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Abstract
This systematic review and meta-analysis aimed to assess virtual reality (VR)-based exercise effects on walking capacity, fall risk, and
quality of life in healthy older adults. Five databases were searched up to January 2025. From 56 trials involving 2927 participants, VR
improved six-minute walk distance (MD = 24.59, 95%CI: 20.90–28.28, p < 0.00001), gait speed (MD = 0.04, 95% CI: 0.01–0.07, p =
0.02), and Timed Up-and-Go test (MD = �0.67, 95% CI: �1.08 to �0.25, p = 0.001), while reducing fear of falling (SMD = �0.67,
95% CI:�1.01 to�0.33, p = 0.0001). Quality-of-life gains included physical (MD = 0.31, p = 0.009), environmental (MD = 0.42, p =
0.01), psychological (MD = 0.47, p = 0.003), and social health (MD = 0.31, p = 0.004). VR-based exercise is an effective, engaging tool
to enhance mobility, lower fall risk, and promote functional independence and psychosocial well-being.
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What this paper adds
• VR-based exercise enhances walking capacity (e.g., 6-MWD and gait speed) and reduces fall risk (e.g., TUG and FES)

in healthy older adults, supporting physical function preservation.
• Improved functional mobility and balance confidence through VR may contribute to preventing age-related declines, as

evidenced by TUG and FES gains.
• This study provides robust evidence of quality-of-life improvements (e.g., physical and social health), highlighting VR’s

broader psychosocial benefits.

Application of study findings
• Future research should explore VR’s long-term effects on mobility, balance, and fall prevention in aging populations.
• Integrating VR exercise into community wellness programs could enhance engagement and accessibility for older adults.
• Policy efforts should promote training for healthcare providers to incorporate VR-based interventions into routine care,

supporting healthy aging.
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Introduction

The 21st century has witnessed a significant rise in the global
population of older adults, presenting challenges such as
reduced functional mobility, heightened fall risk, and di-
minished independence (Corregidor-Sánchez et al., 2020;
Khan, 2019; Shema et al., 2014; Vasodi et al., 2023). Falls
remain a primary cause of injury among older adults, often
leading to reduced social participation, fear of falling, and
compromised quality of life (Alikhajeh et al., 2023; Rivasi
et al., 2020; Sung et al., 2020; Vazirian et al., 2017). Ad-
dressing these issues requires accessible interventions that
enhance mobility, reduce fall-related concerns, and promote
well-being, ultimately supporting older adults’ ability to
remain active in their communities (Nejatian Hoseinpour
et al., 2025; Niyazi et al., 2024; Shema et al., 2014).

Regular physical activity is a well-established pillar of
healthy aging, offering benefits such as improved balance,
muscle strength, and cognitive function (Setayesh &
Mohammad Rahimi, 2023). These gains are commonly
measured using validated tools like the Timed Up-and-Go test
(TUG), Berg Balance Scale (BBS), and Falls Efficacy Scale
(FES-I) (Liu et al., 2022; Meekes & Stanmore, 2017).
However, traditional exercise regimens can be challenging for
older adults to sustain, especially for those living indepen-
dently or with limited mobility (Pacheco et al., 2020; Yen &
Chiu, 2021). Furthermore, access to structured exercise
programs may be limited by transportation barriers, cost, or
lack of tailored services in community settings. Recent ad-
vances in virtual reality (VR)-based exercise programs pro-
vide a promising, engaging alternative to overcome these
barriers and promote physical activity among older adults
(Hall et al., 2016).

VR-based exercise, often delivered through exergames,
immerses users in interactive environments that require active
participation, supporting motor skill development and
functional improvement (Høeg et al., 2021; Van Diest et al.,
2013; Yoo et al., 2020). These programs frequently target
balance, a critical factor in reducing fall risk and improving
coordination (Anderson & Lane, 2020; Schoberer &
Breimaier, 2020). Research indicates that older adults en-
gaging in VR-based interventions experience enhanced
balance, greater confidence in daily activities, and reduced
fear of falling (Gomes et al., 2018; Montero-Alı́a et al., 2019;
Rendon et al., 2012). Moreover, VR interventions offer
psychological benefits, such as elevated mood and improved
quality of life, particularly for older adults in care settings
(Skjæret et al., 2016; Zhang &Kaufman, 2016). In addition to
these outcomes, the relative affordability and scalability of
VR systems enhance their feasibility for community-based
applications, especially in aging populations.

The growing field of Clinical Virtual Reality highlights
VR’s potential in rehabilitation and preventive health (Rizzo
et al., 2011). Prior reviews have demonstrated VR’s efficacy
in improving balance (Molina et al., 2014; Pacheco et al.,

2020), alleviating depressive symptoms, and enhancing
mental and physical health outcomes in older adults (Drazich
et al., 2020; Li et al., 2016; Vasodi et al., 2023). However,
these studies often focus on older adults with conditions like
Parkinson’s disease (Ribas et al., 2017), dementia (Mura
et al., 2018; Van Santen et al., 2018), or stroke (Cano
Porras et al., 2018), rather than healthy older adults.

A critical knowledge gap persists regarding the broader
impact of VR-based exercise on healthy aging. While some
studies have explored specific outcomes like balance or re-
action time, few have comprehensively assessed functional
measures such as walking capacity, fall risk, and quality of
life in healthy older adults (Donath et al., 2016; Neri et al.,
2017; Tahmosybayat et al., 2018). This review defines “older
adults” as individuals aged 60 years and older, consistent with
thresholds commonly used by global health organizations
such as the World Health Organization (World Health
Organization, 2002). By examining these outcomes, VR-
based interventions could emerge as a proactive, evidence-
based approach to sustain independence and enhance quality
of life in this population, with potential implications for
clinical practice and aging policy.

This systematic review and meta-analysis aimed to address
this gap by synthesizing evidence on the effects of VR-based
exercise in healthy older adults aged 60 years and older.
Specifically, it examines the impact on walking capacity, fall
risk, and quality of life. The findings seek to inform the
integration of VR technology into preventive health strate-
gies, offering practical insights for clinicians, caregivers, and
policymakers to support healthy aging and community en-
gagement in this growing demographic.

