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1. Introduction
In this work, we are concerned with the following initial and boundary value problem

ug + Au+u+ a(t)(g* Au) + Auy = [P ulnlul, (xt) € Q x RT
0
u(x, ) = a—”(x, £ =0, (x,1) € 0Q x RT (1)
v

u(x,0) = up(x), ui(x,0) =upx), xeQ

where Q C R"(n > 1) is an open-bounded domain with a smooth boundary 6Q, v is
the unit outer normal to 6Q, ug(x), u;(x) are given initial data and g * Au = fot gt —
s) Au(s) ds. The exponent p satisfies
2(n—2

2<p<+4oo ifn<4 2<p<(—4) if n > 5. (2)
The study of plate equations has been extensively explored over the years, owing to their
importance in several areas of physics, particularly in the theories of elasticity within solid
mechanics and continuum mechanics [1].
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For plate models, the pioneering work of Berger [2] can be cited. Numerous significant
solutions have been established for plate equations. For instance, Sugitani and Kawashima
[3] examined the following initial value problem

U — Autt + Azl/l + u; :f(ut), X € Rn, t>0

3)
u(x,0) = up(x), ur(x,0) = uy(x).
The authors established the global existence and optimal decay of solutions by imposing
regularity conditions on the initial data and introducing a set of time-weighted Sobolev
spaces. Liu and Kawashima [4] extended the results in [3] to a semi-linear plate equation
with memory in multiple dimensions (n > 1):

utt+A2u+u+g* Au = f(u),

and proved the global in time existence and optimal decay estimates of solutions. For
further studies related to plate equations, we refer to [5-10].

The memory term g * Au, as discussed in [4, 7, 10], is weaker than the linear frictional
damping term u; in the model (3). This weaker dissipative mechanism is evident in the
decay structure of the solutions.

Liu et al. [11] considered the following initial-boundary value problem with plate
equation

up+ ANutu+gs Au=uf?u, xeQ, t>0

0

u:—u:O’ anQ, t>0 (4)
ov

u(x,0) = up(x), us(x,0) = up(x), x € Q.

The authors proved the local well-posedness of the solutions using the Faedo-Galerkin
method. They established the existence of global solutions and provided an upper bound
estimation for the blow-up time.

Li et al. [12] considered the stabilization of a weak viscoelastic wave equation with
variable coefficients with an interior delay term:

Uy — Au — a(t)(g * Au) = —pu(x,t —7) inQ x (0,00)
u=0 onlyx (0,00)

Ovu —a(t)(g*dy,u) =—Cu; onI' x (0,00)

u(,t — 1) =folx,t — 1) x€Q,

where Au= -3, = %(alj(x)g—;:j), and they proved exponential decay rates for the
energy, which depends on factors, such as the geometry, viscoelastic effects, the strength
of the delay and the intensity of the mechanical boundary damping.

The logarithmic nonlinearity is of significant interest in physics, as it naturally emerges
in various domains, suchas inflationary cosmology, supersymmetric field theories, quan-
tum mechanics and nuclear physics [13, 14].
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Al-Gharabli and Messaoudi [15] considered the plate equation
uy + A%u+ u+ h(u) = uln |u|k.

The authors established the global existence and decay rate of the solution’s energy through
the application of the multiplier method. Al-Gharabli et al. [16] extended the results in [15]
to the following plate equation

t
ug + A*u+u —/ gt — $)A%u(s)ds = uln |u|k.
0

For more works related to plate equations with logarithmic source terms, we refer to
[17-22].
Tahamtani et al. [23] considered the equation

t
Uy — Au+a(t)/ gt =) Au(s)ds+ur +u= ulnlulk,
0

with acoustic boundary and initial conditions. The term o () fot g(t —s)Au(s) ds is called
‘weak viscoelastic’ when it comes with the time-weighted function a(¢), which is con-
sidered as a dissipative term and stabilizes the system. The authors proved a global
existence and general decay of solutions for appropriately chosen initial data. In this regard,
specifically concerning weak viscoelastic equations, we refer to [24, 25].

Motivated by the above mentioned papers, our purpose in this research is to investi-
gate the local well-posedness of solutions to the problem (1) with the kernel g and the
time-weighted function o (see hypothesis (H)) using the Faedo-Galerkin approximation
method and a the contraction mapping principle. We further study the dynamics of solu-
tions, including the global existence and finite time blow-up of solutions for initial data in
the stable set created by the Nehari manifold. Finally, by utilizing the modified concavity
argument, we establish the blow-up of solutions with high initial energy and obtain upper
estimate for the blow-up time (Theorem 2.3). Alongside this, we also provide a lower bound
for the blow-up time.

We generalize the results in [11] in the following directions:

e The major nonlinearity in the governing problem (1) with the nonlinear logarithmic
source term and weak memory term.

e Compared to the existing literature results and [11], this paper address a notable gap in
the investigating the finite time blow-up phenomenon for high initial energy and give
the upper and lower bounds for the blow-up time.

