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Abstract. In this paper, we extend Jajte’s technique, to study the rate of complete convergence for weighted sequence
of m-NOD random variables. In addition, we make a simulation study to illustrate the asymptotic behavior in the sense
of the rate of complete convergence.
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1 Introduction

Hsu and Robbins [7] introduced the concept of complete convergence in the following way. A sequence
{Xn, n ≥ 1} of random variables is completely convergent (c.c.) to a constant θ if for all ε > 0

∞∑
n=1

P (|Xn − θ| > ε) <∞.

In view of the Borel-Cantelli lemma, the complete convergence to a constant θ implies that Xn → θ almost
surely (a.s.), and therefore complete convergence is a stronger concept than a.s. convergence. Hence the com-
plete convergence is a very important tool in establishing almost sure convergence of sums and weighted sums
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of random variables. Hsu and Robbins [7] proved that the sequence of arithmetic means of i.i.d random vari-
ables converges completely to the expected value if the variance of the summands is finite. Erdős [4] proved
the converse. There are many papers devoted to the study of complete convergence for sums and weighted
sums of independent and dependent random variables and fields (see for example [10] and [15] where further
references may be found).

Let us recall the definition of negative orthant dependence (NOD), which was introduced by Joag-Dev and
Proschan [9] as follows.

Definition 1. A finite collection of random variables X1, . . . , Xn is said to be negatively orthant dependent
(NOD) if

P(X1 > x1, . . . , Xn > xn) ≤
n∏
i=1

P(Xi > xi)

and

P(X1 ≤ x1, . . . , Xn ≤ xn) ≤
n∏
i=1

P(Xi ≤ xi), for any x1, . . . , xn ∈ R.

Inspired by the definition of NOD random variables, we recall the concept ofm-NOD random variables which
was introduced by Wang et al. [18] as follows.

Definition 2. Let m ≥ 1 be a fixed integer. A sequence {Xn, n ≥ 1} of random variables is said to be m-
negatively orthant dependent (m-NOD) if, for any n ≥ 2 and any i1, . . . , in such that |ik − ij | ≥ m for all
1 ≤ k ̸= j ≤ n, we have that Xi1 , . . . , Xin are NOD.

An array {Xni, i ≥ 1, n ≥ 1} of random variables is said to be rowwise m-NOD if, for every n ≥ 1,
{Xni, i ≥ 1} is a sequence of m-NOD random variables. For m = 1, the concept m-NOD random variables
reduces to the so-called NOD random variables. Hence, the concept of m-NOD random variables is a natural
extension of NOD random variables which includes independent random variables and negatively associated
(NA) random variables.

The m-NOD property is preserved under monotonic functions, this fact is stated as the following lemma,
which will be used throughout the paper.

Lemma 1. (cf. [18]) Let {Xn, n ≥ 1} be a sequence of m-NOD random variables. If
{gn(x), n ≥ 1} are all nondecreasing (or nonincreasing) functions, then a sequence of random random
variables {gn(Xn), n ≥ 1} is also m-NOD random sequence.

Jajte [8] studied a large class of summability methods defined as follows: it is said that a sequence
{Xn, n ≥ 1} of random variables is almost surely summable to a random variable X by the method (h, g) if

1

g(n)

n∑
k=1

1

h(k)
Xk → X a.s., n→ ∞.

For a sequence {Xn, n ≥ 1} of i.i.d. random variables Jajte proved that {Xn − EXnI[|Xn| ≤ ψ(n)], n ≥
1} is almost surely summable to 0 by the method (h, g) iff Eψ−1(|X1|) < ∞ (ψ−1(·) is inverse of ψ(·)),
where g, h and ψ(y) = g(y)h(y) are functions satisfying some additional conditions. The most up-to-date
survey on this matter may be found in Fazakas et al. [5], Wang [19], Matuła and Seweryn [11], Shen [14],
Tang [17], Son et al. [16] and Naderi et al. [12] and Naderi et al. [13].

Now we recall the concept of stochastic domination, which will be used in the sequel.
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Definition 3. A sequence {Xn, n ≥ 1} of random variables is said to be stochastically dominated by a random
variable X if there exists a positive constant C such that

P(|Xn| > x) ≤ CP(|X| > x)

for all x ≥ 0 and n ≥ 1.

The next section will be devoted to the study of the rate of complete convergence for weighted m-NOD
random variables in format of method (h, g).

