
Academic Editor: Wei Yi

Received: 7 July 2025

Revised: 2 August 2025

Accepted: 6 August 2025

Published: 11 August 2025

Citation: Alitbi, Z.k.; Hosseini Seno,

S.A.; Ghaemi Bafghi, A.; Zabihzadeh,

D. A Generalized and Real-Time

Network Intrusion Detection System

Through Incremental Feature

Encoding and Similarity Embedding

Learning. Sensors 2025, 25, 4961.

https://doi.org/10.3390/s25164961

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Generalized and Real-Time Network Intrusion Detection
System Through Incremental Feature Encoding and Similarity
Embedding Learning
Zahraa kadhim Alitbi 1, Seyed Amin Hosseini Seno 1,* , Abbas Ghaemi Bafghi 1 and Davood Zabihzadeh 2

1 Computer Engineering Department, Engineering Faculty, Ferdowsi University of Mashhad (FUM),
Mashhad 91779-48974, Iran; zahraa.alitbi@mail.um.ac.ir (Z.k.A.); ghaemib@um.ac.ir (A.G.B.)

2 Computer Engineering Department, Hakim Sabzevari University, Sabzevar 96179-76487, Iran;
d.zabihzadeh@hsu.ac.ir

* Correspondence: hosseini@um.ac.ir

Abstract

Many Network Intrusion Detection Systems (NIDSs) process sessions only after their com-
pletion, relying on statistical features generated by tools such as CICFlowMeter. Thus,
they cannot be used for real-time intrusion detection. Packet-based NIDSs address this
challenge by extracting features from the input packet data. However, they often process
packets independently, resulting in low detection accuracy. Recent advancements have
captured temporal relations between the packets of a given session; however, they use
a fixed window size for representing sessions. This representation is inefficient and in-
effective for processing short and long sessions. Moreover, these systems cannot detect
unobserved attack types during training. To address these issues, the proposed method
extracts features from consecutive packets of an ongoing session in an online manner and
learns a compact and discriminative embedding space using the proposed multi-proxy
similarity loss function. Using the learned embedding and a novel class-wise thresholding
approach, our method alleviates the imbalance issue in NIDSs and accurately identifies
observed and novel attacks. The experiments on two large-scale datasets confirm that our
method effectively detects attack activities by processing fewer than seven packets of an
ongoing session. Moreover, it outperforms all the competing methods by a large margin
for detecting observed and novel attacks.

Keywords: network intrusion detection; novel attack detection; real-time intrusion
detection; incremental learning; transformer model; semantic embedding learning

1. Introduction
Network Intrusion Detection Systems (NIDSs) play a crucial role in securing computer

networks by monitoring network traffic for detecting malicious activities. The majority of
NIDSs manage traffic by organizing it into logical units called sessions. These systems store
all traffic within a session, extract statistical features from the traffic, and utilize them to
discriminate intrusions from normal sessions [1–3].

A session in Transmission Control Protocol (TCP) contains a forward flow (source →
destination) and a backward flow (destination→ source). Inter-Arrival Time (IAT) of two
adjacent packets is a key indicator in determining the end of a flow in different network
protocols, such as TCP, User Datagram Protocol (UDP), and Internet Control Message Protocol
(ICMP). If IAT surpasses a predefined threshold, the flow is terminated. However, even

Sensors 2025, 25, 4961 https://doi.org/10.3390/s25164961

https://doi.org/10.3390/s25164961
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0838-1800
https://orcid.org/0000-0003-2487-7950
https://doi.org/10.3390/s25164961
https://www.mdpi.com/article/10.3390/s25164961?type=check_update&version=1

Sensors 2025, 25, 4961 2 of 24

in TCP connections, packet retransmissions due to congestion or packet loss are common.
Therefore, the maximum IAT should be set high enough to handle such scenarios. As a
result, session-based NIDSs cannot be used for the early detection of network intrusions.

To address this issue, packet-based NIDSs have been introduced, which extract features
from each packet’s data [4,5]. Many packet-based methods examine each packet inde-
pendently, leading to poor detection accuracy and high false alarm rates. Some methods
address this issue by considering the temporal relationships between packets in a session;
however, they rely on a fixed window size to represent the session. This static window size
is inefficient for short sessions and ineffective for long ones.

Another significant challenge in NIDSs is the detection of novel and mutated attacks.
Signature-based NIDSs struggle to detect zero-day attacks due to relying on predefined
attack patterns. Moreover, many multi-class anomaly-based NIDSs classify input traffic into
observed classes during training and cannot identify unseen attack types.

The proposed method, named the Generalized and Real-time IDS (GR-IDS), addresses
these two main challenges in NIDSs: (1) early detection of network intrusions using only
initial packets of a session with high performance, and (2) detection of novel or mutated
attack types.

To this end, GR-IDS presents an incremental feature encoding module that automatically
extracts features from M consecutive packets of an ongoing session in an incremental
manner.

The module combines a packet-window transformer with a session-level LSTM state
to realize a multi-scale model. The transformer effectively extracts discriminative features
from the current sequence by capturing the relationships among the packets of the se-
quence. The LSTM mines the time-related information between the observed sequences
of the session. Simultaneously, our method incrementally computes statistical features
of the current session. By combining statistical features with the discriminative features
extracted by the transformer–LSTM model, GR-IDS can detect intrusion sessions early with
high performance.

Additionally, inspired by successful applications of deep metric learning in open-set
recognition, GR-IDS learns a semantic embedding space to identify intrusions. Specifically,
it learns multiple proxies for each attack category to capture its variants effectively in
the embedding space. Furthermore, we introduce a loss term that creates a compact
representation for each class, which not only improves the classification accuracy of known
classes but also helps in identifying novel attacks.

Finally, GR-IDS alleviates the imbalance issue in NID by learning similarity-based
embedding to better represent the data distribution and a novel class-wise thresholding
approach for classifying incoming packet sequences.

We evaluated the performance of GR-IDS through experiments conducted on two
large-scale datasets, namely CIC_DDoS2019 [6] and CRiSIS-2022 [7]. The results show that
GR-IDS accurately detects observed and novel attack types with low false alarm rates by
processing only initial packets of any input session.

The structure of this paper is as follows: Section 2 discusses related work in network
intrusion detection. Section 3 presents the model, training procedure, and attack detection
process of the proposed method. Section 4 presents experimental results, comparing GR-
IDS with existing methods and analyzing the impact of individual components through
an ablation study. Lastly, Section 5 summarizes the key findings and introduces potential
directions for future research.

Sensors 2025, 25, 4961 3 of 24

2. Related Work
This section reviews session-based and packet-based approaches for developing NIDSs.

Afterward, it discusses recent methods for detecting novel attack types.

2.1. Session-Based Methods

The dominant approach for developing NIDSs is to extract information from sessions
and train ML models to detect intrusions. Available tools such as CICFlowMeter [8] can
generate session features from packet header data.

In addition to traditional ML models, deep neural networks such as Convolutional
Neural Networks (CNNs), Auto Encoders (AEs), and Recurrent Neural Networks (RNNs) have
been utilized for building NIDSs. For example, Refs. [9,10] used deep learning (DL) models
for detecting intrusions and compared their performance with several ML models.

Some methods [11–13] used AE models to encode session features and then utilized
ML models such as Random Forest (RF) and Support Vector Machine (SVM) to identify
intrusions using the encoded features.

Some studies [14–17] have used RNN models for developing NIDSs. Yin et al. [14]
trained an RNN model for multi-class classification of sessions in the NSL-KDD dataset.
The model outperformed ML models on this dataset. Xu et al. [15] developed an NIDS
using Gated Recurrent Units (GRUs). However, the NIDS achieved lower accuracy for
detecting minority attack types.

Zavrak et al. [17] utilized a Long Short-Term Memory (LSTM) model to detect attacks
using session features generated by OpenFlow switches.

Some methods [18,19] have utilized hybrid deep neural networks to improve the
performance of NIDSs. For example, Hnamte et al. [19] combined a CNN with a
bidirectional LSTM.

To improve the generalization of NIDSs across different datasets, Refs. [20,21] only
used NetFlow features to develop NIDSs.

Several studies [22–28] have shown that deep metric learning losses, such as triplet
and pairwise loss functions, can effectively mitigate the class imbalance issue in NIDSs.
Bedi et al. [24] accurately identified minority intrusion classes using an under-sampling
strategy, pairwise loss, and a Siamese network. For example, Ref. [24] achieved recall rates
of 33.25% and 56.72% for detecting R2L and U2R minority classes on NSL-KDD, whereas a
baseline CNN model trained using cross-entropy loss only achieved recall rates of 6.44%
and 17.91%, respectively, on these classes.