The organization of this paper is as follows. In Section 2, we introduce some notations,
definitions and lemmas that will be used in the sequel. Next, in Section 3, using the Faedo-
Galerkin approximation method and a contraction mapping principle, we prove the local
existence of the solution. Moreover, the global existence result has been established in
Section 4. In Section 5, the finite time blow-up of solutions for high initial energy will
be considered. Finally, the upper and lower bounds of the blow-up times are derived by
combining the concavity method.
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2. Preliminaries

In this section, we present some materials that will be used throughout of this work. We
use the standard Lebesgue space L*(Q)-inner product (-, -) and the Sobolev space H2(Q)

with their usual scalar products and norms, ||¢||H§ = /lI#l3 + | Adll3. By (-, ), we will

represent the duality pairing between Hg (Q) and H2(Q).
To deal with the problem (1), we will make the following hypothesis:
(H) g,a : Rt — R are non-increasing differentiable functions satisfying

t 00
g(0) >0, 1- C%a(t)/ g(s)ds > € > 0, / g(s)ds < 400,
0 0

/
— t

a®>0 Vi>o0, lim —2D _g
t—+oo a(t)

Here, we assume that C; is the optimal embedding constant of HZ(Q) <> H}(Q), i.e.

Cl= sup IVl (5)

16,270 [16112 + || A2

for any ¢ in a Hilbert space H3 ().
We introduce the modified energy, potential energy and Nehari functionals sequentially

t
E(t) = % (nutu;g + lullfe + (g o Vi) () —a() (/0 g0s) ds) ||Vu||§)
1 1
—I—)/Q|u|P1n|u|dx+p||u||§, ©)
t
J(u(t)) = % (Ilullfig +a(t)(go Vu)(t) — a(t) (/0 g(s) dS) IIVullg)
—3/ o In [u] dx + — Jlull %
pJa p
t
I(u(h) = IIMlllzqg + a(t)(g o Vu)(t) — a(t) (/0 g(s) dS) IV ull3
—/ [ulf In |u| dx, (8)
Q
where (g o Vu)(t) = fot gt =9 Vu(t) — Vu(s) ||% ds. By a direct computation, we obtain

B0) = 5l +J(w(0), ©

and

— t
J(u(t) = pz—pz (nun;é +a(t)(go Vu)(t) — a() (/0 g(s) ds) ||Vu||§)

+ l%uuufi + ;uu(t», (10)
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According to Nehari functional, we define the potential well

NT = {u e H3(Q); I(1) > 0},
the complement of potential well

N~ = {u e H(Q); I(1) < 0},
and the Nehari manifold

N = {ue H}(Q)\ {0};I(u) = 0}.

Lemma 2.1: Let u = u(x, t) be the solution of (1), then the energy functional E(t) satisfies
the following inequality

E(1) < —a(g®) IVl — 2t / () ds) 1Vl (1)
=73 g 275 og 2-

Proof: By multiplying the first equation of (1) in u; and integrating it over Q x (0, ¢), we
obtain

t t T
B0+ 5 [ agonvuar+ 3 [ ([ g0 &) 1vuar
< E(0),

forall 0 < t < T, that holds (11) where
1 2 2 1 LT
£©) = 5 (l1lZ, + lollZ,) - E/Q ol n ol dx -+ - o,
and thus the proof is completed. |

We note that —a/(t)(fotg(s) ds)lquII% > 0 (see (H)) maybe caused that E(f) not to be
a non-increasing function. Similar to the methods used in [26] (Remark 1) and [23]
(Lemma 2.1), we can drop out this term from (11) and state the following Lemma. For
details of the proof, see Lemma 2.1 in [23].

Lemma 2.2: Suppose that (H) holds. Then, for (ug,u;) € Hg(Q) x HZ(Q), E(t) is a non-
increasing function.

The following theorem will be used for proving the blow-up result in Section 5.

Theorem 2.3: [27] Assume that w(t) € C*([0, T]) is a positive function, satisfying the
following inequality

py" —aw' +iy'v+By =0, a>1,>07 >0
and y(0) > 0. If

p'(0) > = 7

—1v O
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- 2 ~
/ 1] 2p
(W 0) — HW(O)) > % —1

y (0).
Then

w(t) > 400 as t— T <y "% (0)A7,

~ y 2 B
A? = (a— 1)’y **0) [(w’(o) — NLW(O)) ¥ W(O)} :
a—1 20 — 1
Definition 2.4: For T > 0, a function
u e C([0, T]; H3(Q)) N C'([0, T]; H3 () N C*([0, T]; H())

is called a weak solution of the problem (1) if u(x,0) = uy(x) in Hg (Q), us(x,0) = up(x)
in Hg (), and for t € [0, T], the equality

(s ) + (Au, AB) + (u, @) + a()(g * Au, ) + (Auy, Ag)
= (JulP"*uln|ul, ¢), (12)

holds for any ¢ € Hg (Q).

Furthermore, the solution u can be extended to [0, Tyax) Where Th,y is the maximal exis-
tence time. We say that the solution u is either global when Tpax = +00 or it blows up in
a finite time when T < +00.

3. Local existence

In this section, we use the Faedo-Galerkin approximation method and a Contraction
Mapping Principle to show that the local existence and uniqueness of solutions for
problem (1).

