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Abstract
A well-known theorem of Baer states that if G is a group and G/Zn(G) is finite, then
γn+1(G) is finite. Kurdachenko et al. proved that if G/Zn(G) is a locally finite group
of finite exponent, then so is γn+1(G). In this article, we extend this theorem to groups
G with subgroups A of Aut(G)which contain I nn(G). Furthermore, some new upper
bounds of the exponents of γn+1(G) and γn+1(G, A) are presented. Moreover we give
a proof for the converse ofBaer’s theoremconsidering groupsG such thatG/Zn(G, A)

and A/I nn(G) are finitely generated or have finite special rank. Finally we conclude
that the index of the subgroup Zn(G, A) is bounded by a precisely determined function
in terms of the order of γn+1(G, A).

Keywords Schur’s theorem · Baer’s theorem · Exponent · Hypocenter
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1 Introduction and Preliminaries

Aclass of groupsX is called a Schur class, if for every groupG such thatG/Z(G) ∈ X,
we conclude that the derived subgroup γ2(G) belongs to X. According to the well-
known theorem of Schur, the class of all finite groups is a Schur class. A question
related to this result that arises naturally here is the relationship between |G/Z(G)|
and |γ2(G)| in this class. In [16] Wiegold answered this question in such away that

if |G/Z(G)| = t , then |γ2(G)| ≤ t
1
2 (logp t−1), where p is the smallest prime number
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dividing t . In 2007, Mann [12] proved that the class of locally finite groups with
finite exponent is a Schur class. In addition to that, he obtained the following relation
between the exponents of G/Z(G) and γ2(G).

Theorem 1.1 (A. Mann)[[12], Theorem 1] Let G be a group such that G/Z(G) is
locally finite of exponent e. Then γ2(G) is likewise locally finite with a finite exponent.
Moreover the best possible bound for its exponent, m(e), is dividing |R(2, e)|, where
|R(2, e)| is the order of the restrictedBurnside groupwith twogenerators and exponent
e.

In [1] Baer proved that for a natural number n, if G/Zn(G) is finite, then γn+1(G)

is finite, in which Zn(G) and γn+1(G) are the nth and (n+1)th terms of the upper and
lower central series of G, respectively. Here we bring the next concept that helps us
to represent these results more properly. A class of groups X is said to be a Baer class
if for every group G such that G/Zn(G) ∈ X, the (n + 1)th terms of lower central
series γn+1(G) also belongs to X. Similar to Schur class, the question of finding a
relationship between the factor groups G/Zn(G) and γn+1(G) of G in the class X is
very common. In 2016 Kurdachenko et al. [11] extended the Mann’s result to other
terms of upper central series and concluded that the class of locally finite groups of
finite exponent is a Baer class. In other words, they proved:

Theorem 1.2 (L. A. Kurdachenko et al.)[[11], Theorem A] For a given group G,
suppose that G/Zn(G) is locally finite with finite exponent e, for some positive integer
n. Then the subgroup γn+1(G) is locally finite of finite exponent. Moreover there exists
a function β1(e, n) such that the exponent of γn+1(G) is at most β1(e, n) defined
inductively by

β1(e, 1) = m(e), β1(e, 2) = m(m(e))m(e), β1(e, n) = m(β1(e, n − 1))β1(e, n − 1).

The first aim of this paper is to improve the bound obtained in Theorem 1.2. Our
improved bound is presented in the next theorem.

Theorem A Let G be a group such that G/Zn(G) is locally finite of exponent e. Then
γn+1(G) is locally finite and its exponent divides

gcd(e�n+1/2�m(e), gcd(m(e)n,m(m(. . . (m(e)) . . .))
︸ ︷︷ ︸

n−times

))

for odd e and

gcd((2e)�n+1/2�m(e), gcd(m(e)n,m(m(. . . (m(e)) . . .))
︸ ︷︷ ︸

n−times

))

for even e, where gcd(a, b) denotes the greatest common divisor of a and b and �x�
denotes the least integer which is greater than or equal to x.
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Furthermore, by using an example we show that the bound in Theorem A is smaller
than the one obtained in [[4], Theorem B].
In [8], Hegarty proved that if G/CG(Aut(G)) is finite, then both [G, Aut(G)] and
Aut(G) are finite. Moreover he showed:

Theorem 1.3 (P. Hegarty)[8] Let |G/CG(Aut(G))| = t , then

|γ2(G, Aut(G))| ≤ t t((t−1)2+[ t2 ])[log2 t].

In 2014, Dixon et al. improved Hegarty’s work in [3] by generalizing the lower central
series. They actually substituted [G, Aut(G)] for [G, A] where A is a group with
I nn(G) ≤ A ≤ Aut(G) and then generalized it to every γi (G, A) when i ∈ N.
Throughout this paper, G is assumed to be an arbitrary group and I nn(G) ≤ A ≤
Aut(G). To state the next definition we need the concept of A-central subgroup.

Definition 1.4 Let G be a group and let A ≤ Aut(G) be a subgroup of the automor-
phism group of G. A subgroup H ≤ G is called A-central if it is fixed pointwise by
all automorphisms in A, i.e.,

∀α ∈ A, ∀h ∈ H , α(h) = h.

Equivalently,
H ≤ CG(A) = {g ∈ G | α(g) = g for all α ∈ A}.

Here we consider the upper A-central series of G, same as the series used in [3], as
follows:

1 = Z0(G, A) ≤ Z1(G, A) ≤ · · · ≤ Zα(G, A) ≤ Zα+1(G, A) ≤ · · ·

defined by the rule Z1(G, A) = CG(A), and recursively

Zα+1(G, A)

Zα(G, A)
= Z1

(

G

Zα(G, A)
,

A

CA( G
Zα(G,A)

)

)

for all ordinals α and Zλ(G, A) = ⋃

α<λ Zα(G, A) for a limit ordinal λ. The last term
Z∞(G, A) = Zμ(G, A) of this series is called the upper A-hypercenter of G and the
ordinal μ is called the upper A-central length of G and is denoted by zl(G, A). The
lower A-central series of a group G is the series

G = γ1(G, A) ≥ γ2(G, A) ≥ · · · ≥ γv(G, A) ≥ γv+1(G, A) ≥ · · ·

in which γ2(G, A) = [G, A] and γν+1(G, A) = [γν(G, A), A] for every ordinal ν

and γβ(G, A) = ⋂

ν<β γν(G, A) for a limit ordinal β. The last term γ∞(G, A) =
γδ(G, A) of this series is called the lower A-hypocenter of G. Some elementary prop-
erties of the mentioned upper and lower A-central series are as follows.

Lemma 1.5 Let G be a group and A be a group with Inn(G) ≤ A ≤ Aut(G), then
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i) Zα(G, A) ≤ Zα(G).

ii) γβ(G, A) ≥ γβ(G).

iii) γ2(γn(G, A)) ≤ γn+1(G, A).

