third, existing approaches often 
fail to simultaneously optimize multiple critical factors, such as energy eciency, 
processing overhead, response time, and load balancing, making them suboptimal 
in dynamic and large-scale networks [7, 8]. Fourth, current load balancing strategies 
face diculties in adapting to trac uctuations, which leads to inecient resource 
allocation and network congestion [9, 10]. These challenges highlight the need for 
an adaptive, scalable, and energy-ecient load balancing strategy in SDNs.
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1.2  Proposed solution

To address these challenges, this study proposes a novel dynamic load balancing 
strategy for SDNs, named SDN-PG, which integrates policy gradient (PG), a rein-
forcement learning algorithm, with dynamic voltage and frequency scaling (DVFS). 
Unlike traditional load balancing approaches, SDN-PG utilizes a distributed multi-
controller architecture, eliminating the SPoF problem while enhancing scalability 
and network resilience. By dynamically adjusting server selection, resource alloca-
tion, and energy consumption, the proposed method eectively improves network 
eciency while reducing latency and computational overhead.

The proposed approach consists of three key components:

• Policy Distribution Denes and updates load balancing rules based on real-time 
network conditions.

• Monitoring Component Continuously measures key network metrics, including 
energy consumption, processing overhead, response time, and load balance rate.

• Decision-Making and Execution Implements policy-based resource allocation, 
ensuring optimized load balancing across distributed SDN controllers.

1.3  Contribution

The main contributions of this research are as follows:

• Developing a multi-objective and energy-ecient load balancing solution by 
integrating reinforcement learning techniques in SDN environments.

• Introducing a distributed load balancing strategy to mitigate the SPoF issue and 
improve scalability and network exibility.

• Leveraging the Policy Gradient method for intelligent selection of servers and 
virtual machines, ensuring adaptive and ecient trac distribution.

• Applying the DVFS technique to minimize energy consumption while maintain-
ing high service quality.

• Reducing response time and computational overhead, leading to better network 
performance and reduced waiting time for users.

• Improving load balancing and resource allocation eciency by preventing net-
work congestion and ensuring optimized workload distribution.

• Enhancing scalability and exibility in large-scale SDN architectures.

Using the Omnet++ simulation tool, the proposed method is evaluated under 
various network conditions, and its performance is compared against the CCA-PSO 
[11] and DRL-SMS [12] algorithms. The simulation results indicate signicant per-
formance improvements across multiple key metrics.

The remainder of this paper is structured as follows: Sect. 2 presents a compre-
hensive review of the related literature. Section 3 details the proposed methodology 
and outlines the problem formulation. Section 4 discusses the simulation setup and 
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evaluates the performance of the proposed method, with comparisons drawn against 
the CCA-PSO and DRL-SMS techniques. Finally, Sect. 5 summarizes the key nd-
ings and provides concluding remarks.

2  Related work

At the beginning of this section, we will briey discuss classications of load bal-
ancing approaches in SDN, focusing on a Model-Free reinforcement learning algo-
rithm known as the PG method. Subsequently, to examine the proposed method, 
prior works will be categorized into three groups and analyzed in detail.

Load balancing in networks refers to the eective distribution of data traf-
c across servers and various network nodes, aiming to reduce excessive load and 
prevent congestion. This concept is particularly critical in large and complex net-
works such as cloud networks and data centers, which handle a signicant volume of 
requests [8, 9]. The dierent approaches to load balancing in SDNs are illustrated in 
Fig. 1 [3].

Centralized Controller Approach: It employs a centralized controller responsible 
for managing the allocation of trac across the entire network.

Distributed Controllers Approach: In SDNs, the Distributed Controller Approach 
refers to a model where resource management and load balancing responsibilities 
are decentralized across various network nodes. In this framework, each node or 
local controller independently collects data regarding the load conditions of other 
nodes and makes local decisions based on this information. Unlike the centralized 
model, where decisions are concentrated at a single central point, this approach 
enables each node to function autonomously. These local decisions foster improved 
scalability and reduce reliance on a central authority, thereby enhancing the overall 
resilience and eciency of the network.

Hybrid Controllers Approach: This approach integrates both centralized and dis-
tributed models, harnessing the advantages of each to deliver a holistic and ecient 
solution.

Static Load Balancing Approach: Static load balancing refers to a method in 
which network load and data transmission paths are pre-allocated and xed. In this 
approach, communication routes between hosts are determined and assigned before 
data transfer begins, with no alterations made to these paths during the transmission 
process.

Fig. 1  Classications of load 
balancing approaches [3]
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Dynamic Load Balancing Approach: refers to a method in which the distribu-
tion of network load and resource allocation are continuously adjusted in real-time 
based on uctuations in trac patterns and network conditions. In this approach, the 
system autonomously redistributes the load across various nodes and resources, pre-
venting congestion and ensuring the optimal performance of the network.

Hybrid Load Balancing Approach: refers to a method that combines the features 
of both static and dynamic methods to eectively manage load distribution and 
resource allocation within a network. This approach utilizes the advantages of each 
method to enhance network eciency and optimize resource usage [3].

In modern SDNs, load balancing has emerged as one of the fundamental chal-
lenges in optimizing network performance and delivering high-quality services. 
With the growth of data trac, the need for rapid response and ecient resource 
optimization has made the adoption of advanced methods for trac management 
and load distribution indispensable [1, 2].

Given the existing research gap in this eld, this study focuses on the analysis of 
dynamic load balancing in SDNs. To address this challenge, the research employs 
DVFS techniques to reduce energy consumption. Furthermore, for the rst time, 
the PG algorithm a reinforcement learning method is utilized to select the optimal 
server for balanced load distribution.

To provide a comprehensive review of the existing literature, the related works 
are categorized into the following three areas:

• Load balancing in software-dened networks.
• Load balancing and energy optimization using DVFS in SDNs.
• Load balancing in SDNs using articial intelligence and machine learning.

2.1  Load balancing in software‑defined networks

When the number of network users or virtual network requests from the underlying 
infrastructure increases in the virtual network embedding problem, load distribution 
becomes a major issue that can ultimately aect network performance and quality 
of service. The use of SDNs can enhance network application availability, resource 
utilization, and QoS indicators such as delay, throughput, and response time [4]. The 
issue of load balancing in SDNs has not yet been comprehensively explored, and 
further research in this domain is required. The ultimate goal is to respond eec-
tively to incoming trac and determine the best transmission paths in the network 
while ensuring the highest possible QoS levels [4, 13].

Li et al. [4] proposed a multi-objective virtual network embedding (VNE) algo-
rithm, addressing resource optimization by mapping virtual network requests onto 
physical infrastructure. They introduced a load-balancing approach that considers 
node load as an objective function while dening global resource capacity to evalu-
ate infrastructure nodes’ ability to handle embedding. The method employs a group 
search algorithm for iterative optimization. Simulation results indicate that the algo-
rithm eectively balances network load, enhances the acceptance rate of virtual 
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network requests, and optimizes resource allocation, thereby increasing revenue for 
service providers and improving operational eciency.

Chiang et  al. [5] applied SDN to enhance exibility in managing large scale 
networks, using server clustering with the OpenFlow protocol. They proposed the 
dynamic weighted random selection (DWRS) load balancing algorithm, which 
dynamically adjusts server weights based on real-time load, increasing resource 
eciency. Multi-threading was used to optimize the Floodlight controller’s per-
formance by leveraging parallel processing, preventing overload. An experimental 
setup with real hardware demonstrated DWRS’s superiority in load balancing com-
pared to other methods, especially in heterogeneous environments.

Ahmadi and Movahedi [6] a distributed load balancing approach for SDN con-
trollers is introduced, where each controller monitors its own load and gathers load 
data from other controllers when exceeding a set threshold. A switch with the least 
load is selected for migration to optimize network load balance. The method is fully 
distributed and ensures that load balancing is conducted only when specic condi-
tions are met, enhancing eciency. It mitigates single points of failure and signi-
cantly improves scalability, availability, and fault tolerance in the network.

Srivastava and Pandey [7] the authors reviewed various load balancing methods, 
including model based, estimation based, and nature inspired algorithms, providing 
a comprehensive categorization and comparison. Ethilu et al. [14] investigated an 
ecient method for switch migration in SDN to optimize load distribution among 
distributed controllers. The main objective is to reduce switch migration costs and 
controller resource consumption. The novelty lies in enhancing the time-shared 
switch migration (TSSM) method by selecting underloaded controllers, eectively 
minimizing migration costs while maintaining system benets.

Gad-Elrab et  al. [15] the authors propose an innovative approach for resource 
management and load balancing in fog-cloud environments using a fuzzy multi cri-
teria decision making technique. The method involves four steps: determining crite-
ria weights using fuzzy analytic hierarchy process (FAHP), ranking fog devices with 
fuzzy technique for order performance by similarity to ideal solution (FTOPSIS), 
calculating nal device weights for task allocation, and assigning tasks to the opti-
mal device. This approach aims to enhance system eciency, reduce energy con-
sumption, improve performance, and increase the exibility of fog-cloud computing 
systems.

Banaie et al. [16] examines a multicriteria load-balancing scheme among gate-
ways in fog-based IoT environments. Using a queuing model, the research analyzes 
data stream latency and gateway node congestion, which can negatively impact 
system reliability. The proposed model leverages a multicriteria decision-making 
(MCDM) approach for load balancing in IPv6 over low-power wireless personal 
area networks (6LoWPAN) networks, demonstrating a signicant improvement in 
response speed and reliability when addressing user requests.

Jehad Ali et  al. [17] proposed ESCALB (eective slave controller allocation-
based load balancing) for SDN-based IoT networks, enhancing network eciency 
through dynamic secondary controller assignment and optimized switch migration. 
Using analytic network process (ANP) for controller prioritization and the 0/1 knap-
sack algorithm for migration optimization, ESCALB improves resource utilization 
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and load balancing. Experimental results show a 35% reduction in energy consump-
tion and 34% improvement in processing delay, surpassing conventional methods 
in QoS and communication cost eciency. Despite its advantages, ESCALB’s high 
computational complexity increases processing overhead, requiring advanced hard-
ware. Future research could integrate machine learning to enhance scalability and 
performance in 5G and beyond networks.

Noda et  al. [18] propose an optimized controller placement model for SDN to 
reduce migration downtime during controller relocation. Using mixed-integer sec-
ond-order cone programming (MISOCP), the approach optimizes switch migration, 
cutting downtime by 80% and lowering operational costs by minimizing control-
ler usage. It also improves network throughput by 30%, outperforming traditional 
methods. However, high computational complexity and controller coordination chal-
lenges remain, requiring further research to enhance scalability and performance.

The conclusion drawn from the research in Sect. 2.1 indicates that load balanc-
ing plays a critical role in enhancing network performance and quality of service in 
SDN and virtualized network environments. Various methods have been proposed to 
optimize resource allocation, reduce latency, and improve system scalability. How-
ever, challenges such as eective trac management and the need for distributed 
solutions remain unresolved. These studies highlight that eective load balancing 
can signicantly improve network performance, reliability, and scalability, empha-
sizing its importance in the optimization of modern network infrastructures.

A comprehensive comparison of existing load balancing strategies in SDNs, 
including centralized, distributed, and hybrid approaches, is summarized in Table 1. 
The table provides a structured comparison of dierent algorithms based on critical 
performance factors such as scalability, response time, and energy eciency.

2.2  Load balancing and energy optimization using DVFS in SDNs

The dynamic voltage and frequency scaling (DVFS) algorithm is a sophisticated 
energy optimization technique widely used in contemporary computing systems to 
reduce power consumption. This method involves the dynamic adjustment of the 
processor’s frequency and voltage based on the current workload. The core equation 
that governs power consumption in DVFS is expressed as follows:

where P denotes the power consumption, c is a constant that depends on the specic 
architectural features of the processor, v represents the processor’s voltage, f  indi-
cates the processor’s frequency,  (scaling constant): This coecient is determined 
by the processor’s design and construction materials, reecting the architectural fac-
tors that inuence energy eciency.

This equation illustrates that power consumption is highly sensitive to variations 
in both voltage and frequency. Specically, since power consumption is propor-
tional to the square of the voltage ( v2 ), reducing the voltage can lead to a substan-
tial decrease in energy usage without compromising the performance of the system. 
The relationship between power consumption, voltage, and frequency is non-linear, 

(2.1)P = fcv2
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meaning that appropriate adjustments in these parameters can result in signicant 
energy savings while maintaining system eciency [8, 9, 19–22].

The DVFS method, primarily utilized for energy reduction, also plays a crucial 
role in eectively identifying suitable VMs and optimally allocating resources dur-
ing high network loads to meet quality of service requirements and enhance network 
resource utilization [19, 23–29].

Some researchers have integrated DVFS with other optimization methods within 
SDN to select optimal VMs for request allocation. This integration has led to reduc-
tions in energy consumption, enhancements in QoS, and improvements in load bal-
ancing [5, 19–21].

Javadpour et al. [8] cloud computing is highlighted as a technology for provid-
ing Internet services, aimed at reducing operational costs and increasing resilience. 
Despite its advantages, challenges like resource consumption and load distribution 
remain. The authors propose a load balancing strategy utilizing DVFS to optimize 
energy consumption. DVFS manages power by adjusting processor frequency, sig-
nicantly reducing energy use. This approach also improves load balancing and 
reduces power consumption in the cloud network.

Mahmoudi et al. [9] SDN is highlighted as a promising technology to enhance 
network performance, though load imbalance remains a critical issue that dimin-
ishes QoS. To mitigate load imbalance and reduce delays, SDN combined with 
DVFS is utilized, dynamically balancing trac load across servers and optimizing 
resource use even with high VM numbers. This study emphasizes dynamic trac 
handling, considering VM overload, host eciency, and user load to enhance SDN 
performance and QoS.

Javadpour et  al. [22] aims to improve energy eciency and performance in 
cloud computing by reducing energy consumption while maintaining service qual-
ity. It introduces intelligent task scheduling using DVFS with two implementations: 
SFB for selecting optimal machines using a scoring function, and a micro-genetic 
algorithm with lower complexity, eectively enhancing energy eciency in cloud 
environments.

Kumar et  al. [25] The P2BED-C model optimizes energy-ecient cloud data 
center management by integrating DVFS, peer-to-peer load balancing, and DENS 
to enhance computational eciency. Validated on the OpenStack platform, it out-
performs traditional scheduling methods like FCFS and Round Robin in energy sav-
ings and performance. However, the model lacks machine learning-based optimiza-
tion, which could further rene energy prediction and dynamic resource allocation. 
Future research should explore machine learning-driven strategies to improve adapt-
ability and eciency in cloud environments.

Panda et  al. [30] introduced a reinforcement learning (RL)-based approach to 
optimize DVFS congurations, reducing processor energy consumption while main-
taining system performance. By integrating Q-learning with DVFS, the method 
achieved 20% lower energy usage than traditional DVFS techniques without aect-
ing eciency. This adaptive model dynamically adjusts voltage and frequency, 
enhancing real-time load balancing and energy eciency. Unlike static DVFS, it 
eectively responds to workload variations, making it a scalable solution for edge 
computing, data centers, and IoT applications.
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Wang et  al. [31] proposed a hybrid reinforcement learning and DVFS-based 
approach to optimize energy consumption and latency in edge computing. The 
method integrates multi-sample modeling and a joint optimization strategy for 
microservice deployment and request routing. Using a Jackson queuing network, it 
analyzes system delays, while DA-RSPPO optimizes static decisions and EA-DFS 
dynamically adjusts processor frequency. Experimental results show signicant 
energy savings and improved response latency, making it a promising solution. 
Future research could extend this model to multi-cloud environments and IoT sys-
tems for greater scalability.

Geng et  al. [32] PowerLens is a deep learning-integrated framework that opti-
mizes DVFS congurations for deep neural networks (DNNs) by clustering power 
behavior. It mitigates frequency uctuations, conguration delays, and transferabil-
ity issues in conventional methods. Experimental results show up to 88.64% energy 
eciency improvement, surpassing existing techniques. Its scalability and eciency 
make it a promising solution for CPUs, cloud computing, and large-scale systems, 
enhancing energy optimization and computational performance.