Methods

This systematic review adhered to the PRISMA (Preferred
Reported Items for Systematic Review and Meta-Analysis)
Guidelines (Page et al., 2021). The study is registered with the
International Prospective Register of Systematic Reviews
(PROSPERO) under the registration number CRD42024533739.
This reviewwas conducted in accordance with the pre-specified
protocol.

Eligibility Criteria (PICOS Framework)

A structured set of inclusion and exclusion criteria was de-
veloped using the PICOS framework:

Participants

Healthy older adults aged 60 years or older. “Healthy” was
defined as community-dwelling individuals without diag-
nosed neurological, musculoskeletal, cardiovascular, meta-
bolic, or cognitive conditions that could affect balance, gait,
or independent functioning.
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Intervention

VR-based exercise programs that utilized interactive virtual
reality platforms or exergaming systems designed to promote
physical activity. Eligible interventions featured immersive or
non-immersive VR formats (e.g., head-mounted displays,
motion sensors, screen-based systems such as Nintendo Wii,
and Xbox Kinect), and required active participant engage-
ment. Both supervised (e.g., in rehabilitation or clinical
settings) and unsupervised (e.g., home-based) interventions
were included, provided safety measures were reported.
Programs varied in exercise intensity, with most targeting
balance, coordination, gait, or lower-limb strength, and in-
tensity was categorized as light to moderate based on de-
scriptions of session frequency, duration, and exertion levels.

Comparator

Control conditions varied across studies and included: (1) no
intervention or usual routine activities, (2) education-based
interventions (e.g., health booklets or cognitive training), and
(3) conventional or low-intensity physical activities such as
walking, stretching, or traditional senior fitness programs.
Despite this heterogeneity, all comparators lacked immersive
VR components, and thus served as appropriate controls for
isolating the effects of VR-based interventions.

Outcomes

Walking capacity (e.g., gait speed, cadence, and 6-minute
walk distance [6-MWD]), fall risk (e.g., 8-foot Up-and-Go
test [8-FUG], FES, and TUG), and quality of life.

Study Design

Randomized controlled trials (RCTs) and controlled trials
with randomized pretest-posttest designs.

Exclusion criteria included abstracts, conference pro-
ceedings, reviews, protocols, non-English studies, and studies
reporting only between-group posttest outcomes without
pretest data.

Data Sources and Search Strategy

A systematic search was conducted to identify RCTs eval-
uating VR-based exercise in older adults, compared with
alternative exercise programs or inactive controls. Databases
searched included PubMed, CINAHL, Web of Science,
Cochrane, and Scopus, covering all entries up to January 10,
2025. Search terms included “virtual reality exercise,” “ex-
ercise,” and “RCT,” combined using Boolean operators.
Reference lists of relevant studies and reviews were hand-
searched.

Two assessors independently screened records, retrieved
full texts for uncertain cases, and resolved disagreements

through discussion or third-party adjudication. Detailed
search strategies are provided in Supplemental Table S1.

Data Extraction

Two researchers (F.OS and F.M) independently extracted data
using a standardized data extraction form developed for
systematic reviews (Higgins JPT et al., 2024). This form
captured key data elements aligned with Cochrane recom-
mendations, including author, year, country, sample size, age,
gender, intervention frequency, duration, outcome measures,
and effect estimates (mean differences (MD) and standard
deviations (SDs)). Data in formats other than mean and SD
(e.g., median and range) were recorded and converted using
established methods to ensure uniformity in meta-analysis
(Higgins et al., 2003). Discrepancies were resolved by
consensus to enhance reliability.

Study Quality and Risk of Bias

Study quality was assessed using the 15-point Tool for the
Assessment of Study Quality and Reporting in Exercise
(TESTEX) scale, a tool tailored for exercise interventions
(Smart et al., 2015). The scale includes criteria for study
quality and reporting, assigning scores out of 15.
Scores ≥10 indicated good quality (Gilson et al., 2019). Two
researchers (M.T and V.S) independently rated studies, with a
third researcher (B.AS) resolving discrepancies.

In addition, the risk of bias in each included study was
evaluated using the Cochrane Risk of Bias tool version 2.0
(Sterne et al., 2019). The assessment was based on several
methodological criteria, including sequence generation, al-
location concealment, blinding of participants and personnel,
blinding of outcome assessors, completeness of follow-up,
and selective reporting. Two reviewers (F.OS and B.AS)
independently performed the risk of bias assessments, re-
solving any disagreements through discussion.

Statistical Analyses and Meta-analyses

Meta-analyses and forest plots were generated utilizing
Review Manager (RevMan) 5 (Collaboration, 2014). For
outcomes with significant heterogeneity (I2 > 50%), a
random-effects model with inverse variance methods was
applied to calculate MD and 95% confidence intervals
(CI), accounting for variability across studies (Hedges &
Vevea, 1998). A fixed-effect model was used when het-
erogeneity was low (I2 < 50%), ensuring appropriate
statistical pooling. The DerSimonian-Laird estimator was
employed to estimate variance in random-effects models.
Mean and SD values were extracted to calculate changes
from baseline to post-intervention. When SD was un-
available, it was derived from sample size, p-values, or
95% CI; standard error of the mean (SEM) was converted
to SD as needed (Higgins et al., 2003). Data from figures
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were extracted using GetData Graph Digitizer when not
provided in text or tables, with efforts made to contact
authors for missing data (Rohatgi, 2021).

Heterogeneity was assessed using the I2 statistic, with
values >50% indicating considerable heterogeneity (Higgins
& Green, 2008). Publication bias was evaluated via funnel
plots, and sensitivity analysis assessed each trial’s influence
on overall results. A significance level of 5% was set for
effect size.

Additionally, to explore sources of heterogeneity in out-
comes with sufficient data (≥10 trials), meta-regression an-
alyses were conducted using Comprehensive Meta-analysis
for gait speed, TUG, and FES. The following moderator
variables were included: intervention duration (weeks),
session frequency (sessions per week), participants’ gender
composition (all-female vs. mixed), and control group ac-
tivity level (active vs. passive).

