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A B S T R A C T

This paper introduces three distinct models, stochastic, robust, and min-max regret models, for designing the 
biofuel supply chain network under conditions of biomass price uncertainty and disruptions that reduce the 
quantity of biofuel. The primary objective of this study, through the development of these models, is to offer a 
flexible framework that can be effectively adapted to various problem scenarios. These models are proposed to 
meet the specific needs of decision-makers while addressing different risks inherent in the problem. In contrast to 
previous related studies, this paper introduces a more realistic problem by considering the dependency of 
biomass prices on biomass availability, which is influenced by disruptions. An efficient algorithm incorporating 
the benders decomposition algorithm enhanced with acceleration technique is developed to alleviate the 
computational burden and reduce problem-solving time. Comprehensive experiments are conducted utilizing 
Iran’s real case study to examine the concurrent influence of uncertainty and disruption on the biofuel supply 
chain network and assess the performance of the introduced models and algorithms. The results obtained from 
solving various test problems demonstrate that each model generates a unique structure for the biofuel supply 
chain network, with each structure being optimized to meet the specific conditions and requirements of the 
decision-makers. Furthermore, the findings underscore the effectiveness and computational efficiency of the 
proposed algorithm in addressing the problem at hand.

1. Introduction

The uncontrolled emission of greenhouse gases accelerates global 
warming, resulting in catastrophic environmental and human impacts 
(Sy et al., 2018). Extensive research and practical observations 
(Aboytes-Ojeda et al., 2022; Kazakçi et al., 2007; Sy et al., 2018) have 
demonstrated that substituting fossil fuels with biofuels can effectively 
reduce greenhouse gas emissions and control the impacts of global 
warming. Biofuels, obtained from organic sources such as crops, agri
cultural waste, and algae, are environmentally friendly substitutes for 
fossil fuels. Biofuels possess advantages such as worldwide availability, 
acceptable conversion efficiency, and CO2-neutral production and 
consumption (Zailan et al., 2021). The production and distribution of 
biofuels require an efficient and resilient biofuel supply chain (BSC) 
network. The BSC encompasses various components, including biomass 
suppliers, biofuel refineries, biomass and biofuel storage facilities, and 
customers. BSC network design problem involves making decisions on 
the location and capacity of production and storage facilities, selecting 

suppliers, and allocating resources and customers (Fattahi and Govin
dan, 2018).

Biofuels can be used in the transportation sector, power generation, 
and other applications as vehicle fuel or incorporated as supplements to 
conventional petroleum-based fuels. Over the recent decades, many 
countries have been trying to expand their biofuel production facilities. 
Additionally, liquid biofuel production has increased significantly, with 
a 53 % rise observed during this period. The USA, Brazil, Indonesia, 
China, and Germany are the five leading countries in the production of 
biofuels. Additionally, at the same time, there has been a notable 67 % 
increase in global biofuel consumption. The USA and Brazil have 
emerged as prominent leaders in this domain, with 38 % and 23 % 
significant market shares, respectively, in overall biofuel consumption 
(Torroba and Productivo, 2020). Thailand, Germany, France, Japan, 
Iran, Argentina, and Colombia are among the countries actively pursu
ing the expansion of both the production and consumption of biofuels. 
This transition from fossil fuels to biofuels necessitates the development 
of integrated BSC networks.
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This paper considers the BSC framework with a four-echelon struc
ture, including biomass suppliers, biorefineries, biofuel storage facil
ities, and customers. Designing an efficient BSC network involves 
strategic decisions regarding determining the optimal number and 
location of biorefineries and storage facilities. Additionally, tactical 
decisions encompass allocation decisions and the identification of 
optimal routes for biomass and biofuel flow among the different facil
ities. In planning time horizon, problem parameters may deviate from 
the intended plan. For instance, disruptions such as floods, storms, pests, 
and frosts can significantly decrease biomass yield. Furthermore, the 
parameters of the problem fluctuate due to factors such as changes in 
economic and political conditions, as well as the instability in global fuel 
prices. Consequently, modeling and planning based on deterministic 
conditions can result in infeasible and costly solutions. Therefore, it is 
crucial to consider uncertainty and potential disruptions during the 
planning phase (Fattahi and Govindan, 2018).

The success of a BSC largely depends on its efficiency and resilience, 
both of which are significantly influenced by uncertainties and disrup
tions. These factors must be carefully considered during the design of the 
biomass supply chain. Fluctuations in parameters such as biomass yield, 
biomass price, customer demand, and biofuel price are categorized as 
operational risks or uncertainties. These operational risks, characterized 
by their high probability but low impact, can typically be mitigated 
through short-term decision-making strategies (Snoeck et al., 2019). In 
contrast, disruptions represent a distinct category of supply chain risks. 
These are low-probability but high-impact events whose effects cannot 
be effectively managed in the short term and require comprehensive 
medium- and long-term planning. Such disruptions include natural di
sasters, such as floods, earthquakes, storms, and severe climate changes, 
as well as human-induced events, such as fires and wars. These disrup
tions can result in the partial or complete shutdown of the supply chain, 
emphasizing the need for robust strategies to enhance the resilience of 
BSCs against such risk (Li et al., 2021). This paper presents a compre
hensive BSC network design, addressing uncertainty and disruption. 
Specifically, it is assumed that disruptions affect biomass yield, which in 
turn influences the purchasing costs of biomass.

Stochastic programming and robust models are common approaches 
to designing an efficient and resilient BSC network under uncertainty 
and disruption. Stochastic programming is a risk-neutral modeling 
approach that accounts for the probabilistic nature of problem param
eters, optimizing supply chain performance under uncertainty. This 
method effectively manages uncertain parameters and provides valuable 
insights into the supply chain’s performance across different scenarios 
(Snoeck et al., 2019). In contrast, robust models adopt a risk-averse 
perspective and utilize diverse criteria to model problems (Bertsimas 
and Sim, 2004). A key advantage of some robust models is their ability to 
address uncertainties without relying on precise probability distribution 
functions for the uncertain parameters (Mulvey et al., 1995). This flex
ibility makes them particularly well-suited for situations where such 
distributions are unavailable (Ben-Tal et al., 2005). It allows 
decision-makers to design supply chains that maintain resilience and 
efficiency despite a broad range of potential uncertainties and disrup
tions (Ben-Tal et al., 2005; Zhao et al., 2021). Each modeling approach 
can lead to a different structural design for the BSC network. Therefore, 
selecting an appropriate mathematical model for designing the BSC 
network requires careful consideration of the problem’s conditions and 
the decision-makers’ objectives. This paper proposes three distinct 
mathematical models to address a broader range of BSC network design 
problems.

The first model, which belongs to the category of stochastic pro
gramming, assumes the availability of sufficient data and aims to 
minimize the expected costs of the BSC. The second model utilizes robust 
modeling techniques, assuming that historical data is available to pre
dict the probability distribution of parameters. Its objective is to mini
mize the target threshold cost of the BSC while considering a specific 
confidence level. The third model, also categorized as a robust approach, 

assumes that sufficient historical data to predict the probability distri
bution of parameters under disruption is unavailable. Its objective is to 
minimize the maximum regret, making it suitable for scenarios with 
severe disruption. These three models collectively offer a comprehensive 
framework for designing BSC under varying conditions and levels of 
uncertainty. In the following sections, these three models are referred to 
as the stochastic, robust, and min-max regret models, respectively.

In most papers of literature on BSC network design problems that 
consider multiple uncertain parameters (Ahmadvand and Sowlati, 2022; 
Alizadeh et al., 2019; Kumar et al., 2022; Samani and Hosseini-Motlagh, 
2021; Zarei et al., 2022) or concurrent uncertainty and disruption 
(Fattahi and Govindan, 2018; Habib et al., 2022; Mousavi Ahranjani 
et al., 2020; Salehi et al., 2022), it is commonly assumed that these 
uncertain parameters are statistically independent. In other words, this 
assumption asserts that the fluctuation of one parameter does not affect 
the realization of other uncertain parameters. This assumption is made 
to simplify the problem-solving process and accommodate various 
technical considerations. In contrast to prior studies, this research has 
not considered the assumption of independency among uncertain pa
rameters. This deviation stems from the recognition that, in practice, the 
quantity of available biomass directly influences its price (Bang et al., 
2013). Therefore, the average biomass price in this paper depends on its 
yield. Furthermore, it is assumed that the biomass price can vary around 
this average value due to factors such as economic conditions, which is a 
more realistic assumption. Thus, in the proposed models, the price of 
biomass is not deterministic after the disruption scenario realization, 
and it can fluctuate according to its probability distribution.

The main contributions of this study from a modeling perspective are 
as follows: (1) the integration of uncertainty and disruption into BSC 
network design problems simultaneously, (2) the development of a 
stochastic model for the BSC network design problem, (3) the formula
tion of a robust model with the confidence level, (4) the introduction of 
the min-max regret model, (5) the assumption of dependency between 
uncertain parameters, and (6) the consideration of fluctuations in 
biomass prices around their mean values after the realization of 
disruption scenarios. From a methodological perspective, an exact al
gorithm is developed based on the benders decomposition algorithm 
with an acceleration technique to address the challenges posed by large- 
scale instances of the problem.

The remainder of this article is organized as follows. Section 2 pro
vides a review of the relevant literature. Section 3 outlines the problem 
statement. Sections 4 and 5 describe the mathematical formulation of 
the proposed model and the solution methodology, respectively. Section 
6 presents the case study along with the results of the computational 
experiments. Section 7 offers managerial insights derived from the 
analysis, emphasizing the practical relevance of the findings for 
decision-makers. Finally, Section 8 concludes the paper by summarizing 
the main contributions and proposing directions for future research.

2. Literature Review

In this section, the relevant literature on the modeling of BSC net
works is reviewed. The literature review has revealed that various 
mathematical models have been developed for the BSC network, varying 
in complexity, analysis scope, and level of detail. While some models 
focus on specific aspects of the supply chain, such as transportation or 
inventory management, others provide a more comprehensive analysis 
of the entire BSC network.

2.1. Mathematical modeling

Over the past decade, mathematical modeling has played a critical 
role in optimizing BSCs, progressively evolving from conventional 
network design problems toward integrated, flexible, and uncertainty- 
resilient frameworks. One of the earliest integrated models was pro
posed by Ekşioğlu et al. (2009), who formulated a comprehensive 
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mixed-integer linear programming (MILP) model for the design of BSC 
networks. Their work simultaneously optimized facility location, sizing, 
transportation flows, and inventory management, providing a founda
tion for subsequent advancements in holistic supply chain design.

Building on this, Paulo et al. (2013) developed an integrated MILP 
model for biorefinery supply chain design, incorporating multiple 
biomass types, storage and pre-processing options, transportation al
ternatives, various processing technologies, and multiple end-product 
markets. In subsequent work, Paulo et al. (2015) tailored the 
approach to optimize the supply chain for residual forestry biomass for 
bioelectricity production in Portugal. Their MILP model simultaneously 
determined facility locations, production capacities, biomass sourcing 
strategies, and transportation routes, aiming to minimize total supply 
chain costs. Recognizing the importance of uncertainty in biomass 
supply chains, Paulo et al. (2017) introduced a two-stage stochastic 
MILP model to design integrated BSCs under uncertain biomass avail
ability and technological performance. Scenario reduction techniques 
were employed to manage computational complexity while maintaining 
solution robustness.

