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A B S T R A C T

Azo dyes, such as tartrazine and sunset yellow, are widely used as affordable and stable food colorants. Accurate 
quantification is crucial in foods for regulatory monitoring to ensure compliance with safety standards and 
minimize health risks. This study developed a low-cost and eco-friendly method using digital images and che
mometrics for the simultaneous determination of these dyes in food samples. The best prediction results were 
achieved by applying partial least squares regression to RGB + Grayscale+HSI color histograms, with R2 of 
0.9977, 0.9989, RMSEP of 0.21, 0.10 mg/L and REP of 1.6, 1.0 % for tartrazine and sunset yellow, respectively. 
The method was successfully applied for determination of tartrazine and sunset yellow in soft drink samples, 
producing results comparable to those obtained from the HPLC method. This innovative approach provides a 
practical and reliable alternative for monitoring the dye concentrations, supporting both food manufacturers and 
health authorities in ensuring compliance with safety standards.

1. Introduction

Artificial food dyes, such as tartrazine (Tar) and sunset yellow (SY), 
are common azo anionic dyes widely used to enhance the appearance 
and consumer appeal of various food products (Do Nascimento et al., 
2020; Rozamliana et al., 2024; Zhang et al., 2024). Tartrazine, known 
for providing a bright yellow hue, is the second most commonly used 
food dye globally. It is especially prevalent in products such as soft 
drinks, juices, candies, and sauces (Wu & Lee, 2020). Additionally, 
sunset yellow, which is the third most widely used food dye, is 
frequently found in sweets, jams, and fermented beverages (Banc et al., 
2024; Darabi & Shabani-Nooshabadi, 2021).

Despite their widespread use, overconsumption of these dyes may 
lead to health issues, particularly in sensitive individuals, causing effects 
such as allergies, migraines, hyperactivity, and other health concerns 
(Bakhnooh & Arvand, 2024; Chaudhari et al., 2024; Fan et al., 2024; 
Wang et al., 2024; Zhang et al., 2025).

For instance, regulations in the European Union (EU) limit the con
centrations of tartrazine and sunset yellow in non-alcoholic soft drinks 
to 100 mg/L and 50 mg/L, respectively, with a total limit of 100 mg/L 
when used together. Likewise, in the United States (US), the acceptable 
daily intake (ADI) for tartrazine is 7.5 mg/kg body weight per day, and 

for sunset yellow, it is 4 mg/kg body weight per day (EFSA Panel on 
Food Additives and Nutrient Sources Added to Food, 2009a; EFSA Panel 
on Food Additives and Nutrient Sources Added to Food, 2009b; EFSA 
Panel on Food Additives and Nutrient Sources added to Food (ANS), 
2014; Rovina et al., 2017; Park et al., 2024; Amchova et al., 2024). To 
ensure compliance with safety standards, reliable methods for the 
simultaneous determination of these dyes are crucial (Darabi & Shabani- 
Nooshabadi, 2021). High-performance liquid chromatography (HPLC) 
coupled with UV–Vis detection is a standard method for precise dye 
quantification, known for its high sensitivity and reliability 
(Agbokponto et al., 2022). However, it is also associated with high costs, 
the use of toxic solvents, and the need for specialized training and 
equipment, which suffer environmental, economic, and personal chal
lenges. These obstacles can limit the accessibility of this method. Other 
techniques, such as electrochemical analysis (Taei et al., 2020), spec
trophotometry (Asadollahi et al., 2022), and capillary electrophoresis 
(Flores-Aguilar et al., 2019), have been used for the simultaneous 
determination of Tar and SY, but each presents its own limitations in 
terms of equipment costs, preparation time, and the need for skilled 
operators (Ostad & Heidari, 2020). Recent advancements in digital 
imaging and chemometrics offer a promising alternative for dye analysis 
(Ostad & Heidari, 2020). With the availability of digital devices such as 
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smartphones and scanners, digital imaging-based colorimetric analysis 
method has emerged as a user-friendly, accessible, and non-destructive 
method suitable for both qualitative and quantitative analysis in food 
assessment (Choi et al., 2018; Guedes & Pereira, 2019; Santos et al., 
2020).

Commercial software such as Adobe Photoshop and MATLAB are 
widely used for image processing and analysis; however, their high cost 
and complex training requirements make them less accessible for small 
labs and independent researchers (Ahmed, 2013; Riedel et al., 2023; 
Timothy & Forlano, 2019). Photoshop, for example, offers extensive 
capabilities for digital art creation, drawing, and editing. Though, free 
alternatives like ImageJ provide a more accessible option, available both 
as an online applet and a downloadable application, making it a prac
tical solution for those seeking cost-effective tools (Harris-Love et al., 
2016; Lin et al., 2023; Timothy & Forlano, 2019).