By applying the last generalization, two questions then arise here.

1. For which classes of groupsX, if we considerG/Zn(G, A) ∈ X for some subgroup
I nn(G) ≤ A ≤ Aut(G) and positive integer n, we can conclude that γn+1(G, A) ∈
X?

2. What relationship does appear between the factor group G/Zn(G, A) and the sub-
group γn+1(G, A) of G in the class X?

With the assumption |A/I nn(G)| < ∞, Dixon et al. illustrated that the class of finite
groups satisfies the condition of the first question, when zl(G, A) = n is finite. They
also found a relationship between the orders of the factor group G/Zn(G, A) and the
subgroup γn+1(G, A) of G. In 2011 Dietrich and Moravec proved:

Theorem 1.6 ( H. Dietrich and P. Moravec)[[2], Theorem 2.1] Suppose that M is an
H-group. If M/ZH (M) is locally finite of exponent e, then [M, H ] is likewise locally
finite of exponent m(e) in which m(e) is introduced in Theorem 1.1.

Recall that a group M is an H -group whenever there exists a homomorphism ϕ :
H → Aut(M), such that the image of ϕ contains I nn(M). Suppose that I nn(G) ≤
A ≤ Aut(G). Then by substitutions M = G and H = A, it is concluded that G can
be an A-group. In addition, with this interpretation, the quotient group M/ZH (M) is
equal toG/Z(G, A). Therefore, byMoravec’s theorem, ifG/Z(G, A) is locally finite
of finite exponent e, then γ2(G, A) is locally finite of finite exponent dividing m(e).
Our next goal is to extend this recent statement to groups G such that G/Zn(G, A) is
locally finite of finite exponent. More precisely, we have the next theorem.

Theorem B Let G be an arbitrary group and A be a subgroup of Aut(G) containing
Inn(G) such that G/Zn(G, A) is locally finite of finite exponent e. Then γn+1(G, A)

is locally finite and its exponent divides

gcd(e�n+1/2�m(e), gcd(m(e)n,m(m(. . . (m(e)) . . .))
︸ ︷︷ ︸

n−times

))

when e is odd and divides

gcd((2e)�n+1/2�m(e), gcd(m(e)n,m(m(. . . (m(e)) . . .))
︸ ︷︷ ︸

n−times

))

when e is even, where gcd(a, b) denotes the greatest common divisor of a, b.

With the assumptions of Theorem B, we can obtain a bound for the exponent of
γ2n(G, A) which depends only on e, but not on n. In particular, the exponent of
γ∞(G, A) is independent of m, where m = zl(G, A) is finite. (See Corollaries 2.8
and 2.9)
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The last purpose of this paper is to consider the converse of Baer’s theorem for groups
G such that G/Zn(G, A) and A/I nn(G) are finitely generated or have finite special
rank. It is well-known that the converse of Baer’s theorem is not true in general. It is
clear that when A = I nn(G), the groups G/Zn(G, A) and γn+1(G, A) do not satisfy
the converse of Baer’s theorem. In [13] Niroomand gave a proof for the converse of
Schur’s theorem for finitely generated group G/Z(G). He showed that if G/Z(G)

is finitely generated and γ2(G) is finite, then G/Z(G) is also finite and its order is
bounded by a function of |γ2(G)|. He also proved that if G is nilpotent, then the order
of G/Z(G) divides this bound.

Theorem 1.7 (P. Niroomand)[13, Corollary 2.1] Let G be a nilpotent group such that
d(G/Z(G)) and γ2(G) are both finite, then |G/Z(G)| divides |γ2(G)|d(G/Z(G)).

Recently in [7] Hatamian et al. generalized the result obtained by Niroomand when
G/Zn(G) is finitely generated and γn+1(G) is finite. It should be noticed that their
proofs are based on the isoclinic theory (see [9]). In fact they proved:

Theorem 1.8 (R. Hatamian et al.)[7, Main Theorem] For a given group G, suppose
that γn+1(G) is finite and G/Zn(G) is finitely generated. Then

| G

Zn(G)
| ≤ |γn+1(G)|d( G

Zn (G)
)n

. (1.1)

Theorem 1.9 (R. Hatamian et al.)[7, Corollary 1] Let G be a nilpotent group such
that G/Zn(G) is finitely generated. If γn+1(G) is finite, then

| G

Zn(G)
|∣∣|γn+1(G)|d( G

Zn (G)
)n

.

Here with a different proof, we generalize Theorems 1.8 and 1.9 for groups
G/Zn(G, A) where A/I nn(G) and G/Zn(G, A) are finitely generated or have finite
special rank. A group G is said to have finite special rank r(G) = r if every finitely
generated subgroup of G can be generated by r elements and r is the smallest positive
integer with this property.

Theorem C For a group G, let γn+1(G, A) be finite. Then

| G

Zn(G, A)
| ≤ |γn+1(G, A)|(d+k)n , (1.2)

if one of the following conditions holds:

1. A/I nn(G) and G/Zn(G, A) are generated by k and d elements, respectively.
2. One of the two groups A/I nn(G) and G/Zn(G, A) has finite special rank k and

the other one is generated by d elements.
3. A/I nn(G) andG/Zn(G, A) have finite special ranks equal to k and d, respectively.
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Theorem D Let G be a nilpotent group such that γn+1(G, A) is finite. Then

| G

Zn(G, A)
|∣∣|γn+1(G, A)|(d+k)n ,

if one of the following conditions holds:

1. A/I nn(G) and G/Zn(G, A) are generated by k and d elements, respectively.
2. One of the two groups A/I nn(G) and G/Zn(G, A) has finite special rank k and

the other one is generated by d elements.
3. A/I nn(G) andG/Zn(G, A) have finite special ranks equal to k and d, respectively.

In [17] Yadav propounded two following questions:

Question 1 Let G/Z(G) be finitely generated and γ2(G) be finite. Can we conclude
from the equality

| G

Z(G)
| = |γ2(G)|d( G

Z(G)
)

that G is nilpotent?

Question 2 Does there exist a non-nilpotent groupG which is not isomorphic to X×H ,
where X is a finite group and H is a nilpotent group, in such a way that γ2(G) is finite
and G/Z(G) is infinite?

In the next theorem, we give an answer to a general version of Question 1 for the
group G/Zn(G, A). More precisely, we prove:

Theorem E Suppose that G/Zn(G, A) and A/I nn(G) are generated by d and k ele-
ments, respectively. If Inequality 1.2 is sharp, then G is nilpotent.

In Section 2 we consider the class of locally finite groups of finite exponent. Then,
we find a better bound for the exponent of γn+1(G) and a new upper bound for the
exponent of γn+1(G, A). In Section 3 we focus on the generalization of the converse
of Schur’s and Baer’s theorems. Then we answer Question 2 proposed by Yadav.

