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A B S T R A C T

Effective management of water resources and preservation of aquatic ecosystems are pressing global challenges. 
With the ongoing impacts of climate change and the increasing demands on water resources, there is a growing 
need for targeted restoration of degraded inland waters and those experiencing declining levels. To achieve 
meaningful outcomes, it is essential to establish measures for evaluation the effectiveness of restoration efforts 
accurately. Such metrics enable clear insights into restoration progress and guide the adaptive management 
needed for sustainable water resource management. This study addresses critical gaps in current methodologies 
by introducing two novel, tensor-based approaches to assess inland water restoration programs. Using the 
Normalized Difference Water Index (NDWI) derived from satellite imagery, these methods significantly enhance 
spatio-temporal analysis and visualization of water level dynamics, providing more precise insights into resto
ration impacts over time. The methods are applied to evaluate the effectiveness of the project connecting the 
Zarineh River to the Simineh River, one of the restoration program of Urmia Lake. The analysis using two newly 
introduced operators reveals significant water level patterns in the southeastern part of Lake Urmia. First, a 
substantial increase in water coverage was observed on the left side of the study area in 10 of the 12 months 
following restoration, indicating the program’s effectiveness. Conversely, a reduction in water presence on the 
right side was noted during 5 months, suggesting areas that need further intervention. These findings demon
strate the value of these methods for tracking water level variations and assessing restoration outcomes 
effectively.

1. Introduction

Restoring inland waters that are degraded or face reduced water 
levels is essential for multiple reasons. Ecologically, revitalized water 
bodies are crucial in maintaining balance and supporting biodiversity 
(Brown and Swan, 2010). The restored water sources economically 
ensure a reliable water supply for agriculture, industry, and human 
consumption (Scanlon et al., 2017). They also help mitigate the impacts 
of climate change by reducing the risk of floods and droughts (Schlosser 
et al., 2014). In the social aspect, the inland waters restoration is vital for 
providing safe drinking water, reducing health risks from waterborne 
diseases, and enhancing the quality of life by supporting recreational 
activities and cultural practices (Bowler et al., 2010). While restoration 
efforts are expanding globally, there remains a critical need to assess 
their effectiveness using reliable indicators and there are various 

indicators to quantify and measure restoration projects. Automated 
Water Extraction Index (AWEI) (Tourian et al., 2015), Tasseled Cap 
Wetness Index (TCW) and Augmented normalized difference water 
index (ANDWI) (Chen et al., 2024) are indicators that help in monitoring 
the temporal and spatial changes in lake areas, which is applicable tool 
for restoration projects management. However, conventional indicators 
often fall short in capturing the full complexity of restoration impacts, 
highlighting the need for more robust, multi-dimensional assessment 
approaches.

A wide range of approaches has been used to evaluate restoration 
program effectiveness, including ecological indicators, Post-Project As
sessments (PPAs) (Downs & Kondolf, 2002), and integrated frameworks 
that combine hydrological, geomorphological, and socio-economic 
metrics (Woolsey et al., 2007; Roni et al., 2008; 2018). Specific to 
Lake Urmia, several studies have explored restoration outcomes through 
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hydrological modeling and comparative lake assessments. Nikraftar 
et al. (2021) evaluated three nearby lakes with similar rainfall patterns 
to assess the effectiveness of Urmia’s restoration programs. Esmailzadeh 
et al. (2023) examined the institutional roles and policy shortcomings in 
the Urmia Lake restoration process. In addition to field-based ecological 
and socio-environmental approaches, remote sensing has become a 
critical tool for restoration assessment, particularly in large or inacces
sible areas. Satellite imagery provides consistent and repeatable obser
vations over time, enabling the monitoring of surface water dynamics at 
regional and basin-wide scales. For example, Saemian et al. (2020)
utilized a combination of remote sensing and ground-based data
—including GRACE gravity observations and climate recovery indica
tors—to evaluate changes in Lake Urmia’s water level, surface area, and 
volume. While remote sensing provides a powerful platform for large- 
scale analysis, most existing approaches rely on aggregated indicators 
or isolated time steps, offering limited temporal resolution and failing to 
capture the full spatio-temporal complexity of restoration processes. 
This is evident in studies that used spatio-temporal analysis to examine 
inland water bodies in different regions, such as China (Li et al., 2015), 
Egypt (Mohsen et al., 2018), and Romania (Șerban et al., 2022). These 
limitations underscore the need for methods that can jointly analyze 
spatial patterns and their temporal evolution—an analytical gap 
addressed in this study through the proposed tensor-based framework.