Andresini et al. [27] developed an NIDS using AEs and triplet losses. This method
considered one AE for each class and enforced each AE to reconstruct the examples of
the corresponding class accurately, while reconstructing instances of other classes poorly.
The results in [27] confirm that this method significantly improves the performance of
DML-based methods. For example, Ref. [27] achieved 98.24% accuracy and a 95.27% F1-
score for binary intrusion detection on CIC-IDS2017 [8], while a triplet network trained
using random triplet sampling and the kNN classifier in the predictive stage only achieved
58.63% accuracy and a 27.33% F1-score.

Although the performance of many session-based methods is promising, they classify
an ongoing session once it is completed; thus, they cannot be used for early (near-real-time)
intrusion detection.

2.2. Packet-Based Methods

An alternative approach for developing NIDSs is to directly extract features from raw
packets. Qin et al. [29] presented an RNN model with an attention mechanism to mine
features from the payload of an incoming packet. They evaluated the model for binary

Sensors 2025, 25, 4961 4 of 24

intrusion detection on the CIC-IDS2017 dataset. Farrukh et al. [30] provided a tool named
payload-byte to extract packet payloads from packet capture (pcap) files. They trained deep
neural networks using the extracted payloads. Their experiments indicate that the deep
models can obtain competitive performance with session-based NIDSs. Zhang et al. [31]
transformed a given packet payload into a grayscale image and then used the inverse
discrete cosine transform to extract features from the image.

These methods [29–31] only extracted features from packet payloads. However, some
attacks like distributed denial-of-service (DDoS) target packet headers. Moreover, they ex-
tracted features from each packet separately and did not mine the temporal and spatial
relations between packets of a session.

Yu et al. [32] transformed packets of an input session into a grayscale image. Similarly,
Ghadermazi et al. [33] generated a colored image for each input session, in which the red
channel stores packet data of the forward flow and the green channel stores packet data of
the backward flow. These methods [32,33] then learned discriminative features from the
image using CNNs. The results showed that they achieved an accuracy and F1-score of
about 98% on CIC-IDS2017, outperforming the peer PayloadEmbeddings method [34] by
around 3%.

However, these methods use a fixed image size for representing a session. This
representation wastes a large amount of memory for encoding short sessions. Moreover, it
is ineffective for processing long attack sessions in which the initial packets do not contain
malicious patterns. Finally, these methods cannot identify unseen attacks.

Han et al. [1] used a two-layer LSTM model to extract features from an input packet
in an online manner. This method partially classified an ongoing session while receiving
a new packet. However, classifying the traffic each time an individual packet is received
demands a packet processing rate of up to 30 million packets per second to support 10 Gbps
traffic, which is an extremely challenging requirement, even for dedicated hardware accel-
erators [1].

Pekar et al. [35] experimentally found that the performance of ML models such as
RF is significantly reduced by up to 30% when they are trained on complete sessions and
are tested against incomplete sessions. Moreover, models trained on partial sessions can
maintain their robust performance for classifying partial sessions during the test stage. The
study also showed that RF models require a minimum of seven packets for each session on
CIC-IDS2017 to achieve a high and stable detection rate.

2.3. Detecting Novel Attack Types

Zero-shot learning and few-shot learning are two common approaches for identifying
novel attacks. Zero-shot learning (ZSL) aims to detect new attacks using only their semantic
descriptions. To this end, models should learn mappings between the feature space and
semantic spaces. Refs. [36,37] have utilized ZSL and AE models to detect new intrusions
on the NSL-KDD [38] and NF-UNSW-NB15-v2 [39] datasets. The results in [36] showed
that the ZSL method improved the recall and precision of detecting zero-day attacks by
about 2% on NSL-KDD [38] compared to the AE model.

Similarly, Ref. [40] employed ZSL to identify novel attacks on the Segmented Intrusion
Detection Dataset (SSIDD) [41], an image-based intrusion detection dataset. ZSL needs
semantic descriptions for novel attacks; however, this information is unavailable once these
attacks occur. Moreover, these methods [36,37,39] are session-based and cannot be used for
early intrusion detection.

Refs. [42,43] have employed few-shot learning (FSL) to identify novel attacks. For
example, Wang et al. [42] used a clustering and sampling algorithm to obtain a balanced
training set and then applied FSL. FSL needs examples from all classes during the training

Sensors 2025, 25, 4961 5 of 24

stage; however, acquiring even a small number of unknown attack types is infeasible in
practice.

3. Materials and Methods
This section presents GR-IDS, including its incremental feature encoding pipeline, its

semantic embedding module, and the learning objective that yields compact, discriminative
embeddings suited to early intrusion detection. It also provides pseudo-code for our
method and describes the proposed novel attack detection strategy.

3.1. Feature Encoding

To address the main issues of session-based NIDS methods, we design a feature
encoder that automatically extracts features from M consecutive packets of a session in an
incremental manner, thus eliminating the need to store incoming packets. The proposed
feature encoder consists of two modules: (1) a packet data feature extractor and (2) an online
statistical feature calculator.

The former is a hybrid deep model that integrates a transformer model and an LSTM
model. In real-time settings, pure transformers require a large window proportional to
sequence length, which burdens GPU memory and complicates online inference. However,
by constraining the attention window and letting an LSTM maintain session state, we
bound memory while retaining long-range dependencies. Specifically, if dT denotes the
packet feature dimension, the attention mechanism on window M requires O

(
M2dT

)
operations while pure transformer over the full session with length L≫ M needs O

(
L2dT

)
operations. By appending an LSTM that maintains session state, we restore long-range
temporal dependencies with O

(
M d2

T
)

incremental cost and constant memory with respect
to L.

The latter module updates the session-level statistics after receiving a new packet using
the recurrence relations, similarly to [1]. Figure 1 shows the overall structure of the proposed
feature encoder.

Figure 1. Overall structure of the proposed deep feature encoder model.

The incoming packets are processed as in [33]. Specifically, we remove the 14-byte
Ethernet header plus IP/TCP control fields (version, description, protocol, IP options, TCP

Sensors 2025, 25, 4961 6 of 24

options, source/destination IP and ports) to avoid misalignment and reduce noise. Only
the first 100 bytes of packet data are kept (shorter packets are 0-padded). Each byte is
mapped to 0,1 via min–max scaling and the resulting 100-D vector p is L2-normalized,
ensuring that ∥p∥2 = 1.

Let x = (p1, . . . , pM) ∈ RMd be the input sequence including M consecutive packets.
This sequence is processed by the transformer model, denoted by f(.), to extract discrimi-
native features that capture the relationships among these packets. To keep the window
size M small while maintaining high performance for classifying long sessions, the LSTM
network maintains a hidden state HS that is reinitialized at the start of every session. HS
summarizes all sequences processed so far and therefore encodes higher-level temporal
dependencies across the session.

3.1.1. Transformer Model

As shown in Figure 1, the transformer model consists of multiple blocks, each con-
taining a multi-head self-attention module, MHAtt(.), and a small feed-forward neural network
F(.). Before the data enters these blocks, a linear layer projects the input dimensions to the
required dimension dT .

Moreover, since the multi-head attention module treats inputs as an unordered set,
but the order of packets is crucial in NIDSs, we use positional encoding to encode positional
information into the inputs. We employ the technique proposed by [44], which uses sine
and cosine functions of different frequencies for encoding a position pos in the input
features at dimension i as follows:

PE(pos, i) =


sin

(pos
1000i/dT

)
, if i is even

cos
(

pos
1000(i−1)/dT

)
, otherwise

(1)

Here, PE(pos, i) denotes the position encoding at position pos (1 < pos < M) in the
sequence for dimension i (1 ≤ i ≤ dT). These values, concatenated across all dimensions,
are then added to the projected packet features before the first transformer block.

Figure 2 illustrates the architecture of the multi-head self-attention module. At the
core of the multi-head attention module is the self-attention mechanism. For any element
p, self-attention generates a weighted average of the elements in the sequence, where the
weights are computed dynamically based on the similarity between p and each of the
other elements. Obtaining multiple distinct attention features from an input sequence often
improves model performance. Hence, transformer models apply multiple self-attention
heads in each block.

Within each transformer block, the output of the multi-head attention is passed to a
small, fully connected feed-forward network F(.) implemented by two fully connected (FC)
layers and a ReLU activation function (FC→ ReLU→ FC). The entire transformation in
each block to an input x can be expressed as

x← x + dropout(MH_Att (x))

x← Layer_norm(x)

x← Layer_norm(x + F(x))

(2)

As observed, residual connections are used to form the transformer blocks, and the
output of each block has the same dimension as the input.

Sensors 2025, 25, 4961 7 of 24

Figure 2. Left: The architecture of the scaled dot-product attention (self-attention). Right: The
architecture of the multi-head attention module.