A digital image is made up of many pixels, each containing three 
color components—red, green, and blue—known as the RGB color 
model. Other color models, such as HSI and HSV, are also used 
(Fiedoruk-Pogrebniak, 2024). Once the image is converted into a color 
model and numerical data is generated, chemometrics methods can be 
applied to extract useful information (Ribeiro et al., 2019). Color his
tograms, which show the distribution of pixel color frequencies, can also 
serve as input for multivariate analysis.

Digital image analysis combined with chemometrics is a powerful 
tool for both qualitative and quantitative analysis of food products, 
including milk, coffee, olive oil, saffron, grape juice, and chicken bur
gers (Beltrame et al., 2019; De Araújo et al., 2021; De Sousa Fernandes 
et al., 2019; Dos Santos Pereira et al., 2022; Song et al., 2020). Previous 
studies have also used chemometrics methods to determine dyes like 
tartrazine (Vidal et al., 2018) and sunset yellow (Botelho et al., 2014) in 
foods, with successful applications in candies and soft drinks. Partial 
least square (PLS) regression is the most popular tool in chemometrics 
for developing calibration models. PLS algorithm has been successfully 
combined with spectroscopic (Brereton, 2003, 2007, 2018; Kumar, 
2021) and recently digital image analysis (Botelho et al., 2017; Qashqai 
& Heidari, 2023; Costa et al., 2020; De Sousa Fernandes et al., 2019, De 
Sousa Fernandes et al., 2019).

This study proposes a digital imaging-based multivariate calibration 
method for the simultaneous determination of Tar and SY, focusing on 
three image analysis approaches: color channel analysis, effective color 
channel analysis, and a color histogram-based analytical system. This 
innovative method was applied to 10 soft drink samples, and results 
were validated against the HPLC method to assess its accuracy and 
applicability in real samples.

2. Materials and methods

2.1. Chemicals

HPLC grade acetonitrile and methanol were purchased from Merck 
(Merck KGaA, Darmstadt, Germany). Tartrazine and sunset yellow were 
obtained from Sigma Aldrich (St. Louis, MO, USA). All experiments were 
carried out at room temperature, using materials of analytical purity 
grade without further purification. All solutions used in the experiments 
were prepared with deionized water.

2.2. Instrument and software

Image capturing was performed using a Canon Lide 120 scanner 
(Canon Inc., Tokyo, Japan), and images were saved in JPEG format. The 
SPL microplates (The SPL Life Sciences, Pocheon, Korea) were used for 
sample placement within the scanner. To keep away from external light, 
all images were taken in a dark environment. Each sample was captured 
three times to ensure consistent image quality. The region of interest 
(ROI) was manually selected using the elliptical marquee tool in Adobe 
Photoshop CS5 2018 (Adobe Systems, Inc., San Jose, CA, USA) (Harris- 

Love et al., 2016; Hua et al., 2020). The ROI selection focused on areas 
with distinguishable colors corresponding to the dyes, excluding back
ground noise. This manual selection method, while direct and straight
forward, may be subject to personal bias (Jia et al., 2020; Vidal & 
Amigo, 2012). To reduce this, all selections were reviewed by a trained 
individual, minimizing the potential impact of personal preferences. 
Adobe Photoshop provides various selection tools that facilitate the 
effective identification and isolation of the ROI for subsequent analysis 
(Wang et al., 2015).

Adobe Photoshop CS5 (2018) software was utilized to extract color 
channels from digital images. The extracted channels included Red (R), 
Green (G), and Blue (B) from the RGB model; Cyan (C), Magenta (M), 
Yellow (Y), and Black (K) from the CMYK model; grayscale (g); and Hue 
(H), Saturation (S), and Intensity (I) from the HSI model (Grudpan et al., 
2015). MATLAB R2013a (The MathWorks, Natick, USA) software was 
applied to analyze the data, including color channels and color histo
grams. In order to convert digital image into histogram, free MATLAB 
“Imagens_gui” interface was used (Diniz, 2020). Color histograms were 
involving RGB, grayscale, and HSI. Average histograms were taken as 
input data to do calculations. Partial least squares regression (PLS) was 
done by MVC1_GUI toolbox in MATLAB (Amsaraj & Mutturi, 2024).

2.3. Univariate calibration method

Initially, digital images were captured for individual calibration so
lutions of Tar and SY. These images were converted into RGB and CMYK 
color models. The calibration curves were constructed by plotting each 
color channel against concentrations of Tar and SY. The best color 
channel was selected based on its linear relationship with the concen
tration of Tar and SY.