Results

Study Selection and Characteristics

The initial search identified 1,354 records from database and
reference searches. After removing 367 duplicates, 987 rec-
ords were screened. Of these, 916 were excluded based on
title and abstract review, leaving 71 full-text articles for
eligibility assessment. After reviewing these, 15 articles were
excluded for the following reasons: participants were under
60 years, the study used an active comparator that didn’t meet
our criteria (such as another VR program or high-intensity
exercise), there was no control group, or the article was a
conference paper or protocol. These exclusions followed our
eligibility criteria, which allowed only comparators like usual
care, no intervention, or low-intensity exercise. Finally,
56 trials (Abd El-Kafy et al., 2024; Adcock et al., 2020;
Babadi & Daneshmandi, 2021; Bieryla, 2016; Bieryla &
Dold, 2013; Chao, 2014; Cicek et al., 2020; Daniel, 2012; De
Queiroz et al., 2017; Delbaere et al., 2021; Duque et al.,
2013; Eggenberger et al., 2015, 2016; Fakhro et al., 2020; Fu
et al., 2015; Gomes et al., 2018; Gschwind et al., 2015; Htut
et al., 2018; Jorgensen et al., 2013; Jung et al., 2015; Karahan
et al., 2015; Keogh et al., 2014; Konstantinidis et al., 2014;
Lai et al., 2013; Lauzé et al., 2017; LAZAR, 2023; A. Lee
et al., 2014; K. Lee, 2020; M. Lee et al., 2015; Y. Lee et al.,
2017; Lyubenova et al., 2023; Maillot et al., 2012, 2014;
Merriman et al., 2015; Nicholson et al., 2015; Orsega-Smith
et al., 2012; Padala et al., 2012; Park et al., 2015; Peng et al.,
2020; Phirom et al., 2020; Pichierri et al., 2012; Pluchino
et al., 2012; Ray et al., 2012; Rendon et al., 2012; Rica et al.,
2020; Sápi et al., 2019; Sato et al., 2015; Schättin et al., 2016;
Schoene et al., 2013; Schwenk et al., 2014; Singh et al., 2012;
Stanmore et al., 2019; Tsang & Fu, 2016; Yang et al., 2020;
Yeşilyaprak et al., 2016; Zahedian-Nasab et al., 2021) in-
volving 2,927 participants were included in the meta-analysis
(Figure 1).

Characteristics of the Included Studies

The included studies were conducted across various coun-
tries, with the majority (11 out of 56) based in the United
States. Sample sizes ranged from 10 to 232 participants, with
ages spanning from 60.3 to 87.2 years. Table 1 provides
detailed characteristics of the included studies. Quality of life
was assessed using the Medical Outcomes Survey Short Form
36 (SF-36) in one study, the Quality of Life-Alzheimer’s
disease scale in one study, and the WHOQOL-BREF ques-
tionnaire in two studies.

Meta-Analysis

Walking Capacity

A meta-analysis of seven trials (264 participants) demon-
strated a statistically significant improvement in 6-MWD
following VR-based exercise training (MD = 24.59, 95% CI:
20.90 to 28.28; p < 0.00001), with high heterogeneity (I2 =
78%; Figure 2A).

A meta-analysis of 13 trials (569 participants) revealed a
statistically significant improvement in gait speed with VR-
based exercise (MD = 0.04, 95% CI: 0.01 to 0.07; p = 0.02),
with no heterogeneity (I2 = 0%; Figure 2B). The meta-
regression analyses revealed that none of the assessed vari-
ables significantly contributed to the heterogeneity in gait
speed. Specifically, control group activity (Q = 2.68, p =
0.61), study duration (Q = 0.49, p = 0.49), the number of
sessions per week (Q = 0.24, p = 0.62), and gender (Q = 0.65,
p = 0.42) did not significantly influence the effects of VR-
based exercise training on gait speed (Supplemental Tables
S2-5). Sensitivity analysis showed that when the studies by
Lauze et al. (2018) and Nicholson et al. (2015) were removed,
the effect of VR-based exercise interventions became in-
significant (MD = 0.03, 95% CI: –0.00 to 0.06; p = 0.07; and
MD = 0.03, 95% CI: –0.01 to 0.06; p = 0.11, respectively).

Ameta-analysis of seven trials (344 participants) showed a
non-significant improvement in cadence following VR-based
exercise training (MD = –0.23, 95% CI: –1.13 to 0.68; p =
0.63), with low heterogeneity (I2 = 22%; Figure S1).

Risk of Falling

A meta-analysis of 32 trials (34 arms, 1283 participants)
showed a statistically significant reduction in the TUG test
with VR-based exercise (MD = –0.67, 95% CI: –1.08 to
–0.25; p = 0.001), with moderate heterogeneity (I2 = 57%;
Figure 3a). The meta-regression analyses revealed that none
of the assessed variables significantly contributed to the
heterogeneity in gait speed. Specifically, control group ac-
tivity (Q = 5.15, p = 0.40), study duration (Q = 1.70, p = 0.19),
the number of sessions per week (Q = 0.66, p = 0.42), and
gender (Q = 2.95, p = 0.23) did not significantly influence the
effects of VR-based exercise training on TUG (Supplemental
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Tables S6-9). Sensitivity analysis indicated that excluding
individual studies did not affect the statistical significance,
reinforcing the robustness of the findings.

A meta-analysis of 18 trials (19 arms, 969 participants)
indicated a statistically significant reduction in FES scores
with VR (SMD = –0.67, 95% CI: –1.01 to –0.33; p = 0.0001),
with high heterogeneity (I2 = 84%; Figure 3b). The meta-
regression analyses revealed that none of the assessed vari-
ables significantly contributed to the heterogeneity in FES.
Specifically, control group activity (Q = 6.88, p = 0.44), study
duration (Q = 0.00, p = 0.95), the number of sessions per
week (Q = 1.69, p = 0.19), and gender (Q = 2.25, p = 0.32) did
not significantly influence the effects of VR-based exercise
training on FES (Supplemental Tables S10-13). Sensitivity
analysis showed no statistically significant differences when
individual studies were excluded, further supporting the ro-
bustness of these findings.

