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 A B S T R A C T

The nature of dark matter remains one of the most pressing open questions in modern cosmology. Despite 
extensive experimental efforts, no direct or indirect detection of dark matter particles has been confirmed. 
This has motivated alternative approaches, including modifications to the underlying theory of gravity. In this 
work, we investigate the implications of a specific non-local gravity (NLG) theory, which modifies General 
Relativity by introducing non-local effects that manifest as an effective dark matter component. We analyze 
the velocity dispersion profiles of eight classical dwarf spheroidal (dSph) galaxies - Carina, Draco, Fornax, 
Leo I, Leo II, Sculptor, Sextans, and Ursa Minor - to test the predictions of NLG. Using the Jeans equation, 
we model the kinematics of these galaxies and perform a Bayesian Markov Chain Monte Carlo analysis to 
constrain the parameters of the NLG kernel chosen for our analysis. Our results indicate that NLG might 
successfully reproduce the observed kinematics of dSph galaxies without requiring particle dark matter, 
providing constraints on the scale-dependent modifications to gravity that are compatible with previous studies 
in the literature. However, a parameter inconsistency remains in the cases of Fornax and Sextans galaxies that 
requires further attention.
. Introduction

The persistent elusiveness of dark matter particles, despite decades 
f experiments seeking for direct or indirect detection, has led to 
odified theories of gravity being considered as a potential solution to 
he dark matter problem [1]. One of the primary objectives of the dark 
atter hypothesis is to explain cosmic structure formation. It is well 
nderstood that achieving a viable cosmological structure formation, 
onsistent with cosmic microwave background (CMB) observations, 
olely through modifications in gravitational physics is extremely chal-
enging. The only modified gravity theory that claims to successfully 
ccount for structure formation is the new relativistic theory for Mod-
fied Newtonian Dynamics (MOND) theory, as presented in [2]. This 
heory incorporates a scalar field and a vector field, in addition to the 
etric tensor, to describe gravity. From this perspective, theory is quite 
omplex. Among the various alternative theories proposed to replace 
ark matter particles, we are particularly interested in a specific non-
ocal gravity (NLG) theory introduced in [3]. This theory leverages 
he analogy between electrodynamics and General Relativity (GR) to 
ncorporate non-local effects into gravitational physics [4]. In fact, this 
heory represents an attempt to generalize GR by incorporating non-
ocal effects, continuing along the pathway established by non-local 
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special relativity [5]. Although this theory does not introduce any new 
gravitational fields beyond those in GR, with the metric tensor being 
the sole field, non-local effects manifest in a complex manner. This 
complexity has resulted in the full cosmological behavior of theory 
remaining largely unexplored. On the other hand, the Newtonian limit 
of theory has been well-studied [5]. Consequently, this theory has been 
extensively applied to astrophysical systems where relativistic effects 
are negligible, yet it suggests that non-local effects are significant 
enough to potentially replace dark matter particles. For instance, the 
rotation curves of spiral galaxies within the framework of NLG have 
been examined in [6]. The time evolution of disk galaxies using N-
body simulations has been investigated in [7]. Additionally, dynamical 
friction, which plays a crucial role in systems with a large fraction of 
dark matter, has been studied in [8]. For further studies focused on the 
cosmological aspects of NLG, we refer the reader to [9–11].

In the case of dwarf galaxies, NLG makes a clear prediction: the 
smaller the baryonic content of an astrophysical system, the smaller the 
amount of effective dark matter that NLG predicts. It is worth noting 
that, as will be detailed in the next section, the non-local aspects of NLG 
effectively manifest as a dark matter component. In this paper, we will 
investigate the prediction mentioned above, by focusing on the velocity 
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I. De Martino et al. Physics of the Dark Universe 49 (2025) 102044 
dispersion observations of eight dwarf spheroidal (dSph) galaxies. The 
dSph galaxies are known to be dark matter dominated systems and, 
therefore, they serves as a valuable test-bed for alternative theories 
of gravity that modify the underlying gravitational field to avoid the 
introduction of dark matter to explain the kinematics of stars in galax-
ies. For example, they have been used to constrain 𝑓 (𝑅)-gravity and 
Scalar-Tensor-Vector theory both showing a Yukawa-like modification 
of the gravitational potential in the weak-filed limit [12,13]. Other 
examples of studies investigating modified theories of gravity using 
kinematic data of dwarf galaxies focused on Degenerate Higher-Order 
Scalar Tensor (DHOST) theory [14,15], or non-local corrections to the 
Newtonian potential [16].