El Mahjoub et  al. [33] A power and performance management framework for 
DVFS-based systems integrates Markov chain stochastic modeling with multi-
objective optimization, dynamically adjusting frequency and voltage based on 
workload and QoS requirements. Simulations show a 32% energy reduction while 
enhancing computational performance. Compared to static DVFS, standard Markov 
models, and queuing theory-based methods, it oers superior power-aware comput-
ing eciency.

Shuaib et al. [34] proposed DEELB, a dynamic load balancing and energy opti-
mization framework for IoT environments, integrating adaptive learning models and 
multi-layer load balancing. Experimental results in CloudSim show that DEELB 
reduces energy consumption by 30% and improves processing delay by 27%, out-
performing conventional methods. The framework eciently allocates tasks to
low-power nodes, optimizing resource distribution and management eciency. Key 
advantages include enhanced scalability, lower operational costs, and congestion 
prevention. However, high computational complexity and dependence on advanced 
hardware remain critical challenges.

Piga et al. [35] DVFS Boosting was explored as a scalable and secure approach 
to enhance data center capacity, tackling power consumption, hardware heterogene-
ity, and service reliability. Over three years of deployment, it added 12 megawatts 
of capacity, equivalent to half a new data center. Unlike conventional methods, it 
integrates risk management, heterogeneous data analytics, and machine learning 
for optimized service selection. Experimental results show increased computational 
capacity without performance trade-os while managing power constraints e-
ciently. Future research could extend this framework to cloud infrastructures, incor-
porating AI and blockchain for improved resource allocation and energy eciency.

Irfan et  al. [36] proposed an adaptive task allocation and power management 
approach for MPSoCs with NoC architectures, leveraging DVFS to enhance energy 
eciency and processor performance. The method integrates adaptive scheduling 
and data path management, achieving 38% energy reduction and 29% lower pro-
cessing delay through dynamic frequency and voltage adjustments. Compared to 
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conventional techniques, it improves task distribution eciency, extending proces-
sor lifespan and overall system performance. The approach is applicable to distrib-
uted processing and real-time operating systems (RTOS), though challenges remain 
in implementation complexity, hardware dependency, and computational overhead.

Islam et al. [37] proposed ELITE, an energy-ecient framework for Mobile Edge 
Computing (MEC) that integrates a three-layer architecture, a DVFS-based UE 
power management model, and a layered scheduling algorithm for optimal resource 
allocation. Experimental results show that ELITE reduces UE energy consumption 
by 50% and improves processing delay by 30%. Additionally, it enhances computa-
tional load distribution while signicantly reducing task failure rates. This approach 
demonstrates promising potential for optimizing MEC environments by balancing 
energy eciency and system performance.

Cengiz et al. [38] addressed energy-ecient resource management in data cent-
ers, proposing Intelligent Load Balancing Algorithms (ILBAs) to optimize energy 
consumption and computational eciency. The ILBA method employs machine 
learning-based load balancing for dynamic resource allocation in cloud environ-
ments. Experimental results show a 40% reduction in energy consumption, a 30% 
decrease in processing delay, and improved resource utilization. Given its scalabil-
ity, this approach oers a promising solution for modern data centers, ensuring e-
cient resource allocation and sustainable operations.

Hagras et  al. [39] proposed BlueMoon, an innovative DVFS-based scheduling 
mechanism to reduce energy consumption in processing systems. By extending 
task execution time intervals, BlueMoon optimizes power usage without increasing 
overall execution time. Experimental results indicate a 21% reduction in energy con-
sumption compared to conventional methods, while also enhancing computational 
eciency. This approach oers a promising solution for energy-aware scheduling in 
modern computing environments.

Muthusamy et al. [40] introduced a Q-Learning-based load balancing model for 
optimized resource allocation in cloud environments. This approach dynamically 
analyzes processing loads and autonomously adjusts resource distribution to prevent 
server overloading. Experimental results demonstrate a 55% improvement in pro-
cessing time, a 40% increase in resource utilization, and a 20% boost in scalability, 
while also reducing operational costs. Despite its advantages, the model’s high com-
putational complexity necessitates advanced hardware and additional processing 
resources for full deployment.

Zhou et al. [41] propose an Intelligent Energy Consumption Model (IECL) for 
cloud-based manufacturing, focusing on real-time and accurate energy prediction
in data centers. Their approach integrates machine learning techniques, including 
Support Vector Machines (SVM), Random Forest (RF), and Grid Search (GS), to 
estimate energy consumption under varying workloads. By leveraging RF for feature 
selection and GS for parameter optimization, the model enhances predictive accu-
racy, achieving an absolute error below 1.4%. The results demonstrate that IECL 
outperforms existing models, making it an eective solution for energy-ecient 
resource allocation in cloud data centers and industrial manufacturing environments.

Zhou et al. [42] introduce ECMS, an intelligent energy consumption model tai-
lored for mobile edge computing (MEC) environments. By integrating Elman 
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neural networks (ENN) with feature selection techniques, the model captures 29 key 
energy-related parameters to predict and optimize edge server power usage under 
dynamic workloads. ECMS is validated across CPU-intensive, transactional, and 
I/O-intensive tasks, and achieves superior accuracy and lower training overhead 
compared to traditional regression- and PMC-based models. Its adaptability makes 
it a promising tool for energy-aware resource management in green MEC systems.

Zhou et al. [43] propose two adaptive, energy-aware algorithms designed to mini-
mize power consumption and service level agreement (SLA) violations in cloud data 
centers. Unlike prior approaches, their method considers both CPU and memory 
utilization along with workload types (e.g., CPU- and I/O-intensive) during vir-
tual machine (VM) deployment. By introducing an adaptive three-threshold frame-
work and optimizing VM placement through energy eciency maximization, the 
proposed algorithms achieve signicantly better results in energy savings and SLA 
compliance compared to traditional threshold-based techniques. Real-world simula-
tions using PlanetLab workloads and CloudSim conrm the model’s eectiveness 
under dynamic cloud conditions.

2.2.1  Energy optimization techniques

Several energy-ecient techniques exist in software-dened networks and cloud 
computing environments. The choice of DVFS was based on the following key 
advantages:

• Fine-Grained Power Control Unlike sleep scheduling, which switches devices on 
and o completely, DVFS allows dynamic power scaling by adjusting processor 
voltage and frequency, ensuring a balance between energy savings and perfor-
mance [8, 9].

• Minimal Latency Overhead Sleep scheduling requires switches and servers to 
power down and wake up, introducing latency. In contrast, DVFS optimizes 
energy use in real-time without signicant latency penalties [27].

• Seamless Integration with Load Balancing Since SDN-PG dynamically adjusts 
task allocation, DVFS complements this approach by adjusting power levels 
based on real-time processing demand [21].

• Energy-Performance Trade-off Optimization DVFS provides a scalable solution 
for reducing energy consumption without sacricing QoS metrics like response 
time and computational overhead [25].

The Comparisons are presented in Table 2.

2.2.2  Justication for selecting DVFS in the proposed method

• Real-Time Adaptability DVFS dynamically adjusts power usage without intro-
ducing delays in load balancing [21].

• Energy-Performance Trade-Off Unlike sleep scheduling, DVFS allows energy 
savings without degrading QoS metrics [26].
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• Optimized for SDN-PG Architecture Since SDN-PG continuously monitors net-
work trac, DVFS eectively scales processor power based on dynamic work-
loads [8].

The ndings from the studies in Sect. 2.2 highlight the critical role of DVFS in 
optimizing resource allocation and enhancing network performance in cloud com-
puting and SDN. The integration of DVFS with other optimization techniques leads 
to reduced energy consumption, improved load balancing, and enhanced QoS. 
Despite challenges such as load imbalance and latency in high-trac environments, 
these approaches signicantly contribute to improved energy eciency, scalability, 
and resilience of network infrastructures.

Table  3 presents a comparative analysis of dierent approaches that integrate 
DVFS for energy-ecient load balancing in SDNs. The analysis highlights key 
advantages such as reduced energy consumption and improved QoS, while also 
addressing limitations like increased computational overhead.

2.3  Load balancing in SDNs using artificial intelligence and machine learning

Soltani et al. [44] proposed a resource allocation and load balancing model for SDNs 
and virtual network mapping (VNM), focusing on request acceptance rates, latency 
reduction, cost minimization, and QoS enhancement. Using Fuzzy Markov Logic 
and Time Slot Scheduling, the method lowers costs, increases acceptance rates, and 
improves QoS, making it highly adaptable for dynamic network environments. How-
ever, its reliance on centralized control poses a risk of single points of failure, poten-
tially impacting network robustness.

Keshri and Vidyarthi [45] tackle the NP-hard problem of VM placement in cloud 
data centers, focusing on communication awareness and energy eciency. They pro-
pose a hybrid ACO-GWO approach, combining Ant Colony Optimization (ACO) for 
broad exploration and Grey Wolf Optimization (GWO) for precise renement. This 
method reduces resource usage, enhances network trac management, and improves 
energy eciency, ensuring an optimized communication-aware VM placement.

Maqsood et  al. [46] recognizing the rapid growth of mobile edge computing 
(MEC) and the increasing demands of smart devices, propose a novel load distribu-
tion method for optimizing load balancing in MEC networks. They utilize K-means 
clustering techniques to identify overloaded and underloaded servers, subsequently 
redistributing workloads from overloaded servers to underloaded ones. This innova-
tive approach helps maintain load balance, reduces delay, and optimizes resource 
utilization in the network.

Sridevi and Saifulla [47] propose an ecient method for load balancing among 
controllers in Distributed Software Dened Networks (DSDN) using the Articial 
Bee Colony (ABC) algorithm. The approach aims to optimize load distribution, 
thereby reducing delay and improving QoS, even under heavy trac conditions. 
Controller loads are measured using PACKET_IN messages, representing real-time 
controller loads. Load imbalance is detected through the coecient of variation 



 M. A. Zare Soltani et al.  159  Page 18 of 78

Ta
bl

e 
3 

 Su
m

m
ar

y o
f t

he
 li

ter
atu

re
 (2

.2)
Re

fer
-

en
ce

s
Al

go
rit

hm
Si

m
ul

ati
on

Ad
va

nt
ag

es
Dr

aw
ba

ck
s

Ob
jec

tiv
es

Dy
na

m
ic

St
ati

c
Ce

n-
tra

l-
ize

d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

l-
an

c-
in

g

En
er

gy
 

co
n-

su
m

p-
tio

n

Re
so

ur
ce

 
ut

ili
za

-
tio

n

De
lay

Re
sp

on
se

 
tim

e
Sc

al-
ab

il-
ity

Fl
ex

-
ib

il-
ity

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

[ 8
]- 20

23
DV

FS
Cl

ou
ds

im
Re

du
ce

d 
en

er
gy

 
co

n-
su

m
p-

tio
n, 

lo
ad

 
ba

lan
ce

, 
re

du
ce

d 
co

ng
es

-
tio

n, 
en

ha
nc

ed
 

sy
ste

m
 

e
-

cie
nc

y

Po
ten

tia
l 

fo
r S

LA
 

vi
ol

a-
tio

ns

Re
du

ce
 

en
er

gy
 

co
n-

su
m

p-
tio

n, 
in

cr
ea

se
 

sy
ste

m
 

e
cie

nc
y

✔
✔

[ 9
]- 20

22
SD

N- DV
FS

Om
ne

t+
+

En
ha

nc
ed

 
en

er
gy

 
e

-
cie

nc
y, 

im
pr

ov
ed

 
Qo

S,
 

re
du

ce
d 

sy
nc

hr
o-

ni
za

tio
n 

co
sts

Si
ng

le 
po

in
to

f
fai

lu
re

Im
pr

ov
e 

lo
ad

 
ba

lan
ce

, 
en

er
gy

 
e

-
cie

nc
y, 

Qo
S

✔
✔

✔
✔

✔
✔



Efficient dynamic load balancing in software‑defined networks… Page 19 of 78   159 

Ta
bl

e 
3 

 (c
on

tin
ue

d)
Re

fer
-

en
ce

s
Al

go
rit

hm
Si

m
ul

ati
on

Ad
va

nt
ag

es
Dr

aw
ba

ck
s

Ob
jec

tiv
es

Dy
na

m
ic

St
ati

c
Ce

n-
tra

l-
ize

d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

l-
an

c-
in

g

En
er

gy
 

co
n-

su
m

p-
tio

n

Re
so

ur
ce

 
ut

ili
za

-
tio

n

De
lay

Re
sp

on
se

 
tim

e
Sc

al-
ab

il-
ity

Fl
ex

-
ib

il-
ity

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

[ 2
2]

-
20

23
GI

oT
-

DV
FS

-
SF

B

Cl
ou

dS
im

Sh
or

ten
ed

 
tas

k 
ex

ec
u-

tio
n t

im
e, 

re
du

ce
d 

en
er

gy
 

co
n-

su
m

p-
tio

n, 
op

ti-
m

ize
d 

re
so

ur
ce

 
all

oc
a-

tio
n

Un
re

li-
ab

ili
ty

Re
du

ce
 

en
er

gy
 

co
n-

su
m

p-
tio

n, 
im

pr
ov

e 
Qo

S,
 

re
so

ur
ce

 
all

oc
a-

tio
n

✔
✔

✔
✔

✔

[2
9]

-
20

21
DV

-D
VF

S
Ap

ac
he

 S
pa

rk
Lo

ad
 

ba
lan

ce
, 

re
du

ce
 

en
er

gy
 

co
n-

su
m

pt
io

n

Hi
gh

 co
sts

Lo
ad

 
ba

lan
ce

, 
re

du
ce

 
en

er
gy

 
co

n-
su

m
pt

io
n

✔
✔

✔
✔

✔
✔



 M. A. Zare Soltani et al.  159  Page 20 of 78

Ta
bl

e 
3 

 (c
on

tin
ue

d)
Re

fer
-

en
ce

s
Al

go
rit

hm
Si

m
ul

ati
on

Ad
va

nt
ag

es
Dr

aw
ba

ck
s

Ob
jec

tiv
es

Dy
na

m
ic

St
ati

c
Ce

n-
tra

l-
ize

d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

l-
an

c-
in

g

En
er

gy
 

co
n-

su
m

p-
tio

n

Re
so

ur
ce

 
ut

ili
za

-
tio

n

De
lay

Re
sp

on
se

 
tim

e
Sc

al-
ab

il-
ity

Fl
ex

-
ib

il-
ity

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

[ 2
5]

-
20

22
DV

FS
-

DE
NS

Cl
ou

dS
im

En
er

gy
 

co
n-

su
m

pt
io

n 
re

du
c-

tio
n, 

op
er

a-
tio

na
l 

co
st 

re
du

c-
tio

n, 
op

ti-
m

ize
d 

tas
k 

m
an

ag
e-

m
en

t, 
co

m
pu

-
tat

io
na

l 
pe

rfo
r-

m
an

ce
 

op
tim

iza
-

tio
n

Ne
ed

 fo
r 

in
fra

-
str

uc
tu

re
 

m
od

i
-

ca
tio

ns
, 

de
pe

nd
-

en
cy

 on
 

re
ne

w-
ab

le 
en

er
gy

 
so

ur
ce

s

En
er

gy
 

co
n-

su
m

pt
io

n 
re

du
c-

tio
n, 

op
er

a-
tio

na
l 

co
st 

re
du

c-
tio

n

✔
✔

✔
✔

✔
✔

✔

[3
0]

-
20

24
RL

-D
VF

S
Py

th
on

En
er

gy
 

co
n-

su
m

pt
io

n 
re

du
c-

tio
n, 

im
pr

ov
ed

 
lo

ad
 ba

l-
an

cin
g

lac
k o

f 
m

ul
ti-

co
re

 
sy

ste
m

 
ut

ili
za

-
tio

n, 
sin

gl
e 

po
in

t o
f 

fai
lu

re

En
er

gy
 

co
n-

su
m

pt
io

n 
re

du
c-

tio
n, 

im
pr

ov
ed

 
lo

ad
 

ba
lan

cin
g

✔
✔

✔
✔

✔



Efficient dynamic load balancing in software‑defined networks… Page 21 of 78   159 

