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 Abstract – Accurate forecasting of critical parameters in 

power grids, such as electricity load, price, and renewable energy 

production, plays a pivotal role in implementing demand response 

strategies and maintaining grid stability within smart grid 

systems. In this paper, we propose a novel deep learning approach 

based on an encoder-decoder architecture with an attention 

mechanism to simultaneously predict these essential parameters. 

To enhance the model's ability to capture complex patterns and 

long-term dependencies in time series data, we incorporate a 

preprocessing step using the Fast Fourier Transform (FFT), which 

transforms the data into the frequency domain. This 

transformation aids in reducing noise and extracting latent 

patterns, thereby improving the model's predictive performance. 

The proposed model is evaluated on real-world electricity 

consumption datasets from multiple regions, including Austria, 

Italy, Sweden, and the UK. It is compared against several state-of-

the-art time series forecasting models, such as LSTM, CNN-

LSTM, LSTM-Attention, and a basic encoder-decoder structure. 

The results demonstrate that our approach achieves significantly 

higher accuracy in most cases, particularly for short- to medium-

term predictions (12 to 48 hours ahead). Additionally, 

visualizations of the predictions reveal that the proposed method 

closely follows the actual trends, confirming its effectiveness in 

capturing both short-term fluctuations and long-term 

dependencies. This study contributes to the field by introducing a 

flexible and robust framework that integrates attention 

mechanisms and frequency-domain preprocessing to improve 

time series forecasting in the electricity domain. The proposed 

approach not only enhances prediction accuracy but also provides 

valuable insights into the underlying patterns of electricity 

consumption and production, making it a promising tool for smart 

grid applications. The source code and implementation details of 

the proposed model are publicly available on GitHub1. 

 Keywords— Deep Learning, Multivariate Time Series 

Prediction, Encoder-Decoder Architecture, Attention Mechanism, 

Temporal Patterns, Demand Side Management. 

I.  INTRODUCTION 

 The increasing energy consumption and the expansion of 

electric vehicles have necessitated the transition to smart power 

grids, introducing challenges such as stability, efficiency, and 

reliability. Accurate forecasting of electricity load and prices, 

along with clean energy generation, plays a fundamental role in 

key grid management processes and Demand Response (DR) 

programs. 

 
1 https://github.com/mozhgan-Rahmatinia/Attention-based-

deep-for-load-price-wind-forecasting-in-Smart-grid  

One of the most crucial approaches to maintaining the 

stability of smart grids is the implementation of demand 

response strategies, which are categorized into incentive-based 

and price-based models [1]. In price-based models, such as real-

time pricing (RTP), electricity prices fluctuate based on demand 

levels. However, uncertainties in forecasting electricity prices 

and grid load pose a significant challenge, as variations in 

consumption can unexpectedly impact prices. Consequently, 

simultaneous forecasting of load, electricity prices, and clean 

energy generation is essential for improving decision-making. 

Moreover, predicting electricity prices without considering 

fluctuations in load and clean energy generation, and vice versa, 

results in inaccurate estimates and suboptimal decisions. This 

issue arises due to the dynamic and interdependent nature of 

electricity load and prices; increased consumption during peak 

hours leads to higher prices, whereas reduced consumption 

during off-peak hours results in lower prices. Therefore, 

simultaneous forecasting of electricity load, prices, and clean 

energy generation is critical for enhancing prediction accuracy 

and optimizing decision-making in demand-side management 

programs and electricity markets. 

Classical time series methods such as ARIMA [2-4], 

dynamic regression [5], and linear regression [6], despite their 

efficiency in linear data, face limitations in modeling nonlinear 

relationships and complex patterns with seasonal and trend 

features. Additionally, these models often fail to adequately 

capture long-term dependencies and perform poorly in the 

presence of extreme fluctuations and sudden changes in data. In 

multivariate time series forecasting, variables such as weather 

conditions, date, time, and electricity prices play a crucial role 

in prediction accuracy. Moreover, general data trends, seasonal 

variations, and irregular fluctuations pose fundamental 

challenges in forecasting smart grid data. These complexities 

have rendered classical and statistical methods less effective 

and constrained in extracting precise patterns. 

Neural network-based models, particularly LSTM and GRU, 

have addressed some of these challenges, yet they still exhibit 

limitations in learning long-term dependencies [7, 8]. 

Combining these models with CNN has enhanced feature 

extraction but remains constrained in certain aspects [9, 10]. 