In parallel, efforts to incorporate sustainability and multi-objective 
decision-making gained momentum. Petridis et al. (2018) developed a 
weighted goal programming MILP framework to balance environmental, 
economic, and social criteria in BSCs. Similarly, Wheeler et al. (2018)
combined multi-objective optimization with multi-attribute decision-
making methods to facilitate the selection of supply chain configurations 
aligned with diverse stakeholder preferences. Subsequent advancements 
focused on enhancing flexibility and adaptability. Allman et al. (2021)
proposed an optimization model employing mobile and modular pro
cessing units to address spatial and volume uncertainties. Aranguren and 
Castillo-Villar (2022) introduced a bi-objective two-stage stochastic 
model for biomass co-firing supply chains, using particle swarm opti
mization and simulated annealing to explore trade-offs between cost 
minimization and emission reduction.

Addressing uncertainty, Cao et al. (2021) proposed a tabu 
search-based heuristic for solving the location-routing problem in BSCs. 
Recently, Lima et al. (2023) presented a scenario-based MILP model to 
design the sugar-bioethanol supply chain, maximizing the expected net 
present value under demand uncertainty. Additionally, Paulo et al. 
(2023) developed an integrated optimization and discrete-event simu
lation framework for designing biomass supply chains, focusing on 
technological learning and the uncertainties associated with biorefinery 
technologies.

Overall, the evolution of mathematical modeling in BSC design re
flects a shift from deterministic, cost-focused strategies to integrated, 
sustainable, and resilient approaches that effectively manage the 
inherent challenges in biomass-based industries. Extending this trend, 
recent studies have increasingly incorporated risk management concepts 
into BSC modeling, resulting in a range of MILP and mixed-integer non- 
linear programming models discussed in the following sections.

2.2. Uncertainty and disruption modeling approaches

Uncertainty and disruption pose a significant challenge in the long- 
term decision-making process of the BSC network design problem and 
can lead to adverse effects on its performance. Compared to conven
tional fuels, biofuels face a higher level of uncertainty in future biomass 
supply. Furthermore, the BSC is plagued by other significant un
certainties, including transportation, production, and operational un
certainties, as well as uncertainty in biofuel demand. The supply and 
price of biomass are uncertain because their production yields are sub
ject to weather disruption, insect populations, plant disease, and farmer 
planting decisions for the upcoming season (Marufuzzaman et al., 
2014). To effectively address these challenges, researchers have 
employed several methodological approaches. Among them, stochastic 
programming and robust optimization have emerged as the two prin
cipal and most widely applied methods (Ghaderi et al., 2016; Habibi 

et al., 2023). Stochastic programming adopts a risk-neutral perspective 
by incorporating probabilistic information of uncertain parameters to 
optimize expected outcomes. In contrast, robust models take a 
risk-averse approach, offering solutions that remain effective across a 
range of uncertain scenarios without requiring precise probability dis
tributions (Fattahi and Govindan, 2018).

Several notable studies have utilized stochastic approaches in 
modeling BSC networks, including the works of Cundiff et al. (1997), 
Dal-Mas et al. (2011), Kim et al. (2011),Chen and Fan (2012), Gonela 
et al. (2015), and Paulo et al. (2017).In contrast, other researchers, such 
Tay et al. (2013), Pishvaee et al. (2012), Shabani and Sowlati (2016), 
and Bairamzadeh et al. (2016) have extended BSC network formulations 
by incorporating robust optimization techniques to address uncertainty 
from a risk-averse perspective.

2.2.1. Stochastic programing approaches
To effectively address uncertainties in biomass supply and demand, 

researchers have proposed various stochastic optimization models. 
Cundiff et al. (1997) addressed the impact of varying weather scenarios 
on biomass quality and production by reformulating their model into a 
two-stage stochastic framework. This allowed them to explicitly incor
porate uncertainties in biomass supply. Similarly, Dal-Mas et al. (2011)
developed a MILP model aimed at helping decision-makers and in
vestors evaluate BSC investment opportunities under uncertainty in 
production costs and market prices. Their stochastic formulation 
incorporated financial performance metrics such as expected net present 
value and conditional value at risk (CVaR) to capture risk more 
effectively.

Kim et al. (2011) proposed a two-stage stochastic model for 
designing a BSC network that accounts for uncertainties in biomass 
supply, demand, prices, and processing technologies. They treated the 
selection of biorefinery locations and capacities as first-stage decisions, 
while operational flows were determined in the second stage across 
multiple scenarios. In a related effort, Gonela et al. (2015) designed a 
hybrid-generation bioethanol supply chain that considered sustainabil
ity dimensions (i.e., economic, environmental, and social aspect) under 
uncertainty, using a stochastic MILP approach.

Addressing disruption risks, Poudel et al. (2016) developed a 
pre-disaster planning model aimed at mitigating failures in trans
portation infrastructure caused by natural events. Their strategy focused 
on cost-effective fortification within budget constraints. Maheshwari 
et al. (2017) also tackled disruption risks, developing a stochastic model 
to minimize expected costs while accounting for biomass availability 
fluctuations due to extreme weather events like floods and droughts. 
Ghelichi et al. (2018) designed a green biodiesel supply chain based on 
Jatropha Curcas, applying a min-max regret approach within a sto
chastic MILP framework to handle uncertainty in demand and crop 
yield.

Fattahi and Govindan (2018) took a comprehensive approach to 
simultaneously address uncertainty and disruption by modeling vari
ability in biomass yield and facility capacity within a multi-stage sto
chastic framework. Saghaei et al. (2020) introduced a two-stage 
stochastic mixed-integer non-linear programming model for BSC plan
ning under uncertain climate conditions and market demand. They 
incorporated a chance constraint to ensure demand satisfaction with 95 
% probability, thereby strengthening supply chain resilience. Similarly, 
Sarkar et al. (2021) focused on disruptions in transportation infra
structure, using a flexible multi-modal transport model and a two-stage 
stochastic approach with CVaR as the risk measure. Their work high
lighted the value of proactive measures such as contract flexibility, 
infrastructure fortification, alternative routing, and emergency in
ventory positioning.

Khezerlou et al. (2021) developed a model to design a resilient BSC 
network considering facility and transportation disruptions. They 
applied absolute semi-deviation and CVaR to enhance solution resil
ience. Aranguren and Castillo-Villar (2022) addressed uncertainty in 
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biomass yield through a multi-objective two-stage stochastic model 
designed for large-scale BSC planning. Their model aimed to minimize 
investment costs and environmental impact, treating storage location 
decisions as first-stage variables. Several other studies, including Chen 
et al. (2012) and Memişoğlu et al. (2021), have also employed stochastic 
programming methods to account for uncertainty in various aspects of 
biofuel industry planning.

2.2.2. Robust optimization approach
The robust optimization approach is another widely applied math

ematical modeling technique for managing parametric uncertainty in 
BSCs. Tay et al. (2013) proposed a mixed-integer non-linear program
ming model that incorporates long-term uncertainties, such as biomass 
supply and biofuel demand, into the design phase using scenario-based 
robust optimization techniques. To address multi-objective problems 
involving uncertain parameters in the objective function, Bairamzadeh 
et al. (2016) developed a bi-objective robust possibilistic programming 
approach. Their MILP model optimized a lignocellulosic BSC under 
uncertainty in biomass market price, biofuel price and demand, and 
environmental impact coefficients. Zhang et al. (2017) proposed a 
robust MILP model to design a BSC network at strategic and tactical 
levels under biodiesel price uncertainty. Their model, based on interval 
uncertainty, incorporated economic, environmental, and social 
objectives.

Razm et al. (2021) proposed a two-phase sequential method for BSC 
network design under uncertainty. The first phase employed 
multi-criteria decision-making and geographic and social data to 
determine optimal plant locations. The second phase used a robust 
optimization model based on Bertsimas et al. (2004) to manage supply 
chain uncertainty.

Samani and Hosseini-Motlagh (2021) addressed the challenge of 
sustainable and efficient BSC network design through a multi-period, 
multi-product model under uncertainty. They applied a mixed 
robust-possibilistic programming approach to capture parameter un
certainty. Similarly, Gumte et al. (2021) designed a nationwide BSC 
network using robust optimization and machine learning methods. 
Salehi et al. (2022) developed a model for a resilient and sustainable BSC 
network under demand uncertainty and biorefinery disruption. They 
used a multi-criteria decision-making method to prioritize sustainability 
indicators and resilience factors, incorporating high-priority elements 
into their model. A robust-possibilistic programming method was 
applied to address demand uncertainty in the final formulation.

2.2.3. Hybrid methods
To address the complexity and diversity of uncertainties in BSCs, 

several studies have adopted hybrid modeling approaches that integrate 
robust and stochastic optimization methods. Shabani and Sowlati 
(2016) introduced a hybrid stochastic-robust model. They first applied a 
robust optimization model to address uncertainty in biomass quality, 
then integrated a stochastic method to capture biomass yield variability.

Recently, Mousavi Ahranjani et al. (2020) proposed a MILP model 
with a hybrid stochastic-robust-possibilistic programming structure to 
enhance resilience against fluctuations in biomass supply, demand, and 
pricing. Alizadeh et al. (2019) designed a reliable and cost-effective BSC 
network using a hybrid robust-stochastic approach. They modeled 
biomass seasonality and carbon tax rate uncertainties through proba
bilistic scenarios and uncertainty sets. A three-stage stochastic model 
was developed by integrating an adjustable robust method with the 
sample average approximation scheme.

Recent studies in BSC modeling have increasingly adopted hybrid 
uncertainty approaches to enhance model robustness and realism. These 
methods are particularly useful when multiple uncertain parameters 
exist, each characterized by different levels of information availability. 
When the probability distributions of all uncertain parameters are 
known, stochastic programming serves as a suitable method for 
capturing uncertainty (Dal-Mas et al., 2011; Gonela et al., 2015; Kim 

et al., 2011). However, in many practical situations, only partial 
distributional information is available. In such cases, hybrid frame
works, such as stochastic-robust, robust-stochastic, or 
stochastic-adaptive-robust models, have been effectively employed to 
address heterogeneous uncertainty (Alizadeh et al., 2019; Mousavi 
Ahranjani et al., 2020; Shabani and Sowlati, 2016).

Despite these advancements, a critical shortcoming in most existing 
models is the assumption of independence among uncertain parameters. 
This simplification fails to capture the inherent dependencies between 
key variables. For instance, biomass price is often contingent upon its 
regional availability, and market demand for biofuels typically fluctu
ates with fuel pricing. Ignoring such dependencies can lead to biased 
estimates and suboptimal decisions in network design and planning.

To address this gap, this study introduces a two-layer uncertainty 
modeling structure, where second-layer parameters are conditionally 
dependent on the realization of first-layer parameters. Based on the 
nature and availability of distributional information, uncertainty ap
proaches can be classified into three categories: 

1. Type I: when both layers have known probability distributions, sto
chastic programming and robust technique (with discrete scenario) 
are applicable (Dal-Mas et al., 2011; Gonela et al., 2015; Kim et al., 
2011).

2. Type II: when only first-layer parameters have known distributions, 
hybrid methods such as stochastic-robust and stochastic-adaptive- 
robust are suitable (Mousavi Ahranjani et al., 2020; Shabani and 
Sowlati, 2016).