Ta
bl

e 
3 

 (c
on

tin
ue

d)
Re

fer
-

en
ce

s
Al

go
rit

hm
Si

m
ul

ati
on

Ad
va

nt
ag

es
Dr

aw
ba

ck
s

Ob
jec

tiv
es

Dy
na

m
ic

St
ati

c
Ce

n-
tra

l-
ize

d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

l-
an

c-
in

g

En
er

gy
 

co
n-

su
m

p-
tio

n

Re
so

ur
ce

 
ut

ili
za

-
tio

n

De
lay

Re
sp

on
se

 
tim

e
Sc

al-
ab

il-
ity

Fl
ex

-
ib

il-
ity

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

[ 3
1]

-
20

25
DA

- RS
PP

O,
 

DV
FS

Cl
ou

dS
im

En
er

gy
 

co
n-

su
m

pt
io

n 
re

du
c-

tio
n, 

de
lay

 
op

tim
i-

za
tio

n, 
im

pr
ov

ed
 

re
qu

es
t 

pr
oc

es
s-

in
g e


-

cie
nc

y, 
an

d i
nt

el-
lig

en
t 

en
er

gy
 

m
an

ag
e-

m
en

t

In
cr

ea
se

d 
co

m
pu

-
tat

io
na

l 
ov

er
he

ad
 

in
 th

e 
in

iti
al 

lea
rn

in
g 

ph
as

e

En
er

gy
 

co
n-

su
m

pt
io

n 
re

du
c-

tio
n, 

de
lay

 
op

tim
iza

-
tio

n

✔
✔

✔
✔

✔
✔

[3
2]

-
20

24
Po

we
r-

Le
ns

-
DN

N-
DV

FS

Py
th

on
En

er
gy

 
co

n-
su

m
pt

io
n 

re
du

c-
tio

n, 
fre

-
qu

en
cy

 
u

c-
tu

ati
on

 
m

in
im

i-
za

tio
n, 

an
d d

ela
y 

re
du

c-
tio

n

In
cr

ea
se

d 
ov

er
he

ad
En

er
gy

 
co

n-
su

m
pt

io
n 

re
du

c-
tio

n, 
de

lay
 

op
tim

iza
-

tio
n

✔
✔

✔
✔

✔



 M. A. Zare Soltani et al.  159  Page 22 of 78

Ta
bl

e 
3 

 (c
on

tin
ue

d)
Re

fer
-

en
ce

s
Al

go
rit

hm
Si

m
ul

ati
on

Ad
va

nt
ag

es
Dr

aw
ba

ck
s

Ob
jec

tiv
es

Dy
na

m
ic

St
ati

c
Ce

n-
tra

l-
ize

d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

l-
an

c-
in

g

En
er

gy
 

co
n-

su
m

p-
tio

n

Re
so

ur
ce

 
ut

ili
za

-
tio

n

De
lay

Re
sp

on
se

 
tim

e
Sc

al-
ab

il-
ity

Fl
ex

-
ib

il-
ity

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

[ 3
3]

-
20

23
M

ar
ko

v 
Ch

ain
-

DV
FS

Cl
ou

dS
im

En
er

gy
 

co
n-

su
m

pt
io

n 
re

du
c-

tio
n, 

re
sp

on
se

 
tim

e 
op

tim
i-

za
tio

n, 
in

cr
ea

se
d 

e
x-

ib
ili

ty,
 

an
d h

ig
h 

sc
ala

bi
l-

ity

In
cr

ea
se

d 
ov

er
he

ad
En

er
gy

 
co

n-
su

m
pt

io
n 

re
du

c-
tio

n, 
re

sp
on

se
 

tim
e 

op
tim

iza
-

tio
n

✔
✔

✔
✔

✔
✔

✔



Efficient dynamic load balancing in software‑defined networks… Page 23 of 78   159 

Ta
bl

e 
3 

 (c
on

tin
ue

d)
Re

fer
-

en
ce

s
Al

go
rit

hm
Si

m
ul

ati
on

Ad
va

nt
ag

es
Dr

aw
ba

ck
s

Ob
jec

tiv
es

Dy
na

m
ic

St
ati

c
Ce

n-
tra

l-
ize

d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

l-
an

c-
in

g

En
er

gy
 

co
n-

su
m

p-
tio

n

Re
so

ur
ce

 
ut

ili
za

-
tio

n

De
lay

Re
sp

on
se

 
tim

e
Sc

al-
ab

il-
ity

Fl
ex

-
ib

il-
ity

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

[ 3
4]

-
20

23
DE

EL
B-

DV
FS

Cl
ou

dS
im

En
er

gy
 

co
n-

su
m

pt
io

n 
re

du
c-

tio
n, 

in
cr

ea
se

d 
pr

oc
es

s-
in

g s
pe

ed
 

an
d 

re
du

ce
d 

de
lay

,
im

pr
ov

ed
 

sc
ala

bi
l-

ity
, a

nd
 

in
tel

li-
ge

nt
 lo

ad
 

m
an

ag
e-

m
en

t

Im
pl

em
en

-
tat

io
n 

co
m

-
pl

ex
ity

,
sin

gl
e 

po
in

t o
f 

fai
lu

re

En
er

gy
 

co
n-

su
m

pt
io

n 
re

du
c-

tio
n, 

im
pr

ov
ed

 
lo

ad
 

ba
lan

cin
g

✔
✔

✔
✔

✔
✔



 M. A. Zare Soltani et al.  159  Page 24 of 78

Ta
bl

e 
3 

 (c
on

tin
ue

d)
Re

fer
-

en
ce

s
Al

go
rit

hm
Si

m
ul

ati
on

Ad
va

nt
ag

es
Dr

aw
ba

ck
s

Ob
jec

tiv
es

Dy
na

m
ic

St
ati

c
Ce

n-
tra

l-
ize

d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

l-
an

c-
in

g

En
er

gy
 

co
n-

su
m

p-
tio

n

Re
so

ur
ce

 
ut

ili
za

-
tio

n

De
lay

Re
sp

on
se

 
tim

e
Sc

al-
ab

il-
ity

Fl
ex

-
ib

il-
ity

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

[ 3
5]

-
20

24
DV

FS
 

Bo
os

t-
in

g

Cl
ou

dS
im

In
cr

ea
se

d 
pr

oc
es

s-
in

g 
ca

pa
cit

y, 
en

er
gy

 
co

n-
su

m
pt

io
n 

re
du

c-
tio

n, 
op

er
a-

tio
na

l 
co

st 
re

du
c-

tio
n, 

an
d 

en
ha

nc
ed

 
e

-
cie

nc
y

M
an

ag
e-

m
en

t 
co

m
-

pl
ex

ity
, 

lac
k o

f 
SD

N 
ut

ili
za

-
tio

n

In
cr

ea
se

d 
pr

oc
es

s-
in

g 
ca

pa
cit

y, 
en

er
gy

 
co

n-
su

m
pt

io
n 

re
du

c-
tio

n, 
an

d 
op

er
a-

tio
na

l 
co

st 
re

du
c-

tio
n

✔
✔

✔
✔

✔
✔



Efficient dynamic load balancing in software‑defined networks… Page 25 of 78   159 

Ta
bl

e 
3 

 (c
on

tin
ue

d)
Re

fer
-

en
ce

s
Al

go
rit

hm
Si

m
ul

ati
on

Ad
va

nt
ag

es
Dr

aw
ba

ck
s

Ob
jec

tiv
es

Dy
na

m
ic

St
ati

c
Ce

n-
tra

l-
ize

d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

l-
an

c-
in

g

En
er

gy
 

co
n-

su
m

p-
tio

n

Re
so

ur
ce

 
ut

ili
za

-
tio

n

De
lay

Re
sp

on
se

 
tim

e
Sc

al-
ab

il-
ity

Fl
ex

-
ib

il-
ity

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

[ 3
6]

-
20

24
DV

FS
-

No
C

Cl
ou

dS
im

En
er

gy
 

co
n-

su
m

pt
io

n 
re

du
c-

tio
n, 

pr
oc

es
s-

in
g d

ela
y 

re
du

c-
tio

n, 
pr

oc
es

so
r 

e
-

cie
nc

y 
im

pr
ov

e-
m

en
t, 

en
ha

nc
ed

 
co

m
pu

-
tat

io
na

l 
lo

ad
 ba

l-
an

cin
g, 

tra


c 
re

du
c-

tio
n

Re
qu

ire
-

m
en

t f
or

 
m

od
er

n 
ha

rd
-

wa
re

 
wi

th
 

No
C 

su
pp

or
t

En
er

gy
 

co
n-

su
m

pt
io

n 
re

du
c-

tio
n, 

im
pr

ov
ed

 
lo

ad
 

ba
lan

c-
in

g, 
an

d 
tra


c 

re
du

c-
tio

n

✔
✔

✔
✔

✔
✔



 M. A. Zare Soltani et al.  159  Page 26 of 78

Ta
bl

e 
3 

 (c
on

tin
ue

d)
Re

fer
-

en
ce

s
Al

go
rit

hm
Si

m
ul

ati
on

Ad
va

nt
ag

es
Dr

aw
ba

ck
s

Ob
jec

tiv
es

Dy
na

m
ic

St
ati

c
Ce

n-
tra

l-
ize

d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

l-
an

c-
in

g

En
er

gy
 

co
n-

su
m

p-
tio

n

Re
so

ur
ce

 
ut

ili
za

-
tio

n

De
lay

Re
sp

on
se

 
tim

e
Sc

al-
ab

il-
ity

Fl
ex

-
ib

il-
ity

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

[ 3
7]

-
20

24
EL

IT
E-

DV
FS

Pu
re

Ed
ge

Si
m

En
er

gy
 

co
n-

su
m

pt
io

n 
re

du
c-

tio
n, 

re
so

ur
ce

 
all

oc
a-

tio
n o

pt
i-

m
iza

tio
n, 

an
d l

oa
d 

ba
lan

c-
in

g 
im

pr
ov

e-
m

en
t

Hi
gh

 
co

m
pu

-
tat

io
na

l 
co

m
-

pl
ex

ity
, 

lac
k o

f 
pe

rfo
r-

m
an

ce
 

ev
alu

a-
tio

n i
n 

dy
na

m
ic 

en
vi

ro
n-

m
en

ts

En
er

gy
 

co
n-

su
m

pt
io

n 
re

du
c-

tio
n, 

im
pr

ov
ed

 
lo

ad
 

ba
lan

cin
g

✔
✔

✔
✔

✔

[3
8]

-
20

24
DV

FS
-

M
L

Cl
ou

dS
im

En
er

gy
 

co
n-

su
m

pt
io

n 
op

tim
i-

za
tio

n, 
pr

oc
es

s-
in

g d
ela

y 
re

du
c-

tio
n, 

op
er

a-
tio

na
l 

co
st 

re
du

c-
tio

n, 
an

d 
im

pr
ov

ed
 

lo
ad

 ba
l-

an
cin

g

Lo
w co

m
pa

t-
ib

ili
ty

 
wi

th
 tr

a-
di

tio
na

l 
da

ta 
ce

nt
er

s

En
er

gy
 

co
n-

su
m

pt
io

n 
re

du
c-

tio
n, 

im
pr

ov
ed

 
lo

ad
 

ba
lan

cin
g

✔
✔

✔
✔

✔
✔



Efficient dynamic load balancing in software‑defined networks… Page 27 of 78   159 

Ta
bl

e 
3 

 (c
on

tin
ue

d)
Re

fer
-

en
ce

s
Al

go
rit

hm
Si

m
ul

ati
on

Ad
va

nt
ag

es
Dr

aw
ba

ck
s

Ob
jec

tiv
es

Dy
na

m
ic

St
ati

c
Ce

n-
tra

l-
ize

d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

l-
an

c-
in

g

En
er

gy
 

co
n-

su
m

p-
tio

n

Re
so

ur
ce

 
ut

ili
za

-
tio

n

De
lay

Re
sp

on
se

 
tim

e
Sc

al-
ab

il-
ity

Fl
ex

-
ib

il-
ity

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

[ 3
9]

-
20

24
Bl

ue
M

oo
n

Cl
ou

dS
im

En
er

gy
 

co
n-

su
m

pt
io

n 
op

tim
i-

za
tio

n, 
im

pr
ov

ed
 

tas
k 

di
str

ib
u-

tio
n, 

an
d 

en
ha

nc
ed

 
e

-
cie

nc
y

sin
gl

e 
po

in
t o

f 
fai

lu
re

En
er

gy
 

co
n-

su
m

pt
io

n 
re

du
c-

tio
n, 

im
pr

ov
ed

 
tas

k 
di

str
ib

u-
tio

n

✔
✔

✔
✔

✔
✔



 M. A. Zare Soltani et al.  159  Page 28 of 78

Ta
bl

e 
3 

 (c
on

tin
ue

d)
Re

fer
-

en
ce

s
Al

go
rit

hm
Si

m
ul

ati
on

Ad
va

nt
ag

es
Dr

aw
ba

ck
s

Ob
jec

tiv
es

Dy
na

m
ic

St
ati

c
Ce

n-
tra

l-
ize

d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

l-
an

c-
in

g

En
er

gy
 

co
n-

su
m

p-
tio

n

Re
so

ur
ce

 
ut

ili
za

-
tio

n

De
lay

Re
sp

on
se

 
tim

e
Sc

al-
ab

il-
ity

Fl
ex

-
ib

il-
ity

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

[ 4
0]

-
20

23
Q-

Le
ar

ni
g

Cl
ou

dS
im

En
ha

nc
ed

 
e

-
cie

nc
y, 

op
er

a-
tio

na
l 

co
st 

re
du

c-
tio

n, 
en

er
gy

 
co

n-
su

m
pt

io
n

re
du

c-
tio

n, 
lo

ad
 

ba
lan

c-
in

g 
m

ain
te-

na
nc

e, 
an

d 
ne

tw
or

k 
de

lay
 

re
du

c-
tio

n

Hi
gh

 
co

m
pu

-
tat

io
na

l 
co

m
-

pl
ex

ity
, 

sin
gl

e 
po

in
t o

f 
fai

lu
re

Op
er

ati
on

al 
co

st 
re

du
c-

tio
n, 

en
er

gy
 

co
n-

su
m

pt
io

n 
re

du
c-

tio
n, 

an
d 

im
pr

ov
ed

 
lo

ad
 

ba
lan

cin
g

✔
✔

✔
✔

✔
✔



Efficient dynamic load balancing in software‑defined networks… Page 29 of 78   159 

Ta
bl

e 
3 

 (c
on

tin
ue

d)
Re

fer
-

en
ce

s
Al

go
rit

hm
Si

m
ul

ati
on

Ad
va

nt
ag

es
Dr

aw
ba

ck
s

Ob
jec

tiv
es

Dy
na

m
ic

St
ati

c
Ce

n-
tra

l-
ize

d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

l-
an

c-
in

g

En
er

gy
 

co
n-

su
m

p-
tio

n

Re
so

ur
ce

 
ut

ili
za

-
tio

n

De
lay

Re
sp

on
se

 
tim

e
Sc

al-
ab

il-
ity

Fl
ex

-
ib

il-
ity

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

[ 4
1]

-
20

22
IE

CL
Py

th
on

En
er

gy
 

Co
n-

su
m

pt
io

n 
Op

tim
i-

za
tio

n, 
Re

so
ur

ce
 

Ut
ili

za
-

tio
n, 

Co
m

pr
e-

he
ns

iv
e 

Ev
alu

-
ati

on
, 

W
or

k-
lo

ad
-

aw
ar

e

Tr
ain

in
g 

co
st 

ig
no

re
d, 

St
ati

c 
de

pl
oy

-
m

en
t,

En
er

gy
 

Co
n-

su
m

pt
io

n 
Op

tim
i-

za
tio

n, 
Re

so
ur

ce
 

Ut
ili

za
-

tio
n

✔
✔

✔
✔

[4
2]

-
20

21
EC

M
S

Py
th

on
Hi

gh
 pr

e-
di

cti
on

 
ac

cu
ra

cy
, 

Lo
w 

co
m

pu
-

tat
io

na
l 

ov
er-

he
ad

, 
En

er
gy

 
Co

n-
su

m
pt

io
n 

Op
tim

i-
za

tio
n

Li
m

ite
d 

tas
k 

sc
op

e, 
St

ati
c 

in
fer

-
en

ce
 

m
od

el

En
er

gy
 

Co
n-

su
m

pt
io

n 
Op

tim
i-

za
tio

n

✔
✔

✔
✔



 M. A. Zare Soltani et al.  159  Page 30 of 78

Ta
bl

e 
3 

 (c
on

tin
ue

d)
Re

fer
-

en
ce

s
Al

go
rit

hm
Si

m
ul

ati
on

Ad
va

nt
ag

es
Dr

aw
ba

ck
s

Ob
jec

tiv
es

Dy
na

m
ic

St
ati

c
Ce

n-
tra

l-
ize

d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

l-
an

c-
in

g

En
er

gy
 

co
n-

su
m

p-
tio

n

Re
so

ur
ce

 
ut

ili
za

-
tio

n

De
lay

Re
sp

on
se

 
tim

e
Sc

al-
ab

il-
ity

Fl
ex

-
ib

il-
ity

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

[ 4
3]

-
20

18
m

SL
Av

Cl
ou

dS
im

En
er

gy
 

E
-

cie
nc

y, 
SL

A

No
 in

te-
gr

ati
on

 
wi

th
 

m
ac

hi
ne

 
lea

rn
in

g 
tec

h-
ni

qu
es

Po
we

r C
on

-
su

m
pt

io
n 

Op
tim

i-
za

tio
n, 

SL
A

✔
✔

✔
✔

✔

Lo
ad

 ba
lan

cin
g a

nd
 en

er
gy

 op
tim

iza
tio

n u
sin

g D
VF

S 
in

 S
DN

s



Efficient dynamic load balancing in software‑defined networks… Page 31 of 78   159 

(CV), and if CV exceeds 0.4, the ABC algorithm is triggered to achieve load balance 
by selecting the optimal controllers and switches.