First, we define the space

H = C([0, T}; H (€2)) N C' ([0, T]; H ()
equipped with the norm
2 _ 2 2
I3 = max (Il + CvI )
and establish the following lemma:

Lemma 3.1: Suppose that (H) holds. For (ug, u;1) € Hg(Q) X H(z)(Q) andv € 'H, thereisa
unique solution u € H N C%([0, T]; H=2(Q)) and u; € L*([0, T];Hg (Q)) that solves

ug + ANu4u+a(t)(g* Au) + A%uy = |[vP2vinv|, (xt) e Q x RT
)
(e, t) = 6—“(x, =0, (xf)eoQxR" (13)
V

u(x,0) = up(x), ui(x,0) =uj(x), xe€Q
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Existence. To establish the existence of weak solutions for the problem (13), we use the
Faedo-Galerkin approximations. {wj}jen is an orthogonal basis of the separable space
H(Q).

W = span{wi, wa, ..., wn}, where {w;} is the complete orthogonal system of eigen-
functions of —A in Hé (€2) and ||wj|| =1 for all j, i.e. Awj+ Ajw; = 0, where 1; is the
related eigenvalues in Hj (©). The projection of the initial data on the finite dimensional
subspace W,, is given by

m m
uy = Zajwj, ul' = Z bjwj,
j=1 j=1

where
ul' > up inHY(Q), u' = u; inH(Q), asm — oo.
Let us construct
m
W) = D hjm (£)wj(x) (14)
j=1

forj=1,2,...,m solves the problem

(ugf, wi) + (Au™, Awy) + (U™, wy) + a(t)(g * Au™, wj) + (Auy, Aw))

= (v} *vIn V], w)), (15)
m

u™(x,0) = Zajo — ug strongly as m — o0, (16)
j=1
m

u)" (x,0) = Z bjwj — u; strongly as m — oo. (17)
j=1

Inserting (14) into (15)-(17), we get the following Cauchy problem to the ordinary
differential equation in terms of hj, forj = 1,2,...,m:

(1+ 25,0 + (1 + AD)hjm (1) = Aja (D@ * him) = (VP 2vIn|v], w)),

(18)
hjm(0) = aj, h;m(O) =b.
Based on the theory of ordinary differential equations, Peano’s theorem, for each m, there
is t;y > 0such that the problem (18) admits a solution hj, € C?[0, t,,] and, therefore, u,, €
C*([0, tm]; H3 ().
We show t,, = T, and the local solution is uniformly bounded independently of m and
t. Multiplying (15) by h]’.m(t) and sum from j = 1 to m, we obtain

14 1117, + U™ 12, + a(B)(g o Vu™)(t) — a(t) /t (s)ds ) IVu™ |3
2dr ' Hp H§ 0 S 2

(a(t)(g o Vu™) (1) + o/ (t)(g o Vu™)(t) — a(t)g(t)IIVu™||3

N[ =
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t
—a’ (1) (/ g(s) ds) IIVumII%) +/ V[P~ 2v1n [v|ul dx. (19)
0 Q

Integrating (19) on (0, t), using Sobolev embedding (5) and (H), yields

" 15 + €llu™ I + a(t)(g o Vi™)(1)
0 0
t T
< —/ (a(r)g(r)+a’(r)/ g(s)ds) dr || V™3
0 0
t
+ IIMTIIf{% + IIu(')”IIf{g + 2/ / [v[P~2y1n [v|ul' dx dz.
0 JQ

From the fact that —fot(oc(z')g(r) + a’(r)fof g(s)ds)dr <0, it follows from above
inequality that

1172 + €lu™ 2, + a (D) (g o Vu™)(t)
0 0
t
< ||u§"||%{2 + ||U6n||i,z +2/ / [v[P~2vIn |v]u" dxdz. (20)
0 0 0 Q

To estimate the last term in the right-hand side of (20), we use the inequalities

1 1
p_ll < —y —H] < —
1”7 Indllo<p<1 < (o= 1) ¢ Inglp>1 < »
as follows
P~ 2vIn|v] |13 = / [v[P~2v1In |v]|* dx + / [[vIP~2v1n |v]|* dx
{xeQ,|v| <1} {xeQy|v|>1}
1Q 1 2(p—144)
<
= Gep— 102 " (e
Q 2(p—1+u)
2(p—=14u) 2(p—14w)
< , 21
RRCTES e @

where C;g:iz; is the optimal embedding constant of H2(Q) < L>?~1%1)(Q). Here, we
choose 0 < u < -2 — (p—1).