3. Type III: when only second-layer parameters are specified with 
known distributions, min–max regret, robust-stochastic, and 
adaptive-robust-stochastic models are more appropriate (Chen et al., 
2020; Taherkhani et al., 2021), depending on whether the first-layer 
scenarios are discrete or continuous.

By explicitly capturing the interdependencies among uncertain pa
rameters, the proposed framework advances the current state of BSC 
modeling and facilitates more adaptive and informed decision-making 
under uncertainty. This study considers two distinct uncertainty set
tings: (i) when full distributional information is available for both layers 
(Type I), addressed through the development of stochastic (Gonela et al., 
2015; Taherkhani et al., 2021) and robust (Peykani et al., 2020) models; 
and (ii) when the first-layer distributions are unknown and the 
second-layer distributions are known (Type III), addressed through the 
formulation of a min–max regret model (Taherkhani et al., 2021). This 
comprehensive treatment improves the model’s applicability in the 
presence of disruption and limited information.

The difference between the BSC network design model presented in 
this paper and the literature referenced are outlined in Table 1. In this 
table, the abbreviations DP, SP, and RO denote dependency between 
parameters, stochastic programming, and robust optimization, respec
tively. The biomass availability and biomass quality parameter are 
denoted by BA and BQ in Table 1, respectively. Supply chain operational 
costs, including transportation costs and production costs, are abbrevi
ated as OC. Meanwhile, D, PC, BD, and TC represent biofuel demand, 
biomass price, benders decomposition, and technology and capacity of 
facility, respectively.

3. Problem description

This paper aims to determine the BSC network under both uncer
tainty and disruption. The BSC network comprises several levels, 
including biomass suppliers (farms), biofuel production plants (bio
refineries), distributors (biofuel storage facilities), and consumers (cit
ies), as depicted in Fig. 1.

A multi-period planning horizon is considered to capture the tem
poral structure of the supply chain decisions. All biomass required for 
biofuel production is purchased at the beginning of the planning horizon 
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from farms with known locations, and is subsequently transported to 
biorefineries. In each period, the transported biomass undergoes a spe
cific process involving pre-treatment, fermentation, distillation, and 
solid recycling to produce biofuel. The resulting biofuel is then sent to 
the distributor’s storage facilities and then distributed to consumers. In 
the cases which customer demand exceeds the available biofuel supply 
amount, the necessary quantity of biofuel must be imported to meet the 
demand.

Natural phenomena such as floods, storms, and severe climate 
changes have a detrimental effect on biomass yield. As a result, biomass 
availability in a particular region may not meet the anticipated volumes. 
This shortage of biomass imposes limitations on the production of bio
fuels. Therefore, to make the problem more realistic, it is assumed that 
biomass availability can be disrupted and decrease significantly. Addi
tionally, the purchase price of biomass is considered to be uncertain.

This study accounts for the dependency between biomass availability 
and its market price, recognizing that reduced supply typically leads to 
higher prices (Bang et al., 2013). To reflect this dependency, biomass 

price is modeled as a linear function of its availability, a common 
approach in economic modeling (Mankiw, 2021). To enhance realism 
and account for market complexities beyond the linear assumption, an 
uncertainty term is incorporated, which is introduced in this study as an 
error function. This error function reflects the impact of various external 
factors, such as demand fluctuations, competition from alternative 
products, and broader market dynamics, which can influence biomass 
pricing.

Disruption events typically lead to a reduction in the available 
biomass, which in turn causes a leftward shift in the supply curve 
(Mankiw, 2021). This shift reflects a decrease in biomass availability, 
which in turn leads to higher market prices. Fig. 2 illustrates this effect, 
showing how supply-side disruptions contribute to price increases by 
decreasing biomass availability. Fig. 2 also shows the effect of the error 
function at the equilibrium point of supply and demand, demonstrating 
the influence of additional market factors that affect biomass pricing.

To design a resilient BSC network, nine decision types are consid
ered: (1) location decisions, (2) capacity decisions, (3) technology 

Table 1 
Literature review.

Paper BSC risk Modeling method DP BD algorithm Uncertain parameter

Uncertainty Disruption SP RO BA BQ OC D PC TC

Dal-Mas et al. (2011) * ​ * ​ ​ ​ ​ ​ * ​ * ​
Kim et al. (2011) * ​ * ​ ​ ​ * ​ ​ * * ​
Chen and Fan (2012) * ​ * ​ ​ ​ * ​ ​ ​ * ​
Tay et al. (2013) * ​ ​ * ​ ​ * ​ ​ * ​ ​
Gonela et al. (2015) * ​ * ​ ​ ​ * ​ ​ * * ​
Bairamzadeh et al. (2016) * ​ ​ * ​ ​ * ​ ​ ​ ​ ​
Shabani and Sowlati (2016) * ​ ​ * ​ ​ * * ​ ​ ​ ​
Poudel et al. (2016) ​ * * ​ ​ * ​ ​ ​ ​ ​ *
Zhang and Jiang (2017) * ​ ​ * ​ ​ ​ ​ ​ ​ * ​
Paulo et al. (2017) * ​ * ​ ​ ​ * ​ ​ ​ ​ *
Maheshwari et al. (2017) ​ * * ​ ​ ​ * ​ ​ ​ ​ ​
Ghelichi et al. (2018) * ​ * ​ ​ ​ * ​ ​ * ​ ​
Fattahi and Govindan (2018) * * * ​ ​ ​ * ​ ​ ​ ​ *
Alizadeh et al. (2019) * ​ ​ * ​ ​ * ​ ​ ​ ​ ​
Mousavi Ahranjani et al. (2020) * * * ​ ​ ​ * ​ * ​ ​ ​
Saghaei et al. (2020) ​ * * ​ ​ ​ * ​ ​ ​ ​ ​
Razm et al. (2021) * ​ ​ * ​ ​ * ​ ​ ​ ​ ​
Khezerlou et al. (2021) ​ ​ * ​ ​ ​ ​ ​ ​ ​ ​ *
Memişoğlu and Üster (2021) * ​ * ​ ​ * * ​ ​ ​ ​ ​
Sarkar et al. (2021) ​ * ​ * ​ ​ ​ ​ ​ ​ ​ *
Allman et al. (2021) * ​ * ​ ​ ​ * ​ ​ ​ ​ ​
Aranguren and Castillo-Villar (2022) * ​ * ​ ​ ​ * * ​ ​ ​ ​
Salehi et al. (2022) * * ​ * ​ ​ ​ ​ ​ ​ ​ *
Lima et al. (2023) * ​ * ​ ​ ​ ​ ​ ​ * ​ ​
Paulo et al. (2023) * ​ * ​ ​ ​ ​ ​ ​ ​ ​ *
This paper * * * * * * * ​ * ​ ​ ​

Fig. 1. Proposed biofuel supply chain structure.
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decisions, (4) biomass procurement decisions, (5) production decisions, 
(6) transportation decisions, (7) biofuel importation decisions, (8) in
ventory decisions, and (9) distribution decisions. Facility locations, 
nominal capacities, and biorefinery technologies as strategic decisions 
are made at the beginning of the planning horizon, before the realization 
of uncertainty and disruption scenarios. These decisions remain fixed 
during the planning horizon.

After the strategic decisions are made, the impact of potential dis
ruptions on biomass availability becomes apparent at the beginning of 
the planning horizon. This step clarifies the actual quantity of biomass 
accessible from each supplier. Subsequently, the uncertainty regarding 
biomass purchase prices is realized. Based on these revealed conditions, 
procurement decisions are made. Thereafter, during each time period, 
tactical decisions are executed, including transportation decisions, bio
fuel import decisions, inventory decisions, and distribution decisions, 
along with biomass allocation to biorefineries and scheduling of 

production processes (Fig. 3).
The decision-making steps in this problem can be summarized as 

follows: Initially, strategic decisions are made. Subsequently, disruption 
scenarios are realized, which determine the availability of biomass. 
Following that, biomass price scenarios are realized then the purchase 
price of biomass is determined. It is important to note that the avail
ability and prices remain constant for all periods in the planning hori
zon. Finally, based on all the preceding information, tactical decisions 
are made. These steps are illustrated in

4. Model formulation

To formulate the mathematical models of the introduced problem, 
initially, the notations for sets, parameters, and decision variables are 
defined. Subsequently, the mathematical models are presented.

Fig. 2. supply-demand diagram of biomass.

Fig. 3. The decision-making steps.
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4.1. Notations

Notations used for the mathematical formulation of the proposed 
models are demonstrated in Table 2 as follows.

4.2. Dependency of uncertain parameters

In the proposed problem, the biomass procurement price is consid
ered linearly depend on the biomass availability realization. More spe
cifically, let βʹ

l denote the expected yield of biomass before the 
occurrence of a disruption, while for biomass type, βʹ́

ls represents the 
available amount of biomass following the realization of disruption 
scenario s. Additionally, φʹ

ls demonstrates the mean value of biomass 
price and φ̂l denotes its nominal value. Dependence of φʹ

ls to βʹ́
ls for a 

given disruption scenario is shown as follows: 

φʹ
ls = φ̂l + ψ

(
βʹ

l − βʹ́
ls
)
∀ l, s (1) 

where ψ is assumed to be a positive coefficient that represents the de
pendency of the biomass price on its availability. Eq. (1) indicates the 
linear dependency between the mean value of biomass price and the 
biomass availability realization. This equation states that a decrease in 
the biomass availability after disruption leads to an increase in the mean 
biomass price value. Additionally, the realization of the biomass price is 
assumed to fluctuate around its mean value, independent of disruption 
effects, which are denoted by price error function εl(ξs). Therefore, Eq. 
(2) can be utilized to calculate the biomass price φl(ξs) as follows: 

φl(ξs) = φ
ʹ
ls + εl(ξs)∀ l, s, ξs (2) 

As depicted in Fig. 2, the mean value of biomass price is linearly 
dependent on the biomass availability realization, and the biomass price 
realization fluctuates around its mean value.

4.3. Stochastic model

In this section, it is assumed that sufficient historical data is available 
to estimate the probability distribution of uncertainties and disruptions. 
Based on this estimation, the mathematical model of the problem is 
developed. The proposed model captures biomass procurement costs 
and availability under a finite set of scenarios. The objective function of 
the stochastic model is formulated to minimize the expected total cost. 

min TF + TE + Eξs [SC(ξs)+PC(ξs)+BC(ξs)+ IC(ξs)+RC(ξs)] (3) 

s.to: 

TF =
∑

j

∑

n

∑

q
δjnqzjnq (4) 

TE =
∑

k

∑

n
σknwkn (5) 

SC(ξs) =
∑

j

∑

k

∑

t
τjkyjkt(ξs) +

∑

k

∑

m

∑

t
τkmvkmt(ξs)

+
∑

o

∑

m

∑

t
τomeomt(ξs) +

∑

i

∑

l

∑

j
λijlxilj(ξs)∀ s, ξs (6) 

PC(ξs) =
∑

j

∑

q

∑

t
γpjqt(ξs)∀ s, ξs (7) 

BC(ξs) =
∑

i

∑

l

φl(ξs)hil(ξs)∀ s, ξs (8) 

IC(ξs) =
∑

o

∑

m

∑

t
αeomt(ξs)∀ s, ξs (9) 

RC(ξs) =
∑

k

∑

t
νbkt(ξs)∀ s, ξs (10) 

Table 2 
Sets, parameters, and variable notations.