The outline of this paper is as follows: in Section 2, we summarize 
the main features of the Poisson equation in the weak field limit of NLG 
that will serve as the starting point for modeling the velocity dispersion 
profiles. The latter will be the subject of Section 3 where we explain all 
the ingredients necessary to theoretically build the dispersion velocity 
profile. Then, in Section 4, we illustrate the data and the data analysis 
methodology that we will use to constrain NLG. In Section 5, we expose 
and discuss our results and, finally, in Section 6 we give our final 
conclusions.

2. Gravitational potential in NLG

Due to the complex nature of the field equations in NLG, no exact 
solutions have been found so far. Additionally, a modified version 
of the Friedmann equations has yet to be developed within the NLG 
framework. However, as expected, the situation is much simpler in 
the Newtonian limit. In this regime, it has been shown that NLG 
introduces a Yukawa-like correction to the gravitational potential. More 
specifically, the revised version of the Poisson equation in the weak 
field limit of NLG is presented as [5] 
∇2𝛷(𝐱) = 4𝜋𝐺[𝜌(𝐱) + 𝜌𝐷(𝐱)] . (1)

Here, 𝜌𝐷 represents the effective dark matter density in NLG. It is 
important to clarify that within NLG, there is no actual dark matter 
present. Instead, the nonlocal characteristics of gravity manifest as an 
effective dark matter density in the Poisson equation. This effective 
density is determined by: 

𝜌𝐷(𝐱) = ∫ 𝑞(|𝐱 − 𝐲|)𝜌(𝐲)𝑑3𝑦 . (2)

In cases where a specific kernel 𝑞(|𝐱 − 𝐲|) is known, the effective dark 
matter density can be derived solely from the distribution of baryonic 
matter 𝜌. The choice of kernel is crucial as the nonlocal properties in 
the weak field limit are directly influenced by it. However, there is 
no definitive method to determine this kernel, leading to postulations 
primarily based on observational data such as rotation curves of spiral 
galaxies [6]. However, a complementary approach, based on the exis-
tence of Noether Symmetries in the system, might be used as criteria 
to theoretically select the kernel [17].

The effective dark matter distribution in NLG mirrors the symme-
tries of the baryonic system. For instance, in an axisymmetric galaxy, 
the effective dark matter is also axisymmetric. This contrasts with the 
cold dark matter (CDM) scenario, where the dark matter halo in disk 
galaxies is typically spherical. Because the effective dark matter is 
derived through a convolution with the baryonic matter, features such 
as spiral arms, bars, peanuts, and bulges are directly reflected in the 
effective dark matter distribution as well [18]. This distinct distribu-
tion, compared to that of cold dark matter, has important consequences. 
For example, the radial and vertical evolution of disk galaxies in NLG 
differs from that in CDM. In particular, the evolution of galactic bars 
shows significant deviations from the standard CDM case, which could 
provide observational means to distinguish between NLG and cold 
dark matter scenarios. Additionally, it has been demonstrated that the 
effective dark matter in NLG does not suffer from the core-cusp problem 
2 
observed in galaxies [19]. For further insights into the effective dark 
matter distribution at galactic scales, we refer the reader to [19]. One 
commonly used kernel at galactic scales is the following [5]: 

