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Abstract: In recent decades, there has been a significant increase in research focused
on dependability across various fields, including survival analysis, failure rates, gen-
eralized measures of failure, and related characteristics. A strong connection exists
between the generalized failure rate and the economic concept of elasticity. Sensitivity
analysis employs this ratio to assess how changes in an input variable affect an out-
put variable. We apply this ratio to evaluate the sensitivity of an output variable in
response to changes in an input variable. In this article, we explain the elasticity func-
tion of an economy and its implications for reliability. We will also explore how this
function relates to dependable and unequal economic indicators. Furthermore, we will
discuss various extensions of Lorenz curves, which are instrumental in understanding
measures of inequality. Our focus has been on Lorenz curve elasticity and its connec-
tions to distorted and extended forms of warped curves.
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1 Introduction

Functions such as the characteristic function and the cumulative distribution function
can assist in identifying the distribution of a random variable. Additionally, this in-
cludes the survival function, several types of failure rates (including reversed), mean
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residual life, generalized failure rates, and elasticity functions, all of which are signifi-
cant in the fields of dependability and economics.

In recent years, the statistical community has embraced and redefined the well-
known idea of elasticity from economics and physics, resulting in the creation of the
elasticity function. This function has shown its use in estimating and assessing dan-
gers and is applicable across several domains, like financial risk management and public
health. Metrics of aging, such as the failure rate and reversed failure rate, are crucial in
scientific inquiry. These principles are thoroughly examined in several sources, includ-
ing Block et al. (1998) and Barlow and Proschan (1996) along with several reliability
textbooks. Lariviere and Porteus proposed the generalized failure rate (IGFR) in 2001
(Lariviere and Porteus, 2001), and Lariviere recognized the increasing generalized fail-
ure rate (IGFR) in 2006 (Lariviere, 2006). These failure rates can help solve problems
with pricing and supply chain contracts.

New studies, like those by Chechile (2011), Banciu and Mirchandai (2013), and Tor-
rado and Oliviera (2013), have looked into similar extensions of the reversed hazard
rate. Furthermore, the generalized failure rate (or reversed failure rate) can be defined
as an elasticity function, which has significant economic implications. Oliveira and
Torrado (2015), Pavia and Veres-Ferrer (2016), and Nanda et al. (2003) have looked at
the reliability aspects of these ideas, mainly looking at the reversed hazard rate and its
features. Elasticity is a crucial instrument in economics, measuring the responsiveness
of an output variable to variations in an input variable. As the values of a random
variable fluctuate within its support, the cumulative distribution function correspond-
ingly changes. This link arises from the variable’s elasticity, which indicates how the
relative accumulation of probability functions throughout the variable’s support. It
evaluates the probability of advancing to greater values proportionally. This compre-
hension facilitates the analysis of fundamental processes, systems, or action protocols,
yielding significant insights for efficient risk management in domains such as economics
and health.

Two authors, Veres-Ferrer and Pavia, looked at the elasticity of continuous distri-
butions for random variables that are not negative in papers released in 2012 (Veres-
Ferrer et al., 2012) and 2014 (Veres-Ferrer et al., 2014) and 2017 (Veres-Ferrer and
Pavia, 2017). Given the concerns regarding dependability and economic applications,
they proposed various interpretations of elasticity and its characteristics.The Lorenz
curve (Lorenz, 1905) and the Gini index (Gini, 1912) are effective instruments for ex-
amining inequality and income distributions. A lot of research has looked into the
types, levels, and uses of income inequality, as well as how they relate to factors of
reliability (Klefsjo, 1984; Chandra and Singpurwalla, 1981; Mohtashami Borzadaran,
2018; Pham and Turkkan, 1994; Behdani et al., 2020, 2018, 2020). Various dimensions
of distorting inequality metrics have been presented by Sordo et al. (2014), Sordo et
al. (2017), and Wang et al. (2011). This research looks at the generalized failure rate
(reversed failure) and elasticity functions. It ends with a more detailed version of the
distorted Lorenz curve and the elasticity criteria that go with it.

This paper presents several key innovations that contribute to the understanding
of dependability and economic dynamics. This study delineates the major innovations:
This research demonstrates a substantial correlation between generalized failure rates
and the economic principle of elasticity. This study elucidates the relationship be-
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tween fluctuations in input factors and their impact on output variables, offering a
fresh viewpoint on failure analysis in economic situations. The article presents a novel
methodology using elasticity for sensitivity analysis. This approach evaluates the sen-
sitivity of output variables to variations in input factors, providing critical insights for
decision-making in diverse economic and management contexts.