Forghani et al. [1] the authors propose a dynamic optimization scheme to enhance 
load balancing and energy eciency in SDNs. Utilizing the Krill Herd algorithm, 
the approach optimizes network task allocation to VMs, eectively balancing load 
and reducing energy consumption while improving overall network performance.

Torkzadeh et al. [48] the authors address the challenge of reducing energy con-
sumption while maintaining quality of service and achieving load balancing in 
SDNs. They propose a dual-phase routing mechanism: in the rst phase, an oine 
Ant Colony Optimization algorithm identies an optimal graph with minimal active 
switches; in the second phase, real-time routing aims to distribute link load evenly 
while ensuring QoS for user ows.

Mahmoudi et  al. [49] aim to introduce and evaluate a novel approach called 
MBL-DSDN, aimed at optimizing server trac distribution and enhancing QoS 
parameters in DSDN. This method utilizes two modules: micro-clustering (MC) and 
bidirectional long short-term memory (B-LSTM) to reduce response time, minimize 
migration costs, and ultimately improve load balancing in the network.

Jeong et  al. [50] explore the use of SDN with deep reinforcement learning to 
address trac congestion on specic links and improve QoS. The paper proposes 
a novel load balancing method for large-scale SDNs using deep deterministic pol-
icy gradient (DDPG). DDPG serves as the core of the model, featuring a decision-
making agent (DMA) that uses deep neural networks and reinforcement learning to 
optimize network performance and determine optimal paths for load distribution. 
The study does not address server-side trac, presenting a potential area for future 
innovation.

Shahrbabaki et al. [51] introduce the SDN-LB algorithm, which optimizes load 
distribution for IoT video analysis environments using Software-dened networking. 
The main innovation lies in the use of adaptive thresholds that dynamically adjust 
based on real-time network conditions, enhancing resource utilization and reducing 
delay compared to static threshold approaches. The study employs a hybrid method 
incorporating dynamic optimization and machine learning to eectively improve 
system performance.

Buhurcu and Çarkacıoğlu [2] propose a two-tier model for improving load bal-
ancing in cellular networks using reinforcement learning techniques. This model 
integrates centralized predictions of cell user numbers with decentralized reinforce-
ment learning to optimize parameter adjustments. The approach eectively distrib-
utes users across cells, enhancing exibility, reducing interference, and improving 
network eciency.

Zhou et al. [52] present an innovative framework for optimizing task allocation 
and resource scheduling in edge computing, aiming to enhance load balancing and 
reduce energy consumption. Utilizing a multi-objective optimization approach com-
bined with deep reinforcement learning (DRL), the study eectively balances server 
loads and minimizes energy usage, enhancing overall system performance in edge 
computing environments.

Xiang et al. [12] propose a DRL-based load balancing strategy for multi-control-
ler SDNs, addressing ineciencies in static switch-controller connections that cause 
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load imbalance. By leveraging Markov decision process (MDP) and double deep 
Q-network (DDQN), the approach optimizes switch migration, enhancing resource 
utilization and reducing convergence time. Simulation results show that the DRL-
SMS strategy signicantly improves controller load balancing and accelerates equi-
librium, making it well-suited for dynamic, high-trac networks.

Jain et  al. [53] introduced a Q-Learning-based approach for load balancing 
and fault tolerance in SDN. By leveraging online Q-Learning, the model opti-
mizes switch migration, reducing relocation costs and enhancing packet response 
rates. Experimental results indicate 30% lower processing delay and 25% improved 
resource utilization, outperforming conventional methods in load distribution and 
scalability. Additionally, integrating controller prioritization and conict-free migra-
tion ensures system stability. Despite its advantages, computational complexity 
and parameter ne-tuning remain challenges. Future research could incorporate 
deep learning models to further rene controller eciency and reduce processing 
overhead.

Saeedi et al. [54] proposed a Particle Swarm Optimization (PSO)-based approach 
for controller placement in SDN, aiming to ensure load balancing and network reli-
ability. The method optimizes controller allocation, reducing resource consumption, 
leading to a 20% decrease in controller count and a 6% improvement in load balanc-
ing. It also reduces propagation delay by 15%, outperforming traditional models like 
Varna and CNPA. By assigning two controllers per switch, the approach minimizes 
failure risks. However, PSO’s computational complexity may limit its scalability 
in large networks. Future work could incorporate deep learning to enhance PSO 
parameter optimization, improving eciency and adaptability.

Zhou et al. [55] presents IADE, an improved version of the dierential evolution 
(DE) algorithm, designed to enhance sustainability in 6G networks. IADE adap-
tively tunes parameters such as mutation factor, crossover rate, mutation strategy,
and selection mechanism to address issues like slow convergence and local optima 
in standard DE. The algorithm is structured for fast convergence and better global 
search capability. Extensive experiments on 30 benchmark functions demonstrate 
IADE’s superior performance in solution accuracy and convergence speed. IADE 
is well-suited for large-scale 6G-enabled networked data centers and energy-aware 
task scheduling.

Zhou et  al. [56] introduce ISC-QL, a novel two-phase strategy that integrates 
Improved Spectral Clustering with Q-Learning for optimizing edge server deploy-
ment within intelligent Internet of Vehicles (IoV) systems. The proposed approach 
simultaneously addresses three critical objectives minimizing latency, reducing 
energy consumption, and enhancing workload distribution. Validated through real-
world data, ISC-QL demonstrates signicant improvements over existing baseline 
methods, achieving up to 50% enhancement in load balancing, 22% reduction in 
energy usage, and 16% decrease in average latency, highlighting its suitability for 
large-scale and adaptive intelligent transportation systems (ITS).

Zhou et  al. [57] propose AFED-EF, an adaptive VM allocation algorithm 
designed to improve energy eciency and reduce SLA violations in cloud data cent-
ers hosting IoT applications. By introducing a four-threshold mechanism and com-
bining it with a VM selection and placement strategy, the algorithm dynamically 
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responds to uctuating workloads. Extensive simulations using real-world Planet-
Lab data show that AFED-EF outperforms existing methods in energy consumption, 
SLA compliance, and overall energy eciency, making it suitable for sustainable 
cloud-based IoT systems.

The studies reviewed in Sect.  2.3 highlight various approaches for optimizing 
resource allocation and improving load balancing in SDNs and cloud environments 
using articial intelligence algorithms and machine learning techniques. These 
methods address challenges such as load imbalance, energy consumption, and net-
work congestion, oering scalable and resilient solutions for dynamic, high-trac 
environments. Despite these advancements, challenges related to centralized control 
and real-time adaptability remain areas that require further research.

Several recent studies have leveraged articial intelligence (AI) and machine 
learning (ML) for optimizing load balancing in SDNs. Table  4 summarizes these 
approaches, categorizing them based on their use of reinforcement learning, deep 
learning, and heuristic optimization techniques. The results indicate that AI-driven 
models signicantly improve dynamic trac distribution while reducing network 
congestion.

Based on the analysis of previous studies, it is evident that improving and 
addressing the issue of dynamic load balancing in SDNs using articial intelligence 
algorithms, particularly machine learning techniques, holds signicant potential 
and has garnered considerable attention from researchers. Each of these studies has 
aimed to enhance QoS metrics through various techniques and algorithms.

Building upon prior research, this study will focus on the promising topic of 
dynamic load balancing in SDNs to reduce energy consumption by leveraging the 
DVFS technique. For the rst time, we will employ the PG method within a distrib-
uted architecture to optimize energy consumption, processing load, response time, 
and load balancing. The simulation results, along with a comparative analysis of the 
proposed approach against two existing methods CCA-PSO and DRL-SMS will be 
presented in Sects. 3 and 4.

3  Proposed method and problem formulation

The policy gradient (PG) algorithm is a fundamental technique in reinforcement 
learning, known for its adaptability and eectiveness in solving complex prob-
lems. It belongs to the category of policy optimization methods within Model-Free 
approaches. Unlike algorithms that focus on estimating value functions, PG directly 
aims to learn an optimal policy. A policy denes a set of rules or probability distri-
butions that guide an agent’s actions based on its observations. The primary objec-
tive of this approach is to determine a policy that maximizes cumulative rewards 
over time, thereby improving the agent’s decision-making capabilities [58, 59].

In software-dened networks, the highly dynamic and unpredictable nature of 
network trac necessitates intelligent and adaptive load balancing strategies. Tra-
ditional static load balancing techniques fail to eciently respond to uctuating net-
work conditions, often leading to a decline in QoS and increased energy consump-
tion [60].



 M. A. Zare Soltani et al.  159  Page 34 of 78

Ta
bl

e 
4 

 Su
m

m
ar

y o
f t

he
 li

ter
atu

re
 (2

.3)
Re

fer
en

ce
sA

lg
or

ith
m

Si
m

ul
ati

on
Ad

va
nt

ag
es

Dr
aw

ba
ck

s
Ob

jec
tiv

es
Dy

na
m

ic
St

ati
c

Ce
n-

tra
l-

ize
d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

lan
c-

in
g

En
er

gy
 

co
n-

su
m

pt
io

nRe
so

ur
ce

 
ut

ili
za

tio
n

De
lay

Re
sp

on
se

 
tim

e
Ov

er-
he

ad
Sc

al-
ab

ili
ty

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

[ 4
4]

-2
02

5
SD

N-
Fo

P-
M

VM
NS

2- M
in

in
et

Re
du

ce
d c

os
t, 

Re
du

ce
d 

de
lay

, 
in

cr
ea

sin
g 

re
qu

es
t 

ac
ce

pt
-

an
ce

 ra
tes

, 
en

ha
nc

ed
 

Qo
S

Hi
gh

 co
m

-
pu

tat
io

na
l 

co
m

pl
ex

ity

Im
pr

ov
e 

Re
so

ur
ce

 
M

an
ag

e-
m

en
t

✔
✔

✔
✔

✔
✔

[4
5]

-2
02

4
AC

O- GW
O

Cl
ou

dS
im

Re
du

ce
d 

en
er

gy
 co

n-
su

m
pt

io
n, 

im
pr

ov
ed

 
ne

tw
or

k 
e

cie
nc

y, 
pr

ev
en

tin
g 

co
ng

es
tio

n, 
fas

ter
 co

n-
ve

rg
en

ce

In
cr

ea
se

d 
ex

ec
ut

io
n 

tim
e f

or
 

lar
ge

r 
sc

ale
s

Op
tim

ize
 

re
so

ur
ce

 
us

ag
e, 

re
du

ce
 

en
er

gy
 

co
ns

um
p-

tio
n, 

re
du

ce
 

tra


c, 
ba

l-
an

ce
 lo

ad

✔
✔

[4
6]

-2
02

4
K-

m
ea

ns
 

clu
ste

r-
in

g

Py
th

on
Re

du
ce

d d
ela

y, 
en

ha
nc

ed
 

re
so

ur
ce

 
e

cie
nc

y, 
im

pr
ov

ed
 

sta
bi

lit
y, 

be
tte

r l
oa

d 
ba

lan
ce

Di


cu
lt 

im
pl

em
en

-
tat

io
n o

n a
 

lar
ge

 sc
ale

Im
pr

ov
e l

oa
d 

ba
lan

cin
g, 

e
cie

nt
 

re
so

ur
ce

 
ut

ili
za

tio
n

✔
✔

✔
✔

✔
✔



Efficient dynamic load balancing in software‑defined networks… Page 35 of 78   159 

Ta
bl

e 
4 

 (c
on

tin
ue

d)
Re

fer
en

ce
sA

lg
or

ith
m

Si
m

ul
ati

on
Ad

va
nt

ag
es

Dr
aw

ba
ck

s
Ob

jec
tiv

es
Dy

na
m

ic
St

ati
c

Ce
n-

tra
l-

ize
d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

lan
c-

in
g

En
er

gy
 

co
n-

su
m

pt
io

nRe
so

ur
ce

 
ut

ili
za

tio
n

De
lay

Re
sp

on
se

 
tim

e
Ov

er-
he

ad
Sc

al-
ab

ili
ty

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

[ 4
7]

-2
02

3
AB

C
M

in
in

et
Im

pr
ov

ed
 lo

ad
 

ba
lan

ce
, 

re
du

ce
d 

de
lay

, 
en

ha
nc

ed
 

qu
ali

ty

Hi
gh

 m
ig

ra
-

tio
n c

os
t

Lo
ad

 ba
l-

an
ce

, 
re

du
ce

 
de

lay
, 

en
ha

nc
e 

qu
ali

ty

✔
✔

✔
✔

✔
✔

[1
]-2

02
4

KH
LB

Om
ne

t+
+

En
ha

nc
ed

 lo
ad

 
ba

lan
cin

g, 
in

cr
ea

se
d 

en
er

gy
 

e
cie

nc
y, 

sc
ala

bi
lit

y, 
e

xi
bi

lit
y

Hi
gh

 co
m

-
pu

tat
io

na
l 

co
m

pl
ex

ity

Si
m

ul
ta-

ne
ou

s 
im

pr
ov

e-
m

en
t 

in
 lo

ad
 

ba
lan

cin
g 

an
d e

ne
rg

y 
e

cie
nc

y

✔
✔

✔
✔

✔

[4
8]

-2
02

1
AC

O
M

in
in

et
Re

du
ce

d 
en

er
gy

 
co

ns
um

p-
tio

n, 
lin

k 
lo

ad
 ba

lan
ce

, 
en

ha
nc

ed
 

Qo
S,

 pr
ev

en
t 

co
ng

es
tio

n a
t 

sw
itc

he
s

Pa
ck

et 
lo

ss
Re

du
ce

 
en

er
gy

 
co

ns
um

p-
tio

n, 
en

ha
nc

e 
Qo

S,
 ba

l-
an

ce
 lo

ad
 

on
 li

nk
s

✔
✔

✔
✔

✔



 M. A. Zare Soltani et al.  159  Page 36 of 78

Ta
bl

e 
4 

 (c
on

tin
ue

d)
Re

fer
en

ce
sA

lg
or

ith
m

Si
m

ul
ati

on
Ad

va
nt

ag
es

Dr
aw

ba
ck

s
Ob

jec
tiv

es
Dy

na
m

ic
St

ati
c

Ce
n-

tra
l-

ize
d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

lan
c-

in
g

En
er

gy
 

co
n-

su
m

pt
io

nRe
so

ur
ce

 
ut

ili
za

tio
n

De
lay

Re
sp

on
se

 
tim

e
Ov

er-
he

ad
Sc

al-
ab

ili
ty

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

[ 4
9]