A meta-analysis of eight trials (503 participants) revealed
that VR-based exercise training had no significant effect on 8-
FUG time (MD = –1.70, 95% CI: –3.78 to 0.38; p = 0.11),
with high heterogeneity (I2 = 99%; Figure S2).

Quality of Life

Ameta-analysis of six trials (369 participants) demonstrated a
non-significant improvement in the total SF-36 score with
VR-based exercise (MD = 0.15, 95% CI: –0.05 to 0.36; p =
0.15), with no heterogeneity (I2 = 0%; Figure S3).

A meta-analysis of four trials (346 participants) revealed a
statistically significant improvement in environmental health
scores following VR-based exercise (MD = 0.42, 95% CI:
0.09 to 0.75; p = 0.01), with low heterogeneity (I2 = 37%;
Figure 4A).

Figure 1. PRISMA flow diagram (search period: database inception to January 10, 2025).
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Table 1. Details of included studies (search period: database inception to January 10, 2025)

Author; year Country

Participants Intervention

Outcome
measuresN

Age: Mean
(SD) Gender Experimental group Control group

Abd el-kafy, 2023 Saudi
Arabia

n = 60
EXP =

27
CON =

27

EXP: 66.53
(3.82)

CON:
65.43
(4.28)

Both 4 week/3 times training on
the C-Mill virtual reality
treadmill

C-Mill treadmill which
included regular walking
without any virtual
reality games or visual
projections

6-MWT,
Velocity,
Cadence

Adcock, 2020 Spain n = 37
EXP =

15
CON =

16

EXP: 77.00
(6.40)

CON:
70.90
(5.00)

Female 16 weeks/3 times exergame
training including Tai Chi-
inspired exercises, dancing
and step-based cognitive
games

Usual care Gait speed

Bieryla, 2013 USA n = 12
EXP = 5
CON =

5

EXP: 82.50
(1.60)

CON:
80.50
(7.80)

Both 3 week/3 times using
Nintendo’s Wii fit game

Normal activities TUG

Bieryla, 2015 Switzerland n = 13
EXP = 6
CON =

7

EXP: 82 ±
2.4

CON:
82.6 ± 6.9

Both 3 week/3 times completed
Kinect training two

Kinect games were used:
Your

Shape: Fitness Evolved and
Kinect adventures

Normal activities TUG

Chao, 2015 USA n = 32
EXP =

16
CON =

16

EXP: 86.63
(4.18)

CON:
83.75
(8.04)

Both 4 week/2 times
SAHA + Nintendo Wii fit

Health educational session TUG, 6-
MWT,
FES

Cicek, 2020 Turkey n = 20
EXP =

16
CON =

14

EXP: 72.3
(5.9)

CON: 73.9
(4.6)

Both 8 weeks/2 times.
Nintendo Wii fit plus

Normal activities TUG, QoL

Daniel, 2012 USA n = 23
EXP = 8
CON =

7

EXP: 80.00
(3.370)

CON:
72.60
(4.60)

Both 15 week/3 times
Nintendo Wii fit

Traditional senior fitness
program

6-MWT, 8-
FUG

Delbaere, 2021 Australia n = 20
EXP =

10
CON =

10

EXP:
86.9 ± 5.6

CON:
87.5 ± 6.6

Both 12 month/2 times
Virtual reality dual-task
training using the
BioRescue

no additional training TUG, FES

Duque, 2013 Australia n = 70
EXP =

40
CON =

30

EXP:
79.3 ± 10

CON: 75 ±
8

Female 6 week/2 times
Attended balance training

- FES

Eggenberger,
2015

Switzerland n = 89
EXP =

24
CON =

22

EXP: 77.30
(6.30)

CON:
78.50
(5.10)

Female 24 week/2 times
Virtual reality video-game
dancing

Treadmill walking Velocity, 6-
MWT,
FES

(continued)
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Table 1. (continued)

Author; year Country

Participants Intervention

Outcome
measuresN

Age: Mean
(SD) Gender Experimental group Control group

Eggenberger,
2016

USA n = 42
EXP =

19
CON =

14

EXP: 72.8
(5.9)

CON: 77.8
(7.4)

Both 8 week/3 times
Interactive cognitive-motor
video-game dancing

Balance and stretching
training

FES-I

Fakhro, 2019 Switzerland n = 64
EXP =

30
CON =

30

Both: 72.20
(5.20)

Female 8 week/3 times
Soccer heading” and “Table
Tilt”

Underwent no training TUG

Fu, 2015 Australia n = 64
EXP =

30
CON =

30

EXP: 82.4
(3.8)

CON: 82.3
(4.3)

Both 6 weeks/3 times
Balance training with Wii fit
equipment

Conventional exercise FES

Gomes, 2018 Brazil n = 30
EXP =

15
CON =

15

EXP: 83
(5.87)

CON: 85
(6.19)

Both 7 week/2 times participants
played five of 10 selected
games.

Ten NWFP games were
selected according to their
cognitive

Received a booklet with
information and
illustrations outlining the
benefits and risks of
physical activity. The
booklet was based on
World health

FES-I

Gschwind, 2015 Australia n = 148
EXP =

24
CON =

61

EXP: 80.10
(6.30)

CON:
80.20
(6.50)

Female 16 week/2 times walking,
stepping, weight shifting

- TUG, QoL

Htut, 2018 Thailand n = 84
EXP =

21
CON =

21

EXP:
75.8 ±
4.89

CON:
76.0 ±
5.22

Both 8 weeks/3 times
Ten games from Xbox 360
(Flextronics, Wistron,
Celestica, Foxconn) were
chosen

Control group did not TUG, FES

Jorgensen, 2013 Denmark n = 58
EXP =

27
CON =

30

EXP: 75.90
(5.70)

CON:
73.70
(6.10)

Female 10 week/2 times
The participants could
choose freely between five
different balance exercises
(table tilt, slalom ski,
perfect 10, tight rope
tension, penguin slide)