Throughout the paper, let us denote by C a positive constant not depending on n, which may be different
in various places, ⌊.⌋ is an integer part of a number and let I(A) be the indicator function of the set A.

2 Complete convergence

We begin with the assumptions which will be imposed on our weights. Let g : [0,∞) → R and h : [0,∞) →
R be nonnegative functions let ψ(y) = g(y)h(y) and we consider the class of all functions, g(·), h(·) and ψ(·)
which satisfies the following conditions:

(A1) h is nondecreasing and ψ is strictly increasing with ψ([0,∞)) = [0,∞),

(A2) there exist constants a, b > 0, r ≥ 1, α ∈ (1, 2] and a strictly increasing function H(·), such that

ψα(s)

∫ ∞

s

xr−1

ψα(x)
dx ≤ aH(s) + b, for all s > 0,

(A3) there exists a constant C > 0 such that for some α ∈ (1, 2]

n∑
i=1

1

hα(i)
≤ C

n

hα(n)
.

At first we provide some lemmas which will be used in the proofs of our main results which were discussed
in [1] and [2] . The first one is a basic, well known, property of stochastic domination. In the second lemma
we state the Rosenthal-type maximal inequality for m-NOD random variables which may be found in [18].

Lemma 2. Let {Xn, n ≥ 1} be a sequence of random variables which is stochastically dominated by a
random variable X . For any β > 0 and b > 0, the following two statements hold:

E|Xn|βI[|Xn| ≤ b] ≤ C1

[
E|X|βI[|X| ≤ b] + bβP(|X| > b)

]
,

E|Xn|βI[|Xn| > b] ≤ C2E|X|βI[|X| > b],

where C1 and C2 are positive constants. It is also obvious that E(|Xn|β) ≤ CE(|X|β).

Lemma 3. (Rosenthal-type inequality) Let {Xn, n ≥ 1} be a sequence of m-NOD random variables with
EXn = 0 and E|Xn|p < ∞, for some p ≥ 1 and every n ≥ 1. Then there exist positive constants Cm,p and
Dm,p depending only on m and p such that, for every n ≥ m,

E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
p

≤

{
Cm,p

∑n
i=1 E |Xi|p for 1 ≤ p ≤ 2

Dm,p

{∑n
i=1 E |Xi|p +

(∑n
i=1 EX2

i

)p/2} for p > 2
(2.1)
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In the following, we mention one of the basic inequality for the m-NOD random variables in the form of a
lemma.

Lemma 4. Let {Xn, n ≥ 1} be a sequence ofm-NOD random variables. Then there exists a positive constant
C such that, for any x ≥ 0 and all n ≥ 1,(

1− P
(
max
1≤i≤n

|Xk| > x
))2 n∑

i=1

P
(
|Xi| > x

)
≤ C P

(
max
1≤i≤n

|Xi| > x
)
.

Proof The proof will be based on Lemma 1.10 in [20]. LetBi = (|Xi| > x) and βn = 1−P (∪ni=1Bi). Without
loss of generality, assume that βn > 0. Note that {I {Xi > x} − EI {Xi > x} , i ≥ 1} and
{I {Xi < −x} − EI {Xi < −x} , i ≥ 1} are still m-NOD by Lemma 1. From Lemma 3 for p = 2 and Cr
inequality, we get

E

(
n∑
i=1

(IBi
− EIBi

)

)2

= E

(
n∑
i=1

(I{Xi>x} − EI{Xi>x}) + (I{Xi<−x} − EI{Xi<−x})

)2

≤ 2E

(
n∑
i=1

(I{Xi>x} − EI{Xi>x})

)2

+ 2E

(
n∑
i=1

(I{Xi<−x} − EI{Xi<−x})

)2

≤ C

n∑
i=1

P(Bi). (2.2)

By (2.2) and the Cauchy-Schwarz inequality, we can write

n∑
i=1

P(Bi) =

n∑
i=1

P
(
Bi ∩ (∪nj=1Bj)

)
=

n∑
i=1

E
(
IBi

I(∪n
j=1Bj)

)
=

n∑
i=1

E(IBi
− EIBi

)I(∪n
j=1Bj) +

n∑
i=1

EIBi
I(∪n

j=1Bj)

= E

(
n∑
i=1

(IBi
− EIBi

)I(∪n
j=1Bj)

)
+

n∑
i=1

P(Bi)P(∪nj=1Bj)

≤

E

(
n∑
i=1

(IBi
− EIBi

)

)2

EI∪n
j=1Bj

1/2

+ (1− βn)

n∑
i=1

P(Bi)

≤

(
C(1− βn)

βn
βn

n∑
i=1

P(Bi)

)1/2

+ (1− βn)

n∑
i=1

P(Bi)

≤ 1

2

(
C(1− βn)

βn
+ βn

n∑
i=1

P(Bi)

)
+ (1− βn)

n∑
i=1

P(Bi).