Integrating deep learning architecture with the Attention 

mechanism has enabled a focus on key features, significantly 

improving forecasting accuracy[11-13]. 

mailto:mozhgan.rahmatinia@mail.um.ac.ir
mailto:hosseini@um.ac.ir
https://github.com/mozhgan-Rahmatinia/Attention-based-deep-for-load-price-wind-forecasting-in-Smart-grid
https://github.com/mozhgan-Rahmatinia/Attention-based-deep-for-load-price-wind-forecasting-in-Smart-grid
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TABLE I.  TABLE OF ABBREVIATIONS  
FFT Fast Fourier Transform 

S2S Sequence-to-Sequence architecture 

STLF Short-term Load Forecasting 

STPF Short-term electricity Price Forecasting 

DSM Demand Side Management 

DR Demand Response 

RTP Real-Time Pricing 
RNN Recurrent Neural Networks 

LSTM Long Short-term Memory 

BiLSTM Bidirectional Long Short-Term Memory 

GRU Gated Recurrent Unit 

CNN Convolutional Neural Network 

ARIMA Autoregressive Integrated Moving Average 

RBF Radial Basis Function 

BSO Bird Swarm Optimizer 

BWO Beluga Whale Optimization 

PSO Particle Swarm Optimization 

BO Bayesian Optimization 

FL Federated Learning 

Sequence-to-Sequence (S2S) architectures with an 

Encoder-Decoder mechanism provide high flexibility and the 

ability to learn complex variable interactions. Additionally, 

models within this family, by utilizing the Multi-head Attention 

mechanism, have been able to improve the simultaneous 

prediction of multiple features[14]. 

This research presents an attention-based deep learning 

model that simultaneously forecasts electricity load, electricity 

prices, and wind energy generation for future time periods. The 

proposed model leverages the complex and nonlinear 

correlations between these variables and incorporates 

contextual features such as weekdays and historical trends. 

Compared to traditional methods and conventional machine 

learning algorithms, the model provides more accurate 

predictions. This enhanced forecasting capability helps reduce 

consumer costs, improve grid stability, and increase the 

efficiency of demand-side management programs. 

The structure of the proposed model follows the Encoder-

Attention-Decoder architecture. The Encoder employs a stack 

of Bidirectional Long Short-Term Memory (BiLSTM) 

networks to extract temporal features and recognize behavioral 

patterns. However, due to the long-term dependencies in the 

data, these extracted features alone are insufficient for precise 

predictions. Therefore, an attention mechanism is incorporated 

into the model to focus on key features, better capture long-term 

dependencies, and improve forecasting accuracy. Finally, the 

Decoder utilizes the extracted information to provide accurate 

predictions of electricity load and prices. 

In addition to initial processing, the data is transformed into 

the frequency domain to reduce noise and better extract 

temporal patterns. To achieve this, FFT is employed as a 

complementary preprocessing step, enhancing model 

performance and stability. 

The key contributions of this research can be summarized 

as follows: 

• Proposing a deep learning model capable of 

simultaneously predicting electricity consumption and 

prices with high accuracy. 

• Utilizing effective features such as temporal information 

and historical data to improve forecasting precision. 

• Employing Fast Fourier Transform (FFT) in the data 

preprocessing stage, enabling better extraction of seasonal 

patterns and trends, balancing short-term and long-term 

dependencies. 

• Introducing an Attention Mechanism within the Encoder-

Decoder architecture that, through stacked BiLSTM 

networks, effectively models complex temporal 

dependencies and enhances prediction accuracy. 

• Presenting a flexible architecture capable of forecasting 

electricity load and prices over variable time horizons with 

accurate short-term and long-term predictions. 

The structure of the paper includes a review of related works 

(Section 2), problem formulation and proposed model (Section 

3), model architecture explanation (Section 4), data description 

and results analysis (Section 5), and conclusion and future work 

(Section 6). 

II. RELATED WORK 

Short-term load forecasting (STLF), short-term electricity 

price forecasting (STPF), and wind power generation 

forecasting are essential for the optimal management of smart 

grids. Load forecasting contributes to grid stability and reduces 

production and distribution costs, while electricity price 

forecasting plays a crucial role in demand-side management 

(DSM) and balancing supply and demand. Wind power 

generation forecasting presents additional challenges due to its 

dependence on weather conditions. The fluctuations in load, 

price, and wind generation—driven by environmental and 

economic factors—highlight the need for accurate forecasting 

models. 

Developing precise forecasting models for electricity-

related data, particularly through hybrid approaches and 

machine learning techniques, has been a key focus of 

researchers. In Ref [15], the authors employed fuzzy clustering 

to segment input data into different clusters and used a hybrid 

model comprising a neural network with aggregation layers, 

convolutional layers, and a radial basis function (RBF) to 

forecast the next week's load.  

The effectiveness of recurrent neural networks (RNNs) such 

as long short-term memory (LSTM) and gated recurrent unit 

(GRU) in time-series forecasting, due to their ability to capture 

dependencies within data, has led to increasing interest in 

integrating these methods with other learning models. Ref [10], 

LSTM was employed as a hybrid long-term and short-term 

forecasting method, where a convolutional neural network 

(CNN) was used to identify local dependencies, while an RNN 

captured long-term dependencies in multidimensional inputs. 

Additionally, in Ref [16], a genetic algorithm was utilized to 

optimize LSTM network parameters, including the number of 

layers and time delays. Furthermore, in Ref [17], hybrid models 

integrating ARIMA and LSTM were developed.  