2 Bounds for the exponents of �n+1(G,A) in the class of locally finite
groups of finite exponent

Throughout this section, G is an arbitrary group and LF denotes the class of locally
finite groups of finite exponent, I nn(G) ≤ A ≤ Aut(G) and p is an odd prime.

Theorem 2.1 Let G be a group such that G/Zn(G, A) is of exponent e and belongs
to LF. Then γn+1(G, A) ∈ LF and its exponent divides m(e)n.

Proof We proceed by induction on n. For n = 1 the result follows by Theorem
1.6. Suppose G/Zn(G, A) is of exponent e and assume that it belongs to LF. Then
by induction hypothesis on n for G/Z(G, A)/Zn−1(G/Z(G, A), A) it is concluded
that γn(G/Z(G, A), A) belongs to LF and is of exponent dividing m(e)n−1. Now
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γn(G, A)/γn(G, A) ∩ Zn(G, A) is isomorphic to a subgroup of G/Zn(G, A) and
hence belongs to LF and has exponent e, but γn(G, A) ∩ Zn(G, A) ⊆ Z(γn(G, A))

therefore Theorem 1.1 implies γ2(γn(G, A)) belongs to LF and its exponent divides
m(e).

Now for each α ∈ A define:

fα : γn(G, A)

γn(G, A) ∩ Z(G, A)
−→ γn+1(G, A)

γ2(γn(G, A))

x̃ �−→ [x, α]

in which x ∈ γn(G, A). It is easy to see that, fα is a homomorphism. Since

γn+1(G, A) = 〈[x, α]|x ∈ γn(G, A), α ∈ A〉,

the order of each generator of γn+1(G, A)/γ2(γn(G, A)) is finite and dividesm(e)n−1.
Moreover the exponent of γn+1(G, A)/γ2(γn(G, A)) divides m(e)n−1, since it is
abelian. Therefore γn+1(G, A) ∈ LF and its exponent divides m(e)n . ��
Definition 2.2 Let G be a group and let A be a subgroup of Aut(G) which con-
tains I nn(G). Then G is said to be A-nilpotent of class c if Zc(G, A) = G and
Zc−1(G, A) �= G. Similarly an A-invariant subgroup M of G is called A-nilpotent of
class c if M ⊆ Zc(G, A) and M � Zc−1(G, A).

It is clear that conditions of Definition 2.2 are equivalent to γc+1(G, A) = 1 and
γc(G, A) �= 1. Similarly, γc+1(M, A) = 1 and γc(M, A) �= 1. On the other hand, it is
easy to see that each A-nilpotent group is in fact nilpotent. Since a nilpotent group of
finite exponent is locally finite, so it is the direct product of pi -components. Hence,
in Lemma 2.4 we give an upper bound for the exponent of γn+1(M, A), which is
independent of n, where M/Zn(G, A) is A-invariant A-nilpotent subgroup of class c
of exponent pm . For achieving this, the following lemma is required.

Lemma 2.3 [10] Let G be a group and let A be a subgroup of Aut(G) such that
I nn(G) ≤ A. Consider that G has a series of A-invariant subgroups

1 = Z0 ≤ Z1 ≤ · · · ≤ Zm

whose factors are A-central. Then γm(G, A) ≤ CG(Zm).

Lemma 2.4 Assume that for a group G, M is an A-invariant subgroup such that
M/Zn(G, A) is A-nilpotent of class c of exponent pm. Then γn+1(M, A) is of finite
exponent which divides pm�c/2�.

Proof The proof is done by induction on c. Let c = 1, then g ∈ Zn+1(G, A)

for all g ∈ M . As a result, [gpm , α1, . . . , αn] = [g, α1, . . . , αn]pm = 1, because
[g, α1, . . . , αn+1] = 1 for all αi ∈ A. Hence the order of every autocommutator of
weight n + 1 divides pm . Since γn+1(M, A) ⊆ Z(G, A), it is concluded that the
exponent of γn+1(M, A) divides pm . If c = 2, then g ∈ Zn+2(G, A) for all g ∈ M .
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Similar to the case c = 1, the order of every autocommutator of weight n + 2 divides
pm . Now by induction on n we have

[gi , α1, . . . , αn] = [g, α1, . . . , αn]i [g, α1, g, α2, . . . , αn](i2) (modγn+3(M, A)),

for every i ∈ N. So

[gpm , α1, . . . , αn] = [g, α1, . . . , αn]pm [g, α1, g, α2, . . . , αn](p
m

2 ) = 1,

since p odd implies pm
∣

∣

(pm

2

)

. Thus the order of every autocommutator of weight n+1
divides pm . By Lemma 2.3, γn+1(M, A) ⊆ CG(Zn+1(G, A)) and since

γn+1(M, A) ⊆ Z2(G, A) ⊆ Zn+1(G, A),

it is concluded that γn+1(M, A) is abelian. Therefore the result follows in this case.
Let c > 2 and assume that for any group G the result holds for any A-nilpotent
subgroup of class less than n + c. We consider the subgroup

γ3(M, A)Zn(G, A)/Zn(G, A)

of G/Zn(G, A). It is an A-nilpotent subgroup of class c − 2. Thus by induction
hypothesis γn+1(γ3(M, A), A) is of finite exponent dividing pm�(c−2)/2�. Now we
consider the subgroup (M/γn+1(γ3(M, A), A))/Zn(G/γn+1(γ3(M, A), A), A) of the
group

(G/γn+1(γ3(M, A), A))/Zn(G/γn+1(γ3(M, A), A), A)

which is of finite exponent dividing pm and is an A-nilpotent subgroup of class at
most 2. Finally by induction hypothesis γn+1(M, A)/γn+1(γ3(M, A), A) divides pm

and the proof is completed. ��
In Lemma 2.5 we obtain the exponent of γn+1(M, A), where M/Zn(G, A) is of
exponent 2m .

Lemma 2.5 Given a group G with an A-invariant subgroup M, suppose that
M/Zn(G, A) is an A-nilpotent group of class c which is of exponent 2m. Then
γn+1(M, A) has finite exponent which divides 2m�c/2�+�c/2�.

Proof It is proved similar to Lemma 2.4 by considering 2m
∣

∣

(2m+1

2

)

instead of pm
∣

∣

(pm

2

)

for the case c = 2. ��
In the sequel, we give an upper bound for the exponent of γn+1(M, A) where M is an
A-invariant subgroup of G and M/Zn(G, A) is A-nilpotent of class c with exponent
equal to pm1

1 . . . pmk
k .

Theorem 2.6 Assume that p1, . . . , pk are prime numbers such that p1 < · · · < pk.
Let M be an A-invariant subgroup of G such that M/Zn(G, A) is an A-nilpotent
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group of class c with exponent pm1
1 . . . pmk

k . Then the exponent of γn+1(M, A) is finite

and divides p�c/2�s1
1 . . . p�c/2�sk

k , where

si =
{

mi pi �= 2,

mi + 1 pi = 2,

for all 1 ≤ i ≤ k.