𝑞0(𝑟) =
1

4𝜋𝜆0

1 + 𝜇0𝑟
𝑟2

𝑒−𝜇0𝑟 , (3)

where 𝜇0 and 𝜆0 are free parameters. The observations of nearby spiral 
galaxies and clusters of galaxies imply that 𝜆0 ≈ 3 ± 2 kpc and 𝜇0 ≈
0.059 ± 0.028 kpc−1 [6]. On the other hand, the best value of these 
parameters to fit the rotation curve data of some ultra-diffuse galaxies 
(UDGs) is 𝜆0 = 2.42+1.02−0.84 kpc and 𝜇0 = 0.07+0.02−0.01 kpc−1 [19], that is 
somehow consistent with those obtained from rotation curves of normal 
galaxies. In fact, gas-rich UDGs exhibit a baryonic-to-total mass fraction 
that is significantly higher than that of typical galaxies with similar 
rotation curves. This implies that UDGs contain less dark matter, which 
is consistent with the predictions of NLG. However, it is important to 
highlight the special case of the UDG Dragonfly 44. Unlike others, this 
galaxy is not rotationally dominated and is believed to be dominated by 
dark matter [20]. Consequently, it is reasonable to expect that NLG may 
encounter difficulties in explaining the observed velocity dispersion of 
this galaxy. A thorough investigation of this issue is necessary but falls 
beyond the scope of the present paper.

In this paper we study the implications of NLG in dSphs. The 
baryonic matter density of dSphs is mainly described by the Plummer 
model [21]. Therefore, the baryonic matter density can be written as 
𝜌∗(𝑟) = 𝛶 𝜈(𝑟), where 𝛶 = 𝑀∗∕𝐿𝑉  is the stellar mass to light ratio, and 
𝜈(𝑟) is given by 

𝜈(𝑟) =
3𝐿𝑉
4𝜋𝑟31∕2

(

1 + 𝑟2

𝑟21∕2

)− 5
2

, (4)

where 𝐿𝑉  is the total luminosity, 𝑟1∕2 is the radius enclosing 0.5𝐿𝑉 . 
Given that effective dark matter adheres to the symmetries of baryonic 
matter, we anticipate a spherical distribution for it too. Consequently, 
using the Newton’s shell theorem one may write: 
𝑑𝛷
𝑑𝑟

=
𝐺𝑀(𝑟)
𝑟2

+
𝐺𝑀𝐷(𝑟)

𝑟2
, (5)

where 𝑀(𝑟) and 𝑀𝐷(𝑟) represent the baryonic and effective dark matter 
mass within the give radius 𝑟. 𝑀(𝑟) is given by the following analytic 
expression:

𝑀(𝑟) = 4𝜋 ∫

𝑟

0
𝜌∗(𝑦)𝑦2𝑑𝑦 = 𝛶𝐿𝑉

(

1 + 𝑟2

𝑟21∕2

)− 3
2 𝑟3

𝑟31∕2
. (6)

On the other hand to obtain 𝑀𝐷(𝑟), let us simplify the effective dark 
matter density by defining a new variable 𝐳 = 𝐱−𝐲. Therefore, 𝜌𝐷 in Eq. 
(2) can be rewritten as 

𝜌𝐷(𝐱) = ∫ 𝑞0(𝑧)𝜌∗(𝐱 − 𝐳)𝑑3𝑧 , (7)

which takes the following form for the Plummer profile 

𝜌𝐷(𝑟) =
3𝛶𝐿𝑉
2𝑟31∕2

∫

∞

0
𝑞0(𝑧)𝑧2𝑑𝑧∫

+1

−1

(

1 +
𝑟2 + 𝑧2 − 2𝑟𝑧𝜓

𝑟21∕2

)−5∕2
𝑑𝜓 , (8)

where 𝑟 = |𝐱| and 𝑧 = |𝐳|, and 𝜓 = cos 𝜃. The integral over 𝜓 can be 
simplified as follows [19]: 

𝜌𝐷(𝑟) =
𝛶𝐿𝑉 𝑟21∕2

2𝑟 ∫

∞

0
𝑞0(𝑧)𝑧𝑑𝑧{[𝑟21∕2+(𝑧− 𝑟)2]−3∕2−[𝑟21∕2+(𝑧+ 𝑟)2]−3∕2} .