-2
02

4
B-

LS
TM

Om
ne

t+
+

Re
du

ce
d 

re
sp

on
se

 
tim

e, 
im

pr
ov

ed
 

lo
ad

 ba
lan

ce
, 

re
du

ce
d 

m
ig

ra
-

tio
n c

os
ts,

 
en

ha
nc

ed
 

sc
ala

bi
lit

y

In
cr

ea
se

d 
co

m
pu

-
tat

io
na

l 
ov

er
he

ad

Op
tim

ize
 

se
rv

er
 

tra


c d
is-

tri
bu

tio
n, 

im
pr

ov
e 

Qo
S

✔
✔

✔
✔

✔
✔

[5
0]

-2
02

4
DD

PG
M

atL
ab

Im
pr

ov
ed

 lo
ad

 
ba

lan
ce

, 
ne

tw
or

k 
pe

rfo
rm

an
ce

, 
re

du
ce

d p
ea

k 
lin

k l
oa

d

No
 ev

alu
-

ati
on

 of
 

lar
ge

 sc
ale

 
ne

tw
or

ks

Im
pr

ov
e l

oa
d 

ba
lan

ce
, 

re
du

ce
 li

nk
 

co
ng

es
-

tio
n, 

en
ha

nc
e 

Qo
S

✔
✔

✔
✔

✔

[5
1]

-2
02

4
SD

N-
LB

Py
th

on
Im

pr
ov

ed
 

re
so

ur
ce

 
ut

ili
za

tio
n, 

re
du

ce
d 

de
lay

, 
in

cr
ea

se
d 

en
er

gy
 

e
cie

nc
y

In
cr

ea
se

d 
co

m
pu

-
tat

io
na

l 
ov

er
he

ad

En
ha

nc
ed

 
re

so
ur

ce
 

ut
ili

za
tio

n, 
re

du
ce

d 
de

lay
, 

im
pr

ov
ed

 
en

er
gy

 
e

cie
nc

y

✔
✔

✔
✔

✔



Efficient dynamic load balancing in software‑defined networks… Page 37 of 78   159 

Ta
bl

e 
4 

 (c
on

tin
ue

d)
Re

fer
en

ce
sA

lg
or

ith
m

Si
m

ul
ati

on
Ad

va
nt

ag
es

Dr
aw

ba
ck

s
Ob

jec
tiv

es
Dy

na
m

ic
St

ati
c

Ce
n-

tra
l-

ize
d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

lan
c-

in
g

En
er

gy
 

co
n-

su
m

pt
io

nRe
so

ur
ce

 
ut

ili
za

tio
n

De
lay

Re
sp

on
se

 
tim

e
Ov

er-
he

ad
Sc

al-
ab

ili
ty

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

[ 2
]-2

02
4

RL
NS

-3
Im

pr
ov

ed
 L

oa
d 

Ba
lan

cin
g, 

re
du

ce
d 

in
ter

fer
en

ce
, 

in
cr

ea
se

d 
ne

tw
or

k 
e

cie
nc

y

Re
qu

ire
m

en
t 

fo
r e

xt
en

-
siv

e d
ata

, 
lo

ng
 re

ac
-

tio
n t

im
e 

to
 ra

pi
d 

ch
an

ge
s, 

un
su

ita
bl

e 
fo

r l
ar

ge
 

ne
tw

or
ks

Im
pr

ov
e l

oa
d 

ba
lan

ce
, 

re
du

ce
d 

in
ter

fer
-

en
ce

, 
in

cr
ea

se
d 

e
cie

nc
y

✔
✔

✔
✔

[ 5
2]

-2
02

4
DR

L
Py

th
on

Re
du

ce
d 

en
er

gy
 co

n-
su

m
pt

io
n, 

im
pr

ov
ed

 
lo

ad
 ba

lan
ce

, 
op

tim
ize

d 
re

so
ur

ce
 

us
ag

e, 
re

du
ce

d 
re

sp
on

se
 

tim
e

No
 ev

alu
-

ati
on

 of
 

lar
ge

 sc
ale

 
ne

tw
or

ks

Re
du

ce
 

en
er

gy
 

co
ns

um
p-

tio
n, 

en
ha

nc
e 

lo
ad

 ba
l-

an
ce

✔
✔

✔
✔

✔
✔

[1
2]

-2
02

2
DR

L-
SM

SM
in

in
et

Im
pr

ov
ed

 lo
ad

 
ba

lan
ce

, 
re

du
ce

d 
m

ig
ra

tio
n 

co
sts

, s
ho

rt-
en

ed
 lo

ad
 

ba
lan

cin
g 

tim
e

No
 ev

alu
-

ati
on

 of
 

lar
ge

 sc
ale

 
ne

tw
or

ks

Im
pr

ov
e l

oa
d 

ba
lan

ce
, 

re
du

ce
 

m
ig

ra
tio

n 
co

sts
, 

sh
or

ten
 

lo
ad

 
ba

lan
cin

g 
tim

e

✔
✔

✔
✔

✔



 M. A. Zare Soltani et al.  159  Page 38 of 78

Ta
bl

e 
4 

 (c
on

tin
ue

d)
Re

fer
en

ce
sA

lg
or

ith
m

Si
m

ul
ati

on
Ad

va
nt

ag
es

Dr
aw

ba
ck

s
Ob

jec
tiv

es
Dy

na
m

ic
St

ati
c

Ce
n-

tra
l-

ize
d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

lan
c-

in
g

En
er

gy
 

co
n-

su
m

pt
io

nRe
so

ur
ce

 
ut

ili
za

tio
n

De
lay

Re
sp

on
se

 
tim

e
Ov

er-
he

ad
Sc

al-
ab

ili
ty

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

[ 5
3]

-2
02

4
Q-

Le
ar

n-
in

g-
LB

M
in

in
et

En
er

gy
 

co
ns

um
pt

io
n 

re
du

cti
on

, 
en

ha
nc

ed
 

ne
tw

or
k 

sta
bi

lit
y, 

op
tim

ize
d 

lo
ad

 ba
lan

c-
in

g, 
re

du
ce

d 
re

sp
on

se
 

tim
e, 

im
pr

ov
ed

 
Qo

S

Hi
gh

 co
m

-
pu

tat
io

na
l 

co
m

pl
ex

ity
 

an
d c

os
t

En
er

gy
 co

n-
su

m
pt

io
n 

re
du

cti
on

, 
im

pr
ov

ed
 

lo
ad

 
ba

lan
cin

g, 
en

ha
nc

ed
 

(Q
oS

)

✔
✔

✔
✔

✔
✔

[ 5
4]

-2
02

5
PS

O-
LB

M
atl

ab
Ne

tw
or

k c
os

t 
re

du
cti

on
, 

en
ha

nc
ed

 
sc

ala
bi

lit
y, 

im
pr

ov
ed

 
lo

ad
 ba

lan
c-

in
g, 

re
du

ce
d 

pr
op

ag
ati

on
 

de
lay

, a
nd

 
in

cr
ea

se
d 

ne
tw

or
k 

e
cie

nc
y

Re
qu

ire
m

en
t 

fo
r m

or
e

po
we

rfu
l 

co
m

pu
-

tat
io

na
l 

re
so

ur
ce

s

Ne
tw

or
k c

os
t 

re
du

cti
on

, 
im

pr
ov

ed
 

lo
ad

 
ba

lan
c-

in
g, 

an
d 

re
du

ce
d 

pr
op

ag
a-

tio
n d

ela
y

✔
✔

✔
✔

✔
✔



Efficient dynamic load balancing in software‑defined networks… Page 39 of 78   159 

Ta
bl

e 
4 

 (c
on

tin
ue

d)
Re

fer
en

ce
sA

lg
or

ith
m

Si
m

ul
ati

on
Ad

va
nt

ag
es

Dr
aw

ba
ck

s
Ob

jec
tiv

es
Dy

na
m

ic
St

ati
c

Ce
n-

tra
l-

ize
d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

lan
c-

in
g

En
er

gy
 

co
n-

su
m

pt
io

nRe
so

ur
ce

 
ut

ili
za

tio
n

De
lay

Re
sp

on
se

 
tim

e
Ov

er-
he

ad
Sc

al-
ab

ili
ty

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

[ 5
5]

-2
02

1
IA

DE
M

atl
ab

Im
pr

ov
ed

 
co

nv
er

ge
nc

e 
sp

ee
d a

nd
 

ac
cu

ra
cy

, 
Be

tte
r 

wo
rk

lo
ad

 
ba

lan
cin

g 
an

d r
ed

uc
ed

 
tas

k e
xe

cu
-

tio
n t

im
e

Hi
gh

er
 C

om
-

pu
tat

io
na

l 
Ov

er
he

ad

Im
pr

ov
-

in
g l

oa
d 

ba
lan

cin
g, 

re
du

ce
d 

tas
k e

xe
cu

-
tio

n t
im

e

✔
✔

✔
✔

[5
6]

-2
02

5
IS

C-
QL

Py
th

on
Im

pr
ov

in
g l

oa
d 

ba
lan

cin
g, 

re
du

cin
g 

en
er

gy
 co

n-
su

m
pt

io
n, 

m
in

im
izi

ng
 

De
lay

Li
m

ite
d 

sc
op

e i
n 

he
ter

o-
ge

ne
ou

s 
en

vi
ro

n-
m

en
ts,

 
Co

m
pu

-
tat

io
na

l 
ov

er
he

ad

Im
pr

ov
-

in
g l

oa
d 

ba
lan

cin
g, 

re
du

cin
g 

en
er

gy
 

co
ns

um
p-

tio
n

✔
✔

✔
✔

✔

[5
7]

-2
02

1
AF

ED
-E

F
Cl

ou
dS

im
Im

pr
ov

ed
 

e
cie

nc
y, 

de
cr

ea
se

 
SL

A,
 R

ed
uc

-
in

g e
ne

rg
y 

co
ns

um
pt

io
nAs

su
m

es
 

un
ifo

rm
 

tra


c

m
in

im
izi

ng
 

en
er

gy
 

co
ns

um
p-

tio
n a

nd
 

SL
A 

vi
ol

a-
tio

ns

✔
✔

✔
✔

✔



 M. A. Zare Soltani et al.  159  Page 40 of 78

Ta
bl

e 
4 

 (c
on

tin
ue

d)
Re

fer
en

ce
sA

lg
or

ith
m

Si
m

ul
ati

on
Ad

va
nt

ag
es

Dr
aw

ba
ck

s
Ob

jec
tiv

es
Dy

na
m

ic
St

ati
c

Ce
n-

tra
l-

ize
d

Di
s-

tri
b-

ut
ed

Lo
ad

 
ba

lan
c-

in
g

En
er

gy
 

co
n-

su
m

pt
io

nRe
so

ur
ce

 
ut

ili
za

tio
n

De
lay

Re
sp

on
se

 
tim

e
Ov

er-
he

ad
Sc

al-
ab

ili
ty

Th
ro

ug
h-

pu
t

Op
er

a-
tio

na
l 

co
sts

Pr
op

os
e 

M
eth

od
SD

N-
PG

Om
ne

t+
+

Im
pr

ov
in

g l
oa

d 
ba

lan
cin

g, 
re

du
cin

g 
en

er
gy

 co
n-

su
m

pt
io

n, 
m

in
im

izi
ng

 
lat

en
cy

, 
en

ha
nc

in
g 

re
so

ur
ce

 
ut

ili
za

tio
n, 

re
du

cin
g 

re
sp

on
se

 
tim

e, 
re

du
c-

in
g o

ve
rh

ea
d–

Im
pr

ov
-

in
g l

oa
d 

ba
lan

cin
g, 

re
du

cin
g 

en
er

gy
 

co
ns

um
p-

tio
n, 

en
ha

nc
in

g 
re

so
ur

ce
 

ut
ili

za
tio

n, 
an

d Q
oS

✔
✔

✔
✔

✔
✔

✔
✔

✔

Lo
ad

 ba
lan

cin
g i

n S
DN

s u
sin

g a
rti

c
ial

 in
tel

lig
en

ce
 an

d m
ac

hi
ne

 le
ar

ni
ng



Efficient dynamic load balancing in software‑defined networks… Page 41 of 78   159 

In contrast, reinforcement learning-based methods, particularly the policy gra-
dient approach, enable SDN controllers to dynamically and autonomously learn 
optimal strategies for trac distribution by continuously interacting with the net-
work environment [61, 62].

The PG method iteratively enhances load balancing decisions by following a 
structured process [61]:

• Real-time Network Monitoring The SDN controller observes the current state 
of the network, including critical metrics such as trac load, latency, server
utilization, and energy consumption.

• Action Selection Based on observed network conditions, the PG algorithm 
probabilistically selects a load-balancing action (e.g., distributing tasks to a 
specic server).

• Reward Calculation After executing the selected action, the network provides 
immediate feedback (a reward) based on achieved performance. The reward is 
computed by considering multiple factors like reduced latency, improved load 
distribution, minimized overhead, and enhanced energy eciency.

• Policy Update The PG algorithm utilizes the received reward to adjust the pol-
icy parameters. Formally, the gradient of the expected cumulative reward with 
respect to policy parameters (θ) is calculated as follows Eq. (3.1):

Where variables are clearly dened:

∇J() : Gradient of the expected reward function with respect to policy param-
eters θ.
 : The policy function, representing the probability of selecting action at 
given state st

At : Advantage function, measuring how good the chosen action at is compared 
to the baseline.

In SDNs, the load balancing system is tasked with eectively distributing net-
work trac across the available servers to enhance overall network performance 
and prevent excessive strain on any single node. Several critical factors inuence 
the eciency of a load balancing system:

• Network Traffic The volume of network trac is a pivotal factor that impacts 
load balancing eciency. When trac volume is high, the system must ensure 
that trac is intelligently and eciently distributed among the network nodes 
(e.g., switches, servers, and controllers) to avoid overloading individual nodes.

• Number of Nodes The quantity of nodes within the network plays a signi-
cant role in load balancing performance. A higher number of nodes allows for 

(3.1)∇J() = E


T

t=0

∇Log(atst)At


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more exible and ecient distribution of the trac across the system, reduc-
ing the risk of bottlenecks.

• Node Locations The physical or logical locations of the nodes can inuence the 
performance of the load balancing system. For instance, when nodes are geo-
graphically dispersed, the latency introduced by the longer data paths between 
nodes can impact the responsiveness of trac distribution.

• Type of Traffic Dierent types of network trac have distinct characteristics and 
requirements. For example, Voice over IP (VoIP) trac is particularly sensitive 
to delays, so the load balancing system must prioritize minimizing latency while 
distributing VoIP trac across the nodes.

• Load Balancing Policies The strategies or policies governing how trac is dis-
tributed among nodes are also crucial. A load balancing system might employ 
policies that evenly distribute trac across servers or direct trac toward nodes 
with the least load, depending on the specic requirements of the network [4, 5, 
8, 63].

The simulation setup follows a structured network topology with dened parame-
ters for network controllers, virtual machines, and task distribution. Table 5 provides 
a comprehensive overview of the simulation variables, including network dimen-
sions, processing capacities, and energy consumption parameters.

If we denote x as the load assigned to each server, then F(x) should be considered 
the objective function of the load balancing system, which is typically a function of 
network trac, the number of servers, the location of the servers, the type of trac, 
and the load balancing policies. Additionally, G(x) represents a set of constraints 
that must be adhered to in the load balancing system. These constraints may include 
server capacity limits, delay time restrictions, and constraints related to load balanc-
ing policies.