3.1.2. LSTM Network

This network maintains the hidden state of the current session HS. Let the HS(t−1)

denote the hidden state of the current session at timestep (t− 1), which is initialized with
random values. By receiving x at timestep t, if x represents a new session, HS(t−1) is
reinitialized. Then, the network processes x as

f(t)L , HS(t),←− LSTM
(

x, HS(t−1)
)

, (3)

where f(t)L is the output (extracted features) of the network and HS(t) denotes the updated
hidden state summarizing all past information from the current session up to time t.

3.1.3. Online Statistical Flow Feature Extractor

This module computes a set of statistical features for each active session, as listed
in Table 1. To support real-time computation, all variables marked as State in Table 1
are incrementally updated and stored for every ongoing session. Here, t and l show the
timestamp and packet length (in bytes) of a newly arrived packet in the current session f .

In addition to each variable listed in Table 1, we also consider two corresponding
variables for the forward and backward flows of each session. For example, in addition
to pkt_rate, we define f wd_pkt_rate and bwd_pkt_rate, representing packet rates in the
forward and backward directions, respectively.

This module updates the state of session f and recomputes the relevant statistics
according to the equations in Table 1. If the packet direction is forward, then the forward-
related variables of f are updated following the same equations. Otherwise, the backward-
related variables are updated similarly.

Subsequently, the statistical features of f are normalized to have zero mean and unit
standard deviation and then stored in the feature vector fS, which is passed to the feature
fusion module.

Sensors 2025, 25, 4961 8 of 24

Table 1. Statistical features and variables for each session. Here, ✓ indicates that the variable is used
in that role (either as a feature or stored in session state).

Variable (s) Description Update Eq. Feature State

last_IAT Last IAT in the session last_IAT ← t− last_TS ✓

last_TS Timestamp of the last packet in the
session last_TS← t ✓

n Number of packets in the session n← n + 1 ✓

len Length of the session in bytes len← len + l ✓

duration Duration of the session in seconds duration← duration + last_IAT ✓

pkt_rate Packet rate per second in the session pkt_rate = n
duration ✓

IAT,
IAT_std

Mean and standard deviation of IATs
in the session

IAT ← 1
n
(

IAT × (n− 1) + last_IAT
)

IAT_std =
√

IAT2 −
(

IAT
)2 ✓ ✓

IAT_max Maximum of IATs in the session IAT_max ← max{IAT_max, lastI AT} ✓ ✓

IAT2 Mean of the squares of IATs in the
session IAT2 ←

(
IAT2 × (n− 1) + (last_IAT)2

)
✓

pkt_len,
pkt_len _std

Mean and standard deviation of
packet lengths in the session

pkt_len← 1
n

(
pkt_len× (n− 1) + l

)
pkt_len_std =√

pkt_len2 −
(

pkt_len
)2

✓ ✓

pkt_len2 Mean of the squares of packet
lengths in the session pkt_len2 ← 1

n

(
pkt_len2 × (n− 1) + l2

)
✓

3.1.4. Feature Fusion

This module first linearly transforms the feature vector fL to ensure that its dimension-
ality matches that of the statistical vector fS. The two vectors are then concatenated and
passed to the semantic embedding module for further processing.

3.2. Semantic Embedding Learning

This section introduces the semantic embedding module that maps encoded features
to a compact and discriminative embedding space and learns multiple proxies per class to
capture intra-class variations.

3.2.1. Architecture

The semantic embedding module consists of a projection head g, a proxy layer, and a
similarity-based loss function. Let f ∈ Rd f be the input feature vector. The projection head
consists of two fully connected layers with a ReLU activation applied after the first layer.
It transforms f into a low-dimensional embedding z ∈ Rde . Afterward, a Layer_norm is
applied to z, ensuring that ∥z∥2 = 1.

In high-dimensional spaces, Euclidean distance becomes less meaningful due to the
curse of dimensionality; thus, projecting features into a lower-dimensional space improves
the effectiveness of the proposed similarity-based loss. Moreover, a smaller embedding
dimension reduces model complexity and prevents overfitting.

Attacks in NIDSs have different variations. For example, DDoS attacks include varia-
tions such as synchronized (SYN) flooding, UDP flooding, and ICMP flooding. To capture
the underlying distribution of the traffic inside each class more effectively, we consider
multiple proxies for the class. These proxies are trained simultaneously with the other
model parameters using a backpropagation-based optimizer like Adam [45].

Sensors 2025, 25, 4961 9 of 24

3.2.2. Loss Function

For a natural number n, let [n] denote {1, 2, . . . , n}. The set of proxies for each class
c ∈ [C] is denoted by

{
wc

j

}
j∈[J]

. We define the similarity between the embedding z and

class c, s (z, c) as follows:
s(z, c) = ∑

j∈[J]
αc

j z
⊤∼w

c
j , (4)

where
∼
w

c
j = wc

j /
∥∥∥wc

j

∥∥∥
2
, and αc

j indicates the attention weight of proxy wc
j obtained by

the self-attention mechanism. Specifically, we treat z as a query, while treating all proxies{
wc

j

}
j∈[J]

as both keys and values. The attention weight αc
j is computed by Softmax over

the similarity scores between z and each wc
j .

The similarity s(z, c) lies within the [−1,+1] range, because z and
∼
w

c
j have a unit

l2-norm, αc
j ≥ 0, and ∑

j∈[J]
αc

j = 1. The embedding’s prediction for z, p = (p1, . . . , pC) is

obtained by applying Softmax to the similarities as follows:

pc = p (y = c|z) = exp (s(z, c)/T)
∑i∈[C] exp(s (z, i)/T)

, c ∈ [C], (5)

where T indicates the Softmax temperature.
The proposed loss function is a regularized cross-entropy loss between the embed-

ding’s prediction p and the true label y of z:

Le (z, y) = −log py + λr∥αy∥1, (6)

where py indicates the predicted probability of the target class y, and the regularization term
encourages the model to generate sparse attention weights, thus increasing the confidence
of the predictions within the target class. The hyperparameter λr controls the weight of the
regularization term.

3.2.3. Compactness Loss Term

Instances of the same class may form large clusters in the learned embedding space,
leading to high intra-class variation. To improve the performance in classifying observed
classes and effectively identifying novel attacks, we introduce a loss term (Lc) that mini-
mizes the distance between each embedding z and its corresponding class y, while simulta-
neously separating z from other classes, resulting in a more compact representation of the
class. Lc is defined as

Lc (z, y) = max {m− s (z, y), 0}+ ∑
i∈[C]\{y}

max{s (z, i)−m, 0}, (7)

where m denotes a margin hyperparameter.

3.3. Final Loss and Training Algorithm

The final loss function in GR-IDS is given as

L(z, y) = Le (z, y) + λcLc (z, y), (8)

where the hyperparameter λc controls the trade-off between the loss terms. Algorithm 1
shows the main training steps of GR-IDS.

Sensors 2025, 25, 4961 10 of 24

Algorithm 1. Main Training Steps of GR-IDS

Input: D = {(pi, yi) }n
i=1: a sequence of incoming labeled packets

Output: Trained IDS model (the transformer, LSTM, and embedding modules)

1. Initialize a pool of session states to maintain statistical information for active
sessions.

2. Initialize a pool of session hidden states to maintain packet sequence information
for active sessions.

3. for iter = 1, 2, . . ., MAX_Iter do:
4. Receive an incoming packet and update its corresponding session information

according to Table 1.
5. if a session is terminated or M subsequent packets of a session are received then:
6. fs = Retrieve statistical features of the session
7. HS = Retrieve hidden state of the session
8. fL = Transformer-LSTM.forward(x , HS)
9. f = Combine(fs , fL)
10. z = g(f)
11. s = Calculate similarities between z and all classes using Equation (4)
12. p = Calculate embedding’s prediction using Equation (5)
13. L = Compute the loss using Equations (6)–(8)
14. Backpropagate L to update the model parameters
15. end if
16. end for
17. return Trained IDS Model

3.4. Novel Attack Detection

Let x = (p1, . . . , pM) ∈ RMd represent the input sequence of M consecutive pack-
ets from the current session f . First, the feature vector of x is extracted and its em-
bedding z is obtained. Afterward, the embedding’s prediction for z is computed using
Equations (4) and (5). Let τc be the specified threshold for class c. The set of candidate
classes C′ for z is defined as

C′ = {c| p(y = c|z) ≥ τc}

If C′ is empty, the session is labeled as a novel attack. Otherwise, the class ĉ ∈ C′ with
the maximum value of p (y = c|z) is chosen: ĉ = argmax

c
{p (y = c|z)|c ∈ C′}.

The threshold of any class c is adjusted using validation data. Specifically, to adjust
τc ∈ [C], we compute Youden’s J statistic [46], defined as Jc = Sensitivity + Specificity− 1,
on the validation set for class c. Then, τc is set as the threshold value which maximizes
Jc. Maximizing Jc reduces the risk of false alarms (low specificity) while maintaining high
detection performance (high sensitivity).