Proof We prove by induction on k. For k = 1, the result is obtained by Lemmas 2.4
and 2.5. Let k > 1 and suppose that M/Zn(G, A) is a group of exponent pm1

1 . . . pmk
k

and of class c. Then M/Zn(G, A) is the direct product of pi -components, where
1 ≤ i ≤ k. Each of these components is an A-invariant subgroup. First we consider
the p1-component. The induction hypothesis for the p1-component Mp1 implies that

the exponent of γn+1(Mp1, A) divides p�c/2�s1
1 . By considering

(M/γn+1(Mp1 , A))/Zn(G/γn+1(Mp1 , A), A)

which is of exponent pm2
2 . . . pmk

k and applying the inductionhypothesis, it is concluded

that the exponent of γn+1(M, A)/γn+1(Mp1 , A) divides p�c/2�s2
2 . . . p�c/2�sk

k . Thus the

exponent of γn+1(M, A) divides p�c/2�s1
1 . . . p�c/2�sk

k , which completes the proof. ��
Now, by an example we show that there exists a group G with subgroups M of G

and A of Aut(G) such that the exponent of γn+1(M, A) is coincided the exponent
obtained in Theorem 2.6. In other words the exponent is given in Theorem 2.6 is
sharp.Weknow that for natural numbersn,m1, . . . ,mk andprimenumbers p1, . . . , pk
there exists a group G such that G/Zn(G) is abelian of exponent pm1

1 . . . pmk
k and

exp(γn+1(G)) = pm1
1 . . . pmk

k (see [4, Theorem B]). If G is a nilpotent group of class
(n + 1) such that G/Zn(G) is of odd exponent, then for A = I nn(G) and M = G
the bound in Theorem 2.6 holds.
It is well-known that if G/Zn(G) is a locally finite π -group, then so is γn+1(G) (for
instance see [15, page 113]). In the next theorem we deduce that if G/Zn(G, A) is a
locally finite π -group, then γn+1(G, A) is also a locally finite π -group. Furthermore,
based on the proof of Theorem 2.7, we obtain an upper bound for the exponent of
γ2n(G, A) where G/Zn(G, A) is a locally finite group of exponent e.

Theorem 2.7 For a given group G, let G/Zn(G, A) be a locally finite π -group. Then
γn+1(G, A) is a locally finite π -group.

Proof Let G/Zn(G, A) be a locally finite π -group, then

γn(G, A)/γn(G, A) ∩ Zn(G, A)

is also a locally finite π -group. Now for each α1, . . . , αn ∈ Aut(G) consider the map

fα1,...,αn : γn(G, A)

γn(G, A) ∩ Zn(G, A)
−→ γ2n(G, A)

γ2(γn(G, A))

x̃ �−→ [x, α1, . . . , αn]
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in which x ∈ γn(G, A). By a similar method used in the proof of Theorem 2.1
and considering the corollary of [15, Theorem 4.12], γ2(γn(G, A)) is a locally finite
π -group. It is clear that fα1,...,αn is a homomorphism. Since

γ2n(G, A) = 〈[x, α1, . . . , αn] |x ∈ γn(G, A),∀i, 1 ≤ i ≤ n, αi ∈ A〉,

then every generator of γ2n(G, A)/γ2(γn(G, A)) is a π -element. Moreover
γ2n(G, A)/γ2(γn(G, A)) is abelian and so it is a π -group. Hence γ2n(G, A) is a
locally finite π -group. In particular if G/Zn(G, A) ∈ LF is of exponent e, then
γ2n(G, A) ∈ LF is of exponent dividing em(e) by Theorem 1.1. Now for each i ,
1 ≤ i ≤ n − 1, we define

hi : γi (G, A)

(Zn+1−i (G, A) ∩ γi (G, A))γi+1(G, A)
× A −→ γi+1(G, A)

(Zn−i (G, A) ∩ γi+1(G, A))γi+2(G, A)
.

(xi , α) �−→ [xi , α]

It is clear that for all i , 1 ≤ i ≤ n − 1, hi is a homomorphism on each component and
so γi+1(G, A)/(γi+1(G, A) ∩ Zn−i (G, A))γi+2(G, A) is a locally finite π -group. A
similar statement holds for hn and all h j (n + 1 ≤ j ≤ 2n − 2) which are defined as
follows:

hn : γn(G, A)

(Z(G, A) ∩ γn(G, A))γn+1(G, A)
× A −→ γn+1(G, A)

γn+2(G, A)
,

(xn, α) �−→ [xn, α]

h j : γ j (G, A)

γ j+1(G, A)
× A −→ γ j+1(G, A)

γ j+2(G, A)
.

(x j , α) �−→ [

x j , α
]

Thus the factor group γn+1(G, A)/γ2n(G, A) is a locally finite π -group. Therefore
γn+1(G, A) is also a locally finite π -group. ��
The proof of Theorem 2.7 results in the following two interesting corollaries.

Corollary 2.8 Suppose that the exponent of G/Zn(G, A) ∈ LF equals e. Then
γ2n(G, A) ∈ LF and its exponent divides em(e). In particular, if the exponent of
G/Zn(G) ∈ LF equals e, then γ2n(G) ∈ LF and its exponent divides em(e).

Corollary 2.9 Let A be a subgroup of automorphisms of an arbitrary group G such
that I nn(G) ≤ A ≤ Aut(G) and let Z be the upper A-hypercenter of G. Suppose
that zl(G, A) = m and G/Z ∈ LF is of exponent e. Then γ∞(G, A) ∈ LF and its
exponent divides em(e).

Now, we are in a position to state and prove the other bound of Theorem A. More
precisely, Theorem 2.10 proves that the upper bound obtained for the exponent of
γn+1(G, A) is e�(n+1)/2�m(e) or (2e)�(n+1)/2�m(e).
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Theorem 2.10 For a given group G, suppose that G/Zn(G, A) ∈ LF and it has
finite exponent e = pm1

1 . . . pmk
k . Then γn+1(G, A) ∈ LF and its exponent divides

p�(n−1)/2�s1
1 . . . p�(n−1)/2�sk

k em(e), where

si =
{

mi pi �= 2,

mi + 1 pi = 2.

Proof When n = 1, the result follows by Corollary 2.8. Let n ≥ 2. Then by Corollary
2.8, the exponent of γ2n(G, A) divides em(e). Now we consider

(G/γ2n(G, A))/Zn(G/γ2n(G, A), A)

of class n−1 and exponent dividing e. The exponent of γn+1(G, A)/γ2n(G, A) divides
p�(n−1)/2�s1
1 . . . p�(n−1)/2�sk

k by Theorem 2.6, where

si =
{

mi pi �= 2,

mi + 1 pi = 2,

as required. ��
Theorem 2.11 Let G be an arbitrary group and A be a subgroup of Aut(G) containing
Inn(G) such that G/Zn(G, A) is locally finite of finite exponent e. Then γn+1(G, A)

is locally finite and its exponent divides m(m(. . . (m(e)) . . .))
︸ ︷︷ ︸

n−times

.