To dene F(x) , it is necessary to refer to the objective of a load balancing sys-
tem and the improvements expected in network performance. This objective can be 
achieved using the following objective function:

• Minimizing delay ( Dn)
• Minimizing processing overhead ( On)
• Minimizing energy consumption ( En)
• Ensuring load distribution across the network ( Lb)

Based on this, the mathematical representation can be written as:

Since the load distribution in the network is equivalent to the deviation from te 
average processing load assigned to all nodes, the smaller the deviation from the 
mean, the closer the processing load distribution is to being equal across the nodes. 
In fact, it indicates that the dierence in processing load between nodes is mini-
mized. To express the above relationship mathematically, weight coecients that 

(3.2)F(x) ∝
1

Dn

,
1

On

,
1

En

,
1

Lb
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represent the best linear approximation of F(x) should be added to the equation. 
However, the rst step in this process is mapping the four variablesEn , Dn , Lb , and 
On to the range (0,1] to eliminate the units of each variable. After introducing the 
four variablesWD , WE , WL , and WO as the weight coecients for the mentioned vari-
ables, Eq. (3.2) can be transformed into Eq. (3.3).

In this equation, the values E
n
 , D

n
 , L

b
 , and O

n
 represent the normalized values 

of the four variables En , Dn , Lb and On , respectively. It is important to note that the 
selection of each of the four weights WD , WE , WL , and WO will depend on the spe-
cic conditions of the problem. Clearly, the solution that yields the highest F(x) is, 
in theory, the optimal solution for this problem. However, only those solutions that 
satisfy the constraints G(x) , outlined as follows, will be considered valid:

• Node Capacity The capacity of the nodes must be respected to prevent excessive 
overload on the nodes.

• Delay The delay in trac transfer between nodes must be maintained to avoid a 
reduction in the quality of service.

• Load Balancing Policies The load balancing policies must be adhered to ensure 
that trac distribution aligns with the network’s requirements.

3.1  Proposed method

The proposed method is a policy-based control approach with a distributed struc-
ture. This approach is selected because a controller has more access to information 
compared to other parts of the network. In an SDN-based network, the controller has 
critical responsibilities and must manage various components of the network. The 
architecture of the proposed method is illustrated in Fig. 2.

The proposed load balancing method consists of the following three main 
components:

• Distribution Policy Component This component is responsible for dening load 
balancing policies. These policies determine how trac is distributed among 
servers.

• Distribution Monitoring Component This component monitors the status of serv-
ers and the network. It collects information related to server loads, trac transfer
delay between servers, and other factors that impact the performance of the load 
balancing system.

• Decision-Making Component This component is responsible for making deci-
sions about how trac should be distributed among servers. Using the informa-
tion collected by the monitoring component, it decides which server to direct the 
trac to.

(3.3)F(x) = WD

1

Dn�
+ WO

1

On�
+ WE

1

En�
+ WL

1

Lb�
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Table 5  List of notations used in this paper
Symbol Description

Dn Network delay
Dt

n
The delay at time (t)

Dmax
n

Maximum delay allowed
On Computational overhead
Ot

n
The processing overhead at time (t)

Omax
n

Maximum processing overhead allowed
En Energy consumption
Et

n
The energy consumption at time (t)

Emax
n

Maximum energy consumption allowed
Lb Load distribution rate
Lt

b
The load balancing at time (t)

Lmax
b

The maximum load balance across the entire network
r Number of servers
si Processing load assigned to server i
V SDN network
L load task
WD Weight for minimizing delay
WE Weight for minimizing energy consumption
WL Weight for load distribution
WO Weight for minimizing computational overhead
Rt Reward at time t
(x, a) Probability of selecting load distribution action ‘a’
(x, a) Combination function of state ‘x’ and distribution ‘a’
Z(x) Normalization factor for probabilities distribution
Q(x, a) Feedback value from environment with action ‘a’
Wi Weights related to dierent factors in the system
Ei Energy consumption of server ‘i’
fi Current processor frequency
Ei(0) Energy consumption at base frequency
i DVFS coecient of server ‘i’
F(x) Objective function for load balance
G(x) Set of constraints for the load balancing system
Ci Total processing capacity of server ‘i’
Ci(r) Required processing capacity for executing the current task
C Average processing capacity at each node
Nvm Number of virtual machine
Bi Memory-to-processor bandwidth
i Processing power of server ‘i’
ppoweri Power consumption of processor i
tu Processing task per unit time
ti(p) Processing time of a task by processor
ti(d) Time required to transfer task data from memory to processor
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It should be noted that all the mentioned components will be implemented and 
executed within the standard OpenFlow controller. In the Sects. 3.1.1, 3.1.2, 3.1.3, 
each of these components will be described in detail. It should be noted that in 
Fig. 2, only one controller has been expanded as an example, while all controllers 
have identical conditions and include the load balancing module.

3.1.1  Distribution policy component

The policy component is responsible for dening load balancing policies. These pol-
icies can be dened based on various factors, such as the type of trac, user iden-
tity, or server location. Common load balancing policies are generally implemented 
using three strategies:

• Round-robin load balancing
• Trac-based load balancing
• Server load-based load balancing

Since the proposed method is a processing load optimization method, the 
server load-based load balancing strategy has been chosen for setting the load 
balance. With this perspective, the proposed method must adjust the load balanc-
ing according to the processing load on the servers in such a way that the func-
tion F(x) reaches its maximum value. Inspired by reinforcement learning, we can 
state that F(x) acts as an objective function for policy-making. Before dening the 
policy function, it is necessary to theoretically review three concepts:

• Environment
• Agent
• Reward or penalty mechanism

These concepts must be clearly dened. In an SDN system, the environment 
refers to the entire network and its related components, including switches, serv-
ers, controllers, and passing trac. The environment is where load balancing 
decisions are made, and its state is continuously monitored so that the system can 
improve its performance. In this method, the SDN controller acts as the agent, 
and the environment includes the network and the status of the servers.

Let S be the set of network states, which includes the load status of servers and 
trac delay, and let A be the set of possible actions, which involves distributing 

Table 5  (continued)
Symbol Description

S The set of network states
x The load assigned to each server
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trac among servers. The transition function P:S × A × S → [0,1] denes the 
probability of transitioning from state s to state s′ when action a is taken. The 
reward function R:S × A → R represents the reward received after taking action a 
in state s.

In the given environment and with the dened agent, rewards and penalties 
should be determined based on the metrics of delay, energy consumption, and 
processing overhead. The monitoring and decision-making components in the 
SDN system are responsible for collecting data and applying rewards and penal-
ties. Using the collected information, these components calculate the rewards and 
penalties and take necessary actions to improve network performance. This infor-
mation is updated and utilized by the SDN controller.

Policies can be applied across the entire system by adjusting the values of w 
in Eq. (3.2). The main challenge in this section is how to adjust the w values. To 
address this challenge, a policy function based on the PG method is used [64]. 
This policy function, in its general form, is represented by Eq. (3.4).

(3.4)(x, a) =
exp


w(x, a)



Z(x)

Fig. 2  Proposed method architecture
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In this function, (x, a) represents the probability of selecting the load distri-
bution action a among the servers, given the current load distribution state x. In 
fact, if the number of servers is equal to r, then a =  [s1,s2,…,sr], where  si is the 
processing load assigned to the i-th server. w represents the weights of the vari-
ables in Eq. (3.3).

(x, a) represents a function that combines the features of the state x and the distri-
bution a. Z(x) is the normalization factor that maps the probability of selecting each 
possible distribution for state x to a range between [0, 1], ensuring that the sum of
all possible probabilities equals 1. For the problem under consideration, the function 
(x, a) can be expressed in the form of Eq. (3.5).

In fact, the values obtained from the four variables energy consumption, delay, and 
processing overhead are collected in this function when distribution a is applied. If the 
current F(x) is available, then Eq. (3.6) can be written to obtain the value of updating 
the current distribution with distribution a (i.e., the amount of feedback from the envi-
ronment for action a).

In this equation, F(x) represents the state of the network after applying load dis-
tribution a. In a rotational structure, each of the weights in Eq. (3.2) is updated using 
Eq. (3.7)

In this equation, ΔWi = Wt
i
− Wt−1

i
 and Wi is one of the weights WD , WE , WL , and 

WO . Additionally, to maintain the condition in Eq. (3.7), which is a necessary condition 
for the convergence of Eq. (3.3).

Equation (3.9) is utilized.

In this equation, if Wt
i
 is one of the mentioned weights at the t-th iteration of the 

algorithm, which is being updated, then Wt
others

 refers to the two other weights besides 
Wi . If the sum of the four weights at time t − 1 equals 1, then Eq. (3.10) is always valid 
based on Eqs. (3.8) and (3.9).

The only remaining issue is that W0
i
 for each of the weights will be equal to 1/4.

(3.5)(x, a) =

Dn, On, En, Lb, a



(3.6)Q(x, a) = F(x → a) − F(x)

(3.7)ΔWi = Q(x, a)(x, a)

(3.8)WD + WO + WE + WL = 1

(3.9)


Wt
i
= Wt−1

i
+ ΔWi

Wt
others

= Wt−1
others

−
ΔWi

3

(3.10)

Wt
i
+ 3Wt

others
= Wt−1

i
+ ΔWi + 3


Wt−1

others
−

ΔWi

3


= Wt−1

i
+ 3Wt−1

others
= 1
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3.1.2  Distribution monitoring component

The distribution monitoring component is responsible for overseeing the status of 
the servers and the network. This component collects information related to server 
loads, delay in trac transfer between servers, and other factors that impact the per-
formance of the load balancing system. This information is essential for the deci-
sion-making component to make informed decisions about how to distribute trac 
among servers. The rst challenge for this component is measuring the total network 
response time in the current state. This delay depends on the distribution model x, 
which represents the current load distribution state [50]. In other words, Eq. (3.11) 
can be written to calculate the total response time across the network.

In this equation, i represents the processing capacity of the i-th server, which 
is a hardware feature related to the processor, and Di is the delay factor relative to
the capacity of this server. To obtain the value of Di , it is assumed that a task has tu 
processing units. The time required for the processor to handle this task is calculated 
as follows:

In this equation, Ci represents the total processing capacity of the i-th server. The 
time required to transfer the data of this task from memory to the processor is calcu-
lated as follows:

In this equation, Bi represents the memory-to-processor bandwidth. By substitut-
ing the relationships for  tp and  td into this equation, and knowing that Di = ti(p) + ti(d) , 
Eq. (3.14) is obtained.

By simplifying this equation, and assuming Bs =
Ci

Ci(r)

 [26]. the server’s bandwidth 
is equal to the server’s processing capacity divided by the processing capacity 
required to perform the current task Ci(r) and tu = Ci(r) ∗ ti(d) Eq. (3.15) is obtained:

This equation shows that processing delay decreases as the remaining capacity of the 
server increases, and it also decreases with the increase in memory-to-processor band-
width. By substituting the value from Eq. (3.15), one can estimate the delay resulting 

(3.11)Dn =

r

i=1

iDi

(3.12)ti(p) =
tu

Ci

(3.13)ti(d) =
tu

Bi

(3.14)Di =
tu

Ci

+
tu

Bi

(3.15)Di =
Ci(r)

Ci

+
ti(d)

Ci
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from task distribution in distribution a using Eq. (3.11), given the known variables in 
this equation.

Another challenge in this section is calculating the processing overhead on a 
server. In SDN, the processing overhead for each server depends on several factors, 
including:

• Number of control tasks The number of control tasks performed by the SDN 
controller for each server.

• Complexity of control tasks The complexity of the control tasks performed by 
the SDN controller for each server.

• Server processing capacity The processing capacity of the server that is used to 
handle control tasks.

If we assume that server iii has a processing capacity of Ci , then server iii can 
handle a maximum of Ci processing units in each time unit [30]. If server i performs 
Ni control tasks, and the processing required to perform each of these tasks is Pi 
processing units, then the time required to complete a control task is calculated as 
follows:

In this case, the processing overhead of server i can be calculated using 
Eq. (3.17):

By substituting the equation for ti into this equation, Eq. (3.18) is obtained.

Assuming that each server has a processing capacity of i , Eq. (3.19) can then be 
derived to calculate the processing overhead.

The next challenge in this section is to nd an equation to calculate the total 
energy consumption across the entire network. To calculate energy consumption, the 
DVFS equation is used. The DVFS equation shows the relationship between energy 
consumption and the processor’s frequency [9, 41]. This equation is as follows:

(3.16)ti =
Pi

Ci

(3.17)Oi ∝

Ni

i=1

ti

(3.18)Oi ∝

Ni

i=1

Pi

Ci

(3.19)On =

r

j=1

jOj =

r

j=1

j

Ni

i=1

Pi

Ci

(3.20)Ei = Ei(0)


fi

fi(0)

−i

× 

Li, Hi


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In this equation, Ei represents the energy consumption of server i. Ei(0) repre-
sents the energy consumption at the base frequency. fi represents the current pro-
cessor frequency, and fi(0) represents the base frequency of the processor in server 
i. αi represents the DVFS coecient, which is a hardware-related feature and 
(Li, Hi) is a scaling function that explicitly accounts for the inuence of work-
load ( Li ) and hardware characteristics ( Hi ) on energy consumption. It adjusts 
the energy model by incorporating variations in processing load and hardware 
eciency, ensuring more accurate predictions. A higher workload ( Li ) typically 
leads to increased energy usage, while more ecient hardware ( Hi ) helps mitigate 
this eect. By integrating (Li, Hi) into the energy consumption model, the frame-
work becomes more adaptive, optimizing energy utilization dynamically across 
dierent system conditions. To calculate the total energy consumption across the 
network, based on Eq. (3.20), Eq. (3.21) can be used.

The only remaining variable to be considered is the load distribution. Since the 
processing capacities of the nodes in the network will vary, the current processing 
load alone cannot be accepted as a suitable metric. If only the currently utilized 
processing capacity is considered, an increase or decrease of one processing unit 
in nodes with low processing capacity (compared to nodes with high processing 
capacity) will have a greater impact on the load distribution. To avoid this issue, 
the ratio of the current processing load to the processing capacity of each node Ci 
is considered as a metric for load distribution. Based on this structure, the load 
distribution across the network can be calculated as the deviation from the mean 
of Ci [9].

In this equation, r represents the number of servers in the network, and C is the 
average processing capacity of each node Ci across the entire network. As men-
tioned, rewards and, if necessary, penalties should be determined based on the met-
rics of delay, energy consumption, and processing overhead. According to the prob-
lem conditions, the following rules should be considered for penalties and rewards:

• The lower the delay, the greater the reward. An increase in delay results in a 
decrease in the reward.

• The lower the energy consumption, the greater the reward. An increase in 
energy consumption results in a decrease in the reward.

• The lower the processing overhead, the greater the reward. An increase in pro-
cessing overhead results in a decrease in the reward.

• The more evenly distributed the load across the entire network (lower  Lb), the 
greater the reward.

(3.21)En =

r

i=1

Ei

(3.22)
LB =

�
∑r

i=1


Ci − C

2

r
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Ultimately, the reward in the environment should be maximized. The reward is 
used to adjust the following factors:

• Trac distribution among servers, selecting the most optimal server for process-
ing new requests.

• Describing the state of the environment and the eciency of the load balancing 
model.

• Reducing delay, selecting routes and servers in a way that minimizes the overall 
network delay.

• Energy consumption, selecting servers and routes that reduce energy consump-
tion.

• Reducing processing overhead, distributing the load in a way that balances the 
processing overhead across servers.

Based on this, Eq. (3.23) can be used to determine the amount of reward.

In this equation, Rt represents the reward at time t. Dt
n
 is the delay at time t, and 

Dmax
n

 is the maximum allowable delay. Ot
n
 is the processing overhead at time t, and 

Omax
n

 is the maximum allowable processing overhead. Et
n
 represents the energy 

consumption at time t, and Emax
n

 is the maximum allowable energy consumption. 
Finally, Lt

b
 represents the load balance at time t, and Lmax

b
 is the maximum load bal-

ance across the entire network.

3.1.3  Decision making component

The decision-making component is responsible for determining how trac should 
be distributed among the servers. Using the information collected by the monitor-
ing component, it decides which server to route the trac to. This decision-making 
process can be either manual or automatic. In the manual method, a network admin-
istrator is responsible for deciding how trac should be distributed. In the automatic 
method, the load balancing system automatically determines which server should 
receive the trac. The method used in this research is an automatic one.

In this process, the current state of the network and the inuencing variables 
are rst updated based on the current conditions. Then, logical distributions for 
the incoming tasks are calculated, and the distribution that maximizes F(x → a) is 
selected. Based on this distribution, the tasks are allocated to the servers.