The NDWI is a widely used spectral index for detecting and delin
eating surface water bodies using satellite imagery. It offers a straight
forward method for classifying pixels into water and non-water 
categories based on their spectral reflectance, making it a foundational 
tool for large-scale hydrological monitoring (Ali et al., 2019; Özelkan, 
2020). Several studies have explored enhancements to this method to 
improve its accuracy. For instance, Qiao et al. (2012) proposed an 
adaptive NDWI-based extraction method to better distinguish water 
features in complex environments, while Rokni et al. (2015) and Khan 
(2022) demonstrated its utility in monitoring temporal fluctuations in 
inland lakes. NDWI and its modifications, such as the Modified NDWI 
(MNDWI) introduced by Xu (2006), have been applied across a wide 
range of satellite platforms. Yang et al. (2017) evaluated Sentinel-2A’s 
performance for urban surface water extraction using NDWI at high 
spatial resolution. Özelkan (2020) analyzed the performance of three 
NDWI variants using Landsat-8 for Atikhisar Dam Lake in Turkey. 
Extensive research has been conducted by integrating this index with 
other analogous indices, yielding significant insights and advancements 
in the field. For instance, Ashok et al. (2021) combined NDWI with the 
Normalized Difference Vegetation Index (NDVI) to monitor seasonal 
changes in the Renuka wetland of India using satellite imagery. Naher 
et al. (2024) similarly employed both MNDWI and NDVI to assess the 
dry and wet season dynamics of Dau Tieng Lake in Vietnam. Addition
ally, numerous studies have been carried out to compare this index with 
other indices, aiming to evaluate its performance and effectiveness. 
Malahlela (2016) introduced the Simple Water Index (SWI) and 
compared its performance to MNDWI and the Automated Water 
Extraction Index (AWEI) using Landsat 8 data across South African 
ecosystems. Liu et al. (2023) conducted a large-scale evaluation of ten 
different indices including NDWI3, MNDWI, AWEI, MBWI, WRI, and 
others across two study regions in China, assessing their effectiveness for 
surface water extraction under varied conditions. However, even with 
these advancements, most NDWI-based methods reduce spatio-temporal 
analysis to simplified classifications or trend estimates, underscoring the 
need for a more structured framework capable of capturing dynamic, 
localized changes in restoration contexts.

Despite the widespread use of satellite imagery and NDWI-based 
techniques for monitoring surface water in restoration programs, most 
existing approaches remain limited in their ability to fully analyze the 
spatio-temporal dynamics of inland water systems. This limitation is 
particularly critical when evaluating restoration efforts in dynamic 
inland water systems, where both spatial variability and temporal trends 
must be jointly assessed. Furthermore, few studies offer a structured 

framework that enables pixel-level analysis of change over time while 
retaining the multidimensional integrity of satellite data. To address 
these challenges, this study introduces two novel methods for evaluating 
and analyzing inland water restoration programs using tensor-based 
approaches, employing the NDWI derived from satellite imagery. 
These methods offer several key advantages: (1) they allow for the 
simultaneous detection of long-term trends and short-term fluctuations, 
helping to distinguish between climate-driven variability and 
restoration-induced impacts; (2) by standardizing data into consistent 
tensor representations, the approach enhances comparability across 
time periods, regions, and even different lakes, supporting transferable 
insights for broader restoration management; (3) the use of intuitive 
tensor operators translates complex data into accessible visual and nu
merical formats, improving interpretability for decision-makers; and (4) 
the method improves reliability by minimizing the influence of noise 
from cloud cover or anomalous pixels through multi-dimensional ag
gregation. Two novel operators are proposed within the tensor space: 
the Percentage Operator, which calculates the proportion of time each 
pixel is classified as water-covered, providing a clear and interpretable 
view of water presence over time at specific locations; and the Subtract 
Operator, which captures temporal shifts in water coverage by 
comparing pixel values across time steps, offering an alternative 
perspective on dynamic changes. Additionally, in the case of Lake Urmia 
one of the largest saltwater lakes in the world rehabilitation efforts have 
been the focus of several studies; however, few have examined the 
spatially and temporally specific effects of individual water transfer 
projects, such as the connection between the Zarrineh river to Simineh 
river, which played a key role in the lake’s restoration strategy. By 
preserving the full spatio-temporal structure of satellite imagery, the 
tensor-based method enhances both the accuracy and interpretability of 
inland water monitoring, offering a novel and scalable framework for 
assessing restoration outcomes and informing practical water resource 
management.