2.4. Multivariate calibration method

To simultaneously determine Tar and SY, color channels, effective 
color channels, and color histograms were applied as input data to 
construct PLS regression model.

The color channels including red, green, blue, cyan, magenta, yel
low, black, grayscale and hue, saturation and intensity were evaluated 
and effective color channels were selected.

Effective color channels were identified based on their linear rela
tionship with dye concentrations. Calibration plots were constructed for 
each color channel by plotting dye concentrations against the corre
sponding intensity values. Channels with the highest correlation co
efficients (R2 ≥ 0.99) were selected as effective channels, ensuring the 
reliability and accuracy of these channels for quantifying dye concen
trations in the samples. After determining the effective color channels, 
the contribution of the remaining color channels was evaluated using 
the forward feature selection method. Forward feature selection iden
tifies the most significant attributes while eliminating irrelevant ones. In 
this approach, features are added one by one, and the model’s accuracy 
is assessed at each step to see if it improves with the addition of the new 
feature. If accuracy does not increase or remains unchanged, those 
features are considered unnecessary and excluded. This process ensures 
that only essential features are retained in the final model. (Jia et al., 
2020; Nakanishi et al., 2024; Rahma et al., 2023).

Additionally, PLS-assisted color histogram-based analytical systems 
was employed. Various color histogram combinations—such as Gray
scale, RGB, HSI, Grayscale + RGB, Grayscale + HSI, RGB + HSI, and 
RGB + Grayscale + HSI—were assessed to build the regression model.

Twenty standard solutions were carefully prepared, containing a 
mixture of Tar and SY within linear ranges of 2–29 mg/L and 3–22 mg/L, 
respectively. Ten samples were randomly selected as calibration sam
ples, while the remaining ten were used as prediction samples to eval
uate the performance of the proposed method. The performance of the 
model in the calibration set was expressed by the coefficient of corre
lation for cross-validation (R2

CV) and the root mean square error of cross- 
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validation (RMSECV). The model’s predictive capability was assessed 
using the coefficient of determination for the prediction (R2

Pred), the root 
mean square error of prediction (RMSEP), and the relative error of 
prediction (REP). Additionally, the Elliptical Joint Confidence Region 
(EJCR) plot in the prediction model was considered to evaluate the 
model’s accuracy and to check for any bias in the results (Fernandes 
et al., 2023; Qashqai & Heidari, 2023; Ramo et al., 2024).

2.5. Real sample analysis

One batch of 10 different commercially available non-alcoholic soft 
drink samples was collected from various markets in Iran. The selected 
drinks consisted of only one type: fruit-flavored, carbonated beverages. 
Ingredient labels indicated the presence of artificial colors, exclusively 
sunset yellow, though specific concentrations of this dye were not 
labeled.

The samples were degassed using an ultrasonic bath for 5 min. All 
samples, except for sample number 4, showed sunset yellow concen
trations exceeding the linear range. To address this, these samples were 
diluted fivefold to bring their concentrations within acceptable levels. 
Sample number 4 was already within the linear range and did not 
require dilution. Deionized water was used as the solvent for the 
dilutions.

Subsequently, the initial concentrations of Tar and SY were simul
taneously determined using the proposed method.

The performance of the proposed method was evaluated using a total 
of 10 independent replicates (10 samples) and 6 technical replicates.

2.6. Chromatographic analysis

The chromatographic analysis was performed using an Agilent 1100 
HPLC system (Agilent Technologies, Santa Clara, CA, USA) equipped 
with a quaternary pump and a manual injection system with a 20 μL 
injection loop. A Phenomenex C18 column of 4.6 × 250 mm (Phe
nomenex Inc., Torrance, CA, USA) was utilized for the separation of the 
dyes. The mobile phase consisted of acetonitrile and methanol in a ratio 
of 80:20 (v/v), delivered at a flow rate of 1 mL/min. The analysis times 
were 5.6 min for Tar and 7.7 min for SY, with detection carried out at 
445 nm using a UV detector. The column was maintained at room 
temperature throughout the analysis (Pedjie, 2012).

3. Result and discussion

3.1. Individual calibration of tartrazine and sunset yellow

The linearity of R, G, B, C, M, Y, K, and grayscale color channels was 
evaluated against the calibration concentrations of Tar and SY, indi
vidually. Among these, the yellow channel exhibited the strongest linear 
relationship with the concentrations. Table 1 compares the figures of 
merit for the scanner-based colorimetric method using the yellow 
channel with those obtained by the HPLC method for analysis of Tar and 
SY.