By (21), Holder inequality and Young’s inequality into (20), we deduce

1 I + U™ I + (D) (g 0 V™) (1)
4

t 2 272
2 2 -2 P P
< IIu'lnlng + IIMS"IIHg +2/ [IIIVIP vin vl - IIuTIIZ] dz
0

2

»
Tp—1 201 2
< [|u™|? u™?, +2 P VP 2y In |12 + — W3] dr
< 1||H§+|| 0||H3+ ; » vl [vIll; +p” 2 15

2 my2
< WM5n + llu
< luy ||H§ [l2eg ||H3
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1 :

2(p—1+1) =
t C
p—1 [Q] 2p—1+4) | 2(p—1+ 1
+2/ ( 4 2T 2t +1’>””T”% dr
0

p \(elp-1) (ep)? Hg

2 2
< 'l + gl + Bt

25 1 $
+ 2 [ 1y + el + e o Vo] de, )

P
2(p—14u) 2(p—1)
p—1 Q| n CZ(p—1+,u) ”V”2(p—1+/1) !
P (e(p — 1))? (eu)? Hj

Here we used the fact that v € H.

where

[NTaS]

p=2

K1) = uf'll2, + w117, 4+ a(t)(g o Vu™)(1),
0 0
K1(0) = w15 + Nl 1.

Then, from (22), we have

25t
Ki(t) < K1(0) + pt+ ?‘/o ’Cf(T)dT.

We define
P

2 [t »
/Cz(t):lCl(O)—I—,b’t—i—z?/O K?(r)dr,

2
thus, Ky (1) = 2 (K () — ) and Ky (t) < Ka(t) implies

4
2
>

I TN

K5(t) < 7/C22 O+p< 5 (’Cz(f) + —(Pﬁ)P)
p

K2(0) = K41(0).

We readily obtain

2-p

K1(t) < Ka(h) < (/cfif’ ©0) -2 z;zzé’t) . (23)

where 161(0) = IC,(0) + %(pﬁ)%. The right-hand side of (23) blow-up as ¢t 7 p%z%
2 2
K7 (0). Butfor T = 7227 GFDETT (0), we get

K1(0).

2
—2

1l + Cllu™ I + o (D) (g o Vu™)(¢) < 27
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Consequently, for large m, this implies

2 .
sup (114125 + €12, + a(®)(g o V™) (®)) < 272 K1 (0). (24)
te[0,tm] 0 0

Hence, the approximation solution (see (14)) is uniformly bounded in m on the inter-
val [0,T] and hj, can extend in [0, T]. Combining this fact and the problem (18)

admits a unique solution hjy, € C?[0, T] and, therefore, u™ € C2([0, T]; Hg (Q)). It follows
from (24) that

(u"™)men  is uniformly bounded in L°(0, T; Hg (), (25)
25
()" )men  is uniformly bounded in L*°(0, T; Hé Q)),

therefore, there is a subsequence {u™} (denote by {u™} again) and pass to the limit as
m— o0,
u™ — u  weakly* in L*°(0, T; Hg(Q))

(26)
uy' > u  weakly* in L*°(0, T; H(z)(Q)),

u™ — u  weakly in L*(0, T; HZ (Q)) a7
27
U™ — u  weakly in L*(0, T; H3 (Q)).

Using (24), (25), So by Lions-Aubin’s Lemma (see [28], Corollary 4), we get 4 and u}"
approach strongly into u and u; in C([0, T]; L*(Q2)), therefore, 4™ (0) and u"(0) make
sense i.e. u™(0) — u(0), ¥ (0) — u;(0) in L?(Q). Next, multiply (15) by ® Coo(0,T),
integrate on (0, T) and pass to the limit as m — oo, we get for any w; € W,

T
—/ (ur + Aug, w;@') dt
0
T
=/ [(IVIP"ZvlnIVI—u,w,-CD)—(Au,ijq))
0

—a(?) /Otg(t —5)(Vu(s), Vw;D) ds] dt.

This yields uy € L*(0, T; H2(Q)) and since u¢ € L*(0, T; HZ(Q)), so we have u; €
C(0, T; H2(Q)).
(Uniqueness). 41 and u; are strong solutions. Then, the equation

(1 — u2)ur + A% (w1 — u2) + (w1 — wg) + a(D)(g * A(ur — 1)) + A% (uy — ur) = 0
in Q x R share homogenous initial and boundary conditions. By (20), we have
[l (1 — ”Z)t”ilg + Clu — u2||f{§ +a(t)(go V(ur —u))(t) <0

i.e. u; — up = 0 and the proof is complete.
Now, based on the Lemma 3.1 and the Contraction Mapping Principle, we are going to
show that the problem (1) has a unique local solution.
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Theorem 3.2: Suppose that (H) holds. For (ug, u1) € Hg(Q) X Hg(Q), problem (1) admits
a unique solution u in [0, T] for some T > 0.

Proof: For any T > 0, let us define the convex closed subset of H by
Mr = {u e H;|lulln < M}
We cover M by a ball with radius M > 0 and denote
By(Mr) = {ve Mr;|vln < M},

provided that M is large and T is small. We denote u = S(v) which is the unique solution
of the problem (13) that corresponds to v, so S : M1 — M. We shall see that the fixed
point theorem (see [[29], Corolary (3.6.2)]) can be applied to S : Byr(M 1) — By (Mr).
We show that the map S is contractive, which implies S(Bp (M 1)) C Byr(Mr).