(9)

Finally, for the effective dark matter mass 𝑀𝐷(𝑟) = 4𝜋 ∫ 𝑟0 𝜌𝐷(𝑦)𝑦
2𝑑𝑦 we 

have: 

𝑀𝐷(𝑟) = 2𝜋𝛶𝐿𝑉 ∫

∞

0
𝑞0(𝑧)𝑧𝑑𝑧

[ 𝑟21∕2 + 𝑧(𝑧 + 𝑟)
√

𝑟21∕2 + (𝑧 + 𝑟)2
−

𝑟21∕2 + 𝑧(𝑧 − 𝑟)
√

𝑟21∕2 + (𝑧 − 𝑟)2

]

.

(10)
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Fig. 1. The dashed curve represents the gravitational field contribution from baryonic 
matter, while the solid curve illustrates the total gravitational field, incorporating the 
contribution from effective dark matter, for the case with 𝜇̃0 = 0.01 and 𝜆̃0 = 4.

Both integrals in Eqs. (9) and (10) require numerical computation. Now 
let us define the dimensionless length parameters 𝑄̃ = 𝑄∕𝑟1∕2 (like 
𝜆̃0 = 𝜆0∕𝑟1∕2), and 𝜇̃0 = 𝜇0𝑟1∕2, and use the kernel (3) in order to 
rewrite Eq.  (5) as follows 

𝑔̃(𝑟) =
(𝛶𝐿𝑉 𝐺

𝑟21∕2

)−1 𝑑𝛷
𝑑𝑟

= 𝑟
(1 + 𝑟2)3∕2

+ 1
2𝜆̃0𝑟2 ∫

∞

0

𝑑𝑧̃(1 + 𝜇̃0𝑧̃)
𝑧̃

𝑒−𝜇̃0 𝑧̃𝑓 (𝑧̃, 𝑟̃) ,

(11)

where 𝑓 (𝑧̃, 𝑟̃) is defined as 

𝑓 (𝑧̃, 𝑟̃) =
1 + 𝑧̃(𝑧̃ + 𝑟̃)
√

1 + (𝑧̃ + 𝑟)2
−

1 + 𝑧̃(𝑧̃ − 𝑟)
√

1 + (𝑧̃ − 𝑟)2
. (12)

The dimensionless gravitational field 𝑔̃ is depicted in Fig.  1 for selected 
values of 𝜇̃0 = 0.01 and 𝜆̃0 = 4. It is clear that non-local corrections 
enhance the gravitational force. The gravitational field (11) will then 
be used to compute stars’ velocity dispersion profile in dwarf galaxies.

3. The Jeans analysis

The standard non-relativistic fluid equations remain valid in the 
Newtonian limit of NLG. The only modification is in the Poisson 
equation, which now includes a new source term, 𝜌𝐷, on the right-
hand side. Mathematically, this modified equation is identical in form 
to the standard one. Therefore, the Jeans equations remain unchanged 
in the Newtonian limit of NLG. Since we are studying the observations 
of the velocity dispersion of dwarf galaxies, it is necessary to derive 
an analytic expression for it within the framework of NLG in order to 
fit the observational data. The velocity dispersion can be modeled by 
solving the Jeans equation which, for a static spherical system and in 
the spherical coordinates system, is written as [22] 

1
𝜌∗(𝑟)

𝑑
𝑑𝑟

[𝜌∗(𝑟)𝑣2𝑟 (𝑟)] + 2
𝛽(𝑟)𝑣2𝑟 (𝑟)

𝑟
= −

𝑑𝛷(𝑟)
𝑑𝑟

, (13)

where we have introduced the anisotropy parameter 

𝛽(𝑟) = 1 −
𝑣2𝜃 + 𝑣

2
𝜙

2𝑣2𝑟
, (14)

and the quantities 𝑣2𝑖  (𝑖 = 𝑟, 𝜃, 𝜙) represent the averaged squared com-
ponents of the stellar velocity in the radial and tangential directions. 
Generally speaking, the anisotropy parameter would depend on the 
distance from the centre of the galaxy [23,24]. However, it can only be 
3 
Table 1
Observational properties of the eight dSphs analyzed in this work. Columns (2): total 
𝑉 -band luminosity; Column (3): half-light radius; Column (4): the stellar mass-to-light 
ratio estimated by [12] using stellar population synthesis models in [27]; and Column 
(5): references from which data were extracted.
 Galaxy log(𝐿V) 𝑟1∕2 𝛶 Ref.  
 (𝐿⊙) (pc) (𝑀⊙