3.2. Simultaneous determination of tartrazine and sunset yellow

The first stage in the simultaneous determination of the binary 
mixture of Tar and SY with the multivariate calibration method involved 
the construction of the calibration and prediction sets. The composition 
of the calibration and prediction sets is provided in Table 2. These sets 
were designed to include a representative range of concentrations to 
ensure the robustness of the calibration models and the reliability of the 
predictions. The randomization of sample selection helped to minimize 
potential systematic errors and validated the applicability of the method 
across different concentrations.

In this study, Tar and SY were simultaneously determined using the 
PLS regression method, a robust chemometrics technique that facilitates 
the analysis of multiple variables simultaneously (Wold et al., 2001). 
Various input data, including color channels, effective color channels, 
and color histograms were evaluated.

3.2.1. PLS-assisted color channels -based analytical systems
The analysis involved a comprehensive evaluation of the color 

channels, including red, green, blue (RGB), cyan, magenta, yellow, black 
(CMYK), grayscale, as well as hue, saturation, and intensity (HSI) for 
constructing PLS regression method. The results are summarized in 
Table 3.

The R2
Pred were found to be 0.9913 for Tar and 0.9931 for SY, indi

cating a strong predictive capability of the multivariate calibration 
model.

In Fig. 1(a, c), predicted values are plotted against actual values for 
both dyes. The random scatter of points around the line suggests that the 
model’s predictions are free from systematic error and are unbiased, 
which confirms the reliability of the calibration method.

The EJCR region forms an elliptical shape, and it examines whether 
the theoretically expected values (slope = 1 and intercept = 0) fall 
within this ellipse. When the ideal point is included in the EJCR, it 
confirms the accuracy of the methodology (Lozano et al., 2014). Fig. 1(b, 
d) illustrates the EJCR plots (at 95 % confidence level) for analysis of Tar 

Table 1 
Figures of merit for determination of Tar and SY using scanner-based colorimetric method (yellow color channel) and HPLC.

Method Analyte Linear range (mg/L) Equation R2 LOD(c) (mg/L) LOQ(d) (mg/L) RSD(e) (%)

Scanner-based colorimetry Tar(a) 2–29 Y = 7.3753× + 0.0146 0.9998 0.6 2 0.6
SY(b) 3–22 Y = 9.5862× + 0.3693 0.9988 0.9 3 1.2

HPLC
Tar 0.07–200 Y = 28.67× + 16.408 0.9995 0.02 0.07 2.0
SY 0.07–200 Y = 30.654× + 2.9899 1 0.02 0.07 0.7

a Tartrazine
b Sunset yellow
c Limit of detection
d Limit of quantitation
e Relative standard error.

Table 2 
Composition of calibration and prediction sets of Tar and SY for PLS regressions.

Number of samples Calibration set Prediction set

Tar (a)(mg/L) SY (b)(mg/L) Tar (mg/L) SY (mg/L)

1 8.5 10 8 14
2 9.5 9.5 9 13
3 10.5 9 10 12.5
4 11 8.5 10.5 11.5
5 11.5 8.5 12 10
6 12 8 13 9
7 12.5 7.5 14 8
8 13 7 15 6.5
9 13.5 6.5 15.5 6
10 14 6 16 6

a Tartrazine
b Sunset yellow.
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and SY. As seen, they reveal the absence of bias.
The study highlights the potential of digital scanner images as a 

practical tool for simultaneous determination of the dyes in mixture 
samples (Botelho et al., 2014).

3.2.2. PLS-assisted effective color channels -based analytical systems
In this study, feature selection was applied to identify effective color 

channels to simplify PLS regression and enhance the model’s perfor
mance (Canero et al., 2024; Lin et al., 2023). As described in Section 2.4, 
effective color channels were identified based on the linear relationship 
between dye concentrations and each color channel using univariate 
calibration for Tar and SY individually (R2 ≥ 0.99). The results indicated 
that the Green, Blue, Yellow, grayscale, Saturation, and Intensity were 
the most effective color channels for determining both Tar and SY 
(Table 4). This targeted approach led to a significant improvement in the 
R2

CV, which increased to 0.8468 for Tar and 0.8759 for SY. As a result, the 
RMSECV decreased to 0.14 mg/L for Tar and 0.23 mg/L for SY, 

highlighting the effectiveness of the model. Additionally, after deter
mining the effective color channels, the contribution of the remaining 
color channels was evaluated using the forward feature selection 
method (Table 4). No significant improvement in the performance of 
PLS for the simultaneous analysis of Tar and SY was observed. As a 
result, the Green, Blue, Yellow, grayscale, Saturation, and Intensity were 
considered as the optimal channels for simultaneous determination of 
Tar and SY in mixture samples using PLS regression.