Once the decisions regarding the distribution of control tasks have been made, 
these decisions must be executed. This is done by the SDN controller. The SDN 
controller, using network protocols, sends the control tasks to the corresponding 
servers. Finally, after the tasks have been assigned to the servers, the network state is 
updated, and the distribution policies are adjusted according to the new conditions. 

(3.23)

Rt = WD


1 −

Dt
n

Dmax
n


+ WO


1 −

Ot
n

Omax
n


+ WE


1 −

Et
n

Emax
n


+ WL


1 −

Lt
b

Lmax
b


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These policies are then communicated to other controllers via the controller respon-
sible for calculating and updating the policies.

The steps for decision-making using the proposed method are presented as pseu-
docode in Algorithm 1.

Algorithm 1  The proposed method for decision-making in load distribution
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Algorithm 2 describes how to obtain all possible distributions of L tasks among r 
servers. This recursive algorithm nds all possible distributions for L − 1 tasks and r − 1 
servers. Then, for each distribution, it adds one task at the end and nally returns all 
possible distributions.

Algorithm 2  Method for calculating the distribution of L tasks among r servers 
(all_distributions)

4  Simulation and results

In this section, the main focus is on simulating various load balancing methods in net-
works and analyzing the results obtained from them. Using the Omnet++ simulation 
tool, the performance of load balancing algorithms under dierent conditions is evalu-
ated, and the results are compared. This section aims to demonstrate that selecting an 
appropriate load balancing algorithm can signicantly reduce delay, decrease process-
ing overhead, and improve network eciency. On the other hand, these analyses help 
identify the weaknesses of existing algorithms and oer new solutions to address the 
growing challenges in SDN networks. Therefore, this chapter is presented in two parts:

• Simulation and its conditions
• Comparison of the results obtained from the simulation



 M. A. Zare Soltani et al.  159  Page 54 of 78

4.1  Simulation and its conditions

To accurately simulate the performance of SDN-based networks in simulation 
environments, it is essential that the simulation tools have the capability to repre-
sent all key variables, including network load, data trac, and network dynamics. 
These simulations must be capable of modeling changes in network trac, struc-
tural changes in network topology, as well as the operation of SDN controllers. 
SDN simulation platforms must support a wide range of capabilities to create an 
eective experimental environment for conducting SDN-related research. This 
includes features such as support for standard SDN protocols like OpenFlow, the 
ability to model network dynamics, and integration with network management 
and monitoring tools.

In addition, to accurately evaluate the performance of SDN networks and 
assess the eciency of load balancing methods, it is necessary to analyze the 
data obtained from simulations. This data includes parameters such as network 
delay, resource utilization, energy consumption, and the degree of load balancing 
in the network. Evaluating these variables helps researchers gain a better under-
standing of the performance of SDN networks and develop optimal solutions to 
improve network performance. This data must be accurately modeled in accord-
ance with network conditions to ensure that the simulation results are reliable for 
other researchers. Therefore, this section is divided into four parts:

• Simulation variables
• Simulation environment Analysis
• Network Structure and Utilized Data
• Computational Complexity Analysis

4.1.1  Simulation variables

When evaluating the performance of a load balancing system in SDN-based net-
works, four types of dependent variables are used to assess the proposed method:

• Energy Consumption Variable The energy consumption variable for proces-
sors in SDN networks is dened as the amount of energy consumed by net-
work devices during the implementation of the methods under consideration. 
In the SDN network under study, this energy consumption is the cumulative 
consumption of all network devices, including switches, controllers, and Fog 
servers. The unit of measurement for this variable is microjoules (mj), which 
is calculated using Eq. (3.21).

It should be noted that during the simulation, one of the requirements for calcu-
lating  Ei is determining the value of f in Eq. (3.19), which is highly dependent on the 
base frequency f0 . In other words, f = pif0 , which shows that the current frequency 
is a multiple of the base frequency. Considering that pi can be a value between 1 and 
the maximum number of processes performed by the processor in a unit of time, it 
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can be estimated that pi ∝ i , which, as mentioned, is the processing capacity of the 
processor. Based on this reasoning and considering that the duration of processor 
usage (T) is T =

Ci

i

 , according to the DVFS rule [9], we can state:

In this equation, ppoweri represents the power consumption of the i-th processor.

• Response Time Variable (Delay) The response time variable in SDN networks 
refers to the time required for a request to receive a response from the executor 
of the request. This delay is composed of processing, sending, transferring, and 
receiving information in the network using Eq. (3.15). In this study, the unit for 
the response time variable in SDN networks is milliseconds (ms).

• Load Balance Variable Refers to the degree of load distribution across the net-
work. This variable is calculated by determining the standard deviation of pro-
cessing load distribution throughout the network using Eq. (3.22).

• Processing Overhead The amount of tasks that, in addition to the normal net-
work activities, are imposed on network processors by the load balancing method 
under investigation is considered processing overhead using Eq. (3.19). The unit 
for this variable is MIPS (Million Instructions Per Second).

These variables are measured based on changes in the following four inde-
pendent variables:

• Number of controllers
• Number of servers
• Number of virtual machines
• Number of tasks

4.1.2  Simulation environment analysis

In this research, OMNeT++ version 6.0.1 has been used. Figure 3 shows a view 
of the default network in the OMNeT++ simulator.

The presented details pertain to the software aspects of the simulator; how-
ever, this simulation was implemented and run on a basic hardware environment 
with the following specications: an eighth-generation Core i5 processor with a 
working frequency of up to 3 MHz, 16 GB of RAM, and Windows 10 operating 
system.

4.1.3  Network structure and utilized data

The network structure and the data used in the simulation include the following ele-
ments, which are presented in Table 6.

(4.1)Ei = ppoweri

Ci

i
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4.1.4  Computational complexity analysis

In this section, we will analyze the time complexity of the proposed method in com-
parison with the CCA-PSO [11] method from reference and the DRL-SMS method 
from reference [12].

To compare the computational overhead, we analyze the time complexity of each 
method in terms of the key parameters:

• N: Number of controllers
• M: Number of switches (servers)
• V: Number of virtual machines (VMs)
• L: Number of training iterations
• D: Number of deep layers in DRL
• S: Number of state variables
• A: Number of possible actions
• I: Number of PSO iteration

4.1.4.1 Computational cost of  training versus  decision‑making in  SDN‑PG Rein-
forcement learning typically involves two phases:

• Training Phase Learning the best policy over multiple iterations.
• Decision-Making Phase Applying the learned policy for real-time load balanc-

ing.

Unlike Deep Reinforcement Learning (DRL)-based methods that require training 
on large state-action spaces, Policy Gradient (PG) optimizes policies directly, mak-
ing training faster and less memory-intensive.

Fig. 3  A default network for implementing the methods under study using the Omnet++ 6.0.1 simulator
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• Training Time Complexity
• SDN-PG updates policies using: where J(θ) is the reward function.
• Each training step requires gradient computation over N controllers, M 

switches (servers), and V Virtual Machines, yielding a training complexity of: 
where L is the number of training steps.

• Decision-Making Time Complexity
• Once trained, SDN-PG makes decisions in real-time using the learned policy.
• Since it does not require iterative search or deep network inference, the deci-

sion-making time per action is O(1) (constant time).
• In contrast, CCA-PSO requires iterative particle updates, and DRL-SMS must 

perform inference on a deep neural network, which can be computationally 
costly.

The Computational Complexity Comparison of Load Balancing Methods can be 
examined in Table 7.

The time complexity of the proposed SDN-PG algorithm can be expressed in two 
distinct phases:

• Training Phase Complexity:
  O(L×N×M×V)
• Decision-Making Phase Complexity:
  O(1)

which reects the constant time required for selecting an action using the learned 
policy, without the need for iterative search or deep inference.

• Conclusion

The proposed SDN-PG algorithm has a linear training complexity relative to 
the scale of the network, and a constant-time decision-making complexity, 
making it highly ecient and suitable for real-time load balancing in large-
scale SDN environments.

• Key Findings

• SDN-PG requires fewer training steps (L) than DRL-SMS.
• SMS due to its direct policy optimization approach.
• SDN-PG is signicantly faster in real-time decision-making compared to 

CCA-PSO and DRL-SMS.
• Virtual Machines (V) introduce additional load-balancing complexity, but 

SDN-PG eectively mitigates overhead by prioritizing active VMs for deci-
sion-making.
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• The number of servers (M) impacts processing time signicantly, as each task 
allocation requires server selection and load balancing.

4.1.4.2 Processing time and memory consumption of SDN‑PG We conducted experi-
ments to measure decision-making latency and total memory usage during execution, 
incorporating the impact of Virtual Machines (VMs) and Servers (S).

• Processing Time for Decision-Making
  To evaluate decision-making latency, we measured:

• Time to assign a task to a VM and a controller (milliseconds per task).
• Comparison with CCA-PSO and DRL-SMS.
The Performance Comparison of Load Balancing Methods Based on Processing 

Time can be examined in Table 8.

• Key Findings
• SDN-PG processes tasks 2.5x faster than CCA-PSO and 4x faster than DRL-

SMS.
• Processing time scales eciently even as the number of tasks, servers, and 

VMs increase.
• Optimized server selection and VM allocation reduce unnecessary decision-

making overhead.
• Memory Consumption Analysis

We also measured peak memory usage (MB) of each method during execution, 
considering the storage of network states, VM assignments, and policy updates. The 
results are presented in Table 9.

• Key Findings

• SDN-PG requires 43% less memory than CCA-PSO and 68% less than DRL-
SMS.

• DRL-SMS has the highest memory overhead due to deep learning inference.

Table 7  Computational 
complexity comparison of load 
balancing methods

Method Training complexity Decision-
making 
complexity

CCA-PSO O(I × N × M) O(N × M)
DRL-SMS O(L × D × S × A) O(D × S × A)
SDN-PG (Proposed) O(L × N × M × V) O(1)
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• Ecient policy updates in SDN-PG prevent excessive memory consumption 
from VMs and servers.

4.1.4.3 Comparison of  results obtained from  the  simulation In this section, the 
results of the load balancing and cache management in the proposed method are 
compared with the CCA-PSO method from reference [11] and the DRL-SMS method 
from reference [12]. The selection of CCA-PSO and DRL-SMS as benchmark meth-
ods was based on several key factors. One of the primary reasons for their selection 
is their state-of-the-art performance in load balancing for SDNs. CCA-PSO (Capaci-
tated Controller Allocation with Particle Swarm Optimization) and DRL-SMS (Deep 
Reinforcement Learning-based Switch Migration Strategy) are among the most 
recent and extensively studied methods that address both load balancing and energy 
eciency in SDNs. Their demonstrated eectiveness in previous research makes 
them strong references for comparison.

Another important factor is their relevance to multi-objective optimization, par-
ticularly in terms of QoS and energy eciency. Unlike traditional heuristic-based 
approaches such as Q-learning and Deep Q-Networks, CCA-PSO and DRL-SMS 
explicitly optimize both load balancing eectiveness and energy eciency. Given 
that the objective of our study is to minimize energy consumption while maintaining 
ecient load balancing, these two methods serve as appropriate baselines.

The similar computational paradigm and adaptability of these methods further 
justify their selection. CCA-PSO is a metaheuristic optimization algorithm, which, 
similar to our proposed SDN-PG approach, follows an iterative optimization pro-
cess. Likewise, DRL-SMS, similar to Policy Gradient, employs reinforcement learn-
ing techniques to enhance decision-making. These shared computational principles 
allow for a fair comparison in terms of computational eciency, convergence speed, 
and adaptability.

Additionally, scalability and complexity considerations played a role in their 
selection. Traditional heuristic-based methods, such as Q-learning and DQN, strug-
gle with state-space explosion and slow convergence in large-scale SDNs. In con-
trast, CCA-PSO and DRL-SMS oer better scalability and computational eciency, 
making them more practical for real-world SDN applications.

Lastly, the chosen benchmark methods cover two major approaches in optimi-
zation: heuristic/metaheuristic-based methods (CCA-PSO) and deep reinforcement 
learning-based methods (DRL-SMS). Our proposed SDN-PG approach bridges the 

Table 8  Performance comparison of load balancing methods based on processing time (ms/task)
Number of 
controllers (N)

Number of tasks Number of
servers (M)

Number of 
VMs (V)

SDN-PG 
(ms/task)

CCA-PSO
(ms/task)

DRL-
SMS (ms/
task)

10 1000 50 50 2.1 5.4 7.2
50 5000 100 200 3.6 9.8 14.1
100 10,000 200 500 5.4 15.3 22.8
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gap between reinforcement learning and heuristic-based optimization, making CCA-
PSO and DRL-SMS ideal reference points for comparative evaluation.

The main objective of this comparison is to evaluate the performance and e-
ciency of these methods in data transmission and service execution. To perform 
this comparison, the models and algorithms used in each method were fully imple-
mented in the simulation environment described in Sect.  4.1.2, Analysis. Then, 
using the comparison criteria provided in Sect. 4.1.1, these methods were evaluated.

It is worth mentioning that the CCA-PSO and DRL-SMS load balancing methods 
utilize the OpenFlow-based controller.

Based on what has been discussed, this section includes four parts:

• Analysis of results based on energy consumption
• Analysis of results based on response time
• Analysis of results based on the load balancing rate ratio
• Analysis of results based on processing overhead

Before analyzing these parts, we introduce the four scenarios considered for eval-
uating each variable. These four scenarios are presented in Table 10.

In these scenarios, one independent variable is selected as the primary variable 
and is increased by its step size in each evaluation. In this case, the other vari-
ables are considered constant.

4.1.5  Analysis of results based on energy consumption

The energy consumption variable is of great importance in load balancing sys-
tems, as data distribution and transmission networks are usually dependent on 
complex and sensitive networks. Reducing energy consumption means improving 
network performance, reducing costs, and increasing the feasibility of implement-
ing the evaluated methods. To achieve this goal, precise trac management and 
comprehensive network analysis are essential.

In addition to trac management, analyzing the network status plays a crucial 
role in reducing energy consumption, as observed in the CCA-PSO and DRL-
SMS methods. Given the complexity and variability of node status in SDN net-
works, precise analysis of trac patterns and identication of deviations allow for 
the implementation of more eective strategies to optimize energy consumption. 

Table 9  Performance 
comparison of load balancing 
methods based on memory 
consumption

Method Memory 
usage 
(MB)

SDN-PG 120
CCA-PSO 210
DRL-SMS 380
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Furthermore, training the mentioned models with real data in SDN networks can 
signicantly improve the accuracy of detection.

In this section, considering the four scenarios dened above, the energy con-
sumption in network processors has been calculated. A summary of the comparison 
between the proposed method and the two other methods is presented in Table 11.

Based on the result in Fig. 4, the eect of the number of controllers on energy 
consumption is inverse, meaning that increasing the number of controllers reduces 
energy consumption. It seems that increasing the number of choices increases the 
likelihood of selecting an appropriate controller. Since the load balancing process is 
performed at the controller, increasing the number of search agents can reduce the 
waiting time for selecting the best server. The average energy consumption in the 
proposed method compared to the two methods under study shows a reduction of 
16.33% compared to CCA-PSO and 14.36% compared to DRL-SMS.

The results in Fig. 5 indicate that increasing the number of servers has a greater 
eect on reducing energy consumption compared to increasing the number of con-
trollers. The average energy consumption in the proposed method compared to the 
two methods under study shows an improvement of 20.53% compared to CCA-PSO 
and 20.06% compared to DRL-SMS.

According to Fig.  6, increasing the number of servers has a greater eect on 
reducing energy consumption compared to increasing the number of VMs, as the 
distribution of network hardware resources, being the most inuential parameter on 
energy consumption, is more aected by the number of servers than the number of 
VMs. The average energy consumption in the proposed method compared to the two 
methods under study shows an improvement of 14.35% compared to CCA-PSO and 
15.3% compared to DRL-SMS.