Then we get β2n
∑n

i=1 P(Bi) ≤ C(1− βn), this completes the proof.

In the following {Xn, n ≥ 1} is a sequence of m-NOD random variables which is dominated by the ran-
dom variable Y and we will also use the notations X̂i = −ψ(n)I{Xi < −ψ(n)} + XiI{|Xi| ≤ ψ(n)} +
ψ(n)I{Xi > ψ(n)} and m(n, i) = EXiI{|Xi| ≤ ψ(n)}, for each i, n ≥ 1.
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Lemma 5. Let {Xn, n ≥ 1} be a sequence of m-NOD random variables stochastically dominated by a ran-
dom variable Y . Moreover assume that the functions g(·), h(·) and ψ(·) satisfy the conditions (A1) and (A3)
and limn→∞nP(|Y | > ψ(n)) = 0, then

lim
n→∞

1

g(n)

∣∣∣∣∣
n∑
i=1

E(X̂i)−m(n, i))

h(i)

∣∣∣∣∣ = 0.

Proof By (A3), Definition 3 and Hölder’s inequality we get

1

g(n)

∣∣∣∣∣
n∑
i=1

E(X̂i)− E(XiI[|Xi| ≤ ψ(n)])

h(i)

∣∣∣∣∣
≤ 1

g(n)

n∑
i=1

E(ψ(n)I[|Xi| > ψ(n)])

h(i)

=
1

g(n)

n∑
i=1

E(ψ(n)I[|Xi| > ψ(n))

h(i)
= h(n)

n∑
i=1

P(|Xi| > ψ(n)])

h(i)

≤ Ch(n)P(|Y | > ψ(n))

n∑
i=1

1

h(i)

≤ Ch(n)P(|Y | > ψ(n))n
α−1

α

(
n∑
i=1

1

hα(i)

) 1

α

≤ CnP(|Y | > ψ(n)) → 0.

Let us state our main result.

Theorem 1. Let {Xn, n ≥ 1} be a sequence of m-NOD random variables stochastically dominated by a ran-
dom variable Y. Moreover assume that the functions g, h and ψ satisfy the conditions (A1), (A2) and (A3) and
E
(
H(ψ−1(|Y |))

)
<∞. If for some r ≥ 1

E
(
ψ−1(|Y |)

)r
<∞. (2.3)

Then

∞∑
n=1

nr−2P

(∣∣∣∣∣
n∑
i=1

Xi −m(n, i)

h(i)

∣∣∣∣∣ > εg(n)

)
<∞ ∀ε > 0 . (2.4)

Proof For any n ≥ 1, define Sn =
∑n

i=1
Xi−m(n,i)

h(i) and Ŝn =
n∑
i=1

X̂i−m(n,i)
h(i) .

It is easy to see that

{|Sn| > εg(n)} =
{
|Sn| > εg(n), Sn ̸= Ŝn

}
∪
{
|Sn| > εg(n), Sn = Ŝn

}
⊂

{
n⋃
i=1

[|Xi| > ψ(n)]

}
∪
{∣∣∣Ŝn∣∣∣ > εg(n)

}
.
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Then for every ε > 0,

∞∑
n=1

nr−2P (|Sn| > εg(n))

≤
∞∑
n=1

n∑
i=1

nr−2P (|Xi| > ψ(n)) +

∞∑
n=1

nr−2P
(∣∣∣Ŝn∣∣∣ > εg(n)

)
=: I + II.

Now, we prove that the series I and II are finite. SinceXn is stochastically dominated by the random variable
Y, we obtain for r ≥ 1

I =

∞∑
n=1

nr−2
n∑
i=1

P(|Xi| > ψ(n)) ≤ C

∞∑
n=1

nr−2
n∑
i=1

P(|Y | > ψ(n))

= C

∞∑
n=1

nr−1P(|Y | > ψ(n)) = C

∞∑
n=1

nr−1P(ψ−1(|Y |) > n)

≤ C E
(
ψ−1(|Y |)

)r
<∞.