2. Method

This section presents the methodology developed in this study, 
focusing on applying tensor-based approaches to monitor and analyze 
inland water restoration. The methodology consists of three main 
components; 1) an overview of the tensor concept; 2) the design of new 
tensor operators for water level analysis; 3) and the definition of 
scenario-based methods to interpret and visualize the results.

2.1. Tensor concept

A tensor is a multidimensional array that extends a matrix (a two- 
dimensional table) to multiple dimensions. Tensors are especially used 
in fields requiring complex data structures, such as spatio-temporal 
analysis, where data must be organized across different dimensions 
like location, time, and additional variables. For instance, the observed 
abundance of a species can vary across specific locations and times, 
forming a three-dimensional (third-order) tensor with dimensions rep
resenting species, geographical locations, and time points (Frelat et al., 
2017). In tensor based spatio-temporal analysis, researchers investigate 
temporal changes in phenomena across different spatial positions, 
enabling efficient storage and handling of multidimensional data. This 
structured approach captures spatial and temporal attributes within a 
unified model and retains the data’s original multidimensional structure 
(Kharaghani et al., 2023). By preserving the spatial and temporal 
characteristics of the phenomena being studied, tensors enable a deeper 
analysis without losing valuable context (Frelat et al., 2017).

Remote sensing images often contain multiple bands that span 
spectral and spatial dimensions, capturing details like texture and scale. 
When collected over time, these images are organized into a multi- 
temporal tensor that adds time as an additional dimension (Huang 
et al., 2019). Mathematically, tensors extend the familiar constructs of 
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scalars, vectors, and matrices are zero, one and two order tensors, 
respectively. Fig. 1 illustrates the various mathematical structures.

Fig. 1(a) illustrates a scalar, a single numerical value representing a 
single data. As a zero-order tensor, it is the simplest data form, con
taining only a single piece of information. Fig. 1(b) shows a vector, an 
ordered array of values representing a first-order tensor. Fig. 1(c) depicts 
a matrix, a two-dimensional array representing a second-order tensor. In 
geospatial analysis, matrices are often used for raster data, where each 
cell corresponds to a geographic location and holds a value that repre
sents a characteristic of that location. Matrices are essential for modeling 
continuous spatial data and enable operations like filtering and spatial 
transformations. Fig. 1(d) presents a 3D tensor, which extends the ma
trix structure into three dimensions, making it a third-order tensor. In 
geospatial analysis, third order tensors are used for data that vary across 
two spatial dimensions with an additional dimension such as time. A 3D 
tensor, for example, stores a time series of satellite images, where each 
layer represents the same area at different times. This structure is 
particularly valuable for analyzing temporal changes and multi-spectral 
satellite data, as it preserves spectral and spatial information, like 
texture and scale, without altering the original data.

The order of a tensor refers to its number of dimensions. First-order 
tensors, or vectors, are indicated by bold lowercase letters (e.g., x), 
while second-order tensors, or matrices, are denoted by bold uppercase 
letters, such as X. Tensors of higher order (third or beyond) are repre
sented using bold Euler script letters; for instance, χ. The element at 
index i in vector x is represented as xi, the element at indices (i,j) in 
matrix X as xij, and the element at indices (i,j,k) in the third-order tensor 
χ as xijk. Slices, or two-dimensional sections of a tensor, are produced by 
holding one index constant and letting the other two vary, creating 
matrices within the larger tensor. Fig. 2 illustrates the types of these 
slices.

Fig. 2 illustrates the concept of horizontal, lateral, and frontal slices 
within a third-order tensor χ, demonstrating how complex data is broken 
down for detailed analysis. These slices are critical for understanding 
data structure and behavior across different dimensions. In Fig. 2(a), 
horizontal slices are indicated by χ i::. Fig. 2(b) presents the lateral slices, 
represented by χ: j:. Fig. 2(c) displays the frontal slices, shown as χ: :k. 
This slicing method provides insights into temporal changes, showing 
how the data evolves over time at specific geographic locations (Kolda 
and Bader, 2009). In tensor analysis, fibers are analogous to the rows 
and columns of matrices but extend into higher dimensions. Each fiber 
represents a set of values corresponding to a fixed combination of 
indices in the tensor. Essentially, fibers facilitate the analysis of data 
across various dimensions or axes. This concept is further illustrated in 
Fig. 3, which delineates the different types of fibers.