In recent years, more advanced hybrid models have been 

introduced. In Ref [18], a Hybrid Stacking-based model was 
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proposed for short-term electricity price forecasting. This 

model combined XGBoost, CatBoost, NODE, LightGBM, 

GRU, and LSTM, incorporating weather data and time-series 

features to significantly improve forecasting accuracy. 

Similarly, Ref [19], a deep learning-based hybrid model (LFS-

HDLBWO) was proposed for STLF in smart grids. By 

integrating CBLSTM-AE with the beluga whale optimization 

(BWO) algorithm, the model automatically optimized 

hyperparameters, enhancing forecasting accuracy compared to 

LSTM and ANN models while also achieving improved 

execution efficiency. Ref [20] investigates residential energy 

management and electricity price forecasting in smart homes 

based on the Internet of Energy (IoE). The objective of this 

research is to utilize a combination of the Gated Recurrent Unit 

(GRU) and the Bird Swarm Optimizer (BSO) algorithm for 

electricity price prediction and energy consumption scheduling, 

which has successfully reduced both energy consumption and 

costs. 

Integrating attention mechanisms into deep networks has 

been widely explored as an effective approach to improving the 

accuracy of time-series forecasting. These mechanisms enhance 

the ability of deep learning models by strengthening the 

identification of meaningful patterns and preserving long-term 

dependencies in data. Consequently, numerous studies have 

focused on combining attention mechanisms with deep learning 

models. 

Reference [21], a multitask attention mechanism was 

incorporated into an LSTM-based model for electricity load 

forecasting. Similarly, [22] introduced an attention-based 

encoder-decoder structure, where the attention-driven encoder 

extracts correlations among input loads, and the decoder learns 

temporal dependencies. 

Other studies have demonstrated that combining CNN and 

LSTM networks with multi-head attention can further enhance 

forecasting performance. In [23], a hybrid CNN-LSTM model 

was proposed, utilizing multi-head attention to extract 

significant time-series features. Furthermore, [24] leveraged a 

rolling update (RU) approach alongside an attention mechanism 

and BiLSTM to improve the accuracy of load forecasting across 

different countries. 

In [25], the authors aim to find a balance between 

interpretability and prediction accuracy in models by 

comparing the interpretability of two non-RNN methods, N-

BEATSx and TFT, with the recurrent method LSTM. This 

study demonstrates that although the prediction accuracy is 

higher in RNN-based approaches, the interpretability of non-

recurrent methods is greater, which is highly significant for 

practical applications. Furthermore, the variable indicating 

weekends was found to be the most important factor in the 

forecasting process. 

Several studies have also examined the integration of data 

decomposition techniques with deep learning networks. For 

instance, Ref [8] proposed a hybrid model combining Ensemble 

Empirical Mode Decomposition (EEMD) with BiLSTM and an 

attention mechanism for load and electricity price forecasting. 

This model employed Bayesian Optimization (BO) alongside 

Random Forest Regressors for automated hyperparameter 

tuning. Additionally, Ref [26] introduced an encoder-decoder 

model with a mixture of attention mechanism and pinball loss 

function for multi-step forecasting tasks. 

In reference [27], Pentsos and colleagues aim to enhance the 

accuracy of electricity load forecasting for 650 households in a 

smart grid by considering various factors such as user 

behavioral patterns, geographical conditions, and temporal 

constraints. To achieve this goal, they propose a hybrid model 

that leverages the capabilities of LSTM to understand temporal 

dependencies and employs the transformer attention 

mechanism to extract significant long-term features. 

Additionally, the article [28] presents a hybrid neural network 

that uses time-series clustering to categorize similar electricity 

consumption patterns. Subsequently, these similar patterns are 

analyzed separately using a transformer model with the goal of 

STLF. This approach leads to improved accuracy in the 

prediction method . 

Beyond these approaches, some research efforts have 

explored the combination of deep learning and federated 

learning to enhance forecasting accuracy while preserving data 

privacy. Federated Learning (FL), as a decentralized approach, 

enables data processing at its source without requiring direct 

data sharing between computational nodes, thereby ensuring 

security and privacy. In [29], a hybrid 1D-CNN-GRU model 

with an attention mechanism was proposed, integrating 

hyperparameter optimization via the Particle Swarm 

Optimization (PSO) algorithm and leveraging FL to improve 

load forecasting accuracy. Additionally, pruning techniques in 

FL were employed to reduce computational resource 

consumption. Along the same lines, the FedGrid framework [30] 

introduced a federated learning-based approach for forecasting 

electricity load and renewable energy generation. This model 

utilized LSTM and DSS-LSTM to predict electricity 

consumption and solar and wind power generation while 

ensuring data security and privacy without sharing sensitive 

information. The results demonstrated enhanced data security, 

reduced reliance on fossil fuels, and optimized demand-supply 

management in smart grids. 

Moreover, certain deep learning models have achieved 

superior performance in load forecasting by integrating 

multiple advanced approaches. Ref [31], the DenseNet-AM-

LSTM model was proposed for smart grid load forecasting. By 

combining DenseNet, LSTM, and an attention mechanism, this 

model improved forecasting accuracy. A comparative analysis 

against traditional methods such as ARIMA, ResNet, and CNN 

indicated that DenseNet-AM-LSTM outperformed these 

approaches in managing smart grid load dynamics. 