Proof The proof is done by induction on n. For n = 1 the result holds by [2, Theorem
2.1]. Assume that for n − 1 the result is in hand and G/Zn(G, A) is locally finite of
exponent e. Then γn(G, A)Z(G, A)/Z(G, A) is locally finite and its exponent divides
m(m(. . . (m(e)) . . .))
︸ ︷︷ ︸

n−1−times

. Define φ : A → Aut(γn(G, A)) by the rule φ( f ) = f̄ . It is

clear that γn(G, A) is an A-group. Since Z(γn(G, A), A) ⊇ γn(G, A)∩ Z(G, A) and
γn(G, A)/γn(G, A) ∩ Z(G, A) is of exponent m(m(. . . (m(e)) . . .))

︸ ︷︷ ︸

n−1−times

, by [2, Theorem

2.1], it is concluded that the exponent γn+1(G, A) dividesm(m(. . . (m(e)) . . .))
︸ ︷︷ ︸

n−times

, which

completes the proof. ��
Proof of Theorem B Using Theorems 2.11, 2.10 and 2.1, the result is attained. ��

Finally, by an example we show that the bound obtained in Theorem B is sharp.

Example Let G/Zn(G, A) be a locally finite group of exponent 2 or 3, then exponent
of γn+1(G, A) is 2 or 3. Hence the bound obtained in Theorem B is sharp.

Proof of TheoremA By putting A = I nn(G), the result follows. ��
It is concluded by induction on n that (m(e))2

n−1
divides the bound obtained by

Kurdachenko et al. (Theorem 1.2), that is (m(e))2
n−1 ∣

∣β1(e, n), while the bound of
TheoremA divides at mostm(e)n . Now, by comparing the obtained bound in Theorem
A with the one obtained by Kurdachenko et al. (Theorem 1.2), it is easy to see that
the given bound in this article is smaller than the one obtained by Kurdachenko et al.
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3 A generalization of the converse of Schur’s and Baer’s theorems

The converse of Schur’s theorem is not true in general. For instance, the infinite extra-
special p-groups are not satisfying in the converse of Schur’s theorem. Moreover, the
groups constructed by Hall in [6] are not satisfying in the converse of Baer’s theorem.
But in the same paper [6, Theorem 2], a partial converse of Baer’s theorem is proved
which says if γn+1(G) is finite, then G/Z2n(G) is finite, too. Recently Dixon et al.
[3, Theorem 3] proved that G/Z2n(G, A) is finite provided that both γn+1(G, A) and
A/I nn(G) are finite, where I nn(G) ≤ A ≤ Aut(G).
In this section we generalize another form of the converse of Schur’s and Baer’s
theorems, which are stated in Section 1 as Theorems C and D. To do this, first we
present some lemmas which are needed in the proofs of Theorems C and D. Then, two
Questions 1 and 2 will be answered. In this section G is assumed to be an arbitrary
group such that I nn(G) ≤ A ≤ Aut(G) and d(X) denotes the minimum number of
generators of a given group X . In the next lemma �(G) denotes the Frattini subgroup
of G

Lemma 3.1 [5, Theorem 1.1] Let G be a group such that γ2(G) is finite and�(G) = 1.
Then

|G/Z(G)| ≤ |γ2(G)|2. (3.1)

The equality holds if and only if G is abelian.

Lemma 3.2 [13,Main Theorem]Given a groupG, let d(G/Z(G)) and γ2(G) be finite,
then

|G/Z(G)| ≤ |γ2(G)|d(G/Z(G)). (3.2)

Lemma 3.3 [[14], Theorem 7] If G is a finite capable group and γ2(G) is cyclic, then
|G/Z(G)| ≤ |γ2(G)|2.
Now, we prove Theorem C via proving many statements. The following theorem
proves the first part of Theorem C.

Proof of Theorem C (1) The proof is done by induction on n. Let

〈α1 I nn(G), . . . , αk I nn(G)〉 = A/I nn(G)

for some α1, . . . , αk ∈ A. Let n = 1 and assume that {y1Z(G, A), . . . , yd Z(G, A)}
is a generating set for the group G/Z(G, A). We define the following map

f1 : G

Z(G, A)
−→ (γ2(G, A))

d( G
Z(G,A)

)+d( A
Inn(G)

)

x1Z(G, A) �−→ ([x1, y1] , . . . , [x1, yd ] , [x1, α1] , . . . , [x1, αk]).
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It is easy to see that f1 is a one-to-one function. Suppose that the statement holds for
n−1.Assume that {y1Zn(G, A), . . . , yd Zn(G, A)} is a generating set forG/Zn(G, A)

and γn+1(G, A) is a finite group. Define

fn : γn(G, A)

γn(G, A) ∩ Z(G)
−→ (γn+1(G, A))

d( G
Zn (G,A)

)

xn(γn(G, A) ∩ Z(G)) �−→ ([xn, y1] , . . . , [xn, yd ]).

We claim that fn is one-to-one as well. Suppose that

xn(γn(G, A) ∩ Z(G)) = x ′
n(γn(G, A) ∩ Z(G)).

Then xnx ′−1
n ∈ Z(G) and hence

(
[

x ′
n, y1

]

, . . . ,
[

x ′
n, yd

]

) = (
[

xnx
′−1
n x ′

n, y1
]

, . . . ,
[

xnx
′−1
n x ′

n, yd
]

)

= ([xn, y1] , . . . , [xn, yd ]).

Conversely suppose that (
[

x ′
n, y1

]

, . . . ,
[

x ′
n, yd

]

) = ([xn, y1] , . . . , [xn, yd ]). Then

(
[

xnx
′−1
n , y1

]

, . . . ,
[

xnx
′−1
n , yd

]

) = ([xn, y1]
x ′−1
n , . . . , [xn, yd ]

x ′−1
n )

(
[

x ′−1
n , y1

]

, . . . ,
[

x ′−1
n , yd

]

)

= ([xn, y1]
x ′−1
n , . . . , [xn, yd ]

x ′−1
n )

((
[

x ′
n, y1

]−1
)
x ′−1
n

, . . . , (
[

x ′
n, yd

]−1
)
x ′−1
n

)

= 1.