This work’s essential novelty is the analysis of the elasticity of the Lorenz curve
and its association with distorted and extended curve shapes. This approach enhances
the comprehension of inequality metrics, providing researchers and policymakers with
improved instruments to assess and evaluate economic disparities. The study also
includes the computation of the elasticity function itself. This novel methodology offers
insights into the effects of elasticity variations on economic variables; hence, it enhances
the investigation of reliability in economic situations.The paper clarifies the connection
between economic elasticity and dependable but disparate economic indicators. This
approach enhances the comprehension of economic processes, emphasizing the use of
elasticity functions in analyzing economic inequalities.

We outline the paper’s structure as follows: Section 2 delineates essential terminol-
ogy and ideas, including elasticity, Lorenz curves, and convexity. In Section 3, we look
at the role of elasticity in reliability, including when the elasticity function stays the
same and how changes in this function affect reliability metrics. Ultimately, we exam-
ine the correlation between economic inequality indicators and the elasticity function,
computing the elasticity functions of inequality curves and analyzing transformations
of Lorenz curves. Finally, we devote a small part of the article to summarizing and
concluding the paper.

2 Preliminaries

This section delineates essential terms and terminology used in the article. Initially,
we will delineate the notions of convex and log-convex distributions. Subsequently, we
shall provide a comprehensive definition of the utility function.

Definition 2.1. A random variable Y is said to have a concave distribution if, for
every y1,y2 and 0 € [0,1], the density g of Y satisfies the following relation

9(0y1 + (1= 0)ya) > Og(y1) + (1 — 0)g(y2).
The function g is said to be conver if —g is concave.

Definition 2.2. A random variable Y is said to have a log-concave distribution if, for
any y1,y2 and any 6 € [0,1], the following holds

g(Oy1 + (1 = 0)ya) > ¢°(y1)g" = (o). (1)

Assuming that g is positive, taking the logarithm of both sides of (1) yields

log(g(fy1 + (1 — 0)ya)) > Olog(g(y1)) + (1 — ) log(g(y2))-

The function g is considered to be log-convez if the inequality in (1) is reversed. Please
note that g is continuous on its domain if it is log-concave, and continuously differen-
tiable if it is differentiable. We should consider both of these facts. Moreover, if h(y)
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is differentiable on D* C (0,00), then h(y) is log-concave (or log-convex) on D*. The

monotonicity of % on D* indicates that it is either decreasing (for log-concave) or

increasing (for log-convex).

In economics, the concept of utility represents worth or value, and its application has
evolved significantly over time. Neoclassical economics, which dominates contemporary
economic theory, has redefined the term to refer to a utility function that expresses a
single consumer’s preference ordering over a set of options, though it is not comparable
across individuals. This refined notion of utility is more strictly defined than its original
concept, but it is less useful (and more contentious) for ethical judgments, as it is
subjective and dependent on choice rather than on experienced pleasure. The utility
function v(-) measures a decision-maker’s risk preference. A utility function assigns
a numerical value to the various outcomes that may result from different investment
decisions, typically quantifying the outcome in terms of resulting wealth. The outcome
is usually quantified in wealth, and the utility function can be expressed as v(w), where
w denotes wealth. Absolute risk aversion (ARA) and relative risk aversion (RRA)
measures are defined by Arrow (1965) as follows

Let A(w) = —% and R(w) = —wq;l,l((;f)) = wA(w).

In these expressions, v'(w) and v”(w) represent the first and second derivatives of
v(+) with respect to w. Increasing absolute risk aversion is indicated by A’(w) > 0, while
decreasing absolute risk aversion is indicated by A’(w) < 0. The degree of risk aversion
correlates with the curvature of v(c). However, since anticipated utility functions are
not uniquely defined (they are specified only up to affine transformations), a measure
that remains constant under these transformations is necessary, rather than relying
solely on the second derivative of v(c).