III. PROBLEM FORMULATION 

This study focuses on developing a model for simultaneous 

forecasting of electricity consumption, electricity prices, and 

wind power generation based on historical data over the past 𝑘 

time intervals. The goal is to estimate the corresponding values 

for the next 𝑛 time intervals. To achieve this, an attention-based 

deep learning network is employed. 
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In this approach, the input data for each training and 

forecasting step is represented as a matrix 𝑅𝐾∗𝐼, which is 

defined by the following Equation: 

𝑅 = {𝑙𝑡  , 𝑝𝑡 , 𝑤𝑡 , 𝑓𝑖
𝑡  |𝑡 ∈ {𝑚 − 𝑘,… ,𝑚 − 1} , 𝑖 ∈ {1,2, . . . , 𝑛}} 

Where 𝑘  represents the number of past time intervals, 𝑖 
denotes the number of features influencing the forecasting 

process, 𝑙𝑡 is the electricity consumption at time interval 𝑡, 𝑝𝑡 

is the electricity price at time interval 𝑡, and 𝑤𝑡 represents wind 

power generation at time interval 𝑡 . Additionally, 𝑓 includes 

other relevant features affecting the forecasting process, such as 

temperature, hour of the day, day of the week, and month, each 

identified by 𝑖. 
The forecasting of electricity consumption, electricity price, 

and wind power generation for the next 𝑛  time intervals is 

represented as a 𝑃𝑟𝑛∗3 matrix, which is defined by Equation (2): 

𝑃𝑟 = { 𝑙𝑡
′
, 𝑝𝑡′

, 𝑤𝑡′
| 𝑡′ ∈ {𝑚, . . . , 𝑚 + 𝑛}𝐹 }                        (2) 

In simple terms, our model predicts three things at once—

electricity demand, price, and wind energy production—for the 

next 𝑛  time steps using data from the past 𝑘  time steps. It 

analyzes historical patterns to make accurate forecasts. 

From a scientific view, the model uses a sequence-to-

sequence approach, leveraging multiple input features to 

capture complex relationships between load, price, and wind 

energy, improving prediction quality. 

Figure 1 illustrates the steps undertaken in this study for 

Multivariate-Multihorizon Time Series Prediction, which is 

structured into three main phases: data preprocessing, model 

development, training and evaluation, and finally, testing the 

model on unseen data. 

 
Fig. 1 Flowchart of the proposed method. 

VI. MODEL ARCHITECTURE 

The Attention-Based Deep Learning architecture proposed 

in this study consists of four main components: 

Preprocessing with Fast Fourier Transform (FFT): To 

identify periodic and trend-based patterns in time series data, 

FFT is applied as a preprocessing step. This transformation 

converts data from the time domain to the frequency domain, 

improving the extraction of key information. Importantly, FFT 

is applied only to the encoder's input, while the decoder receives 

the original data without an inverse transformation, preventing 

information leakage. 

Encoder: The encoder is responsible for transforming input 

data into a feature space where meaningful patterns and long-

term dependencies can be effectively extracted. It consists of 

multiple layers of BiLSTM networks, which excel at capturing 

temporal dependencies. Additionally, a  Linear Layer is 

incorporated to extract local features, enhancing the model’s 

ability to detect short-term patterns in the data. 

Attention Mechanism: The attention mechanism is 

integrated to enhance the impact of significant features while 

reducing the influence of less relevant ones. By dynamically 

assigning weights to different parts of the input sequence, the 

attention mechanism enables the model to focus on the most 

critical information for prediction. This not only improves the 

understanding of long-term dependencies but also enhances 

prediction accuracy and memory retention. 

Decoder: The decoder leverages the feature representations 

extracted by the encoder, along with the attention mechanism, 

to generate accurate time series forecasts. It decodes this 

enriched feature space into predictions for target variables such 

as electricity consumption, price, and wind power generation, 

ensuring a more precise and informed forecasting process. 

To enhance clarity, we provide a comprehensive 

explanation of the model's operation. During the prediction 

process, an input sequence of fixed length, 𝑙𝑠𝑒𝑞 , denoted as 𝑠𝑒𝑞, 

is fed into the encoder at each time step 𝑡. This sequence is 

extracted from the interval [𝑡 − 𝑙𝑠𝑒𝑞 , 𝑡] and serves as the basis 

for forecasting a future sequence, 𝑝𝑟𝑒𝑑 , spanning 𝑙𝑝𝑟𝑒𝑑  time 

steps within the interval [𝑡 + 1, 𝑡 + 𝑙𝑝𝑟𝑒𝑑 + 1) 

The encoder processes sequences to extract meaningful 

temporal patterns, which are then leveraged by the decoder to 

generate the predicted sequence. During training and evaluation, 

the predicted sequence is compared against actual values to 

optimize model performance. Notably, while the Fast Fourier 

Transform is applied to the input sequence to enhance feature 

extraction, the predicted sequence bypasses the inverse FFT 

step. This ensures that the decoder generates predictions in the 

original data space, effectively preventing information leakage 

and preserving the integrity of the forecasting process. 