Fig. 3 provides a visual representation of different types of fibers in a 

3D tensor. In third-order tensors, fibers are categorized into three forms: 
column fibers, row fibers, and tube fibers. In Fig. 3(a), the column fiber 
is illustrated, represented by χ: jk. Fig. 3(b) shows the row fiber, indicated 
by χ i:k. Finally, and Fig. 3(c) presents the tube fiber, denoted as χ i j:. 
These fibers are fundamental components in tensor operations, as they 
show the different ways in which data is accessed, manipulated, and 
analyzed across three-dimensional arrays. Comprehending these fibers 
is important for tasks such as tensor decomposition, data fusion, and 
multi-way analysis. In the context of tensor analysis, fibers are akin to 
the rows and columns found in matrices but extend into higher di
mensions. This characteristic makes fibers particularly useful for dis
secting and grasping complex datasets by focusing on specific 
dimensions. By examining horizontal, lateral, and frontal slices, as 
shown in Fig. 3, researchers gain an extensive view of how data varies 
spatially and temporally (Kolda and Bader, 2009).

2.2. Tensor operators

Tensor operators are crucial for analyzing multidimensional datasets 
within tensor structures, especially for spatio-temporal applications like 
monitoring inland water bodies and assessing the effectiveness of 
restoration programs. In this study, new tensor operators are introduced 
to enhance the spatio-temporal analysis of water level changes using the 
Binary Normalized Difference Water Index (BNDWI), specifically the 
percentage operator and the subtract operator.

The percentage operator determines the percentage of time that a 
specific location remains covered by water. By summing the binary 
NDWI values for each pixel and converting these sums into percentages 
provides a quantitative measure of water presence over time, revealing 
patterns of consistent water cover or seasonal fluctuations.

The subtract operator, shows temporal variations by subtracting the 
BNDWI values for each pixel over time, providing information about 
surface changes. This method enables tracking of increases or decreases 
in water coverage, providing a dynamic view of inland water level 
changes over time.

By integrating these novel tensor operators and visualization tech
niques, the dynamics of inland water bodies are extensively monitored 
and analyzed. This comprehensive approach delivers valuable insights 
into water body dynamics, supporting informed decisions for inland 
water restoration and management programs. A binary NDWI index was 
created by applying a threshold to the NDWI values in Equation (1). 
Pixels with NDWI values above the threshold were classified as water 
(value = 1), while those below were classified as non-water (value = 0). 

BNDWI =
{

1ifNDWI ≥ a
0ifNDWI < a (1) 

Fig. 1. Various mathematical structures (a) scalar, (b) vector, (c) matrix, and (d) 3D tensor.
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In Equation (1), the variable a serves as a threshold value used to 
distinguish between water and non-water areas within the satellite 
image based on the NDWI.

Equation (2) shows the process of summing binary NDWI values over 
time. Equation (3) shows the process of converting these sums into 
percentages:

For each pixel (i.j) 

SBNDWIij =
∑K

k=1
BNDWIijk (2) 

where BNDWIijk is the binary NDWI value at voxel (i.j.k), and K is the 
total number of time points. 

PSBNDWIij =
SBNDWIij

K
× 100 (3) 

where PSBNDWIij represents the percentage of time the pixel (i.j) is 
covered by water. Equation (4) shows the process of Subtracting BNDWI 
values over time that subtracting the BNDWI values for each pixel over 
time, providing information about surface changes

For each pixel (i.j) 

DNDWIijk = BNDWI2ijk − BNDWI1ijk (4) 

where DNDWIij represents the change in BNDWI1 value from 
BNDWI2.

These equations quantify the water presence over time and detect 
changes in water coverage, enhancing the analysis of inland water 

bodies.

3. Data and area

In this section, the data sources and the selected study area are 
introduced to demonstrate the effectiveness of the newly developed 
operators. A comprehensive dataset was utilized to precisely analyze 
water level fluctuations in Urmia Lake and assess the impact of resto
ration efforts. This dataset includes satellite-derived water indices 
NDWI, which, due to high spatial resolution and extensive geographic 
coverage, allow for pixel-by-pixel examination of spatio-temporal 
changes in water levels. Satellite images were sourced and processed 
through Google Earth Engine (GEE), a cloud-based platform designed for 
large-scale geospatial data analysis. GEE offers access to an extensive 
archive of satellite imagery and geospatial datasets and is supported by 
robust computational resources, enabling complex environmental 
research and detailed Earth systems analysis.

3.1. NDWI preparation

The NDWI has been specifically developed to identify and extract 
open water features in remote sensing imagery. This index not only 
enhances the visibility of water bodies but also simultaneously reduces 
the influence of soil and vegetation features. Using image processing 
software, open water areas a rapidly and accurately calculated in sat
ellite images.

Water extents classified from satellite images served as validation 

Fig. 2. Types of slices (a) Horizontal slices χ i::, (b) Lateral slices χ: j: and (c) Frontal slices χ: :k.