For example, if v(w) = a + blog(w), then v'(w) = £ and v”(w) = —-%, leading to
A(w) = L. Since A(w) is independent of a and b, the utility function v(w) remains
unaffected by affine transformations. Relative risk aversion (RRA) is a dimensionless
quantity, unlike ARA, which has units of dollars™*, making RRA applicable univer-
sally. The equivalent terminologies for relative risk aversion include constant relative
risk aversion (CRRA) and decreasing/increasing relative risk aversion (DRRA/IRRA),
similar to absolute risk aversion. Because utility is not absolutely convex or concave
across all w, this measure continues to reliably indicate risk aversion even when the
utility function shifts from risk-averse to risk-loving as w fluctuates. While the opposite
is not always true, a constant RRA suggests a decreasing ARA. The utility function
v(w) provides a concrete illustration of continuous relative risk aversion, with R(w) =1
implied by v(w) = log(w). Risk measures are related to the failure rate, inverse failure
rate, odds, and Glaser’s function, expressed as follows:

o r(w) = B2
o F(w) = 4.
« O(w) = .

« n(w) =~
In this context, g(w) represents the probability density function (pdf), while G(w)
denotes the cumulative distribution function (cdf) of the random variable Y. The

generalized failure rate (or reversed failure rate) is defined as h(w) = wr(w) and h(w) =



149 Z. Behdani, G. R. Mohtashami Borzadaran

wr(w).
When v(w) = kG(w) with k > 0, indicating a utility function associated with G, it
follows that A(w) = n(w) and R(w) = wn(w).

Remark 2.3. The property of increasing generalized failure rate (IGFR) holds sig-
nificant importance in pricing and revenue management, as noted by (Paul, 2005;
Lariviere, 2006). It remains invariant under both left and right truncations.

Let Y be a random variable that is not negative and has a distribution function G
and a positive finite mean u. This is how you describe the Lorenz curve that goes with

Y
1 P
:f/ Gy, pe o],
HJo

where G71(t) = inf{y : G(y) > t} with 0 < ¢ < 1. The function L(p) represents the
cumulative percentage of total income held by individuals in the lowest 100p percent
of incomes for each p € (0,1). It satisfies the conditions L(0) = 0 and L(1) = 1. The
Lorenz curve is a continuous, increasing, convex, and differentiable function within its
domain.

In contrast, the Leimkuhler curve is defined as the reverse-mirror reflection of the
Lorenz curve across the diagonal 45-degree line. It is expressed as

K(p)=1-L(1—p)=L(1 - p),

where K (p) indicates the percentage of total income received by individuals with the
highest incomes. This curve provides insights into income distribution from the per-
spective of wealth concentration among the affluent. Another type of inequality is
expressed by the functions B(p) = % for 0 < p<land Z(p) =1-— %1*1263)'
These expressions represent the Bonferroni curve and Zenga curve, which are signifi-
cant in economics, particularly in the context of poverty and inequality. In addition
to establishing a correlation between the Lorenz curve and reliability concepts, we can
also compute these two curves. We define the mean residual life, also known as mean
inactivity, as follows

ut) = E(Y—tht):fooG((j)dy,
_ Jo Gy)dy
i) = E-Yy <t=Rzd

It is evident that these two functions are special cases of the function n(y) We can use
a Lorenz (Bonferroni, Zenga) curve as an example

~ pL(G())

fi(t) =t — 0] —t— uB(G(t)) =t — pll = (G(t)t)]

1-G®H)Z(G(1)

Let Y be IFR(DFR), then L(p) > ()G (p)(1 - p) — 222,
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3 Elasticity function and reliability measures

Elasticity is a crucial concept in economics, measuring the sensitivity of one variable to
changes in another. While elasticity can take negative values in many contexts within
economics, the elasticity of probability itself is always non-negative. This is because
probabilities are constrained between 0 and 1, meaning that any change in probability
must reflect a non-negative relationship.

In this section, we present several properties of the elasticity function. To achieve
this objective, 1t 1s essential to review a few definitions of elasticity. The elasticity is
defined as F = / AP for the demand function @Q = f(P). The expressions AP and
AQ reduce to dlgerentlals dP and d@ when the change in P is infinitesimal, resulting
in a point elasticity of demand. This concept is applicable to various functions beyond
just the demand function.

In monopoly theory, a monopolist sells a product where the quantity demanded is a
function D(p) of the monopolist’s price p. In this context, the concepts of elasticity of
demand are frequently utilized to understand how changes in price affect the quantity
demanded. Specifically, the price elasticity of demand measures the responsiveness of
the quantity demanded to changes in price, which is crucial for the monopolist when
setting prices to maximize profit.