Figure 2 illustrates the overall architecture of the proposed 

model, which will be discussed in the following sections. 

A. Feature Extraction and Prediction Mechanism 

Encoder: In this stage, the input data is processed to extract 

key features and long-term dependencies. This is achieved 

using BiLSTM networks, which capture temporal information 
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in both forward and backward directions. The extracted 

information is then transformed into a compressed 

representation, referred to as the feature space. To further refine 

this representation, an attention mechanism is applied, 

emphasizing the most influential features. 

Decoder: The decoder utilizes the extracted feature space to 

reconstruct future data with high accuracy. By leveraging 

BiLSTM networks, it processes the identified patterns within 

the data and generates precise forecasts for the upcoming time 

steps. The objective of this stage is to translate the feature space 

into reliable and well-aligned predictions. Consequently, the 

decoder plays a crucial role in ensuring accurate and 

trustworthy forecasting. 

 
Fig. 2 Main architecture. 

B. Internal Deep Networks 

Long Short-Term Memory (LSTM) networks, introduced as 

a specialized type of recurrent neural network (RNN) [32], have 

become widely used in tasks such as time series forecasting and 

text translation. Their popularity stems from their ability to 

capture long-term dependencies and address challenges like the 

vanishing gradient problem, which often occurs in traditional 

RNNs when processing long sequences. 

LSTMs achieve this by incorporating a cell state, which 

acts as a memory unit capable of storing information over 

extended time steps. Three key gates regulate the flow of 

information: 

Input Gate: Determines how much new information should 

be added to the cell state. It is calculated as follows: 

                 𝑖1(𝑡) =  𝜎(𝑥(𝑡)𝑢𝑖 + ℎ(𝑡 − 1)𝑤𝑖)                       (3) 

                  𝑖2(𝑡) = tanh (𝑥(𝑡)𝑢𝑔 + ℎ(𝑡 − 1)𝑤𝑔)                 (4) 

                           𝑖(𝑡) =  𝑖1(𝑡) ∗  𝑖2(𝑡))                                  (5) 

Forget Gate: Controls what information should be 

discarded from the cell state: 

                  𝑓(𝑡) =  𝜎(𝑥(𝑡)𝑢𝑓 + ℎ(𝑡 − 1)𝑤𝑓)                       (6) 

Cell State Update: The cell state is updated based on the 

retained and newly added information: 

                𝑐(𝑡) =  𝜎( 𝑓(𝑡) ∗ 𝑐(𝑡 − 1) + 𝑖(𝑡) )                       (7) 

Output Gate: Determines the final output of the LSTM unit: 

                         𝑜(𝑡) =  𝜎( 𝑥(𝑡)𝑢𝑜 + ℎ(𝑡 − 1)𝑤𝑜)                (8) 

                                ℎ(𝑡) = tanh(𝑐𝑡) ∗ 𝑜(𝑡)                       (9) 

Here, 𝜎 represents the sigmoid activation function, while 𝑡𝑎𝑛ℎ 

denotes the hyperbolic tangent activation function. 𝑥𝑡  is the 

input at time step 𝑡, 𝑢, and 𝑤 are learnable weight matrices. 

Figure 3 illustrates the structure of an LSTM cell. 

 
Fig. 3 LSTM unit. 

Traditional LSTM networks process information in a 

unidirectional manner, considering only past data for 

predictions. However, in many applications, understanding 

both past and future contexts is crucial for accurate forecasting. 

To address this limitation, Bidirectional LSTM is employed. 

BiLSTM enhances the learning process by incorporating 

both forward and backward LSTM layers. While the forward 

LSTM processes the input sequence from past to future, the 

backward LSTM scans the sequence in reverse, capturing future 

dependencies. By merging these two hidden states, BiLSTM 

effectively utilizes information from both the past and future, 

leading to more comprehensive feature extraction. The 

computational steps for BiLSTM are as follows: 

• Forward LSTM pass: 

              ℎ⃗ 𝑡 = 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗( ℎ𝑡−1, 𝑥𝑡 , 𝑐𝑡−1), 𝑡 ∈ [1, 𝑇]                   (10) 

• Backward LSTM pass: 

             ℎ⃖⃗𝑡 = 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ( ℎ𝑡+1, 𝑥𝑡 , 𝑐𝑡+1), 𝑡 ∈ [1, 𝑇]                    (11) 

• Final output combining both directions: 

                              ℎ𝑡 = ℎ⃗ 𝑡 ⊕ ℎ⃖⃗𝑡                                          (12) 

C. Scaled Attention Mechanism 

The scaled attention mechanism enhances deep learning 

models by effectively capturing complex relationships and 

identifying meaningful patterns in time series data. In this study, 

we integrate scaled attention between the encoder and decoder 

to extract critical information from the encoder’s hidden states, 

improving predictions for load and electricity price. The 

proposed attention model, illustrated in Figure 2, operates based 

on three key vectors: query (Q), key (K), and value (V). 