Multiplying the first equation in problem (13) by uy, integrating on Q x (0, t) and using
(H), we obtain

luell o + €llull?, + a()(g o Vu)(t)
0 0
t
< llwrllFe + lluoll?, +2/ / [vIP v In |v|u, dxdr, (28)
0 0 0 Q

where u = S(v) is the corresponding solution to problem (1) for fix v € M. By similar
arguments in (21) and (22), it follows from (28)

el + Cllul + a(®)(g o Vi (@)

2 , 28 2\5
< iy + ol + 5 [ (el a
0

p
2(p—1+u) 2(-1)
n 2% /f p—1 (9] + Cz(p—1+/1) ”V||2(p—1+,u) de
o | P \@—D)2 " (en)? H;

P
21 (! 5
< NurlZg + ol + BuT + 7/0 [l + Nl + a (@) g o V(@) | dr,
(29)
where

p
2(p—1+p) 2(-1)
_ C
plp—1 |€2] 2p=140) ) 2(p=1+4)

p -2 " (e

According to (23) and from the fact that

2 2 2 2
K1(0) = Ka(0) = 1417, + Nug' 2 <l + ol

(see (24)), by simple computation, it follows from (29)
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luell? + Ellull?, + a()(g o Vu)(D)
0 0

2
200-2) .

)| T

2 2
< llunlle + ol + | Ay +

Choose T > 0 sufficiently small and take M > 0 large enough so that

P2
22-2 . P M?
Ki) | T< >

Bm +

Il + lluoll? M
1 H(% 0 H% = 2 )

we get
luell? + Ellull7 + a () (g o Vu)(t) < M?
0 0
implies ||u|l3y < M so S(M1) C M.

Finally, we show that for vi, v, € Mr and u; = S(v1), up = S(v2), we have |lu; —
uz|ln < kllvi — 2|l for 0 <k < 1. To do this, taking z = u; — u, which solves

zy+ Nz +z+a(t)(g* Az) + A’zy = [Py In vy

— P2 In ], (xf) € Q x RT

0 (30)
2(x,f) = a—z(x, =0 (xf)edQxRF
%
z(x,0) = z;(x,0) =0, xe Q.
Multiply (30) by z;, integrate on Q x (0, ) and use (H), we obtain
lzillfp + €lizliFe + a(D(g 0 V2)(0)
t
< 2/ / (I P2y In|v1| — [v2P 2w, In v2l) z; dxdz. (31)
0 Ja

The mean-value theorem yields
l2li25 + izl + (g o V)0

t t
< 2/ / IEP™2 (v — v2)z, dxde +2(p — 1)/ / IEP2In |E|(v1 — v2)z, dx de
0 Q 0 Q

=& +6&, (32)

where |&] = [0vy + (1 — )| < |vil+ 2], 0<6 < 1.
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Since vi, v, € M7, according to Cauchy’s inequality, Holder inequality and Sobolev
embedding, we obtain

t
p—2
< . — .
& <2 [ WG = vl g e
t =2
<2 [l Il I = vl 2 < Becladi
0 2 n—4

t
< C%Mz(P—Z)T”VI - VZ”%‘[ +/ ”ZT”%dT
n= 0

< C o M|y — s 13,
n—4

t
+ [ (120 + 012l + g0 Vo)) dr, 63)

and
t
& <20p - 1)/ |||§|p_21n|§|||g vi = Vzll% Nz ll2dz
0 =

t t
<@-1 (/ |||6|P‘21n|é|||2;-||vl—vZ||22n4dr+/ ||zt||%dr). (34)
0 n—= 0

Since p — 2 < -2 — 1, there is 4 > 0 such that, 2(p — 2+ u) < 2. By similar argu-
ments in (21), we deduce

5 Ci =1+ C
_ €| (=144 5 (p=1+p)
ISP 1 < co—0F " et Il + 2l oy
e(p — eu
C%(P—lﬂt) 3
< |€2] _ 4 %(P_l-:'u)M%(p—l-i-ﬂ)
(e(p—1))2 (ept)>
= P
Applying this to (34), we get
&2 < (p = DCas fuTlvi — wall3,
t
+ 0= [ Izl + el + a0@o V@) dr. (39
0

Combining (32), (33) and (35), we get
lztllFp + €llzls + a(®)(g o V2)(E)

< Cau ((p = D+ M) Ty = m
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+p-1 /0 t (121 + elizl; + a (g o Va)(0)) dr,
Gronwall’s inequality gives
lztll2, + ClzlZ, + at) g o V)0
< T (Ca (0= DAur + M) T) oy = vl
Choose T sufficiently small and take
k = e~ DT (C% ((p —D)fm + MZ(P_Z)) T) <1,

implies that S is a contract map in M. Thus, using the Contraction Mapping Principle,
we conclude that problem (1) admits a unique solution. |

4. Global existence

In this section, we are concerned with the existence of a global weak solution to problem

(1).
ue C([O) Tmax)§ H(% (Q)) N Cl([o) Tmax); Hg (Q)) N CZ([OJ Tmax); H_Z(Q))
holds for any T € (0, Trmax) and Timax = 400 gives the solution exists globally.