The monopolist’s revenue in dollars is given by R(p) = pD(p). The relationship
to price elasticity can be explored by examining how the revenue changes with price.

Specifically, the revenue R(p) increases (or decreases) if and only if the derivative
dlog R(p)
dlogp
elasticity of demand ep(p) is greater than 1, indicating inelastic demand. Conversely,

if ep(p) < 1, the revenue is inversely proportional to p, indicating elastic demand.

The lost-sales rate (LSR) can be calculated using the formula ¢(p,t) =1 — G(p, 1),
where G(p,t) = P(D(p) < t). Here, G(p,t) represents the distribution function of
demand or the probability of not experiencing a lost sale. The measure of the rate
at which sales are lost, denoted as ¢, is determined by the price increase p and the
quantity level . The relationship can be expressed as

is positive (or negative). The revenue is directly proportional to p if the price

9G(p,t)
Jdp

G(p,t)’

gq(p) = —p

which is referred to as LSR elasticity.
The elasticity of a function g(¢) at a certain value of ¢ is given by

g'(t) _ dlogg(t)
g(t) dlogt ’

where ¢ is a differentiable function. Lariviere and Porteus (2001) defined the general-
ized failure rate (also known as the reversed failure rate) as

h(z) = zr(z) = —ep(z) and h(z) = a7 (z) = ep(a),

where F and F are the distribution function and survival function, respectively.
The elasticity of a random variable indicates how probability accumulates relative
to the variable’s support. It describes how the cumulative distribution function changes
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as its log-scale values change. In simpler terms, it assesses the likelihood of progressing
to higher values proportionately. This allows for the analysis of the underlying process,
system, or action protocol, providing vital information for effective risk management
in areas such as economics or health.

Studies by Pavia and Veres-Ferrer (2016) and Veres-Ferrer and Pavia (2021) say
that if the elasticity value is greater than 1 (or slightly lower), it’s clear that the risk
is going up in a time-dependent stochastic process that counts failures, injuries, or
deaths. This observation emphasizes the decline in the variable’s progression. From
this perspective, the probability distribution can demonstrate the likelihood of a ran-
dom process exhibiting elasticities greater than one, or falling within a certain range
of interest. This knowledge would aid in proactive risk management. To address the
aforementioned problem, this research examines the concept of elasticity in relation to
the associated random variable. For each specific probability model, it is straightfor-
ward to calculate the likelihood of encountering elastic or inelastic circumstances (i.e.,
with elasticities greater than or less than 1). This has significant implications. On
one hand, it enables accurate resource sizing a priori to address risk materialization.
On the other hand, by altering or modifying the risk structure, we can intelligently
intervene in the process and maintain risk control at appropriate levels, as determined
by a cost-benefit analysis. We can achieve this by anticipatorily assessing the effects
of various system or protocol designs or the ramifications of implementing a set of
restrictive or preventive actions (in terms of the probability of risk materialization).

Not only does this study consider elasticity as a random variable, but it also makes
other important contributions. As indicated by the previous discussion and demon-
strated in other research projects (see, for example, Pavia and Veres-Ferrer (2016);
Veres-Ferrer and Pavia (2021)), unit elasticities play a crucial role in risk management
as they serve as change points. Therefore, we also dedicate a significant portion of our
work to examining their relationship with other isolated points within the distribution.
In addition to these two key contributions, this study also presents some additional,
potentially less significant results.