Unlike conventional approaches, we derive both Q and K 

from the encoder output and process them through linear layers 

to compress the encoded information. The attention weights are 
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computed via element-wise multiplication and then scaled 

based on model dimensions, i.e., the hidden layer size (13). To 

normalize the scores, we apply the SoftMax function, ensuring 

the sum of the weights to one and forming a probability 

distribution (14): 

                        𝑠𝑐𝑜𝑟𝑒 =  
(𝜔𝑞𝑄 .𝜔𝑘𝐾𝑇)

√𝑑𝑚𝑜𝑑𝑒𝑙
                                    (13) 

                            𝑃𝑎𝑡𝑡 =
𝑒𝑠𝑐𝑜𝑟𝑒𝑖

∑ 𝑒
𝑠𝑐𝑜𝑟𝑒𝑗𝑛

𝑗=1

                                      (14) 

In our proposed model, the encoder is built upon a stack of 

Bidirectional LSTM (BiLSTM) layers, where each layer 

processes the input sequence in both forward and backward 

directions. To generate the value (v) for subsequent processing, 

we utilize the output sequences produced by the top BiLSTM 

layer. To transform the concatenated outputs into a suitable 

representation for downstream tasks, we apply a learnable 

linear layer to create value (𝑉). 
Finally, the attention weights are applied to the encoder’s 

hidden states to extract seasonal and trend-related features (15), 

producing an attention vector that highlights the most 

influential patterns in the input data: 

                                 𝐴𝑡𝑡 =  𝑃𝑎𝑡𝑡 . 𝜔𝑣𝑉                                  (15) 

Here, 𝜔  represents learned weight vectors, and 𝑑𝑚𝑜𝑑𝑒𝑙 

denotes the dimensionality of the hidden layers. This attention 

mechanism allows the model to assign greater importance to 

key temporal features, improving prediction accuracy and 

interpretability. 

D. Frequency Domain Transformation 

In this study, the FFT is employed as a preprocessing step 

to enhance model accuracy by leveraging its ability to extract 

meaningful frequency-domain features. Notably, FFT is 

applied only to the input data of the encoder, while the decoder 

processes the original time series data without transformation. 

This ensures that the model learns to predict directly in the time 

domain, avoiding potential distortions from inverse FFT 

operations. 

The integration of FFT serves several key purposes: 

• Frequency-Domain Representation: Transforming data 

into the frequency domain allows the model to capture 

periodic patterns and seasonal trends more effectively. 

• Noise Reduction: By analyzing frequency components, 

FFT helps distinguish essential patterns from noise, 

improving prediction reliability. 

• Feature Selection: FFT highlights dominant frequency 

components while suppressing less relevant ones, 

optimizing feature extraction and enhancing model 

efficiency. 

• Enhanced Temporal Dependencies: Incorporating 

frequency information aids in balancing short-term 

fluctuations with long-term dependencies, leading to more 

robust forecasts. 

By leveraging FFT as a preprocessing step, the proposed 

approach improves pattern recognition, reduces noise 

interference, and enhances the model’s predictive capabilities. 

 
2 https://data.open-power-system-data.org/  

V. RESULT AND DISCUSSION 

A. Data Description 

This study employs the time-series dataset from the Open 

Power System Data (OPSD)2  platform, which provides free 

access to European electricity data categorized into 

conventional power plants, renewable energy, and other 

relevant categories. The dataset, with a 60-minute resolution, 

covers four regions: Austria (AT), Central-North Italy (IT-

CNOR), Sweden (SE_2), and the UK (GB). Our analysis 

focuses on forecasting electricity load demand, prices, and wind 

energy production using date-related information. 

The dataset spans over five years, starting from January 1, 

2015, with approximately 50400-time intervals. We allocate 

80% of the data for training, and 20% for testing, and reserve 

an additional 20% of the training data for validation to 

implement early stopping and prevent overfitting. To further 

address overfitting, the data is randomly shuffled, and feature 

scaling is performed using the StandardScaler method, which 

standardizes the data to have a mean of zero and a standard 

deviation of one. 

In all three phases, FFT operations were used as a 

preprocessing step for the historical data. By transforming the 

data into the frequency domain, this approach not only helps 

reduce noise in the time series but also enables the model to 

capture long-term patterns more efficiently. This method plays 

a key role in improving the overall accuracy of the model. 

B. Environment and Metrics 

The experiments in this study were conducted using Python 

3.10, leveraging the powerful libraries of PyTorch and scikit-

learn to implement the proposed algorithms. The computational 

environment was set up on the free version of Google Colab, 

utilizing a T4 GPU. This setup provided access to 12.6 GB of 

system RAM, 15.0 GB of GPU RAM, and 78.2 GB of disk 

space, ensuring efficient processing of large datasets and 

complex computations. All code, data, and experimental 

configurations are publicly available on the article's GitHub 

repository for reproducibility. 