Fig. 3. Illustration of (a) Column χ: jk, (b) Row χ i:k, and (c) Tube Fibers χ ij: in a 3D Tensor.
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sources in this study. Specifically, the distribution of surface water with 
high spatial and temporal resolution was detected using the MYD09GA 
product from the MODIS (MODerate-resolution Imaging Spectroradi
ometer) instrument. Satellite images, which is derived from the Aqua 
satellite, was downloaded from GEE platform for the period of 
September 2014 to September 2016. This product provided atmo
spherically corrected surface reflectance data with a spatial resolution of 
500 m and a temporal resolution of 32 days.

The NDWI was calculated for each image using Equation (5): 

NDWI =
G − NIR
G + NIR

(5) 

where G is the reflectance in the green band, and NIR is the reflectance 
in the near-infrared band.

The NDWI values range as follows (Helali et al., 2022) (Table 1):
According to this classification, this study has binarized NDWI using 

a threshold of 0.2.

3.2. Case study

Analyzing an area that has experienced substantial water level 
fluctuations and targeted restoration programs enables a practical 
assessment of the operators’ effectiveness and offers valuable insights 
into their capability to capture and quantify spatial changes accurately 
over time. Consequently, to demonstrate the efficacy of the newly 
introduced operators, Urmia Lake, the largest inland lake in Iran and one 
of the largest saltwater lakes in the world, was selected as the study area. 
Located between West Azerbaijan and East Azerbaijan provinces, Urmia 
Lake, spanned approximately 6,000 square kilometers in 1998, making 
it the 25th largest lake globally by surface area. Its basin supports a 
critical and diverse aquatic ecosystem, home to approximately eight 
hundred species of birds, mammals, and inland plants, including the 
unique Artemia sp. Due to these unique natural and ecological features, 
the lake and its adjacent wetlands have been recognized as a National 
Park, a Ramsar Site, and a UNESCO Biosphere Reserve. Urmia Lake has 
largely dried up over the last two decades, resulting in socio- 
environmental consequences. As depicted in Fig. 5, the water level of 
the lake and its surrounding areas has been below the critical level of 
1,274.67 m above sea level (Abbaspour and Nazaridoust, 2007). This 
decline poses significant challenges for both the ecological health of the 
lake and the socio-economic stability of the surrounding region. In 
response to this, the Iranian government established the ten-year Urmia 
Lake Restoration Program (ULRP) (Shadkam, 2017). The ULRP has 
defined its main mission as the restoration of Urmia Lake, with the goal 
of increasing the lake’s water level to reach ecological equilibrium by 
2023. The target ecological water level of 1274.67 m above sea level was 
established based on the water quality conditions (240 g/L of NaCl) 
necessary to support the brine shrimp Artemia (Abbaspour and Naza
ridoust, 2007). To restore the lake, the ULRP has determined three main 
phases within a ten-year program (Fig. 4).

Stabilization (2014–2016): Aimed at maintaining a minimum lake 
water level and mitigating adverse effects of the dried parts of the lake, 
such as dust storms. Restoration (2016–2022): Focused on meeting the 
entire lake water demand and gradually increasing the lake level. Final 
Restoration (2023): Aimed at stabilizing the water level at the ecological 
level. The hydrology of the Urmia Basin is characterized by 17 perma
nent rivers, 12 seasonal rivers, and 39 floodways. Simineh River and 

Zarineh River alone contributing 41.6 % of the total surface water inflow 
into the lake. One of the most significant restoration programs for Urmia 
Lake has been the connection of the Zarrineh River to the Simineh River. 
Due to the significance of this program, the present study evaluates the 
effectiveness of connecting the Zarrineh River to the Simineh River to 
demonstrate the utility of the newly introduced operators (Fig. 5).

For this purpose, the southeastern part of Urmia Lake has been 
examined, as analyzing this area provides deeper insights into the 
impact of the connection project on increasing the lake’s water level and 
improving its environmental conditions. The project to connect the 
Zarineh and Simineh rivers is designed to enhance water inflow, stabi
lize water levels, and improve water quality in this critical region. By 
redirecting and optimizing the flow of these rivers, the initiative aims to 
restore the natural hydrological balance, support wetland ecosystems, 
and ensure sustainable water availability.