The interpretation of £(z) is similar to the traditional economic concept of elas-
ticity. The condition of perfect inelasticity is represented by a null elasticity value,
g(z) = 0. In some cases, minute adjustments do not affect how probability accumu-
lates. Inelastic situations have values between 0 and 1, where slight increases in x lead
to significantly smaller increases in the accumulation of probabilities. When changes
in x that are infinitesimally small result in changes of the same quantity in the accu-
mulation of probabilities, this is known as unit elasticity, or e(x) = 1. Finally, elastic
conditions result in elasticities greater than one, or e(z) > 1. In these scenarios, even
the smallest increments in = lead to larger increases in the probability accumulation.
When e(z) approaches infinity in the limit, a perfect elasticity scenario is achieved. In
such cases, an infinitesimal increase in x results in a theoretically infinite increase in the
accumulation of probability. We can synthesize the elasticity’s cumulative distribution
function, Fe(y), by considering it as a function of the random variable rather than its
values. It is advantageous to examine the specific scenario in which the elasticity of
f(z) in relation to  remains constant. We have log f(z) = elog z+a where e and a are
constants. Therefore, it can be concluded that the function f demonstrates constant
elasticity exclusively when it takes the form of a power function. Generally, the sensi-
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tivity of f to variations in z is contingent upon the particular value of . For instance,
if the function f(z) = a — bz, then the elasticity £,—p, () can be expressed as —2L .
If the function f is either strictly decreasing or increasing, then there exists a unique
inverse function f~! such that f~1(t) = x if and only if f(z) = t. If e(x) represents the
elasticity of f(z) with respect to x, then % represents the elasticity of f~1(t) with
respect to t. Kocabiyikoglu and Popescu (2011) study on elasticity provides further
details. This concept is comparable to a generalized rate of failure. Lariviere (2006)
discovered that one can use the increasing probability of success, represented as pr(p),
to maximize the revenue function. The function R(p) represents the product of the
price p and the demand D(p), where D(p) is the complement of the function F(p).

Definition 3.1. A random wvariable Y has increasing elasticity (IE) if the elasticity
function E(x) is weakly increasing for all x. Decreasing elasticity (DE) distributions
can be defined analogously.

25

20

15

dbetalx, 0.5,0.5)

1.0
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Figure 1: Density function and elasticity characteristics of the beta distribution

There is a connection between the parameters and the beta elasticity. For0 <z <1
and parameters p, ¢ > 0, the probability density function (PDF) of the beta distribution
is given by

p—1 _ q—1
fxzip,q) = 1x Chnt.) :
Jo wP™1(1 —w)rtdu
Figure 1 shows the graphs of the probability density function (left side) and the elastic-
ity function graph (right side) of the beta distribution for different parameters. In this
figure, the role and influence of the distribution parameters on the elasticity function
and the density function are evident.

A random variable Y is referred to as an exponentiated random variable based
on the base distribution H if its distribution function is given by [H (¢)]* for some
> 0. Let Y and X denote random variables with distribution functions H(t) and
K(t), respectively. If these random variables exhibit proportional hazards, it means
that there exists a positive constant p > 0 such that

K@) =[H®HPF, Y >o.
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We can then write the reversed hazard rate function of K. Table 2 shows some con-
tinuous distributions with increasing survival function elasticity.

It is easy to prove the following relationships in special cases where the distribution
function depends on other distribution functions:

Let Z ~ F and W ~ G where G(z) = (F(z))* (proportional reversed hazard), then
EG(t) = /\Ep(t). . .

Let Z ~ F and W ~ G where G(z) = (F(z))” (proportional hazard), then e5(t) =
Beg(t). Z is said to be an AL model (Z ~ AL()) if its cuamulative distribution function
(CDF) can be expressed as H(z) = F(At),A > 0, where F' is the CDF of Z. Then,
en(t) :/%\zip(t).

Let Z,, be a weighted random variable of Z with the weight function w(x) where

Fo(z) = M/I w(t)dF (1),

Some special cases of weighted families are equivalent to definitions in Table 1.

Table 1: Specific weight distributions and corresponding (Behdani et al., 2018).

w(x) Name of w(x) fu() cr (t)
rjz 2% f(z zF(x
T Length (size)-biased Ef((Z)) L(I{f((w))) = L(??((I)))EF( )
[F(z)]*! Proportional hazard rate kf(x)[F(x)])* !, —kep(z )1;8
k>0
[F(z)]*~Y Proportional reversed hazard rate | kf(z)[F(z)]*~1, ke p(z)
k>0
L Equilibrium distribution F() 1
rr () E(Z) 1+M
E(Z))
I0,w) Right truncated 1{: (z)) er(2)
I(1,00) Left truncated ff (f;; er(2)

The first case can be interpreted as follows: if A is an integer, then Z can be consid-
ered the lifetime of a parallel system consisting of a certain number of components, each
having a lifetime distribution given by F'(x). On the other hand, if A is not an integer,
Z can be viewed as the lifetime of a parallel system with n components (where n is
any positive integer), with each component having a lifetime distribution of [F(z)]*/™.