It also mitigates the imbalance issue in NIDSs because by employing per-class thresh-
olds optimized via Youden’s J statistics, classes with more data (e.g., the normal class) tend
to have stricter thresholds. Suppose that the normal class is the majority and yields the
highest similarity score for x, while x belongs to an attack class. Since the threshold of the
normal class is set higher, the likelihood of p (y = normal|z) being below τnormal is higher.
In that case, only attack classes will appear in the candidate set.

Sensors 2025, 25, 4961 11 of 24

3.5. Memory and Time Complexity

Our feature encoder combines a packet-window transformer with a session-level LSTM
to realize a multi-timescale model. As shown in Table 2, the transformer and LSTM models
have O

(
MddT + d2

T
)

and O
(

Md2
T
)

learnable parameters, respectively. Additionally, the

feature fusion module is a compact component, adding only O
(

dTd f

)
= O

(
d2

T
)

parameters.

Table 2. Specification and architecture of the transformer and LSTM networks.

Layer/Block Input Output Connected To #Parameters

Transformer 1

FC1 2 + Pos Emb Md MdT Input ddT + dT

TB1 (h = 4) 3 MdT MdT FC1+ Pos Emb d2
T + dT

TB2(h = 4) MdT MdT TB1(h = 4) d2
T + dT

FC2 MdT MdT TB2(h = 4) d2
T + dT

FC3 MdT MdT FC2 d2
T + dT

LSTM MdT dT FC3 (4M + 1)d2
T + 4dT

1 dT : Transformer dimension. 2 FC: Fully connected. 3 TB: Transformer block.

Since dT < d, the memory requirement of the feature encoder will be O(MddT).
Using the experimental settings (i.e., d = 100, dT = 32, and M = 4, d f = 48), the encoder
includes approximately 27,040 learnable parameters, which is a relatively small number
compared to typical deep learning architectures.

The proposed semantic embedding module has a simple architecture, including
O
(

d f de + de C
∣∣∣J∣∣∣) parameters. For example, in the CIC_DDoS2019 dataset (C = 13),

when |J| = 5, d f = 48, and de = 32 (the settings used in the experiments), it involves only
3648 learnable parameters.

In terms of computational complexity, projecting input to the model dimension dT

demands O (MddT) operations. The transformer’s attention mechanism on window M re-
quires O

(
M2dT

)
operations and LSTM adds O

(
Md2

T
)

computations with constant memory
with respect to session length. Subsequently, classifying the input window by the semantic
embedding module involves O

(
d f de + de C |J|

)
= O

(
d2

T + dTC |J|
)

operations.
Since d f and de are proportional, and dT and C |J| < d, the overall time complexity for

the model’s prediction will be

t (M, d, dT) = O
(

MddT + M2dT + Md2
T + d2

T + dT C |J|
)
= O (MddT).

Consequently, the most computationally intensive step in the encoder is projecting
the packet input features into the model’s lower-dimensional space. Thus, the model can
process packet sequences with low latency.

4. Results
This section discusses the experiments conducted to evaluate the performance and

efficiency of GR-IDS for detecting observed and novel attacks. We compare the proposed
method with several state-of-the-art baselines. Moreover, we investigate the contribution
of different modules and mechanisms in the proposed method through an ablation study.
Finally, we analyze the sensitivity of GR-IDS with respect to several key hyperparameters.

4.1. Datasets

The proposed method is evaluated on two standard datasets: CIC_DDoS2019 [6] and
CRiSIS-2022 [7]. Table 3 provides the specifications of these datasets.

Sensors 2025, 25, 4961 12 of 24

Table 3. Statistics of the NIDS datasets in our experiments.

Dataset #Features #Flows #Classes Categories Description

CIC_DDoS2019 80 4,534,059 13 Benign and twelve
different DDoS attacks

Recorded during two days of network activity,
containing both extracted flow features and

raw packet sequences.

CRiSIS-2022 79 2,830,743 15 Benign and fourteen
different attacks

Corrected version of CIC-IDS2017 that
includes flow features and pcap files.

CIC_DDoS2019 was recorded over two days of network activity. For each day, packet
sequences, including payloads, are available in pcap format. It also contains 80 flow features
extracted from pcap files. The dataset includes benign traffic and twelve different DDoS
attack types.

CRiSIS-2022 extends the CIC-IDS2017 dataset [8] by resolving some significant label-
ing errors and flaws in capturing network traffic. It contains 2,830,743 flows, including
14 different attacks and normal traffic. Each flow is described by 79 features. The dataset
also provides the raw pcap files with packet-level details.

4.2. Evaluation Metrics

We utilize the standard classification criteria to evaluate the performance of GR-IDS.
Let C and n denote the number of classes and sessions in the test set, respectively. We
assume that the ID of the normal class is zero. Moreover, let nij denote the number
of instances in class i that are classified as class j (i, j ∈ S = {0, 1, . . . , C− 1}), and let
ni = ∑

j∈S
nij denote the number of sessions in class i. Then, the classification metrics are

defined as follows:
Accuracy =

∑i∈S nii
n

, (9)

Precision(i) =
nii

∑j∈S nji
, (10)

Recall(i) =
nii
ni

(11)

MacroAccuracy =
∑i∈S Recall(i)

C
(12)

WeightedPrecision (WPrecision) = ∑i∈S ni Precision(i)
n

, (13)

WeightedRecall (WRecall) = ∑i∈S ni Recall(i)
n

, (14)

WeightedF1-Score (WF1) =
(

2
WRecall−1 + WPrecision−1

)
, (15)

False Alarm Rate (FAR) =
∑j∈S, j ̸=0 n0j

n0
. (16)

Here, the FAR is the proportion of normal traffic incorrectly flagged as an attack (i.e.,
false alarms on the normal class).

We use novel attack detection rate (NADR) and novel attack false alarm rate (NAFAR)
metrics to evaluate the performance of GR-IDS for detecting novel attacks. Let k denote the
class ID of an unseen attack. These metrics are defined as

NADR(k) = Recall(k) =
nkk
nk

, (17)

Sensors 2025, 25, 4961 13 of 24

NAFAR(k) =
∑i∈S, i ̸=k nik

n− nk
, (18)

4.3. Experimental Setup

GR-IDS is implemented using the PyTorch 2.1 deep learning library and Python 3.10.
The preprocessing steps of the datasets include the following: (1) removing duplicated
flows, (2) encoding the categorical features using label encoding, (3) filtering out sessions
that contain fewer than five packets, and (4) under-sampling the majority classes to alleviate
class imbalance. We apply a one-sided selection strategy for any class containing more than
10,000 sessions.

In the experiments, we split the available data into a training/test set with ratios of
70% and 30%, respectively. To optimize the hyperparameters of GR-IDS, we use 5-fold
cross-validation and the random search strategy. The search space of the hyperparameters is
specified in Table 4. Additionally, the architectures of the transformer and LSTM networks
are specified in Table 2.

Table 4. Hyperparameters of GR-IDS and their search spaces.

Hyperparameters Description Search Space

lr Learning rate {0.1, 0.3, 0.5, 0.7, 1, 3, 5} × 10−3

B Batch size {64, 128, 256, 512}
opt Optimizer algorithm Adam
m Margin in the compactness loss term 0.1, 0.3, 0.5, 1
M Sequence length 3, 4, 5
J Number of proxies per class 1, 3, 5, 7, 10

de Embedding dimension 32

4.4. Early Detection Performance

This section aims to estimate the required number of packets of an ongoing session for
reliable classification. Let the parameter Np determine the number of initial consecutive
packets from a session used for intrusion detection. Np must be large enough to capture
the temporal patterns of various attacks while also remaining small enough to allow for
near-real-time detection.

To identify appropriate values for Np, we set up multiple experiments on the
CIC_DDoS2019 dataset. In the i-th experiment (i ∈ [10]), we only use i initial packets
of each session for training and testing. For each experiment, we optimize the values of
other hyperparameters in the ranges specified in Table 3. Specifically, we optimize the
hyperparameter M (sequence length) from the range {3, 4, 5}. Table 5 summarizes the
distribution of the number of packets per session in this dataset.

Sensors 2025, 25, 4961 14 of 24

Table 5. Statistics of number of packets per session within each class on CIC_DDoS2019.