Lemma 4.1: Suppose that (H) holds. For (u, u1) € Nt x H3(Q) satisfy

ptu—2

cﬁiﬁj ( - 2)€E( )) < (ep)?t, u > 0. (36)

Then, u = u(t) € Nt forall t € [0, Tmax)-

Proof: Since u(t) is a weak solution of problem (1), so u € C({[0, Tmax);Hé(Q)) implies
I(u) € C[0, Tax)- On the contrary, we suppose that there is f5 € (0, Trnax) such that
u(ty) € N. For ¢ > 0 sufficiently small there exists ¢, such that u(t;) e N7,0 <ty < t,
and

I(u(t,)) = —pe < 0. (37)
Applying the functional J(u(t)) (see (10)), using Sobolev embedding (5) and (H) yields

J(u(t,) = —I(u(te)) o (nu(u)u +a(t:)(go Vi(t:)

fe 2 1 p
—alty) ( /0 ¢(s) ds) ||Vu(rg)||2) + ol

(p—)

2_

(e - (38)
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We recall Lemma 2.2 and (9) and (37) implies

e T
2p
P Ea 4

2p
(p—2)¢

J(u(ts)) + &)

<

(p

<

(E(0) +¢). (39)

By I(u(t)) (see (8)), we get

te
I(u(t:)) = lute) I + a(t:) (g 0 Vi) (t) — au(te) ( /O g(s) ds) IVu(t) 13

- / ()P In fu(t,)] dx
Q

> (e = [ 1) e . (40)
From ¢ #In¢ < j forany ¢ > 1, choose 0 < u < % — ptoguarantees p + y < %

and use (39), we obtain

1
P n )i < e 157

(ep)?
chtH Pzt

= (ZZ)’Z (luelZs) * )1,
Coin (2 e

where Cgiz is the optimal embedding constant of Hg (Q) < LPT#(Q). Thanks to the
hypothesis (36) and ¢ > 0 sufficiently small

p=2+pu
2

_ 2 o)+ s)) < (42)

P+
Cot (
-2t

(ep)?

Hence, (40)-(42) shows that I(u(t;)) > 0 contradicts with (37). Therefore, u(t) € N'* for
all £ € [0, Tonay). m

Theorem 4.2: Suppose that exponent p satisfies (2) and (H) holds. Then, for (ug,u1) €
N x HZ(Q) the local weak solution u got in Theorem 3.2 exists globally.
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Proof: Let u(t), t € [0, Tmax) be the local weak solution of the problem (1). To show
Tmax = 100, it is enough to find a constant C > 0 such that

sup (el + EllulZ, + a((g o Vi) (1)) < C. (43)
te[0,Tmax) 0 0

Because of Lemma 2.2, Sobolev embedding (5), (9), (10) and (H), we obtain
1o 1 1
E(0) > Ellurlng + I—)I(u(t)) + F“u”p

p—2

T (uuu;,g +a(t)go Vu)®H —a) (/Otg(S) ds) ||Vu||§)

P , p 2 2
> 55,7 mintl 2o (Il + i, + 6 (0@ 0 Vi ().

Take C~! = ZI;E(%) min{1, I%}. Then, (43) holds and consequently, the solution is globa.l.

5. Finite time blow-up for high initial energy

In this section, we are concerned with the finite time blow-up criterion for the problem
(1) at a high initial energy level. We give a pivotal Lemma, which can be used to prove our
results. The crucial Lemma is as follows:

Lemma 5.1: Suppose that (H) holds and ¢ > ﬁ Let (ug, u1) € H}(Q) x H3 (Q) satisfy
0 < E(0) < %((uo,ul) + (Aug, Aur)), 7 > 0. (44)

Then, the map {t = (u, ur) + (Au, Auy)} is strictly increasing on [0, Tmax), when
u € C([0, Tmax)s Hy () N C' ([0, Tmax)s Hy () N C*([0, Tmax)s H>(Q)).

Proof: We used the idea of [18, 30] to prove this Lemma. Using directly the first equation
of problem (1), one has

d
g (W u0) + (Au, Aup))

= lluell3 + (, uee) + 1 Auell3 + (Au, Auy)

t
=l = Iy +a) | [ 6= 9Tu)(Vu(o) = Vu) dsax

t
a) ( / ¢ ds) IVall2 + / P In | dx. (45)
0 Q

Using the full advantage of Young’s inequality, we get

/ /tg(t —)Vu(@®)(Vu(s) — Vu(t)) dsdx
QJo
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> —% (/Otg(s) ds) | Vull3 — ‘Z(go Vu)(t). (46)

Combining (45) and (46) with the definition of modified energy functional E(t) (see (6)),
(H) and Sobolev embedding (5), it follows that

d
q; (wud) + (Aw, Aup))

- (54) i + (1) i+ oo v

- (’2-’ + % - 1) a(t) (/Otg(s) ds) IVull3 — pE(®)
> (B n) ity + | (5 -1)+ (B 5 - 1) €]y
+Eatgo Vi - pE)
(nutqu Flul + a((go Vi) - —E(t))
(nutqu Il - 7E<t)) (7)
where y = min{p+2,(p —2) + (p+ 5 1 —2)(£ — 1), £}. One can easily verify that since