Suppose Z; ~ Fi(x) and W; ~ Gi(z) = (Fi(x))?, then eg,(t) < %EGI (t), when
Zy Zrh Za. Thus, 01 = 05 implies e, (t) < eg, (t), Vt.

The following note also specifies the relationship between the reverse hazard order
and the elasticity function in certain situations.
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Remark 3.2. For example

1 IfF(t) = (1 —e WP 4 = 1,2, then Zy >, Zy if B1 > P and oy > ao. If
B1 = P2 =, then Zy > Z2 iff a1 > a2 and for oy = oo = «, Zy >, Z iff B1 > Po,
so ez, (t) > 622(25) Vt.

2. If Fi(x) =1— —(@/2:)* (Gupta and Nanda, 2001), then Zy >.p Z2 iff A1 > Ao and
thus €z, (t) > 622( ), Vt, which does not depend on o.

Remark 3.3. Assume that M (Z,p) is a random variable that represents a combination
of objects, and that its CDF is Fyp(z)(t) = >, piFz,(t) where > p; = 1. Then

lz pier, (1) Fz,(t)

EFM(z,p) (t)

Furzp (b

Table 2: Behavior of the elasticity function in increasing survival scenarios.
Name of distributions Distribution function

Sl
Uniform (a, b) T —z
Exponential [0, co) 1—e @ Az
T —z2/2
Normal [0, 00) 2(1’2(33) -1 Varl-o(2) ¢ /
. . xz
Logistic [0, o) o= — 1 Tre—=
Power function [0, 1] ok kak=1(1 — k)t
Pareto [1, 00) 1-— x_km k
Gumbel min [0, o) 1—el=¢ xe®
Weibull [0, co) 1—e kak—!

The claims listed below are apparent:
e Suppose that ez and ez, are the elasticities of Iy and F3, respectively, which are
increasing. Their mixture (M) does not necessarily imply that e;; is increasing. For
example, when Z; ~ Exp(4) and Z; ~ G(2,1), epr = aZ1 + (1 — ) Z3 is not increasing.
e For price p and demand D(p) = F(p), the revenue R = pD(p) is maximized at p*
which satisfies ex(p*) = 1.
e Let Z ~ f and W = h(Z) be a one-to-one transformation, then

erw (1) = en-1()er, (n-1) (1)

-IfEW =aZ +b, then ew () = 75¢ez (%)

-If W =aZ, then ey (t) = 2e5 (L) .

-IfW =Z+0b, then ey (t) = 5ez(t —b).

e The conditions ep(x) =0, 0 < ep(z) < 1, ep(z) = 1, and ep(z) > 1 correspond to
perfect inelasticity, unit elasticity, and elastic behavior, respectively.

e Suppose that e and e, have increasing elasticity for the survival function of
random variables Z; and Zs, respectively. Then the elasticity of the survival function
of T'= Z1Z5 is also increasing.

Remark 3.4. In this remark, we express the linking of the elasticity function from

different functions for continuous variables.

o cp(x) = xlﬁ((:c)) > ep(z) = ff((x)) for x > Zmedian > 0 and ep(x) < ep(x) for
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oy A median
0 < o < Tpmedian- Additionally, T(xmedian) > /\(gjmedian) and f(z'rnedian) = % =

(T median)

2
e For all continuous symmetric distributions, for two points of symmetry about the
median x, and xp, we have r(xy) = A(xp) and Mxy) = r(ay).

_ EF(x)
* F@) = oerm
o F(z) = — 2@

er(z)ter(z)”
_ _ep(@)er(x)

* 1) = ser@rer@n
F(x EF(x

e O(z) = fg; = I

o HELE = (@) + \@).

4 The relationship between elasticity function and
inequality indices

We illustrate the responsiveness of the dual Lorenz curve L(p) to variations in p, par-
ticularly emphasizing its elasticity, which is defined as

dlog L L
en(p) = HosL®) _pL0)

dlogp L(p)

This is equivalent to

pF~'(p)

eL\pP) = ———— -

) Jo F1(t)dt
The elasticity of the Lorenz curve refers to changes in the income or wealth ratio against
changes in the population ratio. In other words, elasticity shows how changes in the
distribution of income or wealth can affect inequality. In general, one of the following
scenarios may occur:
e Elasticity greater than one: If the elasticity is greater than 1, it indicates that
income is disproportionately distributed among the population. In other words, small
changes in the population can have a significant impact on cumulative income, indi-
cating high inequality.
e Elasticity less than 1: If the elasticity is less than 1, it indicates that the income
distribution is relatively more equal. Changes in the population have a lesser impact
on cumulative income.
e Elasticity equal to 1: If the elasticity is equal to 1, it indicates a perfectly equal
distribution of income. This means that each percentage of the population receives the
same share of the income.