Class #Sessions Mean Std Min 25% 50% 75% Max

BENIGN 14,944 39.39 131.6 5 8 17 49 7526
DrDoS_DNS 13,154 1548.63 11,591.99 5 174 200 200 100,150
DrDoS_LDAP 1147 4798.67 19,708.64 5 8 8 8 86,232
DrDoS_MSSQL 266 1529.99 5127.89 5 6 15 37.5 61,421
DrDoS_NTP 1,088,415 70.24 63.67 5 20 46 104 400
DrDoS_NetBIOS 2077 12.94 95.72 5 8 8 8 4308
DrDoS_SNMP 1494 5168.54 21,053.86 5 8 10 16 92,128
DrDoS_SSDP 496,972 7.93 70.73 5 6 6 6 49,690
DrDoS_UDP 604,806 7.96 7.5 5 6 6 6 2430

Syn 131,317 14.94 18.41 5 12 14 18 4692
TFTP 2,126,468 7.67 4.32 5 6 6 8 664

UDP-lag 52,852 7.97 63.01 5 6 6 8 8666
WebDDoS 147 16.14 6.51 5 15 15 21 63

Total 4,534,059 30.55 811.89 5 6 6 16 100,150

The performance of GR-IDS in these experiments is presented in Table 6. The results
indicate that as the number of processed packets in sessions increases, the detection rate
improves. Considering only a few initial packets of a session yields a poor detection rate.
This indicates that these packets often do not contain malicious patterns as they are used to
establish a connection in TCP sessions and rarely carry attack signatures. For example, our
method obtains 78.97% accuracy and an 18.56 FAR by setting Np = 1. However, GR-IDS
achieves 90.09% accuracy and a 7.23% FAR by processing four packets.

Table 6. Detection performance of GR-IDS versus Np on CIC_DDoS2019.

Np Accuracy Macro Acc Precision
(DR) F1-Score Macro

F1-Score FAR

1 78.97 75.36 88.60 82.99 40.15 18.56

2 84.91 80.56 91.08 87.54 44.72 12.13

3 87.97 83.72 92.41 89.87 47.87 9.35

4 90.09 87.31 93.44 91.52 50.64 7.23

5 93.08 89.48 94.83 93.81 56.34 4.1

6 96.24 92.57 96.54 96.36 71.54 1.49

7 97.47 94.43 97.48 97.47 94.14 0.4

8 97.49 94.63 97.5 97.49 95.51 0.00

9 97.49 93.28 97.49 97.49 93.68 0.54

10 97.56 95.09 97.57 97.57 95.39 0.00

11 97.58 95.41 97.59 97.58 94.63 0.47

12 97.56 94.18 97.56 97.56 93.78 0.36

Moreover, GR-IDS achieves an accuracy of 97.47% and a FAR of 0.4% by setting
Np = 7. The improvement in the results was not significant for larger values of Np. The
results confirm that GR-IDS can detect attack activities early by processing fewer than
seven packets of a session while maintaining a low FAR, which indicates a remarkable
improvement compared to session-based methods that need the full session (≈30 packets
on average) to detect intrusions.

Sensors 2025, 25, 4961 15 of 24

4.5. Detection Performance

This section evaluates the performance of GR-IDS for detecting known (observed)
attack types. To this end, we conduct two experiments on the CIC_DDoS2019 and CRiSIS-
2022 datasets.

In these experiments, we set Np = 7 for both GR-IDS and the method of Han et al. [1],
and Np = 9 for SPIN-IDS [33] as recommended by its authors.

Table 7 presents the multi-class classification results of GR-IDS and several state-of-the-
art methods on CIC_DDoS2019, including both packet-based and session-based approaches.
Moreover, Figure 3 compares the confusion matrix of GR-IDS with SPIN-IDS, providing a
better insight into the classification results.

(a)

(b)

Figure 3. Comparison between (a) confusion matrix of GR-IDS and that of (b) SPIN-IDS on
CIC_DDoS2019.

Sensors 2025, 25, 4961 16 of 24

Table 7. Multi-class classification performance (%) of the competing NIDSs on CIC_DDoS2019.

Type Method Accuracy Macro Acc Precision
(DR) F1-Score Macro

F1-Score FAR

Session-based
Yang et al. [47] 93.36 84.67 93.38 93.37 85.51 2.25

DBN [48] 91.13 80.25 91.28 90.68 91.13 0.02

Packet-based

Han et al. [1] 92.25 84.22 92.27 92.26 84.26 2.12

SPIN-IDS [33] 94.92 88.47 94.93 94.92 89.00 1.09

GR-IDS 97.47 94.43 97.48 97.47 94.14 0.40

The results confirm that GR-IDS extracts discriminative features from sessions and sur-
passes all the competing methods by a large margin across all classification metrics. Specif-
ically, in the normal class, misclassification rates of GR-IDS are 0.1%→DNS, 0.1%→NTP,
and 0.1%→TFTP; all other attack types receive 0.0% FPs (rounded at 0.05%). Moreover,
in classifying attack types, only 1.2% and 0.2% of examples of MSSQL and NetBIOS are
misclassified as normal; all remaining attack types show 0.0% FNs.

Additionally, GR-IDS attains an accuracy of 97.47% and FAR of 0.4%, while SPIN-IDS
achieves an accuracy of 94.92% and FAR of 1.09%.

The balanced performance of GR-IDS is considerably higher than other methods.
GR-IDS achieves macro accuracy of 94.43%, surpassing SPIN-IDS by a large improvement
of 5.96%. This indicates that GR-IDS classifies all classes consistently well, even minority
classes such as WebDDoS and LDAP.

We also evaluated the performance of GR-IDS across different session sizes on
CIC_DDoS2019. To this end, we categorized the sessions into four categories based on
the number of packets (small: ≤10, M: 11–30, L: 31–100, XL: >1000). Table 8 compares the
results of GR_IDS and SPIN-IDS in these categories.

Table 8. Multi-class classification performance (%) across different session sizes on CIC_DDoS2019.

Session Size Method Accuracy Macro Acc Precision
(DR) F1-Score Macro

F1-Score FAR

Small
GR-IDS 96.75 94.30 96.76 96.75 92.50 0.63

SPIN-IDS
[33] 93.21 88.05 93.23 93.22 87.79 1.40

Medium
GR-IDS 98.03 94.88 98.04 98.03 94.55 0.30

SPIN-IDS 96.05 88.67 96.08 96.05 87.56 1.01

Large GR-IDS 99.94 96.67 99.94 99.94 96.13 0.22

SPIN-IDS 99.87 84.68 99.88 99.87 83.56 1.03

XLarge GR-IDS 99.93 96.27 99.94 99.93 88.13 0.00

SPIN-IDS 99.87 84.68 99.88 99.87 83.56 1.03

The results indicate that the performance of our method is stable across different
session sizes. For example, the minimum and maximum accuracies of GR-IDS fall be-
tween 96.75% and 99.93% across these categories. Moreover, the FAR values remain less
than 0.63% over all of them. Additionally, GR-IDS consistently outperforms SPIN-IDS at
different session sizes.

The multi-class classification results of GR-IDS and the competing methods on CRiSIS-
2022 are presented in Table 9. These results align with previous results on CIC_DDoS2019.

Sensors 2025, 25, 4961 17 of 24

Table 9. Multi-class classification performance (%) of the competing NIDSs on CRiSIS-2022.

Type Method Accuracy Macro Acc Precision
(DR) F1-Score Macro

F1-Score FAR

Session-
based

Yang et al.
[47] 99.81 87.50 99.35 99.34 90.37 0.33

DBN [48] 94.19 63.39 99.58 96.73 48.78 3.97

Packet-based

Han et al. [1] 99.67 84.20 99.69 99.68 83.13 0.40

SPIN-IDS
[33] 99.10 88.73 99.12 99.11 84.26 0.40

GR-IDS 99.90 92.60 99.90 99.90 91.23 0.11

GR-IDS achieves the best performance in this experiment with an accuracy of 99.90%
and a low FAR of 0.11%. Moreover, the balanced performance of GR-IDS is remarkable,
with macro accuracy of 92.60%. The high balanced performance of GR-IDS is mainly
attributed to the proposed loss function, the multi-proxy per-class mechanism, and the
proposed adaptive class-wise thresholds. These result in a robust embedding in which
classes are well separated despite imbalanced distributions.

4.6. Identifying Novel Attacks

We also conduct several experiments to evaluate the performance of GR-IDS in detect-
ing novel attacks. For this purpose, we first group classes in CRiSIS-2022 into six categories
as shown in Table 10. In each experiment, one attack category is excluded from the training
set and GR-IDS is trained in the remaining categories. During test phase, we assess GR-IDS
on the test set of CRiSIS-2022, which includes all attack categories (both the unobserved
category and the observed categories).

Table 10. Categories and classes of CRiSIS-2022.

Category Classes #Sessions

BENIGN BENIGN 432,946
Botnet Botnet 738

DDoS DDoS, DoS GoldenEye, DoS Hulk, DoS Slowhttptest, DoS slowloris,
Heartbleed 265,308

Brute Force FTP-Patator, SSH-Patator 6953
PortScan PortScan 221

Web Attack Web Attack-Brute Force, Web Attack-Sql Injection, Web Attack-XSS 190
Total 706,356

The performance of GR-IDS is compared with several out-of-distribution detection (OOD)
methods introduced in [49] using the NADR and NAFAR metrics. The OOD methods are
denoted by confidence (CONF), Monte Carlo Dropout (MCD), K-Nearest Neighbor (KNN), and
Silhouette measure (SLH).