£ > = 1)z,then(p 2)+(p+2 —2)({’—1)>0
Let

N|‘< N|‘<

F(t) = (uyur) + (Au, Auy) — gE(t). (48)
Thanks to the Schwarz’s inequality, yields

F(t) = % ((, ur) + (Au, Auy)) — fE'(f)

14 2 2 2p
> 3 (||Ut||H3 + ”“”Hg - 7E(t))

Vv

Y ((u) ut) + (AL{, Aut) - gE(t))
=y F(t).
Applying Gronwall’s inequality in the above inequality, we get
E(t) > ¢ tF(O)) t € [0, Tmax) (49)

where F(0) = (ug, u1) + (Aug, Auy) — gE(O), and this completes the proof. |

Lemma 5.2: Suppose that (H) and (44) hold. Let (ug, u1) € N~ x Hé(Q) and € > (p—+)2
Then, the weak solution u = u(t) of the problem (1) belongs to N~ for all t € [0, Tyax)-
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Proof: We assume that 1y € N ~. Because of Lemma 5.1, we have u = u(t) ¢ N~ for all
t € [0, Trax)- In other words, u is a global solution of the problem (1) and E(¢) > 0 for all
t € [0, Tmax). We use the contradiction method to reach this conclusion.

With the continuity of I(u), there would be a first time #; € [0, Tynax) such that u =
u(ty) € N and I(u(t)) < 0 for t € [0, ;). From the definition of F(t) (see (48)) which is
strictly increasing on [0, t;) and according to its continuity and monotonicity, we have

F(t) > eyt |:(U(), ul) =+ (Auo, Aul) - gE(O):| >0, te [0, tl), (50)

where (44) has been used.
From Lemma 2.2, E(t;) < E(0). Using (9), (10), (H) and Sobolev embedding (5), we get

1 1 1
E(©) > ~llurt)la + I—)I(u(tl)) + oz luly

ILz 2 _ i 2
+ 2 ||“(f1)||H§ +a(t1)(go Vu)(t) —a(h) ; g ds ) IVu(t)l;
>y (%””t(tl)”?{g + %HMH)H%@)
2 7 ((,u) + (Au, Auy)), (51)

where y = min{l, (p—p2)€}. Using (48), (50) and (51) yields

Q) = 7 (F(n) + %E(n))

>y e |:(M0, ur) + (Aug, Auy) — EE(O):|
Y
> 5 e’ " [(ug, u1) + (Aug, Auy)]

= 5 o) + (B, A,
that contradict with (44) and the proof is completed. ]

Now we can state and prove the blow-up result and obtain an upper bound for the blow-up
time.

Theorem 5.3: Assume that (H) holds and let (ug,u1) € N~ x Hg(Q). If E(0) >
272 (p+2)lluoll? 5

TDO and € > (P—;l)z’ then the weak solution u = u(t) of problem (1) blows up at

a finite time T* = Tyax such that

4lluol,
T* S 0

2y (p+2)lluol2, ]
(p —2) | (uo, u1) + (Aug, Auy) — Tz)o
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Proof: Define the following auxiliary function
w(t) = ||u||f{g >0, forallt e [0, Tmax)- (52)
We have

y'(6) = 2, ue) + 2(Au, Auy). (53)

From the first equation of the problem (1) and energy functional (6), we get

w' (6) = 20|luell3 + 2@, ure) + 21| Augl|3 + 2(Au, Auyr)

p+6 p—2
=l + == Nl
+2 -2 !
4P : a(t)(go Vu)(t) — P 5 a(t) (/ g(s) ds) IV ull3
0

+ 2a (t)/g/otg(t —)Vu(®)(Vu(s) — Vu(t)) dsdx

-2 2
+I’T/ |u|P1n|u|dx+p; lully — (p + 2)E(). (54)
Q

Using Young’s inequality (46), Sobolev embedding (5) and (H), from (54), we obtain

” p+6 Pp—-2)¢ 1-¢
ROEE: ||ut||;3+[ - }||u||§,5+a<t)(gow)(t)
-2 +2
+222 /Q e e+ 22l — o+ ) (55)

By the definitions of F(t) and Nehari functional I(u(t)) (c.f. (48) and (8)), from (55), we
get

y(p+2) [F(t) — ((u, ur) + (Au, Auy))] + 1%6”%”?{3

-2 (-1 p-—
+(@ )’ 4P

y' () >

2 -2
-1 +"T) lulZ

2 2p
+ (1%2 + 1) a(t)(go Vu)(t) — P ; 2I(u(t))
> 2D 154y () + (A Aup))]
+ ‘%ﬂmtn?{g L > 2 L(u(e), (56)

—L has been used.