These enhancements in model performance highlight the critical 
importance of feature selection in multivariate calibration. Previous 
studies have similarly demonstrated that selecting relevant features can 
substantially improve the robustness and predictive accuracy of PLS 
regression (Amsaraj & Mutturi, 2021 & Amsaraj & Mutturi, 2023).

Fig. 2 illustrates the predicted concentrations of Tar and SY against 
the actual values. The EJCR plots indicate that reliable results were 
achieved.

Table 3 
Results of PLS-assisted color channels for simultaneous determination of Tar and SY.

Calibration Prediction

Color channels Analyte LV(c) R2
CV
( d) RMSECV(e) (mg/L) R2

Pred
( f) RMSEP(g) (mg/L) REP(h) (%)

RGB+ CMYK+ grayscale+ HSI Tar(a) 3 0.2349 0.31 0.9913 0.54 4.3
SY(b) 3 0.3833 0.30 0.9931 0.43 4.4

R: Red; G: Green; B: Blue; C: Cyan; M: Magenta; Y: Yellow; K: Black; g: grayscale; H: Hue; S: Saturation; I: Intensity.
a Tartrazine
b Sunset yellow
c Latent variable
d Coefficient of determination for cross-validation
e Root mean square error of cross validation
f Coefficient of determination for the prediction
g Root mean square error of prediction
h Relative error of prediction.

Fig. 1. PLS results and EJCR plots of predicted vs. actual values using the color channels for Tar (a, b) and SY (c, d).
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3.2.3. PLS-assisted color histogram-based analytical systems
In image processing, a color histogram is a quantitative representa

tion of the distribution of color intensities in a digital image (Swain & 
Ballard, 1991; Zhang et al., 1995).

The color histogram can be built for any kind of color model 
including RGB, HSI, HSV and gray scale. Pre-processing techniques, such 
as noise reduction and image segmentation based on pixels or edges, 

may be applied to the color channels to enhance the quality of the data 
(Diniz, 2020). However, one of the major advantages of using color 
histograms is their simplicity; they allow for quick and direct extraction 
of information without the need for complex pre-processing, enabling 
data to be analyzed in its original form (De Sousa Fernandes et al., 2019; 
Reile et al., 2020). The use of color histograms as an analytical signal 
emerges as a good alternative, because they provide a straightforward 

Table 4 
Results of PLS-assisted effective color channels for simultaneous determination of Tar and SY.

Selected Color Channels Calibration Prediction

Analyte LV(c) R2
CV
( d) RMSECV(e) (mg/L) R2 

Pred
( f) RMSEP(g) (mg/L) REP(h) (%)

GBYgSI
Tar (a) 6 0.8468 0.14 0.9938 0.48 3.9
SY (b) 5 0.8759 0.23 0.9968 0.23 2.4

GBYgSI+ R Tar 4 0.2190 0.24 0.9922 0.54 4.4
SY 4 0.2426 0.23 0.9949 0.29 2.9

GBYgSI+C
Tar 5 0.1300 0.29 0.9903 0.58 4.6
SY 3 0.6690 1.09 0.9921 0.37 3.8

GBYgSI+M
Tar 3 0.3434 0.44 0.9886 0.82 6.6
SY 3 0.1237 0.42 0.9900 0.92 9.4

GBYgSI+K
Tar 5 0.7609 0.29 0.9931 0.56 4.5
SY 5 0.1221 0.31 0.9917 0.24 2.4

GBYgSI+H Tar 4 0.5415 0.32 0.9914 0.53 4.3
SY 4 0.2200 0.21 0.9944 0.30 3.1

*R: Red; G: Green; B: Blue; C: Cyan; M: Magenta; Y: Yellow; K: Black; g: grayscale; H: Hue; S: Saturation; I: Intensity.
a Tartrazine
b Sunset yellow
c Latent variable
d Coefficient of determination for cross-validation
e Root mean square error of cross validation
f Coefficient of determination for the prediction
g Root mean square error of prediction
h Relative error of prediction.

Fig. 2. PLS results and EJCR plots of predicted vs. actual values using effective color channels for Tar (a, b) and SY (c, d).
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method for rapid acquisition of the analytical information when coupled 
with multivariate chemometrics methods (Diniz, 2020; De Morais & de 
Lima, 2015).

Although color histogram analysis provides valuable insights into the 

distribution of color intensities, interpreting the results can be chal
lenging due to the inherent complexity of frequency distributions (Diniz, 
2020; Reile et al., 2020).

In this study, color histograms were generated for Grayscale, RGB, 

Table 5 
Results of PLS-assisted color histogram for simultaneous determination Tar and SY.