On the other hand,
[

xnx ′−1
n , z

] = 1 for all z ∈ Zn(G, A) by Lemma 2.3. As a result,
we have proved the claim. Consider the map

hn : γn(G, A) ∩ Z(G) −→ (γn+1(G, A))d(A/I nn(G)),

such that hn(zn) = ([zn, α1] , . . . , [zn, αk]). Then hn is a homomorphism with
ker hn = γn(G, A) ∩ Z(G, A). Consequently

|γn(G, A)/γn(G, A) ∩ Z(G, A)| ≤ (γn+1(G, A))d(A/I nn(G))+d(G/Zn(G,A)).

Now by induction hypothesis we have

|G/Zn(G, A)| ≤ |γn(G, A)/(γn(G, A) ∩ Z(G, A))|(d(A/I nn(G))+d(G/Zn(G,A)))n−1
,

which completes the proof. ��
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In the next corollary, we show that in Theorem C(1) the condition of being finitely
generated for A/I nn(G), when n = 1, can be omitted.

Corollary 3.4 LetG beagroup such thatG/Z(G, A) is finitely generatedandγ2(G, A)

is finite. Then both G/Z(G, A) and A are finite.

Proof Since G/Z(G, A) is finitely generated and γ2(G, A) is finite, by Lemma 3.2,
G/Z(G) is finite. Moreover, since

CA(G/Z(G)) ≤ Hom(G/Z(G, A), γ2(G, A) ∩ Z(G)),

it is concluded that CA(G/Z(G)) is finite. Therefore A is finite and the result holds
by Theorem C(1). ��
It is easy to see that Part (2) of Theorem C is a generalization of its Part (1). Therefore
to prove the generalization we need the following definition.

Definition 3.5 A set L of subgroups of the group G is called a local system of G, if
G = ⋃

S∈L S and for every pair S, T in L , there exists a subgroup U ∈ L of G such
that S, T ⊆ U .

Proof of Theorem C (2) LetG/Zn(G, A)befinitely generated and assume that A/I nn(G)

is of finite special rank k. Suppose that L is a local system of all finitely generated
subgroups of A/I nn(G) and A1/I nn(G) is an arbitrary element of L . Since the finite
special rank of A/I nn(G) equals k, then A1/I nn(G) can be generated by at most k
elements. Thus by Theorem C(1) we have

| G

Zn(G, A1)
| ≤ |γn+1(G, A1)|(d+k)n ≤ |γn+1(G, A)|(d+k)n = c.

Now we claim that |G/Zn(G, A)| ≤ c. By contradiction, if |G/Zn(G, A)| > c, then
for each 1 ≤ i ≤ c + 1, there exists gi Zn(G, A) ∈ G/Zn(G, A). Moreover, for each

1 ≤ i ≤ c there exist elementsα1 ji
, . . . , αn ji

in A, such that
[

gi g
−1
j , α1 ji

, . . . , αn ji

]

�=
1 for 1 ≤ i < j ≤ c + 1. Since L is a local system, so for each 1 ≤ i < j ≤ c + 1
there exists a subgroup A ji /I nn(G) ∈ L , such that all α1 ji

I nn(G), . . . , αn ji
I nn(G)

belong to A ji /I nn(G) and hence there exists a subgroup As/I nn(G) ∈ L such that
A ji /I nn(G) ⊆ As/I nn(G), for all i and j . Based on Theorem C(1) we have

| G

Zn(G, As)
| ≤ |γn+1(G, As)|(d+k)n ≤ |γn+1(G, A)|(d+k)n = c,

which contradicts the existence of gi ’s. Therefore the result holds in this case.
Now assume that G/Zn(G, A) has finite special rank k and A/I nn(G) is a finitely
generated group. In this case we proceed by induction on n. We also assume that L is a
local system of all finitely generated subgroups ofG/Zn(G, A) and H/Zn(G, A) is an
arbitrary element of L . SinceG/Zn(G, A) has finite special rank k, then H/Zn(G, A)
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may be generated by k elements. For n = 1, by Lemma 3.2, we have

| H

Z(H)
| ≤ |γ2(H)|k ≤ |γ2(G, A)|k = c.

We claim that |G/Z(G)| ≤ |γ2(G, A)|k = c. By contradiction, if |G/Z(G)| > c,
then we can choose elements gi Z(G) ∈ G/Z(G), 1 ≤ i ≤ c + 1. For each gi , g j ,

there exists x ji such that
[

gi g
−1
j , x ji

]

�= 1. Since there exists H1/Z(G, A) ∈ L and

〈gi , x ji | 1 ≤ i ≤ j ≤ c + 1〉 ⊆ H1, we have

| H1

Z(H1)
| ≤ |γ2(H1)|k ≤ |γ2(G, A)|k = c,

which contradicts the choice of gi ’s. As a result, |G/Z(G)| ≤ |γ2(G, A)|k = c. Now
similar to the proof of Theorem C(1), it is easy to see that

f1 : Z(G)

Z(G, A)
−→ (γ2(G, A))d

x1Z(G, A) �−→ ([x1, α1], . . . , [x1, αd ])

is a monomorphism. Hence the result is completed in this case. Let

H

Zn(G, A)
= 〈h1Zn(G, A), . . . , hk Zn(G, A)〉

be an arbitrary element of L . Then we have H = 〈h1, . . . , hk, Zn(G, A)〉. Similar to
the proof of Theorem C(1) we have

| H ∩ γn(G, A)

Z(H) ∩ γn(G, A)
| ≤ | [H ∩ γn(G, A), H

] |k ≤ |γn+1(G, A)|k = c.

Here again we claim that |γn(G, A)/(γn(G, A) ∩ Z(G))| ≤ |γn+1(G, A)|k = c.
If |γn(G, A)/(γn(G, A) ∩ Z(G))| > c, then we can take the elements gi (Z(G) ∩
γn(G, A)) from γn(G, A)/(Z(G) ∩ γn(G, A)), 1 ≤ i ≤ c + 1 . Therefore for every
gi , g j , there exists x ji ∈ G with [gi g−1

j , x ji ] �= 1. Since L is a local system, there
exists H2 ∈ L such that

〈gi , x ji , Zn(G, A)|1 ≤ i ≤ j ≤ c + 1〉 ⊆ H2.

Thus

| H2 ∩ γn(G, A)

Z(H2) ∩ γn(G, A)
| ≤ | [H2 ∩ γn(G, A), H2

] |k ≤ |γn+1(G, A)|k = c,
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which contradicts the existence of gi ’s. Similar to the proof of Theorem C(1),

| γn(G, A) ∩ Z(G)

γn(G, A) ∩ Z(G, A)
| ≤ |γn+1(G, A)|d .

Finally by induction hypothesis we have

| G

Zn(G, A)
| ≤ | γn(G, A)

γn(G, A) ∩ Z(G, A)
|(d+k)n−1

.

Hence the proof is completed. ��
The third part of Theorem C is proved similar to the first part of Theorem C(2). If we
assume the group G to be nilpotent in Theorem C, then the result would improve as
indicated in Theorem D.