To assess the performance of the proposed model, we 

employed several statistical metrics commonly used in 

forecasting tasks. These include the Mean Absolute Error 

(MAE), Mean Square Error (MSE), Root Mean Square Error 

(RMSE), and the Pearson correlation coefficient (r). These 

metrics provide a comprehensive evaluation of the model's 

accuracy and reliability. In 13-15 equations, N represents the 

number of samples, 𝑦𝑖  is the actual 𝑖 − 𝑡ℎ sample, and 𝑦̂𝑖  is the 

predicted 𝑖 − 𝑡ℎ sample. 𝑥̅ is the mean of the x variable and 𝑦̅ is 

the mean of the y variable. Additionally, the Pearson correlation 

coefficient varies between -1 and 1. If 𝑟 = 1, it indicates a 

perfect direct relationship between two variables. The 

hyperparameters used in this study were determined through 

trial and error and are documented in the GitHub repository for 

transparency. 

                    𝑀𝐴𝐸 =  
1

𝑁
∑ | 𝑦𝑖 − 𝑦̂𝑖  |

𝑁
𝑖=1                                (16) 
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                  𝑀𝑆𝐸 =  
1

𝑁
 ∑ (𝑦𝑖 − 𝑦̂𝑖  )

2𝑁
𝑖=1                                 (17) 

                          𝑟 =  
∑ (𝑥𝑖− 𝑥̅)(𝑦𝑖−𝑦̅)𝑁

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2 ∑ (𝑦𝑖−𝑦̅)2𝑁
𝑖=1

𝑁
𝑖=1

                      (18) 

C. Experimental Result 

In this paper, we present a deep learning model based on 

attention mechanisms for simultaneous forecasting of three 

features—electricity load, electricity price, and wind energy 

production—for future time horizons of 12, 24, and 48-time 

steps, using the previous 98-time steps as input. To evaluate the 

proposed method, we compare the accuracy of our model with 

several benchmark models, including an LSTM-based model 

similar to the approach in [9], a CNN-LSTM architecture like 

the one presented in [32], and a hybrid LSTM-Attention model 

with a query-key-value structure. Additionally, we compare our 

model with a seq2seq (sequence-to-sequence) model that does 

not incorporate attention mechanisms or FFT preprocessing. 

The results of these comparisons are summarized in Table 1. 

D. Result Analysis 

The simulation results indicate that the proposed model 

generally outperforms other models, particularly for Austria, 

Italy, and the UK. This model demonstrates higher accuracy 

across all time horizons and evaluation metrics compared to its 

counterparts.  As the prediction horizon increases from 12 to 48 

hours, the accuracy of all models decreases. However, the 

proposed model continues to exhibit superior performance in 

most cases, maintaining a higher level of precision relative to 

the other models.   

One intriguing aspect of this study is the performance of the 

models for Sweden. While the proposed model achieves the 

best results for other countries, the LSTM-Attention model 

performs better for Sweden.   

This difference in model performance can be attributed to 

two primary factors:   

• Characteristics of Data: The data for SE_2 may contain 

patterns that align more effectively with the Query-Key-

Value attention mechanism employed in the LSTM-

Attention model.   

• Complexity of the SE_2 Power Grid: The structure of 

SE_2's power grid and its energy production-consumption 

patterns might favor simpler models that achieve higher 

accuracy in predictions.   

In summary, it is evident that increased model complexity 

does not always guarantee improved accuracy across all 

scenarios. The characteristics and patterns of the data play a 

crucial role in model selection. In some cases, simpler models 

may even yield higher accuracy when dealing with less 

complex datasets. This highlights the importance of tailoring 

the choice of model to the specific properties of the data being 

analyzed. 

To visually compare the performance of the proposed 

method with other approaches examined in this paper, we 

present graphical illustrations of the predictions made by the 

discussed methods on the AT dataset for the next 12-time steps. 

We aggregate and plot the prediction results over 500-time 

steps to provide a comprehensive overview. Figure 4 displays 

the predicted and actual values of electricity load for the 

mentioned methods. Figure 5 illustrates the predictions for 

electricity prices, while Figure 6 shows the forecasts for wind 

energy production. As can be observed, the method proposed in 

this paper generates predictions that most closely follow the 

actual patterns, confirming the accuracy of the presented model. 

This visual analysis further supports the effectiveness of the 

proposed approach in capturing real-world trends across all 

three features.