The participants in CON
were instructed to wear
the EVA insoles in their
shoes every day for the
entire duration of the
trial

TUG, FES-I

Jung, 2015 Korea n = 24
EXP = 8
CON =

8

EXP:
74.3 ± 2.1

CON:
73.6 ± 2.4

Female 8 week/2 times wakeboard,
Frisbee dog, jet ski, and
canoe games was used for
the NWS
group. Participants
controlled a virtual
character on the screen by
swinging, rowing, or tilting
remote controllers with
motion

not performed an exercise
program

TUG

(continued)
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Table 1. (continued)

Author; year Country

Participants Intervention

Outcome
measuresN

Age: Mean
(SD) Gender Experimental group Control group

Karahan, 2015 Turkey n = 100
EXP =

48
CON =

42

EXP:
71.3 ± 6.1

CON:
71.5 ± 4.7

Both 6 week/5 times exergames
using the Xbox KinectTM
device

Home exercise TUG

Keogh, 2014 New
Zealand

n = 34
EXP =

19
CON =

15

EXP: 81.00
(7.00)

CON:
85.00
(7.00)

Both 8 weeks NintendoWii Sports Usual routine activities QoL

Konstantinidis,
2014

Greece n = 232
EXP =

116
CON =

116

EXP: 70.0
(6.2)

CON:69.1
(6.6)

Both 8 week/5 times
Used (FFA) exergaming
platform System.

Followed cognitive training QoL, 8-
FUG

Lai, 2013 Taiwan n = 30
EXP =

15
CON =

15

EXP: 70.6
(3.5)

CON: 74.8
(4.7)

Both 6 week/3 times
Interactive video-game-based
(IVGB)

Received no intervention MFES, TUG

Lauzé, 2018 Canada n = 32
EXP =

21
CON =

11

EXP: 80.1
(7.5)

CON:83.2
(6.7)

Both 12 week/2 times
7 aerobic exercises,
8 resistance and balance
exercises, and a cool-down
period

Did not receive any
materials

TUG, QoL,
speed

Lazar, 2023 India n = 44
EXP =

22
CON =

22

EXP: 69.44
(6.66)

CON:
66.33
(6.51)

Both 4 week/3 times
IVR training group with
oculus quest 2 device

Conventional balance
training

FES, TUG

Lee, 2014 USA n = 82
EXP =

40
CON =

42

Both: 75.20
(6.60)

Both 10 week/3 times
Station with boxing, tennis,
and bowling and the other
station with table tilt,
slalom ski, perfect 10,
penguin slide, tight rope,
and obstacle course games

Walk, strengthening
exercises balancing
activities

Velocity,
cadence

Lee, 2015 Korea n = 54
EXP =

26
CON =

28

EXP: 68.8
(4.6)

CON: 67.7
(4.3)

Female 8 weeks/3 times
All subjects in the virtual
reality group attended all
virtual reality-based
exercise sessions at the
university research
laboratory

Their exercise program
consisted of postural,
balance, functional,
lower body
coordination, and lower
body strength exercises

8-FUG,
QoL

Lee, 2017 Korea n = 44
EXP =

21
CON =

19

EXP:
76.15 ±
4.55

CON:
75.71 ±
4.91

Both 6 week/2 times
When a participant stands on
the balance board, which is
a pressure sensor, an
avatar appears on the
monitor and replicates the
participant’s movements,
providing visual and
auditory feedback

- TUG

(continued)
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Table 1. (continued)

Author; year Country

Participants Intervention

Outcome
measuresN

Age: Mean
(SD) Gender Experimental group Control group

Lee, 2020 Korea n = 56
EXP =

28
CON =

28

EXP:
81.01 ±
6.89

CON:
79.47 ±
6.15

Both 4 week/5 times non-
motorized treadmill

Non-motorized treadmill
gait training without
virtual reality

TUG,
Velocity,
cadence

Lyubenova, 2023 Bulgaria n = 50
EXP =

24
CON =

26

- Female 7 week/3 times
PT combined with video-
game VRG

PT Cadence,
gait
speed

Maillot, 2012 France n = 32
EXP =

16
CON =

16

EXP: 73.47
(4.10)

CON:
73.47
(3.00)

Both 14 weeks/2 times
Nintendo Wii Sports

Without intervention 8-FUG, 6-
MWT

Maillot, 2014 France n = 16
EXP = 8
CON =

8

EXP: 74.1
(4.7)

CON: 74.0
(2.1)

Both 12 week/2 times
Wii tennis, boxing game,
balance board, soccer
headers, ski jump

hula hoop, marbles games and
tennis, and boxing games

Received no intervention QoL, 8-
FUG, 6-
MWT

Merriman, 2015 Ireland n = 76
EXP =

38
CON =

38

EXP:
F: 74.1 (6.7)
H: 74.9
(9.0)

CON:
F: 73.4 (7.0)
H: 74.3
(11.1)

Both 5 weeks/2 times
VR display in which the on-
screen position of a target
object was controlled by
shifts in postural balance
on a Wii balance board

Passive control condition FES

Nicholson, 2015 Australia n = 41
EXP =

19
CON =

22

EXP: 75.1
(5.8)

CON: 73.9
(5.1)

Both 6 week/3 times
Nintendo Wii Fit

Without intervention TUG, FES,
speed

Orsega-smith,
2012

USA n = 25
EXP =

16
CON =

9

EXP: 72.0
(8.5)

CON: 70.6
(4.9)

Both 4–8 weeks/2 times
NintendoWii Fit: Balance and
yoga)

Without intervention TUG

Padala, 2012 USA n = 22
EXP =

11
CON =

11

EXP: 79.3
(3.8)

CON: 81.6
(5.2)

Both 8 week/5 times (single leg
extensions, lunges, and
torso twists). (Half-moon,
warrior pose, chair, and
sun salutation). (Ski slalom,
ski jump, table tilt, and
penguin slide)

Walking program indoors,
30 min daily, walking to
and from the starting
point as warming up and
cooling down. Walking
at own pace