Sets :

l ∈ L Set of biomass type
i ∈ I Set of farmlands (i.e., biomass harvesting location)
j ∈ J Set of biorefinery candidate locations
k ∈ K Set of biofuel storage candidate locations
o ∈ O Set of candidate ports for importing biofuel
t ∈ T Set of time periods
n ∈ N Set of capacity levels (small, medium, and large) for biorefineries and 

biofuel storage facilities
q ∈ Q Set of biorefinery technologies type
m ∈ M Set of customers
s ∈ S Set of biomass disruption scenarios
ξs ∈ Ξs Set of biomass price scenarios under disruption scenario s
Parameters :
βil The yield of biomass type l (ton) in farmland i before disruption
ρis The percentage of biomass unaffected by the disruption in farmland i in 

disruption scenario s
β́l Total yield of biomass type l (ton) before disruption scenarios are realized 

(βʹ
l =

∑

i
βil)

βʹ́
ls Total yield of biomass type l (ton) after realization of disruption scenario s 

(βʹ́
ls =

∑

i
βilρis)

γ The unit production cost ($ /gallon) of biofuel
φl(ξs) The unit procurement cost ($ /ton) of biomass type l in scenario ξs
φʹ

ls The mean value of procurement cost ($ /ton) of biomass type l in scenario s
φ̂l The nominal procurement cost ($ /ton) of biomass type l
πjnq The maximum allowed capacity (gallon) for biorefinery in location j with 

capacity level n and technology type q
μkn Biofuel storage capacity (gallon) in location k with capacity level n
τjk The unit transportation cost for biofuel ($ /gallon) between node j (∈ j,k) 

and k (∈ k,m)
ν The unit inventory cost for biofuel ($ /gallon)
λijl The unit transportation cost for biomass type l ($ /ton) between node i and 

j
θmt Biofuel demand of customer m (gallon) in time period t
δjnq The investment cost ($) for establishing biorefinery in the location j with 

capacity level n and technology type q
σkn The investment cost ($) for establishing biofuel storage in the location 

k with capacity level n
α The unit importation cost ($ /gallon) of biofuel
εl(ξs) Price error function for biomass type l in scenario ξs
κ Confidence level
χ The upper bound of BSC cost
ζ(ξs) Probability of scenario ξs
ηlq Conversion rate of biomass type l into biofuel with technology type q
ψ A positive coefficient that represents the dependency of the biomass price 

on its availability
Variables:
zjnq A binary variable that is 1 if biorefinery is established in the location j with 

capacity level n and technology type q
wkn A binary variable that is 1 if biofuel storage is established in the location k 

with capacity level n
xilj(ξs) A non-negative variable representing the amount of transported biomass 

type l (ton) from farmland in location i into established biorefinery in 
location j in scenario ξs

yjkt(ξs) A non-negative variable representing the amount of transported biofuel 
(gallon) from established biorefinery in location j into established biofuel 
storage facility in location k in time period t in scenario ξs

vkmt(ξs) A non-negative variable representing the amount of transported biofuel 
(gallon) from established biofuel storage in location k into the customer m 
in time period t in scenario ξs

eomt(ξs) A non-negative variable representing the amount of imported biofuel 
(gallon) from port o to satisfy the demand of customer m in time period t in 
scenario ξs

hil(ξs) A non-negative variable representing the amount of purchased biomass 
(ton) of type l from farmland i in scenario ξs

pjqt(ξs) A non-negative variable representing the amount of produced biofuel 
(gallon) in established biorefinery in location j with technology type q in 
time period t in scenario ξs

bkt(ξs) Inventory level of established biofuel storage facility in location k at the 
end of time period t in scenario ξs

a(ξs) A binary variable that is 1 if BSC cost being less than or equal to target 
threshold

TF Total investment cost of establishing biorefineries
TE Total investment cost of establishing storage facilities
SC(ξs) Total shipping cost in scenario ξs

(continued on next page)
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The investment costs associated with establishing biorefineries and 
storage facilities are represented by the first and second terms of the 
objective function in Eq. (3), respectively. These terms reflect the fixed 
capital investment costs required for infrastructure development at 
selected locations, capacity levels, and production technologies. More
over, the third to seventh terms in Eq. (3) account for the expected 
operational costs under uncertainty, including transportation of biomass 
and biofuel, biofuel production, biomass procurement, and biofuel 
importation. These components collectively define the total expected 
cost that the model seeks to minimize. The investment costs related to 
establishing biorefineries and constructing biofuel storage facilities are 
formulated in Eq. (4) and Eq. (5), respectively. Eq. (6) represents the 
total transportation cost, encompassing biomass transportation from 
farmlands to biorefineries, biofuel shipment from production plants to 
storage facilities, and subsequent distribution from storage sites and 
ports to end customers. The cost of biofuel production is modeled in Eq. 
(7). Eq. (8) estimates biomass procurement costs, while Eqs. (9) and (10)
jointly account for the cost associated with biofuel imports and the 
storage of biofuels at designated facilities, respectively. 
∑

i

∑

l

ηlqxilj(ξs) =
∑

t
pjqt(ξs)∀ j, q, s, ξs (11) 

∑

q
pjqt(ξs) =

∑

k

yjkt(ξs)∀ j, t, s, ξs (12) 

pjqt(ξs) ≤
∑

n
πjnqzjnq∀ j, q, t, s, ξs (13) 

∑

n

∑

q
zjnq ≤ 1∀ j (14) 

Eq. (11) ensures the mass balance between the amount of biomass 
transported to biorefinery j with technology q and the corresponding 
quantity of biofuel produced. Specifically, the total amount of biomass 
of type l delivered from all farmland locations i, multiplied by the 
biomass-to-biofuel conversion rate ηlq, must be equal to the biorefinery’s 
total output. This constraint guarantees that the production level is 
consistent with the availability of different biomass types and the effi
ciency of the selected production technology. Eq. (12) guarantees that 
the total amount of biofuel produced in each biorefinery is entirely 
transported to designated storage facilities. This constraint ensures no 
accumulation or loss of biofuel at the production site, thereby main
taining flow continuity within the supply chain network. Eqs. (13) and 
(14) jointly represent the technical and structural limitations related to 
biofuel production. Eq. (13) ensures that the production level at each 
active biorefinery does not exceed its designated nominal capacity, 
reflecting the technological limits of the selected facility. Moreover, Eq. 
(14) imposes a location-specific restriction by assuming that only one 
biorefinery, with a specific technology and capacity level, can be 
established in each candidate region. 

hil(ξs) ≤ βilρis∀ i, l, s, ξs (15) 

hil(ξs) =
∑

j
xilj(ξs)∀ i, l, s, ξs (16) 

Eq. (15) ensures that the entire quantity of biomass intended for use 
is purchased at the beginning of the planning horizon. Moreover, the 
amount procured from each harvesting region must not exceed the 
locally available biomass yield. Eq. (16) guarantees that the total 

amount of biomass transported to biorefineries is equal to the total 
biomass purchased at the beginning of the planning period. This ensures 
mass balance and prevents any discrepancy between procurement and 
utilization. 

bkt(ξs) = bk,(t− 1)(ξs) +
∑

j
yjkt(ξs) −

∑

m
vkmt(ξs)∀ k, t, s, ξs, t ∕= 1 (17) 

bkt(ξs) =
∑

j
yjkt(ξs) −

∑

m
vkmt(ξs)∀ k, t, s, ξs, t = 1 (18) 

bkt(ξs) ≤
∑

n
μknwkn∀ k, t, s, ξs (19) 

∑

n
wkn ≤ 1∀ k (20) 

Eq. (17) models the inventory balance at each storage facility for all 
periods except the initial one. It states that the inventory level at each 
time period equals the inventory at the end of the previous period, plus 
the amount of biofuel received from biorefineries, minus the amount 
dispatched to customers. This constraint ensures temporal consistency in 
inventory tracking throughout the planning horizon. Eq. (18) defines the 
inventory level for the first period. It assumes that the initial inventory at 
the beginning of the planning horizon is zero, thereby initializing the 
flow of biofuel in the system. Eq. (19) ensures that the inventory level at 
the end of each time period in any active storage facility does not exceed 
its designated storage capacity. Eq. (20) ensures that at most one storage 
facility with a specific capacity level can be established at each candi
date location. This constraint enforces the exclusivity of storage in
vestment decisions and prevents the simultaneous construction of 
multiple facilities at the same site. 
∑

k

vkmt(ξs) +
∑

o
eomt(ξs) = θmt∀ m, t, s, ξs (21) 

xiljt(ξs), yjkt(ξs), vkmt(ξs), eomt(ξs), hil(ξs), pjqt(ξs) ∈ R+∀ i, j, l, k,m, q, t, s, ξs

(22) 

zjnq,wkn ∈ {0,1}∀ j, n, q, s, k (23) 

Eq. (21) ensures that, in each time period, the entire biofuel demand 
of every customer is satisfied either through production or importation. 
This constraint maintains demand fulfillment across the planning hori
zon and guarantees supply adequacy. Eq. (22) and Eq. (23) define the 
domain of non-negative continuous variables and binary decision vari
ables, which represent flows, production levels, inventories, and discrete 
choices in the model.

4.4. Robust model

A key characteristic of disruption risk is its significant impact on the 
supply chain structure despite its low probability of occurrence. Incor
porating high-impact, low-probability scenarios into the modeling pro
cess can significantly alter the configuration and total costs of the supply 
chain. However, some decision-makers prefer to focus only on scenarios 
with a higher probability, modeling the problem to ensure feasibility for 
the more probable scenarios while excluding scare scenarios. To address 
this preference, this study introduces the robust model designed to 
minimize the target threshold of the total BSC cost (B) while explicitly 
considering a predefined confidence level (κ). In other word, this model 
designs a BSC network, which minimizes B while ensuring that the 
probability of the BSC total cost being less than or equal to B is at least κ. 
This approach balances the need for resilience against disruptions with 
practical considerations of feasibility and cost-effectiveness.

Similar to the stochastic model, the robust model assumes sufficient 
historical data is available to estimate the probability distribution of 
uncertain parameters. Consequently, the biomass price and availability 
are represented by a predefined set of scenarios. 

Table 2 (continued )

Sets :

PC(ξs) Total production cost in scenario ξs
BC(ξs) Total purchasing cost of biomass in scenario ξs
IC(ξs) Total importing cost of biofuel in scenario ξs
RC(ξs) Total inventory cost of biofuel in scenario ξs
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min B (24) 

s.to: 

B − (TF+TE+ SC(ξs)+PC(ξs)+BC(ξs)+ IC(ξs)+RC(ξs))

≥ χ(a(ξs) − 1)∀ s, ξs (25) 

∑

ξs

∑

s
ζ(ξs)a(ξs) ≥ κ (26) 

The remaining constraints of the model are given by Eqs. (4)–(23). 
Eq. (25) states that a(ξs) equals 1 if the BSC cost in the scenario ξs does 
not exceed B; otherwise, it is set to 0. Additionally, Eq. (26) specified 
that the cumulative probability of scenarios satisfying Eq. (25) must be 
greater than or equal to the specified confidence level κ.