The competing methods require a predefined threshold to identify novel intrusions.
We adjust these thresholds using the common technique, which guarantees that 95% of the
validation data are classified as one of the observed classes [50]. However, GR-IDS uses the
proposed class-wise thresholds as described in Section 3.4.

We adjust the hyperparameters of OOD methods according to the recommended
settings in [49]. Specifically, we set the learning rate = 0.0005, batch size = 512, number of
epochs = 25, and optimizer = Adam for these methods. These methods are trained using
cross-entropy and a center loss (with a weighting factor of 1). Also, the model with the
highest F1-score on the validation set is used for testing. Table 11 presents the results.

Sensors 2025, 25, 4961 18 of 24

Table 11. Novel attack detection performance (%) of the competing methods on CRiSIS-2022.

Novel Attack GR-IDS
NADR/NAFAR

CONF
NADR/NAFAR

MCD
NADR/NAFAR

KNN
NADR/NAFAR

SLH
NADR/NAFAR

Web Attack 99.71/4.01 93.10/4.97 93.10/6.16 90.30/5.69 88.58/1.46

PortScan 62.64/3.03 5.28/4.99 38.64/5.96 40.26/6.02 1.23/1.53

DoS/DDoS 59.2/3.15 26.95/4.92 28.98/5.79 30.25/6.15 13.65/1.63

Brute Force 99.76/2.23 2.15/4.95 76.02/5.75 94.38/6.02 1.85/1.43

Botnet ARES 99.21/5.75 0.00/5.00 3.77/6.21 0.00/5.17 0.00/1.12

AVG 84.10/3.63 25.50/4.97 48.10/5.97 51.04/5.81 21.50/1.43

As the results indicate, GR-IDS surpasses the other methods by a large margin. For
example, it detects the unobserved Brute Force attack with an accuracy of 99.76% and a low
NAFAR of 2.23%, whereas the best OOD method, kNN, attains an accuracy of 94.38% with
a higher NAFAR of 6.02%. Furthermore, while all OOD methods fail to identify the novel
Botnet ARES intrusion, GR-IDS detects this attack with a NADR of 99.21% and a relatively
low NAFAR of 5.75%.

It should be noted that all competing methods in this experiment are session-based
and thus must wait for 57.29 packets (on average) to detect intrusions. In contrast, GR-IDS
can accurately detect intrusions by processing only the first seven packets of a session.

4.7. Ablation Study

This section examines the contribution of several modules and mechanisms within
GR-IDS to the overall performance of our method. Specifically, we examine the effects
of statistical features, the LSTM network, the compactness loss term, and the proposed
adaptive class-wise thresholds. To this end, we derive four variants of GR-IDS as follows:

1. GR-IDS w/o SF: Obtained by removing the statistical features from the feature encoder.
2. GR-IDS w/o LSTM: Derived by omitting the LSTM network from the feature encoder.
3. GR-IDS w/o C: Indicates GR-IDS without the compactness loss term.
4. GR-IDS w/o C-Thresh: Shows GR-IDS without the adaptive class-wise thresholds.
5. GR-IDS Pure Trans: Shows a GR-IDS where the feature encoding module is replaced

by a transformer.
6. GR-IDS Pure LSTM: Indicates a GR-IDS where the feature encoding module is replaced

by an LSTM.

These variants are evaluated for detecting observed intrusions on CIC_DDoS2019
and novel intrusions on CRiSIS-2022. We preprocess the CIC_DDoS2019 and CRiSIS-2022
datasets as specified in Sections 4.3 and 4.6, respectively.

The detection performance of these variants on CIC_DDoS2019 is illustrated in Figure 4.
Additionally, Table 12 presents the novel attack performance of these methods.

The results indicate that all these modules and mechanisms enhance the performance
of GR-IDS. Moreover, the considerable performance gains of the full GR-IDS with respect
to the simpler feature encoder variants (GR-IDS Pure Trans and GR-IDS Pure LSTM) justify
the effectiveness of the proposed feature encoder.

Without the statistical features, we observe that GR-IDS’s performance is slightly
reduced. However, the overall and balanced performance of GR-IDS is still high.

Sensors 2025, 25, 4961 19 of 24

Figure 4. Multi-class classification results of the ablation study on CIC_DDoS2019.

Table 12. Ablation study results for novel attack detection performance (%) on CRiSIS-2022.

Novel Attack GR-IDS
NADR/NAFAR

w/o LSTM
NADR/NAFAR

w/o C
NADR/NAFAR

w/o C-Thresh
NADR/NAFAR

Pure Trans
NADR/NAFAR

Pure LSTM
NADR/NAFAR

Web Attack 99.71/4.01 98.23/4.46 96.56/5.81 96.79/5.66 98.27/3.17 95.68/5.08

PortScan 62.64/3.03 61.56/2.78 59.82/3.03 59.98/3.99 59.9/6.17 59.21/3.77

DoS/DDoS 59.20/3.15 58.49/3.82 55.26/4.58 55.51/4.51 56.91/3.89 55.84/3.49

Brute Force 99.76/2.23 98.19/3.03 95.84/3.40 94.65/3.03 96.73/0.6 93.93/3.55

Botnet ARES 99.21/5.75 98.79/6.31 94.72/6.88 94.5/5.99 95.39/7.4 93.53/6.98

AVG 84.10/3.63 83.05/4.05 80.44/4.74 80.29/4.64 81.64/4.25 79.64/4.57

The LSTM network has a more positive effect than statistical features. Our offline
analysis shows that this network is especially beneficial for processing long sessions.
However, 50% of sessions in CIC_DDoS2019 contain less than six packets, as shown in
Table 5. Moreover, we only process seven initial packets of any session for early detection.
Thus, the effect of this network is not considerable.

The compactness loss positively affects both overall and balanced performance of
GR-IDS. Without this loss term, the accuracy and macro accuracy of GR-IDS reduce by
2.26% and 2.83%. Moreover, the FAR of GR-IDS increases from 0.4% to 1.43% in this case.
Therefore, we conclude that this term is necessary for maintaining high performance in
GR-IDS.

Finally, the proposed adaptive class-wise threshold mechanism slightly increases the
overall performance of GR-IDS. However, this mechanism is very effective for obtaining
a high balanced performance. For example, without this mechanism, the accuracy and
F1-score of GR-IDS are reduced by around 1%. However, the macro accuracy and macro
F1-score of GR-IDS are reduced by 4.27% and 3.65%, respectively.

The results in Table 12 show that statistical features and the LSTM network slightly
increase the novel attack detection performance. Conversely, the compactness loss and the
proposed adaptive class-wise thresholds highly contribute to the novel attack detection rate.
For example, without one of these features, the NADR of GR-IDS decreases by around 4%.

We can conclude that the compactness loss results in compact representations for each
class in the embedding space which, in turn, yields a highly balanced and generalized
performance for GR-IDS. Additionally, the proposed adaptive class-wise threshold mecha-
nism successfully mitigates the imbalance issue and bias toward observed classes in NIDSs.
Moreover, statistical features and the LSTM network consistently enhance the performance
of GR-IDS, although their improvements are slight.

Sensors 2025, 25, 4961 20 of 24

4.8. Hyperparameter Analysis

This section investigates two hyperparameters of GR-IDS: J (number of proxies per
class) and M (packet sequence length). To this end, we conduct two experiments on
CIC_DDoS2019.

In the first experiment, we change the value of J in the range {1, 3, 5, 7, 10} and measure
the accuracy and macro accuracy of GR-IDS within this range. Figure 5 plots the results.
To provide better insight into the sensitivity of this hyperparameter, we also illustrate the
results of SPIN-IDS.

Figure 5. Change in accuracy and macro accuracy of GR-IDS by varying J (first row) and M (second
row) on the CIC_DDoS2019 dataset.

As the results show, the performance of GR-IDS consistently improves as J increases.
Considering both accuracy and macro accuracy metrics, the best performance is obtained
by setting J = 5. For larger values of J, the performance of GR-IDS slightly decreases. At
the optimal point, the accuracy and macro accuracy are around 1.5% and 2% higher than
those obtained by J = 1. This indicates the effectiveness of considering multiple proxies
per class in NIDSs, as this technique better captures the high intra-class variability in this
domain, especially for larger classes. In addition, GR-IDS outperforms SPIN-IDS for a wide
range of J values, which indicates the low sensitivity of the performance to a specific value
of J.

In the second experiment, the accuracy and macro accuracy of GR-IDS are measured
as M varies in the range {2, 3, 4, 5, 7}. The results are illustrated in Figure 5.