Color histogram Calibration Prediction

Analyte LV (c) R2
CV
( d) RMSECV(e) (mg/L) R2 

Pred
( f) RMSEP(g) (mg/L) REP(h) (%)

Grayscale
Tar(a) 3 0.8643 1.32 0.8928 1.40 11.2
SY(b) 3 0.8865 1.23 0.9232 1.01 10.4

RGB Tar 4 0.8812 0.89 0.9229 1.20 9.9
SY 4 0.9092 0.91 0.9477 1.22 12.5

HSI
Tar 3 0.8901 0.64 0.9377 0.93 7.5
SY 5 0.9298 0.71 0.9622 1.04 10.7

Grayscale+RGB
Tar 3 0.8955 0.84 0.9346 1.10 9.05
SY 4 0.9100 2.15 0.9592 1.20 11.9

Grayscale+HSI
Tar 4 0.9023 0.53 0.9469 0.87 6.9
SY 5 0.9211 1.54 0.9680 1.00 10.3

RGB + HSI Tar 4 0.9078 0.53 0.9422 0.91 7.2
SY 5 0.9261 0.36 0.9667 1.00 10.3

RGB + Grayscale+ HSI
Tar 6 0.9572 0.10 0.9977 0.21 1.6
SY 6 0.9519 0.13 0.9989 0.10 1.0

a Tartrazine
b Sunset yellow
c Latent variable
d Coefficient of determination for cross-validation
e Root mean square error of cross validation
f Coefficient of determination for the prediction
g Root mean square error of prediction
h Relative error of prediction.

Fig. 3. PLS results and EJCR plot of predicted vs. actual values using RGB + Grayscale + HSI histograms for Tar (a, b) and SY (c, d).
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HSI, Grayscale + RGB, Grayscale + HSI, RGB + HSI, and RGB + Gray
scale + HSI color models to build the PLS model for the simultaneous 
determination of Tar and SY.

The results, presented in Table 5, indicate that combination of RGB 
+ Grayscale + HSI color histograms provided the best predictive per
formance. The RMSECV values were recorded at 0.10 mg/L for Tar and 
0.13 mg/L for SY. The R2

Pred values were exceptionally high at 0.9977 
and 0.9989 for Tar and SY, respectively.

As shown in Table 5, data combination has enhanced the perfor
mance of the multivariate calibration model, underscoring its strong 
predictive capability (Fig. 3). The improved results due to this solution, 
color histogram combination, were demonstrated in several studies De 
Sousa Fernandes et al., 2019; Reile et al., 2020).

The results in Table 6 clearly demonstrate that all PLS models 
incorporating the color channels (RGB, CMYK, grayscale, HSI), effective 
color channels (Green, Blue, Yellow, grayscale, Saturation, Intensity), 
and color histogram combination (RGB+ Grayscale+ HSI) were suitable 
for simultaneous prediction of Tar and SY, achieving REP values lower 

than 5 % and R2
Pred values higher than 0.99. As shown, the PLS-assisted 

RGB+ Grayscale+ HSI histograms achieved the best overall predictive 
performance (Table 6). From a food analysis perspective, it is essential to 
develop new methods that ensure both high accuracy and precision. In 
this study, the PLS-assisted RGB+ Grayscale+ HSI histograms were 
therefore applied for the quantification of Tar and SY in soft drink 
samples.

3.3. Real sample analysis

To signify the applicability of the PLS-assisted RGB+ Grayscale +HSI 
histograms, the simultaneous determination of Tar and SY in 10 soft 
drink samples was performed and compared with HPLC (Table 7). These 
real samples were not spiked with analytes, and the concentrations of 
Tar in the soft drinks were below the LOD determined by scanner -based 
colorimetry. As a result, Tar could not be detected. The relative standard 
deviation (RSD) values for six replicate measurements were ≤ 2.6 % 
using the PLS-assisted RGB+ Grayscale+ HSI histograms-based method 

Table 6 
Quantification results of optimal models for simultaneous determination of Tar and SY using PLS-assisted color channels, effective color channels, and color 
histograms.

Calibration Prediction

Input data Analyte LV(c) R2
CV
( d) RMSECV(e) (mg/L) R2

Pred
( f) RMSEP(g) (mg/L)

REP(h) 

(%)
Color channels

RGB+ CMYK+ grayscale+ HSI Tar(a) 3 0.2349 0.31 0.9913 0.54 4.3
SY(b) 3 0.3833 0.30 0.9931 0.43 4.4

Effective color channels

GBYgSI
Tar 6 0.8468 0.14 0.9938 0.48 3.9
SY 5 0.8759 0.23 0.9968 0.23 2.4

Color histograms

RGB + Grayscale + HSI
Tar 6 0.9572 0.10 0.9977 0.21 1.6
SY 6 0.9519 0.13 0.9989 0.10 1.0

*R: Red; G: Green; B: Blue; C: Cyan; M: Magenta; Y: Yellow; K: Black; g: grayscale; H: Hue; S: Saturation; I: Intensity.
a Tartrazine
b Sunset yellow
c Latent variable
d Coefficient of determination for cross-validation
e Root mean square error of cross validation
f Coefficient of determination for the prediction
g Root mean square error of prediction
h Relative error of prediction.