𝐿⊙
)  

 (1) (2) (3) (4) (5)  
 Carina 5.57 ± 0.20 273 ± 45 3.4 ± 2.9 [12,28–31]  
 Draco 5.45 ± 0.08 244 ± 9 11.1 ± 4.7 [12,30–34]  
 Fornax 7.31 ± 0.12 792 ± 58 7.1 ± 6.0 [12,28–31]  
 Leo I 6.74 ± 0.12 298 ± 29 8.8 ± 5.6 [12,29–31,35,36] 
 Leo II 5.87 ± 0.12 219 ± 52 0.4 ± 0.4 [12,29–31,37,38] 
 Sculptor 6.36 ± 0.20 311 ± 46 3.6 ± 2.0 [12,29–31,39]  
 Sextans 5.64 ± 0.20 748 ± 66 8.5 ± 3.3 [12,29–31,40]  
 Ursa Minor 5.45 ± 0.20 398 ± 44 1.2 ± 1.3 [12,29–31,41,42] 

inferred through dynamical mass modeling based on photometric data 
but such a modeling typically requires assuming a specific form for the 
dark matter halo [25]. Since, in NLG, there is no dark matter halo, so 
the situation may be different, and we choose to set 𝛽(𝑟) = const. Under 
this assumption, the Jeans equation becomes significantly simpler and 
the solution to Eq.  (13) can be expressed as follows [26]: 

𝜌∗(𝑟)𝑣2𝑟 (𝑟) = 𝑟−2𝛽 ∫

∞

𝑟

𝑑𝛷(𝑥)
𝑑𝑥

𝜌∗(𝑥)𝑥2𝛽 𝑑𝑥 . (15)

The stellar density is 𝜌∗(𝑟) = 𝛶 𝜈(𝑟) where 𝜈(𝑟) is given by (4). We then 
project the solution of Eq.  (13) along the line-of-sight (LOS) obtaining 

𝜎2LOS(𝑅) =
2

𝛴(𝑅) ∫

∞

𝑅

(

1 − 𝛽 𝑅
2

𝑟2

) 𝜌∗(𝑟)𝑣2𝑟 𝑟
√

𝑟2 − 𝑅2
𝑑𝑟, (16)

where 𝑅 is the projected radius, 𝜎LOS(𝑅) is the LOS velocity dispersion 
that we can directly compare to the data and, 𝛴(𝑅) is the surface 
mass stellar density that can be derived by the three-dimensional mass 
density profile once the latter is projected, resulting in 

𝛴(𝑅) =
𝛶𝐿𝑉
𝜋𝑟21∕2

(

1 + 𝑅2

𝑟21∕2

)−2

. (17)

At this stage, we have assembled all the necessary components. 
Theoretical velocity dispersion profile of the stars depends on the 
parameters 𝜆0, 𝜇0, 𝛽, and 𝛶 , which will be constrained by fitting 
Eq. (16) to the data.

4. Data and data analysis

In our analysis, by solving the Jeans equation illustrated in Sec-
tion 3, we predict theoretical velocity dispersion profile projected along 
the line of sight by solving Eq. (16) and fit it to the observed LOS 
velocity dispersion profiles of eight dSphs: Carina, Fornax, Sculptor, 
Sextans, Draco, Leo I, Leo II, and Ursa Minor, whose physical properties 
are detailed in Table  1. Through this process, we aim to derive the 
values of the parameters of the non-local gravity parameters 𝜆0 and 𝜇0, 
the velocity anisotropy parameter 𝛽, and the stellar mass-to-light ratio 
𝛶  for each galaxy, along with their corresponding uncertainties using 
an MCMC analysis. In Sections 4.1 and 4.2 we will describe the data set 
we will use and the statistical analysis we will carry out, respectively.