4. Results

In this section, to demonstrate the application of the two methods 
presented in this study, the effectiveness of the project connecting Zar
ineh River to Simineh River for the restoration of Urmia Lake was 
evaluated. The southeastern part of Urmia Lake was analyzed using 
monthly satellite images from September 2014 to September 2016. The 
revitalization program’s impact was assessed across two distinct time 
periods: September 2014 to September 2015, representing the year 
before its implementation, and September 2015 to September 2016, 
representing the year after. This comparative framework allowed for a 
focused analysis of the program’s effectiveness. Monthly analyses 
facilitated a detailed examination of temporal variations, providing in
sights into the program’s role in enhancing water levels in Urmia Lake. 
According to Equation (1), a binary system is used to indicate the 
presence or absence of water in each pixel, providing a detailed tem
poral analysis across the study area. BNDWI layers are organized into a 
spatio-temporal tensor, with each layer corresponding to one of the 24 
months in the specified period. Pixels with a value of 1 indicate the 
presence of water, while pixels with a value of 0 indicate the absence of 
water. By providing a clear binary indication of water presence, it helps 
quickly identify areas of concern and evaluate the effectiveness of 
interventions.

4.1. Percentage operator

Using Equation (2) and Equation (3) along with monthly satellite 
data, PSBNDWI matrices were constructed to analyze changes. Fig. 6
illustrates these matrices, showing the percentage of water presence for 
each pixel over two periods.

Fig. 6(a) illustrates the period from September 2014 to September 
2015, before the start of the restoration program connecting the Zarineh 
River to the Simineh River. Fig. 6(b) represents the period from 
September 2015 to September 2016, after the start of the restoration 
program. This figure provides a spatial distribution of how frequently 
each pixel was covered by water across the study area during these two 
periods. By quantifying the water coverage for each pixel, this figure 
offers valuable insights into the stability and reliability of water re
sources in the region. For instance, a pixel showing 100 % indicates 
water presence throughout all studied months, whereas if SBNDWI 
values indicated water presence for 9 out of the 12 months, converting 
this to PBNDWI reveals that water was present 75 % of the time at this 
location. Areas with higher percentages are indicated by warm colors, 
while areas with lower percentages are represented by cool colors. The 
derived water presence percentages offer a clear visual and quantitative 
representation of changes in the lake’s water coverage over the specified 
periods and is an important metric for comprehending the persistence 
and reliability of water bodies over time. By subtracting the water 
presence percentage from the first period (Fig. 6(a)) from the percentage 
in the second period (Fig. 6(b)) Fig. 7 is specifically designed to visualize 

Table 1 
NDWI values range.

Description NDWI values range

water surface 0.2 to 1
flooding, humidity 0.0 to 0.2
moderate drought, non-aqueous surfaces − 0.3 to 0.0
drought, non-aqueous surfaces − 1 to − 0.3
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the change in water presence between the two time periods.
This subtraction provides a clear, pixel-by-pixel representation of 

how water coverage has changed over time, particularly in response to 
the restoration program. The colors represent the difference in the 
percentage of water presence for each pixel between the two time 

periods. Regions where the percentage of water presence has increased 
after the restoration program (shown by warm colors) are considered 
areas where the program has been effective. Conversely, areas where the 
water presence has decreased (shown by cool colors) still require tar
geted interventions to improve water availability. These areas represent 

Fig. 4. Mean Annual Water Level Trends and Restoration Roadmap for Urmia Lake (Zarghami, 2011).

Fig. 5. Urmia lake basin and Southeastern part of Urmia Lake.

Fig. 6. PSBNDWI Matrices Using SBNDWI (a) Pre-restoration period)2014–2015(, (b) Post-restoration period)2015–2016(.
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temporary water bodies that have dried up or regions where water 
management strategies need to be re-evaluated. The figure provides an 
extensive view of how water resources have changed across the region.

4.2. Subtract operator

Using Equation (4) and monthly satellite data from September 2014 
onward for two years, DBNDWI matrices were constructed to analyze 
changes in the southeastern part of Urmia Lake. These matrices provide 
a detailed scientific analysis of the impact of the restoration program 
connecting the Zarineh River and Simineh River, which began in 
September 2015. The year preceding the start of the restoration program 
serves as the baseline for all subsequent comparisons. This baseline 
period, unaffected by the restoration efforts, shares similar conditions 
with the year in which the restoration program was implemented. Fig. 8
illustrates these matrices, depicting water level variations over time. The 
water level difference for each pixel was calculated by subtracting the 
BNDWI values from the corresponding month of the previous year. For 
example, the September 2015 matrix (8a) was created by subtracting the 
BNDWI values from September 2014. This method was applied to each 
subsequent month for instance, December 2015 was compared with 
December 2014, January 2016 with January 2015, and so forth. This 
approach accounts for seasonal variations and helps assess the specific 
impact of the restoration program.