Table 7 
Simultaneous determination of Tar and SY in soft drinks using PLS-assisted RGB+ Grayscale+ HSI histograms and HPLC.

PLS-assisted 
RGB+ Grayscale+ HSI histograms

HPLC

Sample Tar(a) SY(b) Tar SY

Con.  
(mg/L)

RSD (%) Con. 
(mg/L)

RSD (%) Con. 
(mg/L)

RSD (%) Con. 
(mg/L)

RSD (%) t-value(g)

S1 ND(c)
͞

30.0(d) ± 0.5(e) 1.6 ND
͞

30.37(f) ± 2.1 4.6 0.51
S2 ND

͞
33.1 ± 0.9 2.6 0.28 ± 0.01 2.7 33.9 ± 0.4 0.7 1.14

S3 ND
͞

21.2 ± 0.3 1.3 0.18 ± 0.01 4.7 21.2 ± 0.7 2.2 0.69
S4 ND

͞
12.1 ± 0.2 2.0 ND

͞
12.8 ± 0.6 2.7 1.51

S5 ND
͞

27.6 ± 0.8 1.7 0.13 ± 0.02 2.8 27.4 ± 0.4 0.8 0.67
S6 ND

͞
48.2 ± 0.6 1.2 ND

͞
48.39 ± 2.2 2.9 0.27

S7 ND
͞

40.2 ± 0.8 1.8 0.191 ± 0.006 2.0 40.5 ± 0.7 1.2 0.49
S8 ND

͞
50.8 ± 1.1 2.1 0.166 ± 0.003 4.0 50.96 ± 1.4 1.7 0.26

S9 ND
͞

48.5 ± 0.6 1.3 ND
͞

48.6 ± 0.6 1.3 0.26
S10 ND

͞
45.2 ± 1.0 2.1 ND

͞
45.4 ± 0.5 0.7 0.20

a Tartrazine
b Sunset yellow
c Not detected
d Mean of 6 replicates of measurement
e Confidence Interval (α = 0.05,N = 6)
f Mean of 3 replicates of measurement
g For seven degrees of freedom at 95 % confidence level, the tabulated t-value is 2.36.
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and were not ≥4.6 % for three replicate determinations using the HPLC 
method.

To validate the accuracy of Tar and SY determination in the soft 
drink samples, a t-test was conducted to compare the results obtained 
using PLS-assisted RGB + Grayscale + HSI histograms and HPLC. The 
calculated t-value is presented in Table 7. At the 95 % confidence level, 
the difference between the results obtained by the two methods was not 
statistically significant, as the t-value was lower than the critical t-value 
(Abdelwahed et al., 2024). In summary, it can be concluded that the two 
methods produce comparable results.

To ensure a more robust evaluation of the proposed method’s per
formance, in addition to the analysis of real samples, Tar and SY were 
simultaneously determined in a spiked sample (S1) containing known 
concentrations. To validate the obtained results, Tar and SY in the 
spiked sample were also analyzed using HPLC, and the recovery results 
are summarized in Table 8.

The recoveries achieved using the PLS-assisted RGB+ Grayscale+
HSI histograms ranged from 99.7 % to 101.6 %, with a mean recovery of 
100.9 % for Tar. For SY, recoveries ranged from 99.9 % to 101.3 %, with 
a mean recovery of 100.8 %. The HPLC method also demonstrated 
strong performance, yielding mean recoveries of 101.4 % for Tar and 
100.3 % for SY.

To sum up the findings, the satisfactory results obtained using the 
PLS-assisted RGB+ Grayscale + HSI histograms indicate that this 
method provides results comparable to those of HPLC. The t-test in
dicates that the results obtained from the developed and standard 
methods are equivalent (Table 8).

These findings further highlight the proposed method’s potential for 
routine analysis in the beverage industry, demonstrating its reliability 
for quality control purposes.

The analytical parameters of PLS-assisted RGB + Grayscale+ HSI 
histograms and several other methods for the determination of Tar and 
SY were compared in Table 9. The results indicate that this method 

Table 8 
Simultaneous determination of Tar and SY in a spiked soft drink sample (sample: 
S1) by PLS-assisted RGB+ Grayscale+ HSI histograms and HPLC.