4.1. Data

The spectroscopic data sets for Carina, Fornax, Sculptor, and Sextans 
were acquired using the Michigan/MIKE Fiber Spectrograph [21,30,34,
42,43], while data sets for Draco, Leo I, Leo II, and Ursa Minor were 
obtained with the Hectochelle fiber spectrograph at the MMT [36]. 
Additionally, luminosity values in the V-band, stellar mass-to-light 
ratio, and half-light radius for each galaxy are sourced from [28–42] 
and summarized in Table  1.
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Fig. 2. The figure depicts the posterior distributions of the parameters 𝜽 = {log𝜇0 , log 𝜆, 𝛽, 𝛶 } for the dSph galaxies Carina Draco, Fornax, and Leo I (as indicated by the titles on 
top of each corner). The purple-shaded areas with decreasing darkness show the 68%, 95%, and 99% confidence regions, respectively. The green shaded areas correspond to the 
values of the velocity anisotropy parameter reported in [21], and the expected values of 𝛶  listed in Table  1.
To determine the velocity dispersion profile, one crucial step is to 
identify stars within the dSph galaxy. In [42], authors built a mem-
bership probability to assign each observed star to the corresponding 
dSph galaxy using an iterative expectation maximization technique. 
The parameters that are taken into account in the procedure are the 
star’s position, the magnesium index, and LOS velocity. In [30,34,43], 
the velocity dispersion profiles were derived by incorporating stars 
with a membership probability exceeding 95%. These stars were then 
grouped into radial circular annuli, each containing an equal number 
of stars and, finally, the overall transverse motion of the dSph was 
subsequently subtracted from the analysis.

In a broader context, the overall mass-to-light ratio of a dSph 
typically hinges on the mass of the dark matter halo. However, in 
non-local gravity, dark matter is absent, making the mass-to-light ratio 
required to fit kinematic data sets coincide with the stellar mass-to-
light ratio. This estimation can be obtained using the stellar population 
synthesis models in [27]. While retaining 𝛶  as a free parameter, as 
suggested by [12,13], we will assign a Gaussian prior on it according 
to the averaged values of 𝛶  presented in Table  1.
4 
4.2. Methodology

Since we aim to constrain the non-local gravity parameters, namely 
𝜆0 and 𝜇0, we design a statistical procedure in which our theoretical 
model is the projected velocity dispersion profile in non-local gravity, 
given by Eq. (16) and hereby labeled as 𝜎los, th(𝑟), and the latter is fitted 
to the projected velocity dispersion profile data sets measured by [21] 
and, hereby, labeled as 𝜎los, obs(𝑟). The parameter space is explored by 
employing the MCMC algorithm emcee [44] to provide an estimation 
of the best-fit values and their corresponding uncertainties for the four 
free parameters: 𝜽 = {𝜆0, 𝜇0, 𝛽, 𝛶 }. Moreover, we set a uniform prior 
distribution on log[𝜆0(kpc)] ∈ [−2; 4], log[𝜇0(kpc−1)] ∈ [−8; 8], and 𝛽 ∈
[−20, 1). Finally, for each dSph, we set a Gaussian prior on the stellar 
mass-to-light ratio 𝛶 , with mean value and dispersion set according to 
Table  1 (those values are taken from Column (13) of Table 1 in [12]). 
Finally, the posterior probability distribution is given by the following 
likelihood function 

−2 log(𝜽|data) ∝
∑

𝑖

[𝜎los, th(𝜽, 𝑅𝑝,𝑖) − 𝜎los, obs(𝑅𝑝,𝑖)
𝛥𝜎los, obs(𝑅𝑝,𝑖)

]2
, (18)