4.5. Min-max regret model

Given the low probability of specific natural disruptions, historical 
data is often insufficient to predict the probability distribution of such 
events accurately. In these situations, supply chain design decisions can 
benefit from models that do not depend on historical data or predefined 
probability distributions for disruptions. To address this limitation, this 
study proposes the min-max regret model. This criterion makes a deci
sion based on the regret of not selecting the best solution. The min-max 
criterion offers a less conservative approach compared to the worst-case 
robust model. Consequently, the selection of the most conservative and 
costly solution is avoided. In this model, a discrete set of disruption 
scenarios is considered to make robust decisions based on the min-max 
regret criterion, while the uncertain parameter is still formulated using a 
stochastic approach. Due to the inherent capability of this method to 
describe disruption using a finite set of scenarios, it enables the utili
zation of decomposition solution methods, effectively mitigating the 
problem-solving burden.

Let Fs to be the optimal BSC cost for a given realized disruption 
scenario s, and let Fs(Z) to be the total BSC cost for a given solution Z,
which Z represents strategic decision for simplicity. The maximum 
regret is obtained by a disruption scenario that maximizes Fs(Z) − Fs. 
The goal of the min-max regret criterion, which is employed to formu
late the min-max model, is to find Z that minimize regret function as 
represented in Eq. (27): 

min
Z

max
s

[Fs(Z) − Fs] (27) 

To linearize Eq. (27), the maximum regret function is replaced with a 
positive variable U. The decision-making process in this model begins 
with making strategic decisions. Once the strategic decisions are 
determined, disruption scenarios s and their corresponding parameter ρis 
are realized. This is followed by the realization of the biomass price 
scenario ξs, which depends on the realization of the disruption scenario 
s. Finally, tactical decisions are made under both disruption and un
certainty scenarios. Consequently, the min-max regret model, subject to 
Eqs. (4)–(23), is formulated as follows: 

min U (28) 

s.to: 

U ≥ TF + TE + Eξs [SC(ξs)+PC(ξs)+BC (ξs)+ IC(ξs)+RC(ξs)] − Fs∀ s
(29) 

The following section developed solution methods based on the 
benders decomposition algorithm for efficiently solving the mathemat
ical models presented in this section.

5. Solution algorithms

The proposed models for the BSC network design problem are clas
sified as NP-hard (Dupačová et al., 2003). While commercial solvers like 
CPLEX are effective for certain problem sizes, the complexity of these 
models may limit their performance due to the large-scale problems. To 
effectively solve the proposed models with a large problem size within a 
reasonable timeframe, an exact solution algorithm that incorporates 
Benders Decomposition (BD) is presented in this section.

5.1. Solution algorithm for stochastic model

This paper develops the BD algorithm to solve the proposed models. 
The BD algorithm decomposes the main problem into a primal sub
problem (PS) and a master problem (MP), reducing the problem’s 
complexity. The BD creates the PS model by fixing the integer variables 
and then solves the dual subproblem (DS) to obtain information that 
updates the MP. The PS of the stochastic model, include Eqs. (3)-(23), for 
fixed first-stage variable can be formulated as: 

min Eξs [SC(ξs)+PC(ξs)+BC(ξs)+ IC(ξs)+RC(ξs)] (30) 

s.to: 
∑

i

∑

l
ηlqxilj(ξs) =

∑

t
pjqt(ξs)∀ j, q, s, ξs (31) 

∑

q
pjqt(ξs) =

∑

k
yjkt(ξs)∀ j, t, s, ξs (32) 

pjqt(ξs) ≤
∑

n
πjnqzjnq∀ j, q, t, s, ξs (33) 

hil(ξs) ≤ βilρis∀ i, l, s, ξs (34) 

hil(ξs) =
∑

j
xilj(ξs)∀ i, l, s, ξs (35) 

bkt(ξs) = bk,(t− 1)(ξs) +
∑

j
yjkt(ξs) −

∑

m
vkmt(ξs)∀ k, t, s, ξs, t ∕= 1 (36) 

bkt(ξs) =
∑

j
yjkt(ξs) −

∑

m
vkmt(ξs)∀ k, t, s, ξs, t = 1 (37) 

bkt(ξs) ≤
∑

n
μknwkn∀ k, t, s, ξs (38) 

∑

k

vkmt(ξs) +
∑

o
eomt(ξs) = θmt∀ m, t, s, ξs (39) 

xiljt(ξs), yjkt(ξs), vkmt(ξs), eomt(ξs), hil(ξs), pjqt(ξs) ∈ R+∀ i, j, l, k,m, q, t, s, ξs

(40) 

The values of zjnq and wknare fixed value of zjnq and wkn, respectively, 
and should be derived from the MP. The BD cut can be computed by 
solving the DS of the model represented by Eqs. (30)-(40), as outlined 
below. In Eq. (41), ujqtξs , tilξs , cktξs , and gmtξs denote the dual variables 
corresponding to Eqs. (33),(34),(38) and (39) respectively. 

ω ≥
∑

s

∑

ξs

∑

t

(
∑

m
θmgmtξs −

∑

j

∑

n

∑

q
πjnqzjnqujqtξs −

∑

i

∑

l

βilρistilξs

−
∑

k

∑

n
μknwkncktξs

)

(41) 

The BD optimality cuts are incorporated into the MP by leveraging 
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the outcomes derived from solving the DS problems. It is noteworthy 
that the DS problems are always feasible and bounded. 

min
∑

j

∑

n

∑

q
δjnqzjnq +

∑

k

∑

n
σknwkn + ω (42) 

s.to: 

ω ≥
∑

s

∑

ξs

∑

t

(
∑

m
θmgmtξs −

∑

j

∑

n

∑

q
πjnqzjnqujqtξs −

∑

i

∑

l

βilρistilξs

−
∑

k

∑

n
μknwkncktξs

)

(43) 
∑

n

∑

q
zjnq ≤ 1∀ j (44) 

∑

n
wkn ≤ 1∀ k (45) 

zjnq,wkn ∈ {0,1}∀ j, k, q, n (46) 

The BD fixes the solutions derived from the MP in the DS problems 
and subsequently appends optimality cuts to the MP based on the 
optimal values obtained from solving the DS problems. This iterative 
process continues until the difference between the upper and lower 
bounds on the solution value of the problem becomes acceptably small. 
Algorithm 1 presents a pseudo-code for the BD algorithm, in which the 
optimal values of the MP and the DS at iteration r, denoted as Fr

MP and 
Fr

DS, respectively, are used to update the algorithm bounds. The upper 
and lower bounds of the solution value are represented by the UB 
and LB, respectively, and P denote the set of extreme point of DS. In each 
iteration of Algorithm 1, the UB for the stochastic model is computed 
using the Eq. (47). 

UB =
∑

j

∑

n

∑

q
δjnqzjnq +

∑

k

∑

n
σknwkn + Fr

DS (47) 

5.2. Solution algorithm for robust model

This section presents the methodology developed to address the 
robust model using BD algorithm. The PS of the robust model is 
formulated for fixed values of zjnq,wkn, and a(ξs). 

min B (48) 

s.to: 

B − (TF+TE+ SC(ξs)+PC(ξs)+BC(ξs)+ IC(ξs)+RC(ξs))

≥ χ(a(ξs) − 1)∀ s, ξs (49) 

Eqs. (31)–(40) represent the remaining constraints that complete the 
formulation of the model. By redefining ujqtξs , tilξs , cktξs , and gmtξs as the 

dual variables associated with the Eqs. (33),(34),(38) and (39) respec
tively, the corresponding BD cut for the robust model is derived as 
follows: 

ωʹ(ξs) ≥
∑

t

(
∑

m
θmgmtξs −

∑

j

∑

n

∑

q
πjnqzjnqujqtξs −

∑

i

∑

l
βilρistilξs

−
∑

k

∑

n
μknwkncktξs

)

∀ s, ξs

(50) 

By solving the DS of the robust model and incorporating the BD cuts, 
the MP for robust model is subsequently expressed as presented below. 
The BD pseudocode, previously introduced as Algorithm 1, is used here 
for the robust model, with the only modification being the UB, which is 
now set to the objective value of the DS in each iteration of the 
algorithm. 

min B (51) 

s.to: 

ωʹ(ξs) ≥
∑

t

(
∑

m
θmgmtξs −

∑

j

∑

n

∑

q
πjnqzjnqujqtξs −

∑

i

∑

l

βilρistilξs

−
∑

k

∑

n
μknwkncktξs

)

∀ s, ξs

(52) 

B − (TF+TE+ωʹ(ξs)) ≥ χ(a(ξs) − 1)∀ s, ξs (53) 

∑

ξs

∑

s
ζ(ξs)a(ξs) ≥ κ (54) 

∑

n

∑

q
zjnq ≤ 1∀ j (55) 

∑

n
wkn ≤ 1∀ k (56) 

zjnq,wkn ∈ {0,1}∀ j, k, q, n (57) 

5.3. Solution algorithm for min-max regret model

In the min-max regret model, prior to solving the main model, it is 
necessary to solve several stochastic models. These models are employed 
to calculate the optimal BSC cost value for each disruption scenario 
s ∈ S, define as Fs. Assuming the values of zjnq, and wkn are fixed, the PS 
of the min-max regret model is equivalent to Eqs. (58)-(59), subject to 
the additional constraints specified in Eqs. (31)–(40). 

min U (58) 

s.to: 

U ≥ TF + TE + Eξs [SC(ξs)+PC(ξs)+BC (ξs)+ IC(ξs)+RC(ξs)] − Fs∀ s
(59) 

Therefore, the corresponding BD cut can be computed by Eq. (60) as 
follows: 

ω˝ ≤ F̂ s −
∑

ξs

∑

t

(
∑

m
θmgmtξs −

∑

j

∑

n

∑

q
πjnqzjnqujqtξs −

∑

i

∑

l
βilρistilξs

−
∑

k

∑

n
μknwkncktξs

)

∀ s

(60) 

The MP for the min-max regret model is developed using the dual 
variables and BD cuts, which are derived from solving the DS of the min- 
max regret model. 

Algorithm 1 
Pseudocode of algorithm BD for proposed models.

Benders decomposition algorithm for proposed models

1 : UB←+ ∞,LB← − ∞, r←1
2 : P←∅
3 : while UB > LB do
4 : solve MP of model to obtain zr

MP and wr
MP

5 : LB←Fr
MP

6 : solve DS
(
zr

MPand wr
MP
)

of model to obtain ujqtξs , tilξs , cktξs , gmtξs , and Fr
DS

7 : P←P ∪
{(

ujqtξs , tilξs , cktξs , gmtξs

)

r

}

8 : update UB
9 : r←r+ 1
10 : end while
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max ω˝ −
∑

j

∑

n

∑

q
δjnqzjnq −

∑

k

∑

n
σknwkn (61) 

s.to: 

ω˝ ≤ F̂s −
∑

ξs

∑

t

(
∑

m
θmgmtξs −

∑

j

∑

n

∑

q
πjnqzjnqujqtξs −

∑

i

∑

l

βilρistilξs

−
∑

k

∑

n
μknwkncktξs

)

∀ s

(62) 
∑

n

∑

q
zjnq ≤ 1∀ j (63) 

∑

n
wkn ≤ 1∀ k (64) 

zjnq,wkn ∈ {0,1}∀ j, k, q, n (65) 

where F̂s is calculated using Algorithm 1 for each disruption scenario 
s ∈ S, in which UB computed using the Eq. (47). Based on the explana
tions provided in this section, Algorithm 1 is implemented as the BD 
algorithm for solving proposed min-max regret model. For this model 
UB is calculated using Eq. (66), in which Fr

DS represents the objective 
value of the DS of the min-max regret model in each iteration of the 
algorithm. 