QoL, TUG

Park, 2015 Korea n = 30
EXP =

15
CON =

15

EXP: 66.5
(8.1)

CON: 65.2
(7.9)

Both 8 week/3 times ball exercise
with virtual reality exercise

ball exercise as a general
exercise

TUG

(continued)
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Table 1. (continued)

Author; year Country

Participants Intervention

Outcome
measuresN

Age: Mean
(SD) Gender Experimental group Control group

Peng, 2020 Taiwan n = 110
EXP =

56
CON =

54

EXP: 70.7
(4.6)

CON: 72.0
(5.7)

Both 12 week/1 times ladder-type,
three-by-three grid-type,
and circle-type mat
exergames with
simultaneous cognitive–
physical training (EMAT)

Control group underwent
a multicomponent
exercise intervention
focused on physical and
cognitive training

FES

Phirom, 2020 Thailand n = 40
EXP =

20
CON =

20

EXP: 70.2
(4.2)

CON: 69.4
(3.4)

Both 12 week/3 times interactive
physical-cognitive game-
based training program

Received educational
material covering
cognitive enhancement
and fall prevention
strategies

TUG

Pichierr, 2012 Switzerland n = 31
EXP =

11
CON =

10

EXP: 86.9
(5.1)

CON: 85.6
(4.2)

Both 12 week/2 times
DDR Stepmania

Physical exercise program Velocity,
cadence

Pluchino, 2012 USA n = 80
EXP =

12
CON =

14

EXP: 70.7
(8.5)

CON: 76.0
(7.7)

Both 8 week/2 times vieo game
balance board program

Standard balance exercise
program

TUG

Queiroz, 2017 Brazil n = 27
EXP =

13
CON =

14

EXP: 60.7
(3.6)

CON: 59.8
(4.1)

Both 12 week/3 times athletics,
bowling, boxing, skiing,
soccer, tennis, and table
tennis

Aerobic exercises
Activities with the
ergometers

TUG

Ray, 2012 USA n = 87
EXP =

29
CON =

40

- Both 15 week/3 times playing the
Wii bowling or Wii boxing
games. The Wii Fit Plus
balance board

Various traditional senior
fitness programs,
including a rigorous
seated aerobics program

6-MWT, 8-
FUG

Rendon, 2012 USA n = 40
EXP =

16
CON =

18

EXP: 85.7
(4.3)

CON: 83.3
(6.2)

NR 18 week/3 times Nintendo
Wii Fit

Without intervention 8-FUG

Rica, 2020 Brazil n = 50
EXP =

34
CON =

16

>60 Female 12 weeks/3 times Kinect-
based exercise protocol

Played board games and
were encouraged to
continue their normal
daily activities.

QoL, 8-
FUG

Sa´pi, 2019 Hungary n = 75
EXP =

30
CON =

22

EXP:
69.57 –

4.66
CON:
67.18 –

5.56

Both 6 week/3 times practiced
Kinect adventures and
Sports

No intervention control Velocity

Sato, 2015 Japan n = 57
EXP =

28
CON =

26

EXP: 70.1
(5.4)

CON: 68.5
(5.5)

Both 12 weeks/2–3 times
The intervention game
content used Kinect and
Kinect SDK version

- Velocity,
cadence

(continued)
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Table 1. (continued)

Author; year Country

Participants Intervention

Outcome
measuresN

Age: Mean
(SD) Gender Experimental group Control group

Schattin, 2016 Switzerland n = 27
EXP =

13
CON =

14

EXP: 78.7
(8.3)

CON: 78.0
(7.8)

Both 8–10 week/3 times
Exergame training

Balance training Cadence,
speed

Schoene, 2013 Australia n = 37
EXP =

15
CON =

17

EXP: 77.5
(4.5)

CON: 78.4
(4.5)

NR 8 week/2 times
Exergame DDR Stepmania

Usual routine activities TUG, FES

Schwenk, 2014 USA n = 33
EXP =

17
CON =

16

EXP: 84.3
(7.3)

CON: 84.9
(6.6)

Both 4 week/2 times balance
training including weight
shifting and virtual obstacle
crossing tasks with visual/
auditory real-time joint
movement feedback using
wearable sensors

No intervention TUG, speed

Singh, 2013 Malaysia n = 38
EXP =

18
CON =

18

EXP: 61.1
(3.7)

CON: 64.0
(5.9)

Female 6 weeks/2 times Wii Balance
Board

Traditional senior fitness
balance program

TUG

Stanmore, 2019 United
Kingdom

n = 92
EXP =

49
CON =

43

EXP: 77.9
(8.9)

CON: 77.8
(10.2)

Both 12 week/3 times the same
standard care as the
control group was given. In
addition, exergames were
offered (under the
supervision of a
physiotherapist or
physiotherapist assistant)
in the assisted living facility
rooms

Control participants were
encouraged to do three
preselected (by the
physiotherapist)
exercises from the
OTAGO list over

TUG, FES,
QoL

Tsang and Fu,
2016

Hong Kong n = 79
EXP =

39
CON =

40

EXP: 82.3
(3.8)

CON: 82.0
(4.3)

Both 6 week/3 times
The Wii Fit balance training
games included soccer
heading, table tilt, and
balance bubble

Leg strengthening
exercises, tandem
standing exercise in
parallel bars, tandem
walking in parallel bars,
sideways walking and
turning around in parallel
bars, stepping exercises,
sit-to-stand exercises,
and mini-squats

TUG

Yang, 2020 Taiwan n = 20
EXP =

10
CON =

10

EXP: 68.71
(64.09–
74.84)

CON:
67.54
(62.08–
76.75)

Both 5 week/2 times
Kinect exercise

Conventional exercise
over balance training

TUG

Yesilyapark, 2016 Turkey n = 18
EXP = 7
CON =

11

EXP: 70.1
(4.0)

CON: 73.1
(4.5)

Both 6 week/3 times VR-based
balance exercises

Conventional balance
exercises

TUG, FES

(continued)
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A meta-analysis of five trials (364 participants) demon-
strated a statistically significant improvement in social rela-
tionship scores with VR (MD = 0.31, 95% CI: 0.10 to 0.52;
p = 0.004), with moderate heterogeneity (I2 = 70%;
Figure 4B).