Tar(a)

Added 
(mg/ 

L)

Found (mg/L)
Recovery (%) 

(b) RSD (%)
t- 

test(g)

PLS HPLC PLS HPLC PLS HPLC
0 ND(c) ND – – 1.5 2.7 –

30
30.5(d) ±

0.5(e)
30.4(f) ±

0.9 101.6 101.5 2.1 2.5 0.04

35 35.5 ± 0.7
35.3 ±

1.0 101.4 100.8 1.4 2.4 0.41

40 39.9 ± 0.6
40.4 ±

1.1
99.7 101.1 1.5 2.7 1.17

SY(h)

0 30.3 ± 0.6 30.3 ±
1.1

– – 2.0 3.7 0.06

20 50.3 ± 1.4
50.6 ±

1.2 99.8 101.6 2.7 2.4 0.49

25 55.6 ± 0.8
55.2 ±

1.9
101.3 99.3 1.4 3.5 0.22

30 60.7 ± 1.3 60.1 ±
1.9

101.3 99.0 2.1 3.2 0.6

a Tartrazine
b Recovery (%) =

C found − Creal
C added

× 100
c Not detected
d Mean of 6 replicates of measurement
e Confidence Interval (α = 0.05, N = 6)
f Mean of 3 replicates of measurement;
g For Nine degrees of freedom at 95 % confidence level, the tabulated t-value 

is 2.26
h Sunset yellow.

Table 9 
Comparison of this study with the literature.

Analyte Real sample Digital 
device

Color model Multivariate 
calibration 
method

Linear 
range 
(mg/L)

R2 LOD(c) 

(mg/L)
RMSECV(d) 

(mg/L)
RMSEP(e) 

(mg/L)
REP(f) 

(%)
Ref.

SY(a) Orange beverages Scanner RGB PLS 7.8–39.7 0.9702 NR(g) 1.3 1.3 NR Botelho et al., 
2014

SY Chocolate-orange, 
Jelly-yellow

Smartphone RGB NR 25–500 0.9981 5.28 NR NR NR Saadati, 2021

SY Chocolated 
orange, Soft drink 
orange, Jelly 
powdered 
watermelon

Scanner RGB NR 30–250 0.9989 7.70 NR NR NR Sorouraddin 
et al., 2015

Tar(b) Soda drinks Smartphone RGB HSV PLS 0–20 0.9953 1.2 NR NR NR Jacinto et al., 
2023

Tar Ice-pop, Liquid 
candy, Liquid 
sweetener, 
Liqueur beverage, 
Food Coloring

Scanner RGB PLS 6–40 NR 1.8 3.3 3 NR Vidal et al., 
2018

SY Soft drinks Scanner RGB+
Grayscale +
HSI 
histograms

PLS 2–29 0.9988 0.9 0.13 0.10 1.6 This study

Tar Soft drinks Scanner RGB+
Grayscale +
HSI 
histograms

PLS 3–22 0.9998 0.6 0.10 0.21 1.0 This study

a Sunset yellow
b Tartrazine
c Limit of detection
d Root mean square error of cross validation
e Root mean square of error prediction
f Relative error of prediction
g Not reported.
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offers significantly better applicability for accurate and precise simul
taneous analysis of these analytes in real samples.

4. Conclusion

In this study, digital images captured using a flatbed scanner were 
transformed into various color models, including RGB, CMYK, and HSI, 
to serve as multivariate input data for PLS models. The flatbed scanner, 
an inexpensive and widely accessible tool in most laboratories, offers the 
advantages of fast image acquisition and user-friendly processing. A 
significant limitation of colorimetric methods is the lack of specificity 
validation. Specificity refers to the method’s ability to discriminate be
tween the desired analytes and interferences present in real samples. To 
resolve this limitation, in addition to the analysis of real samples, Tar 
and SY were simultaneously determined in a spiked sample containing 
known concentrations of the analytes. The results indicated that PLS 
models utilizing color channels (RGB, CMYK, grayscale, HSI), effective 
color channels (Green, Blue, Yellow, Saturation, Intensity), and com
bined color histograms (RGB + Grayscale + HSI) were suitable for 
predicting Tar and SY simultaneously. Among these, the PLS-assisted 
RGB + Grayscale + HSI histograms provided the best overall predic
tive performance. Satisfactory results were achieved in analyzing Tar 
and SY in soft drink samples using this approach, yielding outcomes 
comparable to those obtained with HPLC. However, unlike HPLC, which 
is time-consuming, costly, and requires solvents and skilled personnel, 
the proposed method is cost-effective, rapid, and easy to operate and 
implement. These attributes highlight its potential as a practical alter
native for routine analysis of synthetic dyes in beverages.
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