Proof of TheoremD (1) (1) Define a function

h1 : Z(G) → γ2(G, A)d(A/I nn(G))

x �→ ([x, α1], . . . , [x, αd(A/I nn(G))])

where {α1 I nn(G), . . . , αd(A/I nn(G)) I nn(G)} is a generating set of A/I nn(G). Clearly
h1 is a homomorphism with ker h1 = Z(G, A), which implies that Z(G)/Z(G, A) is
isomorphic to the subgroup

∏d(A/I nn(G))
i=1 γ2(G, A). Hence

| Z(G)

Z(G, A)
|∣∣|γ2(G, A)|d( A

Inn(G)
)
.

By Theorem 1.7, we have

| G

Z(G)
|∣∣|γ2(G)|d( G

Z(G)
)
∣

∣|γ2(G, A)|d( G
Z(G,A)

)
,

since G is nilpotent. Therefore

| G

Z(G, A)
|∣∣|γ2(G, A)|(d( G

Z(G,A)
)+d( A

Inn(G)
))
,

and this proves the case n = 1. Now suppose that the statement holds for n − 1. By
Theorem C(1) and its proof, G/Zn(G, A) and γn(G/Z(G, A), A) are finite. Using
induction hypothesis we have

| G

Zn(G, A)
|∣∣|γn( G

Z(G, A)
, A)|(d( G

Zn (G,A)
)+d( A

Inn(G)
))n−1

.

Take an A-invariant finitely generated subgroup H of γn(G, A) such that γn(G, A) =
HZ(G, A). It should be noticed that H ∩ Z(G, A) is finitely generated because
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γn(G, A)/γn(G, A) ∩ Z(G, A) ∼= H/H ∩ Z(G, A) is finite. Moreover since
H ∩ Z(G, A) is a finitely generated abelian subgroup of γn(G, A), then there exists
a torsion free subgroup N of H ∩ Z(G, A) of finite index. It is easy to see that N is
an A-invariant subgroup of γn(G, A). Define the following function

f : A −→ Aut(
H

N
) α �→ α̃; ∀h ∈ H , (hN )α̃ = (h)αN .

f is a homomorphism with ker f = CA(γn(G, A)). To show this, let β ∈ ker f .
Then for each hN ∈ H

N , (hN )β̃ = hN and so h−1(h)β ∈ N . On the other hand,
since N is torsion free, h−1(h)β ∈ γn+1(G, A), which implies (h)β = h. Since
γn(G, A) = HZ(G, A), we conclude that for every h ∈ γn(G, A), (h)β = h. Suppose
B = Im f and

Z(H/N , B) = (Z(G, A) ∩ H)/N .

Thus (H/N )/Z(H/N , B) ∼= γn(G, A)/γn(G, A) ∩ Z(G, A). Moreover,

γn+1(G, A) = 〈[hz, α] |h ∈ H , z ∈ γn(G, A) ∩ Z(G, A), α ∈ A〉
= 〈[h, α] |h ∈ H , α ∈ A〉
= γ2(H , A) ∼= γ2(

H

N
, B).

Since H/N is a finite nilpotent group, then H/N ∼= P1/N × · · · × Pk/N , in
which Pi/N is the pi -Sylow subgroup of H/N . Note that Pi/N is a character-
istic subgroup of H/N and H is an A-invariant subgroup of G. This means that
Pi � G. Let {y1Zn(G, A), . . . , yd Zn(G, A)} is a generating set for G/Zn(G, A).
Define li : Pi/(Z(G)∩ Pi ) → (γ2(H , A)∩ Pi )d(G/Zn(G,A)), such that li carries every
x(Z(G)∩ Pi ) ∈ Pi/(Z(G)∩ Pi ) to ([x, y1], . . . , [x, yd ]). Obviously li is a one-to-one
map. Since N ⊆ Z(G), then Pi/(Z(G) ∩ Pi ) is finite. Hence

| Pi/N

Z(G) ∩ Pi/N
| ≤ | γ2(H , A) ∩ Pi

γ2(H , A) ∩ Pi ∩ N
|d( G

Zn (G,A)
)

= |γ2(H , B) ∩ Pi |d( G
Zn (G,A)

)
.

Since (Pi/N )/((Z(G) ∩ Pi )/N ) and (γ2(H , A) ∩ Pi )/(γ2(H , A) ∩ Pi ∩ N ) are both
pi -groups, then

| Pi
Z(G) ∩ Pi

|∣∣|γ2(H , A) ∩ Pi |d( G
Zn (G,A)

)
.

It implies that |(H/N )/((Z(G)∩ H)/N )|∣∣|γ2(H , A)|d(G/Zn(G,A)). On the other hand

H

Z(G) ∩ H
∼= HZ(G)

Z(G)
= HZ(G, A)Z(G)

Z(G)
∼= γn(G, A)

γn(G, A) ∩ Z(G)
.

Consequently,

| γn(G, A)

γn(G, A) ∩ Z(G)
|∣∣|γn+1(G, A)|d( G

Zn (G,A)
)
.
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Define homomorphism hn : γn(G, A) ∩ Z(G) → γn+1(G, A) by

hn(x) = ([x, α1], . . . , [x, αd(A/I nn(G))]).

Since ker hn = Z(G, A) ∩ γn(G, A) then

Z(G) ∩ γn(G, A)

Z(G, A) ∩ γn(G, A)
∼=

d(A/I nn(G))
∏

i=1

γn+1(G, A).

Hence

| γn(G, A) ∩ Z(G)

γn(G, A) ∩ Z(G, A)
|∣∣|γn+1(G, A)|d( A

Inn(G)
)
.

Finally by induction hypothesis the result is obtained.
(2) The proof is easily done similar to the proof of Theorem C(2) by considering
Theorem D(1) and Theorem 1.7 instead of Theorem C and Lemma 3.2, respectively.
(3) The proof is similar to Part (2). ��
Now we are ready to give an answer to Question 1 of Yadav.

Lemma 3.6 There is no non-nilpotent group G for which the Equality 3.2 is satisfied.
In other words if |G/Z(G)| = |γ2(G)|d(G/Z(G)), then G is nilpotent.

Proof Assume that there exists a group G for which |G/Z(G)| = |γ2(G)|d(G/Z(G)).
We show that G is nilpotent. Define

F : G/�(G)

Z(G/�(G))
−→ (

γ2(G)�(G)

�(G)
)d(G/Z(G)),

with F(g�(G)Z(G/�(G))) = ([g, x1]�(G), . . . , [g, xd(G/Z(G))]�(G)), in which
{xi Z(G)}1≤i≤d(G/Z(G)) is a generating set of G/Z(G) and�(G) is Frattini subgroup.
We claim that F is bijection. If g1�(G)Z(G/�(G)) = g2�(G)Z(G/�(G)), then
g1g

−1
2 �(G) ∈ Z(G/�(G)). As a result,

[g1g−1
2 �(G), xi�(G)] = [g1�(G), xi�(G)]g−1

2 �(G)[g−1
2 �(G), xi�(G)]

= [g1�(G), xi�(G)]g−1
2 �(G)([g2�(G), xi�(G)]−1)g

−1
2 �(G)

= ([g1�(G), xi�(G)][g2�(G), xi�(G)]−1)g
−1
2 �(G)

= �(G).