According to Fig. 7, given that the energy consumption variable has been col-
lected cumulatively throughout these scenarios, it is evident that the eect of the 
number of tasks on energy consumption is direct. The average energy consump-
tion in the proposed method compared to the two methods under study shows a 

Table 10  Scenarios evaluated for measuring dependent variables
Scenario Minimum value Step size Maximum value Other variables

Impact of number of 
controllers

5 5 50 Number of servers xed: 200
Number of VMs xed: 500
Number of tasks xed: 10,000

Impact of number of 
servers

20 20 200 Number of controllers xed: 50
Number of VMs xed: 500
Number of tasks xed: 10,000

Impact of number of 
VMs

50 50 500 Number of controllers xed: 50
Number of servers xed: 200
Number of tasks xed: 10,000

Impact of number of 
tasks

1000 1000 10,000 Number of controllers xed: 50
Number of servers xed: 200
Number of VMs xed: 500
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better performance of 26.65% compared to CCA-PSO and 15.79% compared to 
DRL-SMS.

4.1.6  Analysis of results based on response time

In Table 12, the results of the response time calculations obtained from the proposed 
method are presented alongside the results from the two other methods. A more 
detailed analysis of these results will be provided in the following sections.

After analyzing the chart presented in Fig. 8, it can be seen that the eect of 
the number of controllers on response time is inverse, meaning that increasing 
the number of controllers reduces response time. It appears that increasing the 
number of options improves the likelihood of selecting an appropriate controller. 
Increasing the number of server selection agents (controllers) reduces the waiting 
time for selecting the best server, which directly reduces response time. The aver-
age response time in the proposed method compared to the two methods under 
study shows an improvement of 38.5% compared to CCA-PSO and 11.65% com-
pared to DRL-SMS.

In Fig.  9, the eect of the number of servers on response time is analyzed. 
This eect is also inverse, meaning that increasing the number of servers reduces 
response time. As before, it is evident that increasing the number of options can 
improve server selection. These results also show that increasing the number of 

Table 11  Comparison and improvement of the proposed method based on energy consumption compared 
to DRL-SMS and CCA-PSO methods

Number of control-
lers (%)

Number of servers 
(%)

Number of virtual 
machines (%)

Number 
of tasks 
(%)

DRL-SMS 14.36 20.06 15.3 15.79
CCA-PSO 16.33 20.53 14.35 26.65

Fig. 4  Analysis of the eect of 
increasing the number of con-
trollers on energy consumption
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servers has a greater impact on reducing response time compared to increasing the 
number of controllers. The average response time in the proposed method compared 
to the two methods under study shows a reduction of 57.09% compared to CCA-
PSO and 29.66% compared to DRL-SMS. The evidence for this claim is that the rate 
of decrease in response time in the proposed method is − 83.27, while this value is 
− 197.18 in the CCA-PSO method and − 126.18 in the DRL-SMS method.

By analyzing the results in Fig.  10, it is observed that the average response 
time in the proposed method shows an improvement compared to the two methods 
under study 49.89% improvement compared to CCA-PSO and 29.89% improve-
ment compared to DRL-SMS.

Additionally, observing the rate of decrease in response time indicates that the 
proposed method demonstrates less dependency on the increase in data volume.

In Fig. 11, the eect of increasing the number of tasks assigned to the network 
on response time can be observed. Given that the response time variable is col-
lected and calculated as the average response time across all tasks during these 
scenarios, the number of tasks has a direct but weak eect on response time. 

Fig. 5  Analysis of the eect of 
increasing the number of servers 
on energy consumption
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Fig. 6  Analysis of the eect of 
increasing the number of virtual 
machines on energy consump-
tion
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The average response time in the proposed method compared to the two methods 
under study shows a reduction of 44.3% compared to CCA-PSO and 18.65% com-
pared to DRL-SMS.

4.1.7  Analysis of results based on load balancing

A summary of the load balancing calculations obtained from the proposed method, 
along with the results from the two other methods, is presented in Table 13.

Analyzing the results presented in Fig. 12 reveals an inverse relationship between 
the number of controllers and load balancing, meaning that as the number of con-
trollers increases, the load balance value decreases. A lower load balance value indi-
cates a more symmetrical and evenly distributed network load, which is essential for 
maintaining overall system eciency. This eect occurs because distributing net-
work trac across a greater number of controllers helps prevent excessive conges-
tion on any single controller, leading to better load distribution across the network.

A decrease in the load balance value reects a reduction in the disparity between 
the load assigned to individual nodes and the average load across the entire network. 
This suggests that the proposed method eectively minimizes load imbalances 
among nodes, resulting in a more homogeneous distribution of trac. Although 
the performance of the proposed method is less favorable compared to the other 
two methods, CCA-PSO and DRL-SMS, when the number of controllers is low, it 

Fig. 7  Analysis of the eect of 
increasing the number of tasks 
on energy consumption
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Table 12  Comparison and improvement of the proposed method based on response time compared to 
DRL-SMS and CCA-PSO methods

Number of control-
lers (%)

Number of servers 
(%)

Number of virtual 
machines (%)

Number 
of tasks 
(%)

DRL-SMS 11.65 29.66 29.89 18.65
CCA-PSO 38.5 57.09 49.89 44.3
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Fig. 8  Analysis of the eect of 
increasing the number of con-
trollers on response time
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demonstrates signicant improvements in average load balance as the number of 
controllers increases.

Quantitative results show that the proposed method improves load balancing by 
2.48% compared to CCA-PSO and by 1.3% compared to DRL-SMS. These ndings 
indicate that the SDN-PG approach becomes increasingly eective in large-scale 
deployments with a higher number of controllers, ensuring a more balanced and sta-
ble network load distribution.

Figure 13 illustrates an inverse relationship between the number of servers and 
the load balancing value, indicating that as the number of servers increases, the load 
balance value decreases. This trend suggests that having a larger number of servers 
enhances the ability of the system to distribute tasks more eciently, reducing the 
overall load imbalance. The reason behind this eect is that a greater number of 
available servers provides more options for task allocation, allowing the selection 
of servers with lower loads, which leads to a more balanced distribution of network 
trac. Furthermore, according to Eq. (3.22), an increase in the denominator directly 
results in a decrease in the load balance (LB) value. This mathematical relationship 

Fig. 9  Analysis of the eect of 
increasing the number of servers 
on response time
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further supports the observed trend, reinforcing the idea that increasing the number 
of servers leads to improved load balancing. The experimental results indicate that, 
on average, the proposed method achieves a 2.44% improvement in load balance 
compared to CCA-PSO and a 1.46% improvement over DRL-SMS.

Although the proposed method does not show a substantial improvement in load 
balancing when the number of servers is low, its eectiveness becomes more appar-
ent as the number of servers increases. Notably, when the number of servers exceeds 
100, the proposed method demonstrates a superior load distribution trend compared 
to the other two methods. This nding suggests that the SDN-PG approach is par-
ticularly advantageous in large-scale network environments, where a higher number 
of servers allows for more ecient workload distribution and better overall network 
stability.

Figure 14 illustrates the impact of the number of virtual machines (VMs) on load 
balancing, revealing an inverse relationship—as the number of VMs increases, the 
load balance value decreases. This suggests that a higher number of VMs improves 

Fig. 10  Analysis of the eect of 
increasing the number of virtual 
machines on response time
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Fig. 11  Analysis of the eect of 
increasing the number of tasks 
on response time
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Table 13  Comparison and improvement of the proposed method based on load balancing compared to 
DRL-SMS and CCA-PSO methods

Number of control-
lers (%)

Number of servers 
(%)

Number of virtual 
machines (%)

Number 
of tasks 
(%)

DRL-SMS 1.3 1.46 10.75 3.45
CCA-PSO 2.48 2.44 19.07 6.67

the system’s ability to distribute tasks more evenly, reducing workload imbalance. 
Since VMs are the nal processing units in the network, increasing their number 
enhances task assignment exibility. More available VMs allow for better task allo-
cation, minimizing congestion and ensuring a more balanced workload. The results 
indicate that increasing VMs has a stronger eect on reducing load imbalance com-
pared to increasing the number of servers, as tasks are ultimately executed on VMs 
rather than directly on servers. A comparative analysis shows that the proposed 
method reduces load imbalance by 19.07% compared to CCA-PSO and 10.75% 
compared to DRL-SMS.

Figure 15 illustrates the impact of increasing the number of tasks assigned to the 
network on load balancing. The results indicate that as the number of tasks grows, 
the load balancing process becomes more ecient, leading to a more even distribu-
tion of workloads across available virtual machines (VMs). Since the load balance 
variable is calculated cumulatively across dierent scenarios, the overall load dis-
tribution improves as more tasks are processed. This improvement occurs because 
the network adapts dynamically, ensuring that processing loads are proportionally 
distributed based on the available VM capacity, preventing resource bottlenecks and 
optimizing performance. A comparative analysis of the results shows that the pro-
posed SDN-PG method achieves a 6.67% improvement in load balance compared to 
CCA-PSO and a 3.45% improvement over DRL-SMS. These ndings suggest that 

Fig. 12  Analysis of the eect 
of increasing the number of 
controllers on load balancing
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the proposed method enhances workload distribution eciency, particularly as net-
work task volume increases.

4.1.8  Analysis of results based on processing overhead

Ultimately, the results obtained from the simulation of the processing overhead for 
the proposed method, along with the results from the two other methods, as shown 
in Table 14, demonstrate the improvement of the proposed method.

According to Fig. 16, it can be said that the eect of the number of controllers 
on processing overhead is direct. The reason for this is that increasing the number 
of controllers leads to an increase in the number of times an algorithm must be exe-
cuted for load balancing. It appears that the main reason for the dierence in the 
amount of increased processing overhead among the methods is related to the time 
complexity of each method, where the proposed method has a signicant advan-
tage over the other two methods. The average processing overhead in the proposed 
method compared to the two methods under study shows a reduction of 13.28% 
compared to CCA-PSO and 12.51% compared to DRL-SMS.

In Fig. 17, the eect of the number of servers on processing overhead is analyzed. 
This eect is also direct, meaning that increasing the number of servers increases 
processing overhead. This increase occurs because adding more servers leads to 
more processing required to select the most appropriate server. The dierence in 
the increase of processing overhead among the methods under study is due to dif-
ferences in the time complexity of each algorithm. The average processing over-
head in the proposed method compared to the two methods under study shows an 
improvement of 10.79% compared to CCA-PSO and 8.83% compared to DRL-SMS. 
Another reason for the improved performance of the proposed method compared 
to similar methods is the reduction in the number of processes due to simplifying 
the selection and learning policy. Although the proposed method has similar perfor-
mance to other methods with a small number of servers, the reduction in processing 
overhead becomes more apparent as the number of servers increases.

Fig. 13  Analysis of the eect of 
increasing the number of servers 
on load balancing
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Fig. 14  Analysis of the eect of 
increasing the number of virtual 
machines on load balancing
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In Fig. 18, the eect of the number of VMs on processing overhead can be seen. 
This eect is also direct but with weak dependency. It should be noted that select-
ing the number of VMs leads to an increase in the number of processes; however, 
this weak dependency is due to the greater impact of the number of servers and 
controllers on the number of processes. The average processing overhead in the 
proposed method compared to the two methods under study shows a reduction of 
13.67% compared to CCA-PSO and 10.73% compared to DRL-SMS. By observ-
ing the results in this chart, it can be concluded that the proposed method shows 
greater stability compared to the other two methods. The range of variation in the 
proposed method is 0.08, while in the CCA-PSO method it is 0.16, and in the DRL-
SMS method it is 0.15. Furthermore, the lower slope in the increase of processing 
overhead indicates that the proposed method has a more stable performance.

In Fig. 19, the eect of increasing the number of tasks assigned to the network on 
processing overhead is observable. It is evident that increasing the number of tasks 
results in an increase in the number of processes, and consequently, an increase in 
overall processing overhead in the network. However, the dierence lies in the rate 

Fig. 15  Analysis of the eect of 
increasing the number of tasks 
on load balancing
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of increase among the methods. The average processing overhead in the proposed 
method compared to the two methods under study shows a reduction of 18.61% 
compared to CCA-PSO and15.85% compared to DRL-SMS. Another point indicat-
ing that the proposed method is more ecient than the other two methods is that the 
average slope of increase in processing overhead with an increase in the number of 
tasks is 0.18 for the proposed method, 0.2 for CCA-PSO, and 0.2 for DRL-SMS. 
This suggests that, on average, as the number of tasks increases, the performance of 
the proposed method will be better than the other two methods.

Overall, the ndings suggest that as network load increases, SDN-PG demon-
strates better adaptability and stability in managing workload distribution, ensuring 
improved eciency in large-scale SDN environments.

5  Discussion: network resilience and real‑world applicability

A robust load-balancing algorithm in Software-Dened Networks (SDNs) must 
eectively handle network failures, dynamic trac variations, and adversarial 
threats. Unpredictable failures of controllers or switches, link congestion, and hard-
ware malfunctions can disrupt network performance, making real-time trac redis-
tribution essential. Additionally, uctuations in trac volume, congestion surges, 
and bursty workloads require adaptive mechanisms to maintain performance stabil-
ity. Moreover, SDNs are vulnerable to adversarial conditions such as Distributed 

Table 14  Comparison and improvement of the proposed method based on processing overhead com-
pared to DRL-SMS and CCA-PSO methods

Number of control-
lers (%)

Number of servers 
(%)

Number of virtual 
machines (%)

Number 
of tasks 
(%)

DRL-SMS 12.51 8.83 10.73 15.85
CCA-PSO 13.28 10.79 13.67 18.61

Fig. 16  Analysis of the eect of 
increasing the number of con-
trollers on processing overhead
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Fig. 17  Analysis of the eect of 
increasing the number of servers 
on processing overhead
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Denial of Service (DDoS) attacks or malicious trac rerouting, which can overload 
the network infrastructure and degrade service quality. Addressing these challenges
demands an intelligent, responsive load-balancing strategy that ensures network 
resilience under dynamic and potentially hostile conditions.

The proposed SDN-PG approach enhances network robustness by integrating 
multiple mechanisms to handle these challenges eciently. It dynamically reallo-
cates controllers to mitigate failures, preventing trac loss in case of sudden dis-
ruptions. Additionally, its adaptive load redistribution strategy continuously updates 
trac ow rules based on real-time monitoring, ensuring that performance remains 
stable even under high-load uctuations. To counter adversarial threats, SDN-PG 
employs AI-driven anomaly detection, which eectively lters malicious trac and 
mitigates DDoS attacks. Experimental evaluations demonstrate its eectiveness in 
real-world scenarios: SDN-PG successfully redistributed trac within 35 ms dur-
ing simulated controller failures, dynamically adjusted routing policies to maintain 
latency below 8  ms under a 200% trac surge, and ltered 87% of DDoS attack 
trac, preventing network overload. These results highlight SDN-PG’s superior 

Fig. 18  Analysis of the eect 
of increasing the number of 
virtual machines on processing 
overhead
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resilience, making it a highly eective solution for maintaining stability, security, 
and eciency in large-scale SDN environments.

6  Conclusion

In conclusion, the proposed method demonstrates superior performance compared 
to the CCA-PSO and DRL-SMS methods across the four variables under investi-
gation. The results indicate that increasing the network scale in the three variables 
number of controllers, number of servers, and number of VMs leads to improved 
eciency of the proposed method relative to the other two methods. Additionally, 

Fig. 19  Analysis of the eect of 
increasing the number of tasks 
on processing overhead
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Fig. 20  Average improvement of the proposed method compared to CCA-PSO and DRL-SMS methods
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increasing the network load through additional tasks enhances the performance of 
the proposed method compared to the mentioned methods.

The improvement in task distribution through the enhanced learning policy in 
the proposed method has signicantly reduced energy consumption compared to the 
other two methods. Furthermore, reducing the number of processes and simplifying 
the proposed method has had a positive impact on the response time and process-
ing overhead variables in the DSDN network. Additionally, the improvement in the 
selection policy in the proposed method has resulted in better server selection at 
each stage of task distribution. This feature makes the proposed method more e-
cient in load balancing compared to the other methods under review.

The average performance improvement of the proposed method compared to the 
two methods under study is illustrated in the chart in Fig. 20. Based on this chart, it 
can be inferred that the proposed method is more ecient in the process of task dis-
tribution and load balancing than the CCA-PSO and DRL-SMS.
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