UB = max
s

∑

j

∑

n

∑

q
δjnqzjnq +

∑

k

∑

n
σknwkn + Fr

DS − F̂s (66) 

5.4. Accelerated technique

To enhance the efficiency of solving the model using the BD algo
rithm, an acceleration technique is introduced in this section. To solve 
the proposed models with this technique, the BD algorithm is first 
applied with a relaxed linear programming version of each model. Upon 
convergence of the BD bounds, the resulting cuts are retained. Subse
quently, the original algorithm is executed using the initial binary var
iables along with the cuts generated in the previous phase.

For instance, when solving the stochastic model using Algorithm 1, 
the binary variables (zjnq and wkn) are initially relaxed, and the algo
rithm is executed. After convergence, the generated cuts are integrated 
into the original algorithm, where zjnq and wkn are treated as binary. 
Algorithm 1 is then re-executed to determine the optimal solution of the 
stochastic model. Using the same approach, the acceleration technique 
is also applicable to robust and min-max regret models.

6. Computational experiments

In this section, the performance of proposed models and algorithms 
is investigated. For this purpose, the Iran-related data is collected, and 
the case study is expanded. The planning horizon for the case study is 
one year, consisting of four time periods, with each period representing 
one season (three months).

A workstation computer with Intel Core i7-8700 K CPU (3.70 GHz), 
with 32.0 GB of RAM, is used for the implementation of this model in 
GAMS 24.1 environment with CPLEX 12.5 solver.

6.1. Case study

Since sufficient infrastructure for biofuel production has yet to be 
developed in Iran, in this paper, the BSC design for the biofuel supply 
equivalent to 5 % of the gasoline demand of the provinces of Iran is 
carried out. Based on the information published by Iran’s Ministry of 
Petroleum, the annual gasoline consumption in Iran is close to 10.2 
billion gallons per year in 2022. The information related to the amount 

of gasoline demand in each region is extracted from the data of Iran’s 
Ministry of Petroleum.

Since various types of biomass can be used for biofuel production by 
using advanced conversion facilities (Fattahi and Govindan, 2018), in 
this study, only one type of conversion technology is assumed. Wheat 
straw, barley straw, and corn stover are considered the required biomass 
for biofuel production. The amount of available biomass is determined 
using the data published by the Ministry of Agricultural Jihad of Iran. 
Biofuel to the biomass conversion rate for wheat straw, barley straw, and 
corn stover equals 90, 120, and 81 gallons per ton, respectively (Fattahi 
and Govindan, 2018; Panahi et al., 2020).

Biorefineries’ nominal capacities are assumed to be 50, 120, and 200 
million gallons per year (MGY), with corresponding annualized invest
ment costs of 21.85, 41.95, and 54.53 million dollars, respectively. 
Additionally, biofuel storage facilities can be established with capacities 
of 50, 100, and 200 thousand barrels, at annualized costs of 0.765, 1.26, 
and 2.01 million dollars, respectively (Huang et al., 2014). These esti
mates are based on a 20-year project horizon and a 10 % interest rate.

The final customers considered in this research are 15 provinces in 
Iran, each accounting for at least 2 % of the total fuel demand. Biomass 
suppliers are identified in 16 provinces with adequate biomass avail
ability. Based on expert recommendations, potential sites for establish
ing biorefineries must meet two criteria: (1) the province’s annual 
biomass production must constitute at least 5 % of the total annual 
available biomass, and (2) the province must possess the necessary 
infrastructure to support biorefinery development (Fattahi and Govin
dan, 2018). Under these conditions, 10 provincial centers namely, (1) 
Arak, (2) Esfahan, (3) Ahvaz, (4) Tabriz, (5) Fars, (6) Kerman, (7) Ker
manshah, (8) Mashhad, (9) Tehran, and (10) Yazd are identified as 
candidate locations for biorefineries and storage facilities. The 
geographical scope of the problem is illustrated in Fig. 4.

The calculation of transportation costs for biofuel and biomass de
pends on both the distance between provincial centers in Iran and the 
applicable fare rate per kilometer. Specifically, the transportation cost is 
determined by multiplying the distance between two provincial centers 
by the fare rate for each entity per kilometer. For biomass trans
portation, the fare rate is influenced by specific characteristics of each 
biomass type, such as moisture content and bulk density. Additionally, 
the transportation capacities are assumed to be 25 tons for biomass 

Fig. 4. Potential locations for establishing biorefineries.
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trucks and 8,000 gallons for biofuel trucks.
The effects of disruptions on biomass availability are quantified 

using statistical data on floods and frost incidents in Iran’s provinces, as 
published by the Iranian Disaster Management Organization. The dis
rupted biomass availability is calculated by adjusting its nominal 
amount according to the percentage impact of each disruption. Fluctu
ations in biomass price, independent of disruptions, are modeled using 
historical data and the K-means clustering method. To determine 
biomass prices across scenarios, an initial dataset is collected, and the K- 
means clustering algorithm is applied with K-values of 5, 10, and 15. The 
algorithm identifies the optimal candidate from each cluster, which is 
then selected as the representative biomass price scenario.

6.2. Results for stochastic model

This section presents the results of the stochastic model on case study 
data. First, the performance of the proposed BD algorithm is evaluated. 
For this purpose, several test problems of different sizes are solved using 
CPLEX, the BD algorithm, and accelerated BD algorithm. The stopping 
criterion of the BD algorithm is the equality of the upper and lower 
bounds of this algorithm. The time limit for each solving method is 2 
hours.

The results of the stochastic model are summarized in Table 3. The 
columns, arranged from left to right, denote the number of disruption 
scenarios, biomass price scenarios, suppliers, potential biorefinery lo
cations, potential storage facility locations, and customer points, fol
lowed by the number of variables and constraints, the CPU time (in 
seconds) with the optimality gap percentage and the optimal objective 
value (in dollars).

As indicated by the results in Table 3, for test problems with an equal 
number of disruption and biomass price scenarios, the CPU time exhibits 
a noticeable increase with the expansion of the problem’s geographical 
scope. This trend is primarily attributed to the increase in the number of 
integer variables within the model, which significantly impacts 
computational complexity.

The results presented in Table 3 indicate that for problems with 
smaller geographical dimensions, the CPLEX method performs slightly 
better. However, as the problem dimensions and the number of sce
narios increase, the proposed algorithms demonstrate superior perfor
mance. This advantage becomes increasingly evident with the growth in 
both the problem size and the number of scenarios. Furthermore, the 
results clearly demonstrate that the Benders algorithm, when 
augmented with the acceleration technique, achieves significantly 
improved performance. This advantage is particularly evident in large- 
scale problems, where CPLEX fails to solve the model within the speci
fied 2-hour time limit, as indicated by the dash "-" in the Table 3.

6.3. Results for robust model

In this section, a comparative analysis of the robust model results is 
presented. To achieve this, the robust model is solved using three 
distinct algorithms: CPLEX, BD, and Accelerated BD. The corresponding 
results are provided in Table 4. The column arrangement in Table 4 is 
consistent with that of Table 3. This section considers a confidence level 
of κ = 0.85.

As shown in Table 4, the CPU time for the robust model using the 
CPLEX, BD, and Accelerated BD algorithms are, on average, longer than 
those for the corresponding stochastic model test problems across all 
algorithms. Additionally, in some test problems, the robust model’s 
optimal solution could not be achieved within the designated time limit. 
In contrast, for the stochastic model, at least one of the algorithms 
successfully computed the optimal solution in all test problems.

The results for the robust model, as reported in Table 4, indicate that 
both the geographical dimensions and the number of scenarios have a 
direct impact on the solution time for the test problems. In other words, 
for problems with the same number of scenarios, an increase in 
geographical dimensions leads to longer solution times. Similarly, for 
problems with the same geographical dimensions, an increase in the 
number of scenarios results in higher CPU times.

In the majority of test problems, where optimal solutions were 

Table 3 
Computational result for stochastic model.

Test problem Number of variables Number of constraints CPU times (optimality gap percentage) Optimal objective value

|S| |Ξ| |I| |J| |K| |M| Binary variables Continues variables CPLEX BD Accelerated BD

3 5 5 2 2 5 12 1935 1264 5 (0) 5 (0) 10 (0) 3.2469E+8
10 4 4 10 24 6450 2528 9 (0) 19 (0) 19 (0) 9.8779E+8
12 6 6 12 36 11340 3342 21 (0) 29 (0) 31 (0) 1.1495E+9
14 8 8 14 48 17550 4151 25 (0) 53 (0) 41 (0) 1.1437E+9
16 10 10 15 60 24420 4910 624 (0) 588 (0) 505 (0) 1.0500E+9

10 5 2 2 5 12 3870 2524 5 (0) 5 (0) 5 (0) 3.2473E+8
10 4 4 10 24 12900 5048 17 (0) 22 (0) 31 (0) 9.8785E+8
12 6 6 12 36 22680 6672 50 (0) 56 (0) 52 (0) 1.1496E+9
14 8 8 14 48 35100 8296 73 (0) 83 (0) 68 (0) 1.1438E+9
16 10 10 15 60 48840 9800 7084 (0) 3128 (0) 1082 (0) 1.0501E+9

15 5 2 2 5 12 5805 3784 6 (0) 6 (0) 5 (0) 3.2481E+8
10 4 4 10 24 19350 7568 15 (0) 21 (0) 22 (0) 9.8799E+8
12 6 6 12 36 34020 10002 95 (0) 56 (0) 49 (0) 1.1497E+9
14 8 8 14 48 52650 12436 488 (0) 305 (0) 118 (0) 1.1439E+9
16 10 10 15 60 73260 14690 - (4.5) 2077 (0) 1262 (0) 1.0504E+9

5 5 5 2 2 5 12 3225 2104 4 (0) 6 (0) 6 (0) 3.2324E+8
10 4 4 10 24 10750 4208 12 (0) 23 (0) 22 (0) 9.6797E+8
12 6 6 12 36 18900 5562 45 (0) 45 (0) 49 (0) 1.1277E+9
14 8 8 14 48 29250 6919 65 (0) 70 (0) 66 (0) 1.1437E+9
16 10 10 15 60 40700 8170 971 (0) 555 (0) 308 (0) 9.9819E+8

10 5 2 2 5 12 6450 4204 5 (0) 5 (0) 6 (0) 3.2327E+8
10 4 4 10 24 21500 8408 26 (0) 27 (0) 29 (0) 9.6803E+8
12 6 6 12 36 37800 11112 67 (0) 52 (0) 48 (0) 1.1278E+9
14 8 8 14 48 58500 13816 51 (0) 60 (0) 67 (0) 1.1438E+9
16 10 10 15 60 81400 16320 - (2.7) 952 (0) 904 (0) 9.9830E+8

15 5 2 2 5 12 9675 6304 5 (0) 5 (0) 7 (0) 3.4562E+8
10 4 4 10 24 32250 12608 44 (0) 45 (0) 45 (0) 9.6817E+8
12 6 6 12 36 56700 16662 250 (0) 91 (0) 73 (0) 1.1280E+9
14 8 8 14 48 87750 20716 312 (0) 196 (0) 158 (0) 1.1439E+9
16 10 10 15 60 122100 24470 - (4.4) 644 (0) 319 (0) 9.9855E+8
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obtained within the designated time limit, BD-based algorithms 
exhibited significantly superior performance compared to the CPLEX 
algorithm. Additionally, the Accelerated BD algorithm, similar to its 

performance in solving stochastic model test problems, outperformed 
the BD algorithm in solving the robust model. Overall, the CPLEX al
gorithm failed to solve 40 % of the test problems, while the failure rates 

Table 4 
Computational result for robust model.