As the results indicate, the performance of GR-IDS improves by increasing M. The
best performance of GR-IDS is achieved by setting M = 7. Interestingly, we observe that
the results for M = 5 are slightly lower than M = 4.

Sensors 2025, 25, 4961 21 of 24

The reason is that we limit the number of processed packets of each session to seven.
Thus, for M = 5, the transformer processes five packets first and two packets subsequently.
The imbalance between the two windows slightly reduces the performance of the feature
encoder. Additionally, the results confirm that GR-IDS has less sensitivity to a specific
value of M.

5. Conclusions and Future Work
This research presents an incremental and similarity learning method called GR-

IDS for early and multi-class intrusion detection. GR-IDS includes an incremental feature
encoding module that effectively captures temporal and spatial information between the
packets of a session. Simultaneously, GR-IDS incrementally computes statistical features of
the session. By combining these features and learning a discriminative embedding space
through the proposed multi-proxy loss, GR-IDS can detect network intrusions early using
only initial packets of a session with high performance.

Additionally, by utilizing a compactness loss term and a novel class-wise thresholding
technique, it can accurately identify novel or mutated attack types.

Several experiments were conducted to evaluate the performance of GR-IDS for detect-
ing observed and unobserved attack types. The results were also compared with several
state-of-the-art methods. The results indicate that GR-IDS can effectively detect attack
activities by processing fewer than seven packets of a session. Moreover, GR-IDS surpasses
all the competing methods by a large margin in terms of many classification metrics.

The results of novel attack detection show that GR-IDS identifies various unobserved
attack types with a higher detection rate compared to peer methods, while having a lower
false novel attack alarm rate. For example, it detects the unobserved Brute Force attack
with an accuracy of 99.76% and a low NAFAR of 2.23%, whereas the best out-of-distribution
(OOD) method achieves an accuracy of 94.38% and a NAFAR of 6.02%.

The ablation study validates the effectiveness of all evaluated components in the
proposed method. Specifically, the results confirm that the compactness loss term and
the proposed class-wise thresholding technique considerably improve both overall and
balanced performance of GR-IDS.

Currently, we focus on training and evaluation on existing datasets. However, val-
idating our work on a real or virtual network with live attacks would provide a more
comprehensive assessment of real-world performance.

In future research, we plan to set up scenarios that mirror the characteristics of bench-
mark attacks and report the detection results to quantify any performance difference
between dataset-based and emulated evaluations. We will also extend GR-IDS to identify
adversarial attacks and extend the generalizability of our method across different datasets.

Author Contributions: Conceptualization, Z.k.A. and D.Z.; Formal analysis, Z.k.A., D.Z. and S.A.H.S.;
Methodology, Z.k.A. and D.Z.; Software, Z.k.A. and D.Z.; Supervision, S.A.H.S., A.G.B. and D.Z.;
Writing—original draft, Z.k.A.; Writing—review and editing, D.Z., S.A.H.S. and A.G.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The datasets used in the experiments are publicly available and can be
downloaded from the following links: CIC_DDoS2019 dataset: https://www.unb.ca/cic/datasets/
ddos-2019.html (accessed on 5 August 2025). CRiSIS-2022 dataset: https://gitlab.inria.fr/mlanvin/
crisis2022 (accessed on 5 August 2025).

Conflicts of Interest: The authors declare no conflicts of interest.

https://www.unb.ca/cic/datasets/ddos-2019.html
https://www.unb.ca/cic/datasets/ddos-2019.html
https://gitlab.inria.fr/mlanvin/crisis2022
https://gitlab.inria.fr/mlanvin/crisis2022

Sensors 2025, 25, 4961 22 of 24

References
1. Han, J.; Pak, W. High performance network intrusion detection system using two-stage LSTM and incremental created hybrid

features. Electronics 2023, 12, 956. [CrossRef]
2. Wu, S.X.; Banzhaf, W. The use of computational intelligence in intrusion detection systems: A review. Appl. Soft Comput. 2010, 10,

1–35. [CrossRef]
3. Gamage, S.; Samarabandu, J. Deep learning methods in network intrusion detection: A survey and an objective comparison. J.

Netw. Comput. Appl. 2020, 169, 102767. [CrossRef]
4. Wang, W.; Sheng, Y.; Wang, J.; Zeng, X.; Ye, X.; Huang, Y.; Hast-Ids, M.Z. Learning Hierarchical Spatial-Temporal Features Using

Deep Neural Networks to Improve Intrusion Detection. IEEE Access 2018, 6, 1792–1806. [CrossRef]
5. Yang, L.; Song, Y.; Gao, S.; Hu, A.; Xiao, B. Griffin: Real-time network intrusion detection system via ensemble of autoencoder in

SDN. IEEE Trans. Netw. Serv. Manag. 2022, 19, 2269–2281. [CrossRef]
6. Sharafaldin, I.; Lashkari, A.H.; Hakak, S.; Ghorbani, A.A. Developing realistic distributed denial of service (DDoS) attack dataset

and taxonomy. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India,
1–3 October 2019; pp. 1–8.

7. Lanvin, M.; Gimenez, P.-F.; Han, Y.; Majorczyk, F.; Mé, L.; Totel, E. Errors in the CICIDS2017 dataset and the significant differences
in detection performances it makes. In International Conference on Risks and Security of Internet and Systems; Springer: New York,
NY, USA, 2022; pp. 18–33.

8. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp 2018, 1, 108–116.

9. Kim, J.; Shin, N.; Jo, S.Y.; Kim, S.H. Method of intrusion detection using deep neural network. In Proceedings of the 2017 IEEE
International Conference on Big Data and Smart Computing (BigComp), Jeju Island, Republic of Korea, 13–16 February 2017; pp.
313–316.

10. Vinayakumar, R.; Alazab, M.; Soman, K.; Poornachandran, P.; Al-Nemrat, A.; Venkatraman, S. Deep learning approach for
intelligent intrusion detection system. IEEE Access 2019, 7, 41525–41550. [CrossRef]

11. Shone, N.; Ngoc, T.N.; Phai, V.D.; Shi, Q. A deep learning approach to network intrusion detection. IEEE Trans. Emerg. Top.
Comput. Intell. 2018, 2, 41–50. [CrossRef]

12. Al-Qatf, M.; Lasheng, Y.; Al-Habib, M.; Al-Sabahi, K. Deep learning approach combining sparse autoencoder with SVM for
network intrusion detection. IEEE Access 2018, 6, 52843–52856. [CrossRef]

13. Yan, B.; Han, G. Effective feature extraction via stacked sparse autoencoder to improve intrusion detection system. IEEE Access
2018, 6, 41238–41248. [CrossRef]

14. Yin, C.; Zhu, Y.; Fei, J.; He, X. A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access 2017,
5, 21954–21961. [CrossRef]

15. Xu, C.; Shen, J.; Du, X.; Zhang, F. An intrusion detection system using a deep neural network with gated recurrent units. IEEE
Access 2018, 6, 48697–48707. [CrossRef]

16. Naseer, S.; Saleem, Y.; Khalid, S.; Bashir, M.K.; Han, J.; Iqbal, M.M.; Han, K. Enhanced network anomaly detection based on deep
neural networks. IEEE Access 2018, 6, 48231–48246. [CrossRef]

17. Zavrak, S.; Iskefiyeli, M. Flow-based intrusion detection on software-defined networks: A multivariate time series anomaly
detection approach. Neural Comput. Appl. 2023, 35, 12175–12193. [CrossRef]

18. Lan, Y.; Truong-Huu, T.; Wu, J.; Teo, S.G. Cascaded Multi-Class Network Intrusion Detection With Decision Tree and Self-attentive
Model. In Proceedings of the 2022 IEEE International Conference on Data Mining Workshops (ICDMW), Orlando, FL, USA, 28
November–1 December 2022; pp. 1–7.

19. Hnamte, V.; Hussain, J. DCNNBiLSTM: An efficient hybrid deep learning-based intrusion detection system. Telemat. Inform. Rep.
2023, 10, 100053. [CrossRef]

20. Fosić, I.; Žagar, D.; Grgić, K.; Križanović, V. Anomaly detection in NetFlow network traffic using supervised machine learning
algorithms. J. Ind. Inf. Integr. 2023, 33, 100466. [CrossRef]

21. Keerthi, S.S.; Srija, K.S.; Pavan, P.S.; Prakash, K. Machine Learning for Net Flow Based Anomaly Intrusion Detection System
Using Neural Network Stages. Int. J. Comput. Learn. Intell. 2023, 2, 25–31.

22. Oh Song, H.; Xiang, Y.; Jegelka, S.; Savarese, S. Deep metric learning via lifted structured feature embedding. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27 June–30 June 2016; pp. 4004–4012.