where 𝛥𝜎los, obs(𝑟𝑖) indicates the observational uncertainties on the pro-
jected velocity dispersion profile data sets 𝜎 (𝑟). Finally, for each 
los, obs
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Fig. 3. The same of Fig.  2 but for the dSph galaxies Leo II, Sculptor, Sextans and Ursa Minor.
Table 2
The Table reports the median and the 68% confidence intervals of the posterior 
distribution of the parameters 𝜽 = {log𝜇0 , log 𝜆0 , 𝛽, 𝛶 } for all the dSphs. The last row 
shows the results of a joint analysis of all eight galaxies. In this case, the upper bound 
on log log𝜇0 is set at 99.7% confidence.
 Galaxy log𝜇0 log 𝜆0 𝛽 𝛶  
 (kpc−1) (kpc)  
 (1) (2) (3) (4) (5)  
 Carina ≲ 2.50 1.3+0.35−0.34 −0.2 ± 0.26 3.0 ± 1.9  
 Draco ≲ 2.23 1.56 ± 0.18 −6.8+4.8−6.1 8.1+2.9−3.0  
 Fornax 3.0+0.08−4.0 0.84 ± 0.31 0.16+0.14−0.13 5.9+3.2−3.3  
 Leo I ≲ 3.29 0.85 ± 0.31 0.17+0.14−0.13 5.9+3.2−3.3  
 Leo II ≲ 3.90 0.62+0.38−0.36 0.17+0.44−0.32 0.46 ± 0.29 
 Sculptor ≲ 2.10 0.78 ± 0.21 −0.17 ± 0.12 2.9 ± 1.3  
 Sextans 1.5+1.9−6.5 1.3+0.8−1.1 −0.5+0.7−1.0 6.1 ± 2.2  
 Ursa Minor ≲ 3.00 0.49+0.35−0.34 −0.19+0.23−0.22 1.26+0.8−0.81  
 All galaxies ≲ 3.2 9.7 ± 1.9 – –  

galaxy we run 12 chains, and we consider they have reached the 
convergence when the length of each chain is 100 times longer than 
the autocorrelation time and the latter changes by less than 1% (for 
more details we refer to Sec. 3 of [45]).

5. Results and discussions

We predicted theoretical LOS velocity dispersion profiles using the 
Jeans analysis explained in Section 3, to fit the observational data sets 
5 
of eight dSph galaxies, namely Carina, Draco, Fornax, Leo I, Leo II, 
Sculptor, Sextans, and Ursa Minor. We carried out a MCMC analysis 
to predict the posterior distribution of the four-dimensional parameter 
space 𝜽 = {log𝜇0, log 𝜆0, 𝛽, 𝛶 } of each dSph galaxy in our dataset, 
thus we estimated the median and the 68% confidence intervals of the 
posterior distribution of the parameters 𝜽, and we report them in Table 
2.

Figs.  2 and 3 show, as purple-shaded areas, the 68%, 95%, and 99% 
confidence regions with decreasing darkness. At the top of each col-
umn, we present the one-dimensional marginalized posterior distribu-
tion of the corresponding parameter. The green-shaded areas indicate 
the best-fit values and the 1𝜎 uncertainties of the velocity anisotropy 
parameter in [21], as well as the expected values of 𝛶  which is listed 
in Table  1. The stellar mass-to-light ratios align with expectations from 
the stellar population synthesis model, as a Gaussian prior is set on it. 
Additionally, the anisotropy parameter 𝛽 consistently falls within the 
68% confidence interval of the value estimated in the standard cold 
dark matter model [30], except for the Draco dwarf galaxy, where 
agreement is reached only at the 95% confidence level. Hence, we 
can argue that the kinematic structure of dwarf galaxies predicted in 
NLG aligns to that expected in the cold dark matter, i.e., NLG does not 
introduce radial or tangential biases relative to cold dark matter.

The rotation curves of dwarf galaxies in the LITTLE THINGS catalog 
have been fitted in the NLG adopting 𝜆0 = 3.08 ± 1.64 kpc and 
𝜇0 = 0.059 ± 0.028 kpc−1 [46]. More recently, the rotation curves of 
three UDGs, namely, AGC 114905, 242019 and 219533, have been 
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Fig. 4. The figure presents the radial profiles of the LOS velocity dispersions for the eight dSphs listed in Table  1. The purple dots with error bars represent the observational 
data from [30]. The blue solid lines depict the predictions based on NLG using the best-fit parameters 𝜽 = {log𝜇0 , log 𝜆0 , 𝛽, 𝛶 } from Table  2, while the blue-shaded areas indicate 
the corresponding 68% confidence interval.
studied leading to the following best the values of NLG parameters 
𝜆0 = 2.42+1.02−0.84 kpc and 𝜇0 = 0.07+0.02−0.01 kpc−1 [19]. Our analysis always 
constrains the parameter 𝜆0 while 𝜇0 results to be almost unconstrained, 
in fact only an upper limit is listed in Table  2, except for the two dSph 
galaxies Fornax and Sextans.