Since E(ψ−1(|Y |)) < ∞, by dominated convergence theorem we can show that limn→∞nP(|Y | >
ψ(n)) = 0, therefore from Lemma 5 and Markov’s inequality, we have

II =

∞∑
n=1

nr−2P

(∣∣∣∣∣
n∑
i=1

X̂i −m(n, i)

h(i)

∣∣∣∣∣ > εg(n)

)

=

∞∑
n=1

nr−2P

(∣∣∣∣∣
n∑
i=1

X̂i − E(X̂i)

h(i)

∣∣∣∣∣+
∣∣∣∣∣
n∑
i=1

E(X̂i)−m(n, i)

h(i)

∣∣∣∣∣ > εg(n)

)

≤
∞∑
n=1

nr−2P

(∣∣∣∣∣
n∑
i=1

X̂i − E(X̂i)

h(i)

∣∣∣∣∣ > ε

2
g(n)

)

≤
∞∑
n=1

nr−2

( ε2)
αgα(n)

E

[∣∣∣∣∣
n∑
i=1

X̂i − E(X̂i)

h(i)

∣∣∣∣∣
α]
.

From (2.1) and Lemma 2, we get
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∞∑
n=1

nr−2

( ε2)
αgα(n)

E

[∣∣∣∣∣
n∑
i=1

X̂i − E(X̂i)

h(i)

∣∣∣∣∣
α]

≤ C

∞∑
n=1

nr−2

gα(n)

n∑
i=1

E
∣∣∣X̂i − E(X̂i)

∣∣∣α
hα(i)

≤ C

∞∑
n=1

nr−2

gα(n)

n∑
i=1

E
∣∣∣X̂i

∣∣∣α
hα(i)

≤ C

∞∑
n=1

nr−2

gα(n)

n∑
i=1

ψα(n)P(|Y | > ψ(n))

hα(i)
+ C

∞∑
n=1

nr−2

gα(n)

n∑
i=1

E|Y |αI[|Y | ≤ ψ(n)]

hα(i)

≤ C

∞∑
n=1

nr−1P(|Y | > ψ(n)) + C

∞∑
n=1

nr−1E|Y |αI[|Y | ≤ ψ(n)

ψα(n)

≤ CE
(
ψ−1(|Y |)

)r
+ C

∞∑
n=1

nr−1E|Y |αI[|Y | ≤ ψ(n)

ψα(n)

= CE
(
ψ−1(|Y |)

)r
+ CE

( ∞∑
n=1

nr−1|Y |αI {|Y | ≤ ψ(n)}
ψα(n)

)

By our assumption, the first part of the last equality is finite. Now, the assumption (A2) allows us to write

∞∑
n=1

nr−1|Y |αI {|Y | ≤ ψ(n)}
ψα(n)

=

⌊ψ−1(|Y |)⌋+1∑
n=1

nr−1|Y |αI {|Y | ≤ ψ(n)}
ψα(n)

+

∞∑
n=⌊ψ−1(|Y |)⌋+2

nr−1|Y |αI {|Y | ≤ ψ(n)}
ψα(n)

≤
⌊ψ−1(|Y |)⌋+1∑

n=1

(⌊
ψ−1(|Y |)

⌋
+ 1
)
r−1 + 2r−1|Y |α

∞∑
n=⌊ψ−1(|Y |)⌋+2

(n− 1)r−1

ψα(n)

≤
(⌊
ψ−1(|Y |)

⌋
+ 1
)
r + C|Y |α

∞∫
ψ−1(|Y |)

xr−1

ψα(n)
dx

≤ 2r(ψ−1(|Y |))r + 2r + C
(
aH(ψ−1(|Y |)) + b

)
which, in the light of (2.3), implies II <∞. The proof is completed.

In what follows we shall use the concept of regularly varying functions (see [3]).

Definition 4. A measurable function U : [a,∞) → (0,∞), a ∈ R, is called regularly varying at infinity with
exponent ρ, denoted as U(·) ∈ RV(ρ), if for all t > 0,

lim
x→∞

U(tx)

U(x)
= tρ.

If ρ = 0 then we say that U is slowly varying at infinity and write U ∈ SV .