Hence F is well-defined. The converse of the above statement is also true. This means
F is one-to-one. To show that F is onto, we define

f : G/Z(G) → (γ2(G))d(G/Z(G))

gZ(G) �→ ([g, x1], . . . , [g, xd(G/Z(G))])
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which is a one-to-one function. By the equality 3.2, we conclude that f is onto.
Hence F is onto and based on Lemma 3.1 we have |(G/�(G))/Z(G/�(G))| ≤
|(G ′�(G))/�(G)|2, which implies that d(G/Z(G)) ≤ 2. If d = 1, then G/Z(G) is
cyclic and the result holds. If d(G/Z(G)) = 2, then the Equality 3.1 holds that means
G/�(G) is abelian and G ′ ⊆ �(G). This proof is now complete. ��
Pertaining to the Yadav’s problem, a natural question is the following.

Question 3 Suppose that d(G/Zn(G, A)), d(A/I nn(G)) and γn+1(G, A) are all finite
and

| G

Zn(G, A)
| = |γn+1(G, A)|(d( G

Zn (G)
)+d( A

Inn(G)
))n

.

Is it possible for G to be nilpotent?

In order to respond to this question, we need the following lemma.

Lemma 3.7 Assume thatG is a group inwhichγn+1(G) is finite andd(G/Zn(G)) = d.
Then

|G/Zn(G)| ≤ |γ2(G/Zn−1(G))|d ≤ · · · ≤ |γn+1(G)|dn . (3.3)

Proof Define the map

θ : γi (G)

Zn−i+1(G) ∩ γi (G)
−→ (

γi+1(G)

Zn−i (G) ∩ γi+1(G))
)
d

hZn−i+1(G) ∩ γi (G) �−→ ([h, x1]Zn−i (G) ∩ γi+1(G), . . . ,

[h, xd ]Zn−i (G) ∩ γi+1(G)).

Since θ is clearly well-defined, it is enough to prove that θ is one-to-one. Let

([h1, x1]Zn−i (G) ∩ γi+1(G), . . . , [h1, xd ]Zn−i (G) ∩ γi+1(G))

=([h2, x1]Zn−i (G) ∩ γi+1(G), . . . , [h2, xd ]Zn−i (G) ∩ γi+1(G)).

Then for each xm1
1 . . . xmd

d zn = g ∈ G we have

[h1, xm1
1 . . . xmd

d zn]Zn−i (G) ∩ γi+1(G) = [h1, zn] . . . [h1, x1]βm Zn−i (G) ∩ γi+1(G)

= [h2, zn] . . . [h2, x1]βm Zn−i (G) ∩ γi+1(G)

= [h2, xm1
1 . . . xmd

d zn]Zn−i (G) ∩ γi+1(G).

Therefore

[h1h−1
2 , g]Zn−i (G) ∩ γi+1(G) = [h1, g]h−1

2 [h−1
2 , g]Zn−i (G) ∩ γi+1(G)

= [h1, g]h−1
2 ([h2, g]−1)h

−1
2 Zn−i (G) ∩ γi+1(G)

= ([h1, g][h2, g]−1)
h−1
2 Zn−i (G) ∩ γi+1(G) = 1.
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It implies that h1h
−1
2 ∈ Z(G/Zn−i (G)). Hence

h1Zn−i+1(G) ∩ γi (G) = h2Zn−i+1(G) ∩ γi (G)

which means θ is one-to-one. ��
We are now ready to give an answer to Question 3, when A = I nn(G). The next
theorem shows that there is no non-nilpotent group can substitute the inequality used
in Theorem 1.8 for the equality.

Theorem 3.8 Let G be a finite group. If |G/Zn(G)| = |γn+1(G)|dn , then G is nilpo-
tent.

Proof For n �= 1, the first and the last terms of Inequality 3.3 are equal. Thus the
proof is done by Lemma 3.6. ��
The following theorem gives an answer to Question 3.

Proof of Theorem E According to the proof of Theorem C(1)

| G

Zn(G, A)
| ≤ |γ2( G

Zn−1(G, A)
, A)|d( G

Zn (G,A)
)+d( A

Inn(G)
)

≤ · · · ≤ |γn+1(G, A)|(d( G
Zn (G,A)

)+d( A
Inn(G)

))n
. (3.4)

Since
|G/Z(G)| ≤ |γ2(G)|d(G/Z(G)) ≤ |γ2(G, A)|d(G/Z(G,A))

and
|Z(G)/Z(G, A)| ≤ |γ2(G, A)|d(A/I nn(G)),

we have

|G/Z(G)| = |γ2(G)|d(G/Z(G)) = |γ2(G, A)|d(G/Z(G,A)) (3.5)

and
|Z(G)/Z(G, A)| = |γ2(G, A)|d(A/I nn(G)).

Hence by the Equality 3.5 and based on Lemma 3.6 we conclude that there is no
non-nilpotent group for which the equality of Inequality 1.2 holds for n = 1. Now
for n �= 1 the first and the last terms in Inequality 3.4 are equal to each other and so
the proof is done using the case n = 1. ��
In what follows, we present an interesting answer to Question 2.

Theorem 3.9 There exists a non-nilpotent group G, not isomorphic to X × H, such
that γ2(G) is finite but G/Z(G) is infinite, where X is a finite group and H is a
nilpotent group.
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Proof Let K be a non-nilpotent group isomorphic to K = Zq � Zpq such that q2 >

p > q (one should notice that such a group exists, for example D12). Then γ2(K ) =
Zp, since Zp �c

Zpq , Zpq � K and |(Zq � Zpq)/Zp| = q2. By Lemma 3.3, we
have

| K/Z(K )

Z(K/Z(K ))
| ≤ |γ2(K )Z(K )

Z(K )
|
2

.

Note that |γ2(K ) ∩ Z(K )| �= p, which means γ2(K ) ∩ Z(K ) = 1. Thus Z(K ) is a
non-trivial q-group because

| K/Z(K )

Z(K/Z(K ))
| ≤ |γ2(K )Z(K )

Z(K )
|
2

.

This shows that |Z(K )| = q. Now define G to be a central product of an infinite
number of extra-special q-groups, each of order q2n+1, and the non-nilpotent group
K . Since G is not finitely generated and |Z(G)| = q, then we conclude that G/Z(G)

is infinite. By the definition of the central product, G ′ ∼= Z p ⊕ Zq , as required. ��
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