The Fig.  4 illustrates the effectiveness of NLG in accurately re-
producing the observed LOS velocity dispersion profiles. For each 
dSph galaxy in Table  1, the purple circles with error bars represent 
the observational estimation of the velocity dispersion along the line 
of sight from [30]. The blue solid lines depict the NLG-predicted 
LOS velocity dispersion profiles based on the best-fit parameters 𝜽 =
{log𝜇0, log 𝜆, 𝛽, 𝛶 } listed in Table  2. The blue-shaded areas indicate 
the 68% confidence interval, derived via Monte Carlo sampling of the 
one-dimensional posterior distributions shown in Figs.  2 and 3.

Finally, to simplify the comparison with previous analyses, we have 
repeated our MCMC analysis to the joint set of all eight galaxies in our 
study, i.e. now considering an 18-dimensional parameter space (2 NLG 
parameters + 2 intrinsic parameters for each galaxy). Once convergence 
is achieved, we marginalized on all the intrinsic parameters (being all 
other individual-galaxy parameters bound and compatible to the results 
with the single-galaxy approach) and focused here on the 𝜇0 − 𝜆0 slice 
of the parameter space. The results are shown below in Fig.  5. The joint 
analysis results only in an upper limit on log(𝜇0∕kpc−1) ≲ 3.2 (at 99.7% 
confidence) and in a bounded posterior only for 𝜆0 = 9.7 ± 1.9 kpc. In 
the case of 𝜆0, this parameter results to be compatible at the 68% of 
confidence level with the value used to analyze rotation curves from the 
LITTLE THINGS catalog, and at the 95% of confidence level with the 
value obtained from the analysis of UDGs. Conversely, the parameter 
𝜇0 can only be upper bounded and it results to be poorly constrained 
and largely overlapping with the previous constraints based on dwarf 
and UDGs. 
6 
Fig. 5. The figure depicts the results of a joint analysis of all eight galaxies. In this 
case, the upper bound on log𝜇0 is set at 99.7% confidence.

6. Conclusions

NLG gravity modifies the Poisson equation for the Newtonian grav-

itational potential with an additional matter density term 𝜌𝐷(𝑟) which 
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brings nonlocal effects to the gravitational interaction. This extra mat-
ter density can act as an effective dark matter component. However, the 
analytic calculation of 𝜌𝐷(𝑟) is challenging, as it involves a convolution 
between the density of baryonic matter and an empirical kernel. Such 
quantities can be set to the Plummer profile, given in Eq.  (4), and a 
kernel commonly used at the galactic scales in Eq.  (3), respectively. 
These choices allowed us to solve the Poisson equation and carry out a 
Jeans analysis of eight dSph galaxies whose observational features are 
listed in Table  1. Finally, we performed a MCMC analysis to estimate 
the best fit values of the NLG parameters 𝜆0 and 𝜇0. The results of our 
analysis are listed in Table  2 and shown in Figs.  2–4.

Our results are compatible with previous findings in NLG and add 
another piece to the picture since the mass-to-light ratio adopted as 
Gaussian prior in our analysis, and subsequently correctly recovered 
by our Bayesian analysis, is based on the stellar population synthesis 
models and, therefore, it does not lead to any inconsistency with 
observations as it could happen if 𝛶  were completely free to vary, 
as found by previous analysis. Finally, we found that NLG is capable 
of describing the velocity dispersion of dSph and recovers values of 
the anisotropy parameter compatible at the 68% level with those from 
the CDM model. Therefore, the kinematic structure of the galaxies 
is similar in both the NLG and CDM which confirms the capability 
of NLG in mimicking the effect of the presence of a dark matter 
component. Nevertheless, in the case of Fornax and Sextans galaxies, 
data were capable to bound the 𝜇0 parameter whose best fit value 
is only marginally compatible (∼ 1.5𝜎) with other constraints in the 
literature. Whether or not this may be interpreted as a sign of an 
observational tension in the NLG gravity must be accurately studied 
when better data will be available.
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