Lorenz curve elasticity is a powerful tool for understanding and analyzing income
and wealth inequality. Considering the elasticity, it is possible to assess the inequality
situation in a society and formulate effective policies to improve income distribution.

To better understand these concepts, we have provided the following example.

Example 4.1. We simulated societies with 20 members as follows:

First scenario: In this case, all members of the community receive almost similar
incomes. To this end, we simulated incomes from a uniform distribution in the range
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of (1000 and 1100). In Figure 2, we calculated the Lorenz curve of this data as well as
the elasticity values at specific points on the curve, which are indicated on the figure.
As you can see, the elasticity values are directly related to the level of inequality, such
that in cases of lower inequality, the elasticity value is close to one.

Second scenario: In this case, 5 people are selected between 1000 and 1100, and 15
people are selected between 50,000 and 100,000. Figure 2 shows the Lorenz curve of
this data as well as the elasticity values at specific points on the curve. As you can
see, the elasticity values are directly related to the level of inequality, such that when
inequality is lower, the elasticity value is close to one.

Third scenario: In this case, 15 people earned between 1000 and 1100, and the
remaining 5 people earned between 50000 and 100000. Figure 2 shows the Lorenz
curve of this data as well as the elasticity values at specific points on the curve.
Fourth scenario: In the end, in the fourth scenario, 20 people are selected between
1000 and 20000.

Lorenz curve and elasticity values Lorenz curve and elasticity values
for the first scenario in Example 4.1. for the second scenario in Example 4.1.

Lvenz Cure Lorerz Cnve

CureShare o Poplatin Cumate Sl P

Lorenz curve and elasticity values Lorenz curve and elasticity values
for the third scenario in Example 4.1.2 for the fourth scenario in Example 4.1.

Loenz Cure Loz Cunve

e S o Poplatin Caie St ofputon

Figure 2: Lorenz curve and elasticity values for different scenarios (with data with
different disparities) in Example 4.1.



157 Z. Behdani, G. R. Mohtashami Borzadaran

As can be seen, in all these cases, the numerical elasticity is greater than one. In
points where significant changes occur, the strain has a larger value, but in points
where there are no significant changes, the strain will not be very large. Additionally,
in the table, the values of strain and the corresponding hysteresis curve for each of the
4 described states have been calculated. Also, the calculated values for these scenarios
are presented in Table 3. It is clear that some of the large stretch values in the table
and results are due to the small sample size and the sudden change in the Lorenz
curve. If the number of data is very large, very large values will not be observed in the
stretching of the Lorenz curve.

Table 3: Comparison of Lorenz curve and elasticity for four simulated data sets with
same percentiles in Example 4.1.

First scenario [ Second scenario | Third scenario [ Fourth scenario
p L) elp) |Lp) e [Llp) ep) [Lp) ep)
0.170.095 2 0.002 2.023 [0.005 2.009 [0.0I6 2.074
0.2(0.192 1.36 |0.004 1.382 0.01 1.368 0.029  2.420
0.310.289 1.22 |0.050 58.64 1[0.016 1.223 |0.113 2.312
0.4(0.388 1.19 |0.144 6.37 0.021 1.167 [0.193 2.212
0.5]0.488 1.15 |0.257 2.923 |0.027 1.143 [0.284 2.041
0.6/0.588 1.13 |0.385 2.386 (0.032 1.136 |0.386 1.862
0.710.689 1.120 {0.520 2.107 [0.038 1.121 [0.518 2.186
0.810.793 1.110 |0.662 1.998 |0.174 52.58 |0.672 2.111
0.9/0.896 1.10 [0.828 2.011 |0.505 9.175 |0.833 1.973
1.0] 1.0 1.09 1.0 1.876 1.0 6.701 1.0 1.825

The elasticity of the Lorenz curve indicates the effect of truncating the income
distribution on inequality. In 2017, Sordo et al. (2017) showed that for left-truncated
variables, the Lorenz order (X(; o) <1 X(17,00)) only applies if the Leimkuhler elasticity
ek is rising in the range (0,1— F(ly)), lo € [0, 1].For variables truncated from the right,
the Lorenz order (X g,y <r X(q,)) is satisfied if and only if the Lorenz elasticity ey, is
increasing in the interval [F'(rg), 1], where ro € [0, 1]. It was also noted that an increase
(or decrease) in the elasticity of 7 implies X (4 o0) <+ X(¢/,00) (Or >4), and conversely.
They also showed that truncations change the expected proportional shortfall order by
changing the elasticities of its dual Leimkuhler curve, just like they did with the Lorenz
order.