23. Zabihzadeh, D.; Alitbi, Z.; Mousavirad, S.J. Ensemble of loss functions to improve generalizability of deep metric learning
methods. Multimed. Tools Appl. 2024, 83, 21525–21549. [CrossRef]

https://doi.org/10.3390/electronics12040956
https://doi.org/10.1016/j.asoc.2009.06.019
https://doi.org/10.1016/j.jnca.2020.102767
https://doi.org/10.1109/ACCESS.2017.2780250
https://doi.org/10.1109/TNSM.2022.3175710
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1109/TETCI.2017.2772792
https://doi.org/10.1109/ACCESS.2018.2869577
https://doi.org/10.1109/ACCESS.2018.2858277
https://doi.org/10.1109/ACCESS.2017.2762418
https://doi.org/10.1109/ACCESS.2018.2867564
https://doi.org/10.1109/ACCESS.2018.2863036
https://doi.org/10.1007/s00521-023-08376-5
https://doi.org/10.1016/j.teler.2023.100053
https://doi.org/10.1016/j.jii.2023.100466
https://doi.org/10.1007/s11042-023-16160-9

Sensors 2025, 25, 4961 23 of 24

24. Bedi, P.; Gupta, N.; Jindal, V. Siam-IDS: Handling class imbalance problem in intrusion detection systems using siamese neural
network. Procedia Comput. Sci. 2020, 171, 780–789. [CrossRef]

25. Bedi, P.; Gupta, N.; Jindal, V. I-SiamIDS: An improved Siam-IDS for handling class imbalance in network-based intrusion detection
systems. Appl. Intell. 2021, 51, 1133–1151. [CrossRef]

26. Jmila, H.; Ibn Khedher, M.; Blanc, G.; El Yacoubi, M.A. Siamese network based feature learning for improved intrusion detection.
In Proceedings of the Neural Information Processing: 26th International Conference, ICONIP 2019, Sydney, NSW, Australia,
12–15 December 2019; Proceedings, Part I 26. Springer: Berlin/Heidelberg, Germany, 2019; pp. 377–389.

27. Andresini, G.; Appice, A.; Malerba, D. Autoencoder-based deep metric learning for network intrusion detection. Inf. Sci. 2021,
569, 706–727. [CrossRef]

28. Wang, W.; Jian, S.; Tan, Y.; Wu, Q.; Huang, C. Representation learning-based network intrusion detection system by capturing
explicit and implicit feature interactions. Comput. Secur. 2022, 112, 102537. [CrossRef]

29. Qin, Z.-Q.; Ma, X.-K.; Wang, Y.-J. Attentional payload anomaly detector for web applications. In Proceedings of the Neural
Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, 13–16 December 2018; Proceedings,
Part IV 25. Springer: Berlin/Heidelberg, Germany, 2018; pp. 588–599.

30. Farrukh, Y.A.; Khan, I.; Wali, S.; Bierbrauer, D.; Pavlik, J.A.; Bastian, N.D. Payload-byte: A tool for extracting and labeling packet
capture files of modern network intrusion detection datasets. In Proceedings of the 2022 IEEE/ACM International Conference on
Big Data Computing, Applications and Technologies (BDCAT), Vancouver, WA, USA, 6–9 December 2022; pp. 58–67.

31. Zhang, X.; Chen, J.; Zhou, Y.; Han, L.; Lin, J. A multiple-layer representation learning model for network-based attack detection.
IEEE Access 2019, 7, 91992–92008. [CrossRef]

32. Yu, L.; Dong, J.; Chen, L.; Li, M.; Xu, B.; Li, Z.; Qiao, L.; Liu, L.; Zhao, B.; Zhang, C. PBCNN: Packet bytes-based convolutional
neural network for network intrusion detection. Comput. Netw. 2021, 194, 108117. [CrossRef]

33. Ghadermazi, J.; Shah, A.; Bastian, N.D. Towards real-time network intrusion detection with image-based sequential packets
representation. IEEE Trans. Big Data 2024, 11, 157–173. [CrossRef]

34. Hassan, M.; Haque, M.E.; Tozal, M.E.; Raghavan, V.; Agrawal, R. Intrusion detection using payload embeddings. IEEE Access
2021, 10, 4015–4030. [CrossRef]

35. Pekar, A.; Jozsa, R. Early-Stage Anomaly Detection: A Study of Model Performance on Complete vs. Partial Flows. arXiv 2025,
arXiv:2407.02856.

36. Zhang, Z.; Liu, Q.; Qiu, S.; Zhou, S.; Zhang, C. Unknown attack detection based on zero-shot learning. IEEE Access 2020, 8,
193981–193991. [CrossRef]

37. Sarhan, M.; Layeghy, S.; Gallagher, M.; Portmann, M. From zero-shot machine learning to zero-day attack detection. Int. J. Inf.
Secur. 2023, 22, 947–959. [CrossRef]

38. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009
IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009; pp.
1–6.

39. Sarhan, M.; Layeghy, S.; Moustafa, N.; Portmann, M. Towards a standard feature set of NIDS datasets. arXiv 2021, arXiv:2101.11315.
40. Raza, S.A.; Shaikh, M.; Akhtar, R.; Anwar, A. A novel approach to intrusion detection using zero-shot learning hybrid partial

labels. Mehran Univ. Res. J. Eng. Technol. 2024, 43, 182–191. [CrossRef]
41. Sun, Y.; Ochiai, H.; Esaki, H. Intrusion detection with segmented federated learning for large-scale multiple LANs. In Proceedings

of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.
42. Wang, Z.-M.; Tian, J.-Y.; Qin, J.; Fang, H.; Chen, L.-M. A few-shot learning-based siamese capsule network for intrusion detection

with imbalanced training data. Comput. Intell. Neurosci. 2021, 2021, 7126913. [CrossRef] [PubMed]
43. Iliyasu, A.S.; Abdurrahman, U.A.; Zheng, L. Few-shot network intrusion detection using discriminative representation learning

with supervised autoencoder. Appl. Sci. 2022, 12, 2351. [CrossRef]
44. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv.

Neural Inf. Process. Syst. 2017, 30.
45. Kingma, D.; Adam, J.B. A method for stochastic optimization. In Proceedings of the International Conference on Learning

Representations (ICLR), San Diego, CA, USA, 2–4 May 2016; p. 6.
46. Youden, W. Statistical Techniques. NBS Spec. Publ. 1969, 300–301, 421.
47. Yang, Y.; Cheng, J.; Liu, Z.; Li, H.; Xu, G. A multi-classification detection model for imbalanced data in NIDS based on

reconstruction and feature matching. J. Cloud Comput. 2024, 13, 31. [CrossRef]
48. Belarbi, O.; Khan, A.; Carnelli, P.; Spyridopoulos, T. An intrusion detection system based on deep belief networks. In International

Conference on Science of Cyber Security; Springer: New York, NY, USA, 2022; pp. 377–392.

https://doi.org/10.1016/j.procs.2020.04.085
https://doi.org/10.1007/s10489-020-01886-y
https://doi.org/10.1016/j.ins.2021.05.016
https://doi.org/10.1016/j.cose.2021.102537
https://doi.org/10.1109/ACCESS.2019.2927465
https://doi.org/10.1016/j.comnet.2021.108117
https://doi.org/10.1109/TBDATA.2024.3403394
https://doi.org/10.1109/ACCESS.2021.3139835
https://doi.org/10.1109/ACCESS.2020.3033494
https://doi.org/10.1007/s10207-023-00676-0
https://doi.org/10.22581/muet1982.2401.2945
https://doi.org/10.1155/2021/7126913
https://www.ncbi.nlm.nih.gov/pubmed/34557226
https://doi.org/10.3390/app12052351
https://doi.org/10.1186/s13677-023-00584-7

Sensors 2025, 25, 4961 24 of 24

49. Corsini, A.; Yang, S.J. Are Existing Out-Of-Distribution Techniques Suitable for Network Intrusion Detection? In Proceedings of
the 2023 IEEE Conference on Communications and Network Security (CNS), Orlando, FL, USA, 2–5 October 2023; pp. 1–9.

50. Sun, Y.; Ming, Y.; Zhu, X.; Li, Y. Out-of-distribution detection with deep nearest neighbors. In Proceedings of the International
Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022; pp. 20827–20840.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Session-Based Methods
	Packet-Based Methods
	Detecting Novel Attack Types

	Materials and Methods
	Feature Encoding
	Transformer Model
	LSTM Network
	Online Statistical Flow Feature Extractor
	Feature Fusion

	Semantic Embedding Learning
	Architecture
	Loss Function
	Compactness Loss Term

	Final Loss and Training Algorithm
	Novel Attack Detection
	Memory and Time Complexity

	Results
	Datasets
	Evaluation Metrics
	Experimental Setup
	Early Detection Performance
	Detection Performance
	Identifying Novel Attacks
	Ablation Study
	Hyperparameter Analysis

	Conclusions and Future Work
	References