 TABLE II.  MULTIVARIATE RESULTS WITH DIFFERENT PREDICTION LENGTHS (12, 24, 48) 

  AT IT-Corn SE_2 GB 

Model Len MAE MSE r MAE MSE r MAE MSE r MAE MSE r 

 

proposed 

Model 

12 0.4071 0.3442 0.8091 0.3499 0.2757 0.8525 0.3450 0.239 0.8730 0.4087 0.3426 0.8144 

24 0.4579 0.4432 0.7467 0.4374 0.3994 0.7764 0.4129 0.3853 0.7891 0.4913 0.4371 0.7476 

48 0.5840 0.6333 0.6278 0.5189 0.4899 0.7275 0.4829 0.4713 0.7293 0.5480 0.5896 0.6919 

 

LSTM 

[9] 

12 0.5042 0.4711 0.7252 0.4383 0.3804 0.7881 0.4038 0.3234 0.8235 0.4313 0.3564 0.8035 

24 0.5468 0.5456 0.6718 0.4964 0.4777 0.7243 0.5356 0.5590 0.6713 0.5175 0.4862 0.7237 

48 0.6490 0.7106 0.5573 0.5624 0.6570 0.6370 0.5752 0.5913 0.6495 0.5848 0.6172 0.6404 

CNN-

LSTM 

[24] 

12 0.5240 0.4948 0.7113 0.5157 0.4793 0.7691 0.5921 0.5732 0.7443 0.4939 0.4764 0.7403 

24 0.5508 0.5395 0.6769 0.5622 0.5720 0.6834 0.6442 0.6688 0.6651 0.5580 0.5296 0.6937 

48 0.6030 0.6542 0.5899 0.6071 0.6890 0.5984 0.7124 0.8260 0.5666 0.6038 0.6257 0.6333 

 

LSTM-

Attention 

12 0.4216 0.3463 0.8094 0.3559 0.2545 0.8656 0.3143 0.2094 0.8900 0.4097 0.3500 0.8062 

24 0.5245 0.4957 0.7116 0.4403 0.3914 0.7672 0.3968 0.3247 0.8221 0.4914 0.4436 0.7338 

48 0.5898 0.6415 0.6255 0.5288 0.4982 0.7142 0.4420 0.3778 0.7892 0.5170 0.4713 0.7280 

 

Seq2Seq 

 

12 0.4465 0.3806 0.8115 0.3989 0.3134 0.8567 0.4073 0.3152 0.8556 0.4102 0.3590 0.8400 

24 0.5131 0.4760 0.7365 0.4706 0.4323 0.7776 0.4618 0.4130 0.6423 0.4981 0.4392 0.7473 

48 0.5913 0.6364 0.6141 0.5244 0.4923 0.7164 0.5927 0.5719 0.6722 0.5813 0.5863 0.6496 
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Fig. 4 Predicting load consumption for the next 12-time intervals. 

 
Fig. 5 Predicting Price for the next 12-time intervals. 

 
Fig. 6 Predicting Wind generation for the next 12-time intervals. 

 

E. Practical Benefits and Implementation Considerations 

In addition to improving forecasting accuracy, the proposed 

model offers several practical advantages that can positively 

impact power system operation from economic, environmental, 

and industrial perspectives. 

From an economic standpoint, more accurate demand 

forecasting reduces the need for extra reserve capacity and 

helps lower the operational costs of generation units. It also 

enables better load scheduling, which can result in cost savings 

for both distribution companies and consumers. 

Environmentally, improved forecasts can limit the use of 

high-emission sources, such as diesel generators or thermal 

plants, during peak hours. This reduction in fossil fuel reliance 

leads to lower carbon emissions and supports sustainability 

goals. 

In terms of practical application, the model can be used by 

utility companies in their control centers for real-time planning 

and integration of renewable energy sources. Reliable short-

term predictions provide valuable input for grid operators to 

make timely and informed decisions, enhancing system 

stability and reducing the risk of outages. 

Regarding implementation, the model can be integrated 

with existing smart grid infrastructure using data collected from 

smart meters and supervisory control systems. Since many 

distribution networks are already adopting digital technologies, 

deploying the proposed method is technically feasible and 

aligns well with ongoing grid modernization efforts. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we introduced novel architecture for the 

simultaneous prediction of key features in smart electricity 

grids, including load, electricity price, and wind power 

generation, using a multi-variate, multi-horizon approach. The 

proposed deep learning model is based on an encoder-decoder 

structure, incorporating a stack of BiLSTM layers to effectively 

learn and extract temporal patterns within the data. Additionally, 

we employed a self-attention mechanism between the encoder 

and decoder to enhance the model's ability to capture 

dependencies among the data and improve its predictive 

performance. To further preprocess the time-series data, we 

utilized the FFT to transform it into the frequency domain, 

enabling more accurate identification and forecasting of 

underlying data structures. 

Simulation results on real-world datasets demonstrate that 

the proposed method achieves higher accuracy in most cases 

compared to other approaches under investigation. Overall, the 

proposed model achieved an average of 0.4969 across the 12 

proposed scenarios (4 datasets and 3 prediction lengths), which 

represents the best improvement compared to CNN-LSTM by 

19.18%, followed by the seq2seq model with an improvement 

of 13.54%. 

For future work, we aim to enhance the attention 

mechanism by exploring the multi-head cross-attention 

approach to further improve the model's performance. 

Furthermore, given that evaluations were conducted on datasets 

from multiple countries, we plan to investigate the potential of 

federated learning. This approach not only preserves data 

privacy but also has the potential to significantly boost the 

predictive capabilities of our model by leveraging collaborative 

learning across diverse datasets. 
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