Test problem Number of variables Number of constraints CPU times (optimality gap) Optimal objective value

|S| |Ξ| ‖ |J| |K| |M| Binary variables Continues variables CPLEX BD Accelerated BD

3 5 5 2 2 5 27 1935 1280 10 (0) 16 (0) 17 (0) 3.6126E+8
10 4 4 10 39 6450 2544 17 (0) 25 (0) 24 (0) 9.9867E+8
12 6 6 12 51 11340 3358 103 (0) 90 (0) 67 (0) 1.1783E+9
14 8 8 14 63 17550 4167 740 (0) 228 (0) 190 (0) 1.1483E+9
16 10 10 15 75 24420 4926 - (6.4) - (3.5) 6749 (0) 1.0493E+9

10 5 2 2 5 42 3870 2555 30 (0) 49 (0) 60 (0) 3.6150E+8
10 4 4 10 54 12900 5079 217 (0) 120 (0) 84 (0) 9.9906E+8
12 6 6 12 66 22680 6703 748 (0) 188 (0) 65 (0) 1.1912E+9
14 8 8 14 78 35100 8327 - (1.5) 780 (0) 301 (0) 1.1696E+9
16 10 10 15 90 48840 9831 - (7.2) - (3.6) - (1.6) -

15 5 2 2 5 57 5805 3830 55 (0) 51 (0) 67 (0) 3.6173E+8
10 4 4 10 69 19350 7614 596 (0) 152 (0) 86 (0) 1.0068E+9
12 6 6 12 81 34020 10048 4776 (0) 1005 (0) 391 (0) 1.1791E+9
14 8 8 14 93 52650 12482 - (14.6) 902 (0) 393 (0) 1.1616E+9
16 10 10 15 105 73260 14736 - (24.1) - (18) - (3.2) -

5 5 5 2 2 5 37 3225 2130 5 (0) 14 (0) 21 (0) 3.4515E+8
10 4 4 10 49 10750 4234 131 (0) 105 (0) 82 (0) 9.9839E+8
12 6 6 12 61 18900 5588 477 (0) 184 (0) 162 (0) 1.1781E+9
14 8 8 14 73 29250 6945 618 (0) 391 (0) 357 (0) 1.1483E+9
16 10 10 15 85 40700 8196 - (9.7) - (9.5) - (3.3) -

10 5 2 2 5 62 6450 4255 152 (0) 140 (0) 144 (0) 3.4537E+8
10 4 4 10 74 21500 8459 558 (0) 255 (0) 120 (0) 9.9808E+8
12 6 6 12 86 37800 11163 - (4.3) 579 (0) 204 (0) 1.1781E+9
14 8 8 14 98 58500 13867 - (11.5) - (5.7) 2620 (0) 1.1489E+9
16 10 10 15 110 81400 16371 - (22) - (11.1) - (3.2) -

15 5 2 2 5 87 9675 6380 104 (0) 70 (0) 64 (0) 3.4562E+8
10 4 4 10 99 32250 12684 2748 (0) 654 (0) 218 (0) 9.9806E+8
12 6 6 12 111 56700 16738 - (9.5) 2789 (0) 740 (0) 1.1777E+9
14 8 8 14 123 87750 20792 - (16) - (10.4) 6380 (0) 1.1494E+9
16 10 10 15 135 122100 24546 - (26.1) - (19.9) - (7.5) -

Table 5 
Computational result for min-max regret model.

Test problem Number of variables Number of constraints CPU times (optimality gap) Optimal objective value

|S| |Ξ| |I| |J| |K| |M| Binary variables Continues variables CPLEX BD Accelerated BD

3 5 5 2 2 5 12 1935 1267 2 (0) 7 (0) 11 (0) 2.1467E+7
10 4 4 10 24 6450 2531 15 (0) 28 (0) 30 (0) 2.8009E+7
12 6 6 12 36 11340 3345 121 (0) 77 (0) 69 (0) 4.0733E+7
14 8 8 14 48 17550 4154 437 (0) 100 (0) 218 (0) 4.9777E+7
16 10 10 15 60 24420 4913 1998 (0) 778 (0) 656 (0) 6.8475E+7

10 5 2 2 5 12 3870 2527 5 (0) 11 (0) 11 (0) 2.1467E+7
10 4 4 10 24 12900 5051 51 (0) 38 (0) 38 (0) 2.8000E+7
12 6 6 12 36 22680 6675 68 (0) 69 (0) 66 (0) 4.0733E+7
14 8 8 14 48 35100 8301 2218 (0) 312 (0) 365 (0) 4.9777E+7
16 10 10 15 60 48840 9803 - (2.6) 3220 (0) 3389 (0) 6.8475E+7

15 5 2 2 5 12 5805 3787 10 (0) 13 (0) 13 (0) 2.1467E+7
10 4 4 10 24 19350 7571 50 (0) 49 (0) 42 (0) 2.8000E+7
12 6 6 12 36 34020 10005 338 (0) 60 (0) 67 (0) 4.0733E+7
14 8 8 14 48 52650 12436 - (3.8) 420 (0) 461 (0) 4.9777E+7
16 10 10 15 60 73260 14693 - (9.2) 4008 (0) 3910 (0) 6.8475E+7

5 5 5 2 2 5 12 3225 2109 10 (0) 15 (0) 15 (0) 2.3293E+7
10 4 4 10 24 10750 4213 50 (0) 39 (0) 55 (0) 2.7700E+7
12 6 6 12 36 18900 5567 224 (0) 117 (0) 122 (0) 4.1401E+7
14 8 8 14 48 29250 6921 1402 (0) 617 (0) 699 (0) 7.0590E+7
16 10 10 15 60 40700 8175 - (3.3) 6621 (0) 4440 (0) 6.8415E+7

10 5 2 2 5 12 6450 4209 10 (0) 15 (0) 17 (0) 2.3293E+7
10 4 4 10 24 21500 8413 412 (0) 50 (0) 61 (0) 2.7700E+7
12 6 6 12 36 37800 11122 1454 (0) 120 (0) 142 (0) 4.1401E+7
14 8 8 14 48 58500 13821 - (4.1) 344 (0) 357 (0) 6.2027E+7
16 10 10 15 60 81400 16325 - (9.5) - (3.8) 7024 (0) 6.8415E+7

15 5 2 2 5 12 9675 6309 10 (0) 17 (0) 17 (0) 2.3293E+7
10 4 4 10 24 32250 12613 398 (0) 55 (0) 58 (0) 2.7700E+7
12 6 6 12 36 56700 16667 2446 (0) 79 (0) 133 (0) 4.1401E+7
14 8 8 14 48 87750 20721 - (9.7) 361 (0) 452 (0) 7.8652E+7
16 10 10 15 60 122100 24475 - (17) - (12.4) 7115 (0) 6.8415E+7
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for the BD and Accelerated BD algorithms were 27 % and 17 %, 
respectively, highlighting the superior efficiency of these two 
approaches.

6.4. Results for min-max regret model

In this section, to evaluate the performance of the CPLEX algorithm 
and the proposed BD-based algorithms in solving the min-max regret 
model, several test problems are solved. The results necessary for 
analyzing the performance of the algorithms are presented in Table 5. 
The columns of this table are structured similarly to those in Table 3.

The solutions reported in Table 5 indicate that the solution time for 
the min-max regret model, similar to the stochastic and robust models, 
increases with the geographical dimensions and the number of sce
narios. Furthermore, the optimal solution for all test problems was ob
tained by at least one algorithm. Notably, the accelerated BD-based 
algorithm successfully solved all test problems, whereas CPLEX and BD 
algorithm failed to solve 27 % and 7 % of the test problems, respectively.

In solving the min-max regret model, both the BD algorithm and the 
accelerated BD algorithm outperformed CPLEX. Moreover, in most test 
problems, the BD algorithm demonstrated better performance than the 
accelerated BD algorithm. However, the accelerated BD algorithm 
showed superior performance in test problems with the largest 
geographical dimensions. Therefore, for large-scale problems, the 
accelerated BD algorithm performs more effectively.

6.5. Models results comparison

This section provides a comparative analysis of strategic decisions 
derived from the three proposed models and evaluates their impact on 
the respective objective functions. Specifically, the strategic decisions 
determined by each model are fixed and subsequently applied to the 
other models to assess the resulting objective function values. In this 
part of the study, "Test problems 1 to 5" correspond to cases with 
increasing geographical scale, as outlined in Table 3. For example, test 
problem 5 involves 16 suppliers, 10 candidate facility locations, and 15 
customers. Each test problem includes 5 uncertainty scenarios and 3 
disruption scenarios.

The results of this analysis are presented in Table 6. The columns in 
Table 6, listed from left to right, represent the type of model under 
analysis, the locations and capacity of biorefineries, the locations and 
capacity of storage facilities, the expected total cost of BSC (the objective 
function value for the stochastic model), the target threshold total cost 
(the objective function value for the robust model), and maximum regret 
(the objective function value for the min-max regret model). For 
example, the value 1.0147E+09 listed under the " Target threshold cost " 
column in the row associated with the "Stochastic model" indicates the 

objective function value of the robust model, calculated using the stra
tegic decisions derived from the stochastic model.

Notably, the objective function values in Table 6 are expressed in 
dollars, and the location indices correspond to the candidate location 
numbers introduced in Section 6.1. The numbers in parentheses next to 
each facility location represent the capacity levels of the facilities, with 
values 1 to 3 indicating low, medium, and high capacities, respectively.

As anticipated, the stochastic model, robust model, and min-max 
regret model achieve the optimal values for expected cost, target 
threshold cost, and max regret, respectively. Given that each model 
exhibits the best performance with respect to its respective criterion, a 
meaningful comparison can only be made between the performance of 
the other models within the context of these specific criteria. This sec
tion is dedicated to conducting such comparative analyses.

The results presented in Table 6 indicate that each of the proposed 
models follows a different approach in determining strategic decisions, 
which naturally leads to varying outcomes. Overall, the min-max regret 
model exhibits better performance, as its solutions show smaller de
viations from the optimal responses provided by the stochastic and 
robust models. This suggests that the min-max regret approach offers a 
more balanced decision-making framework under uncertainty by 
combining cost-effectiveness with acceptable levels of robustness.