A meta-analysis of three trials with 296 participants re-
vealed a statistically significant improvement in physical
health scores with VR, as revealed in Figure 4C (MD = 0.31,
95% CI: 0.08 to 0.54; p = 0.009), with no heterogeneity
(I2 = 0%).

Table 1. (continued)

Author; year Country

Participants Intervention

Outcome
measuresN

Age: Mean
(SD) Gender Experimental group Control group

Yousefi Babadi
and
Daneshmandi,
2021

Iran n = 36
EXP =

12
CON =

12

EXP: 66.5
(3.8)

CON: 66.7
(3.2)

Both 9 week/3 times virtual reality
training

Conventional balance
training

TUG

Zahedian-Nasab,
2021

Iran n = 60
EXP =

30
CON =

30

EXP: 69.7
(7.7)

CON: 72.0
(7.8)

Both 6 week/2 times VR exercises
based on Xbox Kinect

Routine exercises TUG, FES

Figure 2. Effect of VR-based exercise interventions on (A) 6-MWD and (B) gait speed.
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Figure 3. Effect of VR-based exercise interventions on (A) TUG and (B) FES.
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A meta-analysis of four trials (346 participants) showed a
significant improvement in psychological health scores with
VR (MD = 0.47, 95% CI: 0.16 to 0.78; p = 0.003), with low
heterogeneity (I2 = 30%; Figure 4D).

Study Quality and Publication Bias

The median TESTEX score was 10 (see Supplemental Table
S14). Notably, none of the studies monitored activity in the
control group. Thirteen studies conducted intention-to-treat
analyses, 27 reported allocation concealment, and 50 pro-
vided randomization details. Blinded assessors were em-
ployed in 23 studies. However, none of the studies reported

exercise volume, energy expenditure, point measures with
variability, eligibility criteria, baseline group similarity, or
relative exercise intensity.

Funnel plot analyses did not indicate any evidence of
publication bias (Supplemental Figures S4-6), suggesting that
the pooled results were robust and reliable.

Risk of Bias Assessment

The risk of bias across the 56 included trials was assessed
using the Cochrane RoB 2 tool. None of the studies were rated
as having a low overall risk of bias; 60.72% were judged to
have “some concerns,” while 39.28% were classified as high

Figure 4. Effect of VR-based exercise interventions on quality of life including (A) environmental health, (B) social relation, (C) physical
health, and (D) psychological health scores.
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risk. In the domain of the randomization process, 39.29% of
studies were rated as low risk, 42.85% as having some
concerns, and 17.86% as high risk. Deviations from intended
interventions presented the highest concern, with only
14.29% of studies rated as low risk and 73.21% rated as
having some concerns. With regard to missing outcome data,
55.35% of studies were considered low risk, 30.36% had
some concerns, and 14.29% were high risk. For measurement
of the outcome, 33.93% were rated low risk, 53.57% had
some concerns, and 12.5% were high risk. Notably, the risk of
bias due to selective reporting was minimal, with 89.29% of
studies rated low risk and none rated high risk (Supplemental
Table S15 and Figure 5).

Discussion

This systematic review and meta-analysis examined the ef-
fects of VR-based exercise training on walking capacity, fall
risk, and quality of life in healthy older adults. The findings
reveal that VR-based exercise significantly enhanced walking
capacity (notably 6-MWD and gait speed), reduced fall risk
(via TUG times and FES scores), and improved quality-of-life
domains, including environmental health, social relations,
and physical health. These results underscore VR-based
exercise as a promising, technology-driven intervention to
support functional independence and well-being in older
adults, with potential applications in clinical practice and
community settings. In support of these findings, the current
review incorporated a detailed risk of bias assessment, which
revealed that while most studies had some concerns, a sub-
stantial proportion were rated as high risk overall, high-
lighting the need for cautious interpretation of the pooled
results.

An important practical advantage of VR-based exercise is
its immersive and gamified nature, which may enhance
motivation, engagement, and adherence among older adults.
Gamification elements such as real-time feedback, task
progression, and interactive environments can reduce bore-
dom and increase enjoyment, thereby supporting long-term
participation—an essential factor in achieving sustained
health benefits (H. S. Lee et al., 2019).

VR-based exercise significantly improved 6-MWD and
gait speed, consistent with prior studies highlighting VR’s
role in enhancing physical function (Lamoth et al., 2011).
Lamoth et al. (2011) attributed these gains to VR’s immersive
environments, which facilitate motor learning and rehabili-
tation. However, high heterogeneity in 6-MWD outcomes
(I2 = 78%) suggests variability in treatment effects, likely due
to differences in VR program design, intensity, or duration.
This variability signals a critical need for standardized pro-
tocols to optimize VR’s impact on endurance and walking
efficiency—key factors in maintaining older adults’ inde-
pendence in daily activities. In contrast, gait speed im-
provements showed low heterogeneity, indicating a robust,
consistent effect across studies. Sensitivity analyses identified
influential studies, reinforcing the importance of program-
specific features. These findings align with Suleiman-Martos
et al. (2022), who reported significant mobility gains from
VR-based challenges (Suleiman-Martos et al., 2022). Clini-
cians and program developers could leverage these insights to
design VR interventions that enhance walking capacity,
supporting older adults’ ability to remain active and engaged
in their communities (Schoene et al., 2013).

VR-based exercise reduced fall risk, with significant im-
provements in TUG (effect size = �0.67) and FES scores,
though no notable effect was observed for 8-FUG times. The
TUG improvement reflects enhanced functional mobility, a
critical determinant of fall prevention, despite moderate
heterogeneity suggesting variability in intervention protocols
or participant profiles. For FES, high heterogeneity indicates
that VR’s effect on fear of falling varies with program features
and psychological engagement. These findings position VR as
a practical tool for improving balance and confidence, offering a
safe, controlled setting to practice real-world tasks—a key ad-
vantage for older adults at risk of falls (Levin et al., 2015). The
non-significant 8-FUG results and its heterogeneity highlight
areas for refinement. Mirelman et al. (2016) demonstrated that
VR-based treadmill training reduced fall rates, suggesting that
task complexity and system engagement are pivotal (Mirelman
et al., 2016). Future efforts to standardize VR protocols could
enhance their efficacy in fall prevention programs, benefiting
both individual older adults and healthcare systems by reducing
fall-related injuries.