Lith. Math. J., X(x), 20xx, July 10, 2025,Author’s Version.
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Theorem 2. Let {Xn, n ≥ 1} be a sequence of identically distributed m-NOD random variables such that
P (|Xk| > x) ∈ RV(ρ). Moreover assume that the functions g, h and ψ satisfy the condition (A1). If

∞∑
n=1

nr−2P

(
max
1≤k≤n

∣∣∣∣∣
k∑
i=1

Xi −m(n, i)

h(i)

∣∣∣∣∣ > εg(n)

)
<∞, ∀ε > 0 (2.5)

then

E
[
ψ−1(|Y |)

]r
<∞ for r ≥ 2. (2.6)

Proof By a similar proof as the proof of Theorem 1 in [12], the desired results can be obtained. Let us recall
that m(n, 1) = EX1I [|X1| ≤ ψ(n)]. Since h(·) is nondecreasing we have

max
1≤k≤n

|Xk −m(n, 1)|
ψ(n)

≤ max
1≤k≤n

1

g(n)

|Xk −m(n, 1)|
h(k)

≤ 2 max
1≤k≤n

1

g(n)
|Sk|.

Therefore

P
(

max
1≤k≤n

|Xk −m(n, 1)| > ψ(n)ε

)
≤ P

(
max
1≤k≤n

|Sk| >
ε

2
g(n)

)
. (2.7)

Because of that |m(n, 1)| ≤ ψ(n), making use of the inequality |x− y| ≥ |x| − |y| for x, y ∈ R we get{
max
1≤k≤n

|Xk| > (ε+ 1)ψ(n)

}
⊂
{

max
1≤k≤n

|Xk| − |m(n, 1)| > εψ(n)

}
⊂
{

max
1≤k≤n

|Xk −m(n, 1)| > εψ(n)

}
, (2.8)

from (2.7) and (2.8), we have

P
(

max
1≤k≤n

|Sk| >
ε

2
g(n)

)
≥ P

(
max
1≤k≤n

|Xk| > (ε+ 1)ψ(n)

)
. (2.9)

It follows immediately that (2.5) implies

P
(

max
1≤k≤n

|Xk| > (ε+ 1)ψ(n)

)
→ 0, as n→ ∞.

Thus, for sufficiently large n

P
(

max
1≤k≤n

|Xk| > (ε+ 1)ψ(n)

)
<

1

2
.

According to Lemma 4 and (2.9) we obtain
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n∑
k=1

P (|Xk| > (ε+ 1)ψ(n)) ≤
C P

(
max
1≤k≤n

|Xk| > (ε+ 1)ψ(n)

)
(
1− P

(
max
1≤k≤n

|Xk| > (ε+ 1)ψ(n)

))2

≤ 4C P
(

max
1≤k≤n

|Xk| > (ε+ 1)ψ(n)

)
(2.10)

≤ 4CP
(

max
1≤k≤n

|Sk| >
(ε+ 1)

2
g(n)

)
.

Also, since P (|Xk| > x) ∈ RV(ρ) we have

P
(
|X1| > (ε+ 1)ψ(n)

)
∼ (ε+ 1)ρ P

(
|X1| > ψ(n)

)
.

Now, by using (2.5) and (2.10), we get

∞∑
n=1

nr−2
n∑
k=1

P (|Xk| > ψ(n)) ∼
∞∑
n=1

nr−2
n∑
k=1

P (|Xk| > (ε+ 1)ψ(n))

=

∞∑
n=1

nr−1P (|X1| > ψ(n)) <∞,

which implies (2.6) and completes the proof.
Let us present some functions satisfying the assumptions (A1)-(A3).

Remark 1. Let us take the power functions h(x) = xp, g(x) = xq and H(x) = xr, then all the requirements
(A1)-(A3) are valid with 0 ≤ αp < 1 and α(p + q) ≥ r. Using Proposition 1.5.10 in [3] we can extend this
example of weights to h(x) = xp and g(x) = xqLp+q(x), where p, q satisfy the above constraints and L(x)
is a slowly varying function.

From this remark we get the following corollary.

Corollary 1. Let {Xn, n ≥ 1} be a sequence of m-NOD random variables stochastically dominated by a
random variable Y and 0 < β ≤ 2. If E|Y |β <∞, then

∞∑
n=1

P

(∣∣∣∣∣
n∑
i=1

Xi − EXiI[|Xi| ≤ n2/β]

∣∣∣∣∣ > εn2/β

)
<∞.

Conversely, if
∑∞

n=1 P
(
max1≤k≤n

∣∣∣∑k
i=1Xi − EXiI[|Xi| ≤ n2/β]

∣∣∣ > εn2/β
)
< ∞ and P (|Xk| > x) ∈

RV(ρ) for k ≥ 1, then E|Y |β <∞.