The subtraction of BNDWI values results in three possible outcomes: 
− 1, 0, and 1. Blue-colored pixels represent a value of − 1, indicating 
areas where water was present before the restoration program but dis
appeared afterward. Conversely, red-colored pixels represent a value of 
1, indicating locations where water appeared after the restoration pro
gram, even though no water was present in these areas before the pro
gram’s implementation. The white pixels indicate a value of 0, 
signifying that the BNDWI values for these areas remained consistent 
during both time periods analyzed. Fig. 8(a) and 8(b) predominantly 
show the presence of blue pixels, indicating that, the study area expe
rienced a greater presence of water in the months of September and 
October 2014 compared to the corresponding months in 2015, prior to 
the implementation of the restoration program. From Fig. 8(c) onward, 
red pixels appear, representing the emergence of water in new areas, due 
to the impact of the restoration project. Additionally, Fig. 8 shows that, 
in the right section of the study area, continuous water presence is 
indicated for October 2014 [Fig. 8(b)], November 2014 [Fig. 8(c)], 
December 2014 [Fig. 8(d)], January 2015 [Fig. 8(e)], February 2015 
[Fig. 8(f)], and March 2015 [Fig. 8(g)]. This sustained water presence 
during the period prior to the initiation of the restoration program 
contrasts with the conditions observed from April 2015 onward, where 

the area became nearly dry. Notably, even following the implementation 
of the restoration program, the water did not return to these parts of the 
area. In Fig. 8(j), (k), and (l), a more distinct pattern of increased water 
presence in the area following the reclamation program is observed. The 
month-by-month comparison enabled by these matrices is important for 
identifying trends in water level changes over time, which are key to 
showing the effects of the ongoing restoration efforts in the Urmia Lake 
region. The detailed spatial representation of water level differences 
across multiple months helps in identifying specific areas that benefit 
most from the program and those that are still be struggling. These 
analyses are important for water resource management, as they show 
the areas of success and those needing further intervention. By 
comparing monthly water levels from September 2014 to September 
2016, these figure provide an extensive view of the program’s impact, 
aiding researchers and policymakers in making informed decisions to 
restore and manage the Urmia Sea’s water resources effectively.

5. Discussion

The analysis of results derived from the matrices created by the two 
new operators introduced in this study reveals two distinct patterns, 
demonstrating both the utility and effectiveness of these methods in 
monitoring water level variations and assessing the impact of restoration 
programs.

5.1. Pattern 1: increased water presence post-restoration in certain areas

In the first pattern, both the Percentage and Subtract operators 
indicate a substantial increase in water cover on the left side of the study 
area over time (Fig. 9). This trend highlights the positive impact of 
restoration program focused on water replenishment and improved 
water accessibility. The increase is particularly notable, underscoring 
the effectiveness of the water transfer project from the Zarinh river to 
the Simineh River, and serves as a quantitative measure of the project’s 
success.

To further validate that the observed changes in water presence were 
not solely the result of natural climatic variability, precipitation data 
from the CHIRPS dataset was analyzed for the southeastern part of Lake 
Urmia over the period from September 2014 to September 2016. The 
analysis was consistent with the NDWI-based timeframes used in this 
study. Specifically, the precipitation difference was calculated by sub
tracting the monthly precipitation values of the pre-restoration year 
(September 2014–September 2015) from those of the post-restoration 
year (September 2015–September 2016). Fig. 10 illustrates the result
ing bar chart of monthly precipitation differences.

The precipitation analysis for the southeastern part of Lake Urmia 
(Fig. 10) revealed considerable month-to-month variability rather than a 
consistent upward trend. While March and April showed relatively high 
positive anomalies (+0.929 and +1.072 mm, respectively), most other 
months exhibited only modest increases or even declines in rainfall. The 
anomaly observed in April may explain the localized and short-lived 
increase in water presence detected in the eastern part of the study 
area. However, nearly half of the year’s months experienced lower or 
negligible precipitation compared to the pre-restoration period, indi
cating no systematic climatic driver for the observed hydrological im
provements. Moreover, the spatial distribution of increased water 
presence aligns closely with known restoration interventions. The most 
significant changes were concentrated in the western and central zones 
of the study area—particularly near the confluence of the Zarrineh river 
and Simineh river, which are major inflow sources directly targeted by 
the restoration program. If increased water presence were primarily 
driven by precipitation, a more uniform distribution of change across 
the entire lake, including the eastern basin, would be expected. The 
absence of such a pattern further supports the conclusion that the 
observed hydrological recovery is predominantly the result of targeted 
water management interventions rather than natural climatic 

Fig. 7. Difference in Water Presence Percentages.
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Fig. 8. Monthly DBNDWI Matrices Showing Water Level Differences by Subtracting Values from the Corresponding Month of the Previous Year, (a): September 
(2015–2014), (b): October (2015–2014), (c): November (2015–2014), (d): December (2015–2014), (e): January (2016–2015), (f): February (2016–2015), (g): March 
(2016–2015), (h): April (2016–2015, (i): May (2016–2015), (j): June (2016–2015), (k): July (2016–2015), (l): August (2016–2015).
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variability.