1
where € > W > P2_3
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According to (49) in Lemma 5.1, Lemma 5.2 (u € N ™) and (53), it holds from (56) that

y'(t) > —

y(p+2)
T (t)+—|| t||Hz (57)

Using Schwartz inequality and Young’s inequality, we get from (53) that

(' () = 4(((w, up) + (A, Aup))?
= 4(u, ut)2 + 4(Au, Aut)2 + 8(u, u) (Au, Auy)
< 4(llull3lluel3 + I Aul3l Aucl3 + 2(ull2ll Aull2) (lurll2 | Aull2))
< 4(llull3Nuells + I AullZ Awell3 + ul3l Auell3 + i3] Aull3)
=4 (luel3 + I Auel3) (lull3 + [ Aull3)

2 2
= 4l 1l

= 4|l p (0). (58)

Multiplying (57) by w (¢) and using (58), yields

y(y"(t) > —

2
1%}3 Ov'®+ 2w (59)

Finally, the hypotheses of Theorem 2.3 are fulfilled with

. _p+t6 _ y(p+2) 5
a="— y——zp , p=0,

272 (p+2)lluo ||2

and if we choose E(0) > 172(}’—2)

then (44) yields

4y (p+2)

w'(0) = 2(ug, u1) + 2(Aug, Auy) > 2 —2)

v (0),

and, therefore, solution u of the problem (1) blows up at T* with the following upper bound

4lluol,
T*S 0

27 p+)lwoll?, ]
(P —2) | (uo, 1) + (Auo, Atiy) — —5——"

and the proof of Theorem 5.3 is completed. |

We now proceed to establish a lower bound for the blow-up time, which is according to
Theorem 5.3.
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Theorem 5.4: Assume that (H) holds and € > ﬁ Let (ug,u1) e N~ x Hg (Q). Then
the blow-up time T* = Tmax has the following lower bound

+o0o 1
dy < T%,
/;{(0) Gpti-l 4y 4+ 4 )=

where u > 0, and
1 2 2
70 =2 (Il + i )

& Cf* Cz(p+”_1) (E)P-Hl—l

= 2u2e? o+n=1 \ 7
&= 12|
2T 22— 1)

Cy+ is the optimal embedding constant of H}(€2) <> L (Q) and Cr(p+u—1) is the optimal
embedding constant of H} (Q) <> Lre+r=1(Q) for any positive constants r and r* such that
1, 1

I4l=1
Proof: Define
1
2

t
x () = (wm%+wm@{+m0@ovwarﬂuo(ég@dﬂnwmﬁ,

and so using (6), we have y (t) = E(t) + Il) Jo 1ulP In |u| dx — Pl—zllullg.
Taking the derivative of y (t) with respect to t and using Lemma 2.2, we obtain

X’(t):E’(t)—l—/ |ulP~2uu; In |u| dx
Q
5/ |ulP =2 uuy In |u| dx. (60)
Q

On the other hand, recalling the definition of F(#) in (48), (H), Sobolev embedding (5),
Holder and Young inequalities, we get

¢
CF(t) = £(uy up) + C(Aw, Ay — LE()
Y
< Cllullzlluellz + Cll Aull2 |l Augll2

< —lugll? +QMV
= "HHE T o A

1 2 1 2 1 ‘ 2
fiwmﬁ+ﬂw%+50—amﬂg@mywwz

1 2 1 2 1 ! d 2
< 5 lulig + 5 €+ Dluly = Sa@ ( | g0 ds) Va3
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+5a(d(go V)
<(C1+ 1)y (). (61)

The conclusion of Lemma 5.1 indicates that functional F(#) exponentially grows ; therefore,
(61) yields

lim y(t) = +o0. (62)
t—>T*~

Now, from (60), Holder, Young’s inequality and Sobolev embedding HS(Q) — L (Q)
with constant C,«, we obtain

x'(t) < / |ulP~*uuy In Ju] dx
Q

=/ |u|p_2uutln|u|dx+/ [ulP~2uu; In |u| dx
{xeQ:|u|>1} {xeQ:|u| <1}
1 1
< — |4 | dx + |ug] dx
el JixeQilul>1) e(p—1) JixeQiu <1}
1 _ 1€
< —NulP T gl + llutll2
ep e(p—1)
o _ Q] 1
< — up+” 1 Au S EE— —||U 2
< [l1ul Il Auell2 + 22— 1) + 2|| el
C2, 1 1Q 1
< —r up+'u_l 2 — Au 2 S E—— —||U 2. 63
_M%JII |“+J|tb+kthy+J“M (63)

r(p —1) < r*, then we could choose x > 0 such that r(p — 1+ u) < r*. Using the
embedding HS Q) &> Lr(Pﬂ‘_l)(Q) with constant Cy(p4,—1) and (61), we deduce

1) < 225’;2 M AWZT ) 4 AwB + RZJ)L_'DZ + 5l
< 255’;2 T aE €+ ) P Al + WQ_'DZ
+ 35l
< &x @ () + &, (64)
where & = z%cfgjgj; @G+ )T &G =

Integrating (64) over [0, t], yields

t /
/ + )—{1(5) ds < t,
0 Sx@PFTL+ x(9) + &
let t — T* and thanks to the (62), thus we get

(65)

“+00 1
dy < T%,
/X(O) EptE—l 4y 4+ 4 4
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with y (0) = %( [l ||é§ + |luq IIE(Z)). Therefore, (65) provide a lower bound for the blow-up

time and proof of Theorem 5.4 is completed. |
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