Proof It is enough, we use the Theorem 1 and Theorem 2 for r = 2, and functions h(x) = 1, g(x) =

x2/β, ψ(x) = x2/β and H(x) = x2.
Now, following Theorem 11.2 of [6] we can restate type the Hsu-Robbins theorem for m-NOD sequences.

Corollary 2. Let {Xn, n ≥ 1} be a sequence of identically distributed m-NOD random variables. If EX = 0
and EX2 <∞, then

∞∑
n=1

P

(∣∣∣∣∣
n∑
k=1

Xk

∣∣∣∣∣ ≥ εn

)
<∞, for all ε > 0.
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Proof To prove, we apply Corollary 1 with β = 2 and we get

1

n

n∑
k=1

(Xk − EXI[|X| ≤ n]) → 0 c.c., n→ ∞,

since EX = 0 and EX2 <∞, by the dominated convergence theorem EXI[|X| ≤ n] → EX = 0 as n→ ∞,
hence , n−1

∑n
k=1 EXI[|X| ≤ n] → 0 as n→ ∞, and we get the conclusion.

3 Simulation study

In this section, we illustrate the efficiency and rate of complete convergence in Theorem 1 through two nu-
merical examples. According to the Remark 1, we set h(n) = np, g(n) = nq and H(x) = xr (where p = 0.5,
q = 1, r ≥ 1, α = 2) in Theorem 1, and for each r = 1, 2, 3, we take the sample size n = 3(1)200.
For each n, we simulate m-NOD random variables X1 = x1, ..., Xn = xn for m = 1 in Example 1 and
m = 2 in Example 2. We then compute sn = 1

nq

∣∣∑n
i=1

xi

ip

∣∣. By repeating this procedure B = 20000

times, we observe the vector
{
S1
n, ..., S

B=20000
n

}
and finally compute Pn = 1

B

B∑
i=1

I{Sin > ε} as an estimation

of P( 1
nq

∣∣∑n
i=1

xi

ip

∣∣ > ε). Now by taking the cumulative sum of nr−2Pn’s and plotting the scatter plots of

(n,
∑n

j=1 n
r−2P( 1

jq

∣∣∣∑j
i=1

xi

ip

∣∣∣ > ε)), we can analyze the behavior of complete convergence.

Example 1. In this example to create an m − NOD sequence of random variables with m = 1 we use of

multivariate normal distribution. For any fixed n ≥ 3, we take a n-dimensional random vector

 X1
...
Xn

 ∼

Nn(0, Σ) where 0 =

 0
...
0


n×1

represents a zero vector and covariance matrix

∑
=



1 + θ2 −θ 0 · · · 0 0 0
−θ 1 + θ2 −θ · · · 0 0 0
0 −θ 1 + θ2 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1 + θ2 −θ
0 0 0 · · · −θ 1 + θ2 −θ
0 0 0 · · · 0 −θ 1 + θ2


n×n

,

where 0 < θ < 1 (we take θ = 0.5). From [9] it is obvious that {Xn, n ≥ 1} is a NOD sequence (m-NOD
with m = 1) and we can see that this sequence is stochastically dominated by the random variable Y where
Y ∼ N(0, 1 + θ2). It is clear that E(H

[
ψ−1(|Y |)

]
) = E(ψ−1(|Y |))r = E(|Y |

r

p+q ) < ∞. Now all the
conditions of Theorem 1 are satisfied and we can easily show that for each n ≥ 3 and 1 ≤ i ≤ n, m(n, i) = 0.
The results of this example are shown in the first part of Figure 1.



... 11

Example 2. In this example, we proceed exactly as in Example 1, with the difference that the covariance matrix
of the multivariate normal distribution will be as

∑
=



1− θ2 0 −θ 0 0 ... 0
0 1− θ2 0 −θ 0 ... 0
−θ 0 1− θ2 0 −θ ... 0

...
...

...
...

...
...

...
0 ... −θ 0 1− θ2 0 −θ
0 ... 0 −θ 0 1− θ2 0
0 ... 0 0 −θ 0 1− θ2


n×n

,

to create an m−NOD sequence of random variables with m = 2. The results of this example are shown in
the second part of Figure 1.

Figure 1.

Figure 1 exhibits the scatter plots of (n,R =
∑n

j=1 n
r−2P( 1

jq

∣∣∣∑j
i=1

xi

ip

∣∣∣ > ε)) for r = 1, 2, 3. It is observed
that R is a increasing function of n but tends to a fixed value and is dominated to it for each r = 1, 2, 3.
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