VR-based exercise improved specific quality-of-life
domains—environmental health, social relations, psycho-
logical health, and physical health—but showed no signifi-
cant effect on overall SF-36 scores, suggesting domain-
specific rather than global benefits. The enhancement in
environmental health likely stems from VR’s ability to
simulate enriching, interactive settings, fostering connect-
edness, and reducing isolation—a critical consideration for
older adults in care or community settings (Montana et al.,
2020). Improvements in social relations and physical/
psychological health further highlight VR’s potential to pro-
mote holistic well-being (Cikajlo et al., 2012). Low heteroge-
neity in these analyses indicates consistent positive effects,

Figure 5. The risk of bias results for each domain.
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reinforcing VR’s reliability as an intervention. These findings
suggest that VR could be integrated into wellness programs to
enhance older adults’ quality of life, though tailoring content to
address broader domains may amplify its impact.

Compared to studies in clinical populations—such as
stroke or Parkinson’s disease—this review demonstrates that
VR-based interventions can offer substantial benefits even in
healthy older adults. While previous work in clinical groups
often focuses on rehabilitation or motor recovery, our findings
reinforce VR’s role in preserving functional capacity and
preventing decline in non-clinical, aging populations
(Brunner et al., 2017). This emphasizes VR’s utility as a
preventive rather than rehabilitative tool in the context of
healthy aging.

The lack of a significant overall SF-36 effect, despite its
common use as a quality-of-life measure, may stem from its
broad scope, encompassing eight subscales (e.g., physical
functioning, vitality, and role limitations) not uniformly
sensitive to VR’s physical focus. Domains such as role
limitations-emotional or general health may be less respon-
sive than physical or social functioning, attenuating overall
score changes. Moreover, the brief duration of VR inter-
ventions (6–12 weeks) may limit global quality-of-life shifts,
especially in healthy older adults with high baseline scores.

Limitations

Despite these promising results, limitations warrant consid-
eration. High heterogeneity in 6-MWD, FES, and 8-FUG
analyses reflects variability in intervention protocols, dura-
tions, and VR features, potentially limiting generalizability.
The absence of a significant SF-36 improvement further
suggests that current VR programs may require adaptation to
address all quality-of-life facets comprehensively, particu-
larly less responsive subscales like bodily pain or role-
emotional. Additionally, the included studies employed
heterogeneous control conditions, ranging from passive (e.g.,
no intervention) to active (e.g., conventional exercise or
physical therapy), which may have contributed to differences
in observed effect sizes and limits comparability across
studies.

Moreover, although most trials were rated as having some
concerns in the risk of bias assessment, nearly 40% were
judged to be at high risk, particularly regarding deviations
from intended interventions and outcome measurement. This
methodological variability may have influenced effect esti-
mates and should be considered when interpreting the
strength of the evidence.

While subgroup stratification was not feasible due to in-
sufficient reporting and inconsistent comparator definitions,
this limitation has been acknowledged, and future meta-
analyses are recommended to explore stratified compari-
sons to better isolate the specific effects of VR-based inter-
ventions. Future research should prioritize developing
standardized, evidence-based VR protocols—specifying

session length, frequency, and immersive elements—to
maximize benefits across diverse older adult populations.
Additionally, examining subscale-specific SF-36 outcomes in
larger, longer-term trials could clarify VR’s full potential and
guide the design of interventions targeting both physical and
psychosocial well-being. Exploring optimal training condi-
tions and long-term effects could further solidify VR’s role in
healthy aging strategies.

Conclusion

This systematic review and meta-analysis demonstrate that
VR-based exercise significantly enhances walking capacity,
reduces fall risk, and improves specific quality-of-life do-
mains in healthy older adults. Notable impacts on 6-MWD,
gait speed, TUG, FES, and domains like environmental and
physical health position VR as an innovative, effective in-
tervention for promoting functional independence and well-
being. These findings offer actionable insights for clinicians,
caregivers, and policymakers seeking to integrate VR into
preventive health and community programs for older adults.
However, variability in intervention effects underscores the
need for standardized protocols and further research to op-
timize VR’s potential across diverse settings and populations.
Importantly, the scalability of VR—especially through home-
based systems and mobile platforms—supports its broader
adoption in aging-in-place initiatives and community-based
health promotion.

Implications and Recommendations
for Practice

The findings of this systematic review and meta-analysis
highlight VR-based exercise as an effective intervention
for enhancing walking capacity, reducing fall risk, and im-
proving specific quality-of-life domains in healthy older
adults. These results have several implications for practice.
Clinicians and community health providers can integrate VR
interventions to improve gait speed, endurance (e.g., 6-
MWD), and functional mobility (e.g., TUG), supporting older
adults’ independence and reducing fall-related injuries. The
consistent benefits in social functioning, vitality, and envi-
ronmental mastery suggest that VR programs could be in-
corporated into wellness initiatives to foster social
engagement and well-being, particularly for those at risk of
isolation.

However, the variability in intervention effects and the
lack of a significant overall SF-36 impact underscore the need
for tailored approaches. Practitioners should prioritize VR
protocols with standardized durations (e.g., 8–12 weeks),
frequencies (e.g., 2–3 sessions weekly), and immersive
features proven to optimize physical outcomes, as suggested
by low heterogeneity findings for gait speed. To address the
nuanced SF-36 subscale results, programs could be adapted to
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target broader domains—such as incorporating cognitive
challenges or emotional support elements—to enhance
vitality and role functioning beyond physical health. For
fall prevention, VR systems should emphasize balance-
focused tasks and real-world simulations, building on
evidence of TUG and FES improvements. These adapta-
tions could maximize VR’s potential as a scalable tool for
healthy aging.
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