5.2. Pattern 2: decreased water presence in certain areas

In the second pattern, a decline in water presence was observed on 
the right side of the study area (Fig. 11). Both the Percentage Operator 
and the Subtraction Operator revealed a decrease in water coverage on 
this side over the study period.

To comprehend the underlying causes of this decrease, it is essential 
to consider several influencing factors:

Decreased Precipitation: Precipitation is one of the most direct in
fluences on water levels. A decrease in rainfall during the study period 
could have significantly reduced water input into lakes, rivers, and other 
water bodies. However, the analysis conducted in this study using 
monthly precipitation data for the study area revealed no consistent 
increasing or decreasing trend during the examined period. Therefore, 
the results of this analysis indicate that the observed decrease in the 
eastern part of the study area cannot be solely attributed to decreased 
precipitation.

Increased Water Extraction: Increased water extraction for 

Fig. 9. Part of the study area where the presence of water has increased.

Fig. 10. Monthly Precipitation Difference in Southeastern Lake Urmia (2015–2016 vs. 2014–2015).
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agricultural, industrial, or urban use could also be an influencing factor. 
As demand for water resources grows, over-extraction can lead to a 
decline in surface water levels. For example, Abbaspour and Nazaridoust 
(2007), discussed how expanding agricultural activities in the Urmia 
Lake basin, particularly during drought periods, intensified water 
extraction from rivers and reservoirs, exacerbating water.

Land Use Changes: Changes in land use, such as deforestation, ur
banization, or the expansion of agricultural land, alter the hydrological 
cycle in a region. These changes reduce the land’s ability to retain water, 
leading to faster runoff and less infiltration into aquifers, ultimately 
lowering surface water levels. A study by Morandi et al., (2014) shows 
how increased urban development in the region led to greater surface 
runoff and reduced natural water retention, contributing to the observed 
decrease in water presence.

The findings of this study are further supported by those of Saemian 
et al. (2020), who analyzed the progress of Lake Urmia’s restoration 
using both ground-based and satellite observations. Their analysis 
revealed positive trends in key hydrological parameters between 2015 
and 2019—a period that partially overlaps with the timeframe of the 
present study. Specifically, they reported annual increases of 14.5 cm in 
water level, 204 km2 in surface area, and 0.42 km3 in lake volume, 
attributing these improvements to restoration interventions imple
mented in the basin. Although this study focuses specifically on the 
2014–2016 period and employs a tensor-based approach, the identified 
spatial and temporal patterns of increased water presence align with the 
early phase of the broader restoration trajectory observed by Saemian 
et al. Notably, significant increases in water coverage were detected in 
the central and western zones of the lake, particularly near the conflu
ence of the Zarrineh river and Simineh river—areas similarly recognized 
by Saemian et al. as primary zones of water accumulation. This corre
spondence reinforces the reliability of the proposed method and sup
ports the interpretation that the detected hydrological improvements 
were largely driven by targeted restoration actions rather than by 
random climatic variability.

6. Conclusion

This research highlights the efficiency of innovative tensor operators, 
advanced indices, and remote sensing tools in comprehensively moni
toring and analyzing water level fluctuations, as well as evaluating 
restoration program outcomes. By applying NDWI, the study offers a 
robust framework for detecting spatial and temporal changes in water 
bodies. The Urmia Lake case study showcases how these tools generate 
detailed insights into the dynamic responses of inland water systems to 
environmental pressures and targeted restoration initiatives. Analysis of 
NDWI-based matrices reveals trends and variations in water coverage, 
providing clear evidence of the restoration program’s observable 
impact. These findings emphasize the importance of remote sensing and 
geospatial analysis in environmental assessment and resource manage
ment. Moreover, the methods and tools employed in this study have 
significant potential for application in other regions facing water scar
city, supporting the development of data-driven management strategies 
for sustainable water resource preservation. Future research could 
enhance monitoring capabilities and improve restoration outcome as
sessments by incorporating additional indices and higher-resolution 
datasets.
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