The numerical results, averaged across the 5 analyzed test problems, 
reveal that the expected cost in the robust and min-max regret models is 
2.15 % and 0.47 % higher, respectively, than that of the stochastic 
model. This suggests that the stochastic model performs slightly better in 
terms of minimizing average cost. However, when considering perfor
mance under uncertainty, the target threshold cost of the stochastic and 
min-max regret models is 0.94 % and 0.61 % higher, respectively, than 
that of the robust model. This indicates that the robust model is more 
conservative and better suited to handle unfavorable scenarios. More
over, the maximum regret values in the stochastic and robust models are 
10.09 % and 13.54 % greater, respectively, than in the min-max regret 
model. These findings underscore the capability of the min-max regret 
model to provide more balanced and resilient decisions under varying 
uncertainty scenarios.

Overall, the results demonstrate that each modeling approach re
flects a different trade-off between cost-efficiency and robustness. The 
stochastic model provides the most cost-effective solution under known 
probability distributions, while the robust model emphasizes protection 
against unfavorable outcomes by favoring fewer but higher-capacity 
facilities. The min-max regret model, on the other hand, balances 
these two priorities by delivering reliable decisions with moderate costs 
and minimized regret. As such, it offers a practical and resilient alter
native in situations where scenario probabilities are unknown or 
decision-makers aim to mitigate the risk of suboptimal outcomes.

Table 6 
Comparison of tree proposed models.

Problem Open biorefineries 
(Capacity level)

Open storage 
(Capacity level)

Expected cost Target threshold cost Max regret

Test Problem 1 Stochastic model 1(2) 1(2) 3.2469E+08 3.6126E+08 2.1467E+07
Robust model 1(2) 1(2) 3.2469E+08 3.6126E+08 2.1467E+07
Min-max regret model 1(2) 1(2) 3.2469E+08 3.6126E+08 2.1467E+07

Test Problem 2 Stochastic model 1(3) 1(3) 9.8779E+08 1.0147E+09 4.1020E+07
Robust model 1(1),2(1) 1(1),2(1) 9.9734E+08 9.9867E+08 2.9190E+07
Min-max regret model 3(1),4(1) 3(1),4(1) 9.9450E+08 1.0020E+09 2.8009E+07

Test Problem 3 Stochastic model 1(3) 1(3) 1.1495E+09 1.1978E+09 4.0733E+07
Robust model 1(1),5(1) 1(1),5(1) 1.1818E+09 1.1783E+09 5.0816E+07
Min-max regret model 1(3) 1(3) 1.1495E+09 1.1978E+09 4.0733E+07

Test Problem 4 Stochastic model 2(1),4(1),7(1) 2(1),4(1),7(1) 1.1437E+09 1.1558E+09 5.0625E+07
Robust model 1(1),5(1),7(1) 1(1),5(1),7(1) 1.1485E+09 1.1483E+09 5.0606E+07
Min-max regret model 3(1),5(1),7(1) 3(1),5(1),7(1) 1.1529E+09 1.1530E+09 4.9777E+07

Test Problem 5 Stochastic model 1(1),4(1),7(1),8(1) 1(1),4(1),7(1),8(1) 1.0500E+9 1.0574E+9 7.0070E+7
Robust model 5(1),9(3) 5(1),9(3) 1.1188E+9 1.0493E+9 9.3825E+7
Min-max regret model 3(1),5(1),7(1),8(1) 3(1),5(1),7(1),8(1) 1.0591E+9 1.0556E+9 6.8475E+7
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6.6. Analyzing the impact of biomass availability

In this section, the performance of the proposed models is evaluated 
by analyzing the impact of variations in biomass availability. The find
ings from this analysis can serve as a managerial insight for planning and 
expanding biomass cultivation and production. In the conducted sensi
tivity analyses, "test problems 1 to 4" refer to problems ranging from the 
smallest to the largest geographical scales have been introduced in 
Table 3, respectively. For instance, test problem 4 represents a case with 
14 suppliers, 8 candidate locations for facility establishment, and 14 
customers. In these test problems, the number of uncertainty and 
disruption scenarios are set to 5 and 3, respectively.

Fig. 5 illustrates the sensitivity analysis results of the available 
biomass parameter within the stochastic model. In this section, sensi
tivity analyses were conducted on test problems by assuming changes of 
-10 %, -5 %, +5 %, +10 %, and +15 % in the available biomass. As 
depicted in Fig. 5, it is evident that an increase in available biomass 
leads to a reduction in BSC costs. The primary reason for this cost 
reduction is the increased production of biofuels and the decreased 
reliance on imports. In a similar manner, the robust model also dem
onstrates that an increase in the availability of biomass, leading to 
reduced biofuel import costs, results in a decrease in the target threshold 
of the BSC total cost, as illustrated in Fig. 6.

Moreover, in the solutions obtained from the min-max regret model, 
an increase in the available biomass exhibits a notable trend. In the 
examined test problems, a rise in available biomass generally leads to an 
increase in biofuel production. When this higher production is achieved 
through the addition of new facilities or by selecting facilities with 
greater capacity, the result is higher capital investment costs, which in 
turn lead to an increase in the value of min-max regret. In contrast, when 
the additional production is achieved solely due to the increased avail
ability of biomass, without altering the number or capacity of facilities, 
the objective value of the min-max regret model tends to decrease. This 
pattern is clearly illustrated in Fig. 7.

A more detailed analysis of the results indicates that, with the 
exception of Test Problem 1, where the biomass demand is relatively 
low, an increase in biomass availability generally leads to a higher 
overall production capacity. This increase is realized in one of two ways: 
either by keeping the number of selected biorefineries constant while 
assigning them higher capacity levels, or by selecting more biorefineries 
with relatively lower capacities. This outcome reflects the cost- 
effectiveness of domestic biofuel production compared to imports. As 
the biomass availability increase, the models tend to prioritize 

expanding local production, which not only reduces reliance on imports 
but also lowers the total cost of the BSC and enhances system robustness.

7. Managerial insights

The findings reveal that each proposed model results in a distinct 
BSC configuration, shaped by its underlying decision-making logic and 
risk-handling strategy. Therefore, selecting the appropriate model de
pends on the decision-maker’s risk tolerance, operational priorities, and 
the availability of reliable data.

Risk-neutral planners, who can access sufficient historical data and 
estimate the probability distributions of uncertain parameters, may 
favor the stochastic model for its ability to generate cost-effective supply 
chain structures under average conditions. In contrast, risk-averse de
cision-makers, particularly those operating in volatile or disruption- 
prone environments, may prefer the robust model, which ensures 
feasibility at a specified confidence level and minimizes the target 
threshold cost, thereby enhancing system resilience.

Where precise probabilistic information is unavailable or difficult to 
obtain, the min-max regret model provides a balanced solution that 
minimizes the maximum regret across all scenarios. This approach is 
especially appropriate for risk-averse decision-makers who seek cost- 
effective and resilient supply chain designs in the absence of reliable 
data. By incorporating this model alongside stochastic and robust 
counterparts, the framework enables decision-makers to choose a 
method aligned with their risk preferences and data availability.

Furthermore, the sensitivity analysis demonstrates that increasing 
the availability of biomass, whether through geographic diversification 
of suppliers or enhanced domestic cultivation, can significantly reduce 
overall supply chain costs. This is primarily achieved by decreasing 
dependency on costly biofuel imports and increasing local production 
capacity. The benefits of this strategy are particularly evident in larger- 
scale scenarios, where the flexibility to adjust facility capacity or 
establish new sites can lead to enhanced resilience and adaptability.

In practical terms, these insights suggest that investing in local 
biomass cultivation, coupled with choosing a modeling approach 
aligned with the organization’s risk profile, can create more stable and 
efficient supply chains. Policymakers and planners are therefore 
encouraged to consider these factors in long-term infrastructure in
vestments and policy frameworks for sustainable bioenergy 
development.

Fig. 5. The sensitivity of stochastic model’s objective function on biomass availability.
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8. Conclusion

This study developed a comprehensive and resilient framework for 
the design of BSCs under both uncertainty and disruption. To accom
modate different risk attitudes and decision-making preferences, three 
mathematical optimization models were proposed: (1) the stochastic 
model, which aims to minimize the expected total cost by considering 
the probabilistic nature of uncertain parameters; (2) the robust opti
mization model, which minimizes system costs while ensuring feasibility 
across all scenarios within a defined uncertainty set and confidence 
level; and (3) the min-max regret model, which seeks to limit the 
maximum regret associated with not selecting the optimal decision, 
offering a robust strategy when the probability distribution of uncertain 
parameters is unknown.

In this study, both biomass availability and biomass price are treated 
as uncertain parameters to reflect real-world supply and market condi
tions. Recognizing the relationship between biomass availability and its 
market price, a linear pricing function is employed, wherein the biomass 
price increases as availability decreases. To enhance the realism of this 
relationship and capture broader market dynamics, an additional 

uncertainty term, as error function, is incorporated, reflecting the in
fluence of external factors such as demand fluctuations and competition.

To efficiently solve the proposed models, a BD algorithm enhanced 
with acceleration technique was developed to reduce computational 
time and alleviate solution complexity. The framework was validated 
through a real-world case study based on data from Iran, designed to 
assess the simultaneous impact of uncertainty and disruption on the BSC 
network. The computational results confirm the effectiveness of the 
proposed solution method, with the enhanced BD algorithm consistently 
outperforming the CPLEX solver in terms of solution speed. Notably, in 
instances where CPLEX fails to obtain a solution within the time limit, 
the BD algorithm successfully provides high-quality solutions within a 
reasonable computational period.

The results show that each of the proposed models leads to a different 
BSC structure due to its specific decision-making criterion. As a result, 
there is a trade-off between cost efficiency, robustness, and decision 
reliability, making each model suitable for different planning needs and 
levels of uncertainty. The stochastic model proves to be the most cost- 
effective when the probability distributions of uncertain parameters 
are known, while the robust model seeks to ensure operations remain 

Fig. 6. The sensitivity of robust model’s objective function on biomass availability.

Fig. 7. The sensitivity of min-max regret model’s objective function on biomass availability.

M.A. Karimi and H. Neghabi                                                                                                                                                                                                                 Computers and Chemical Engineering 201 (2025) 109267 

16 



viable within a defined confidence level, strengthening supply chain 
resilience, though often requiring higher expected costs. Meanwhile, the 
min-max regret model offers a suitable option for risk-averse decision- 
makers, as it balances cost-effectiveness with resilience, even in the 
absence of precise probabilistic data.

Insights from the sensitivity analyses highlight the strategic impor
tance of increasing biomass availability, which reduces dependence on 
imports, enhances production flexibility, and strengthens system resil
ience. These benefits are especially important in large-scale systems, 
emphasizing the value of increasing domestic biomass production. 
These findings provide actionable guidance for supply chain planners 
aiming to balance cost, resilience, and adaptability in uncertain 
environments.

In the case of future studies, other uncertain parameters can be 
considered for modeling the BSC with proposed models. Parameters 
such as the cost of advertising for the expansion of biofuel consumption 
and its demand, as well as the expansion of alternative fuels and biofuel 
demand, can be formulated simultaneously with proposed models. 
Furthermore, these models can incorporate considerations related to 
sustainability, including social and environmental issues.
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Paulo, H., Barbosa-Póvoa, A.P.F., Relvas, S., 2013. Modeling integrated biorefinery 
supply chains. Comput. (Long Beach Calif) Aided Chem. Eng. 32, 79–84.

Paulo, H., Cardoso-Grilo, T., Relvas, S., Barbosa-Póvoa, A.P., 2017. Designing integrated 
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