4.1 Distorted inequality curves and elasticity function

Ogwang and Rao (2000) defined the necessary conditions for

La(p) = (L1(p))*(L2(p))?,

to qualify as a Lorenz curve. This formulation represents a weighted product model
in which L;(p), « > 1, 8 > 1,4 = 1,2 are recognized as Lorenz curves. Wang et al.
(2011) came up with a complete way to make Lorenz curves that can be used in a wider
range of situations. They used the formula L;(p) = h(L(p)), where h is a distortion
function with h > 0 and L is a Lorenz curve. Sordo et al. (2017), presented a note that
delineated a possible pathway for the enhancement of their concept.
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Researchers Sordo et al. (2014, 2017) investigated the fundamental shapes of Lorenz
curves and demonstrated how a distorted version of the Lorenz curve can be applied. A
distortion function is defined as an increasing function represented by A : [0,1] — [0, 1],
which satisfies the properties h(0) = 0 and h(1) = 1. If we think of L(p) as the Lorenz
curve for the distribution F' and h as a distortion function, then L. (p) = h(L(p)) for
0 < p <1 is another Lorenz curve (see Sordo et al. (2017)). Assuming that L(p) has
a second derivative L”(p) and is defined and continuous over the interval [0, 1], the
following conditions must be satisfied for L(p) to qualify as a Lorenz curve: L(0) =0,
L(1)=1,L'(0") > 0,and L"(p) > 0 for p € [0, 1]. The following assertion is considered
an extension of Theorem 3 presented in the research conducted by Sordo et al. (2017).

Theorem 4.2. Let hy and hy be two distortion functions with h}(t) >0, t € [0,1], i =
1,2 and twice differentiable. When both L1 and Lo are Lorenz curves, the function

L(p) = ha(L1(p))ha(La(p)),

creates a Lorenz curve.

Proof. Assuming that L;, i = 1,2 and h;, i = 1,2 are respective Lorenz curves and
distortion functions, it is straightforward to demonstrate that L(0) = 0 and L(1) =1
The first derivative of L is represented by

L'(p) = Ly (D)W (L1 (p))ha(La(p) + Lb(p)s(La(p)) (L1 (p)).-

Since L;(0T) > 0 and h(0) > 0, it follows that L’(0t) > 0. Finding the second
derivative yields

L'(p) = W/ (p)Ry(L1(p))ha(La(p)) +
+2L7 (p) Ly (p) Iy (L1 (p)) iy
+(LY(p))*hy (La(p)) k(L1 (p)).-

Given that L (p) > 0 and h,, i = 1,2 are increasing, it follows that E”(p) >0. As a
result, L meets the requirements of a Lorenz curve. O

+ (L ()1 (L1(p)) ha(L2(p))
2(p)) + L5 (p)hy (La2(p)) 1 (L (p))

@A

The following notes can be derived:
e The Bonferroni curve of L(p) can be expressed as

B(p)ZTa pG(O,l).

e By setting ho(z) = 1 for all z, we obtain Theorem 4.2, as stated in Theorem 3 of
Sordo et al. (2017).
e The expression

L(p) = Ls(L1(p))La(La(p)) (2)
where L;, i = 1,2,3,4 are Lorenz curves, is also a Lorenz curve; where (L;(p) =
Ly 7 > 1 Lilp) = 1= (1= L)%, 8 € (0,1], Li(p) = o~ 0 < p<1
for i = 3,4 and j = 1,2 are special cases of (2). Alsg, Aggarwal (1984), Rohde (2009),
and Sarabia et al. (2010) obtained special cases of L(p) = Ls(L1(p)).
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e Let G(t) denote the probability generating function of the random variable X. Then,
the expression L(p) = (L(p))*G(L(p)) also represents a Lorenz curve.
e Define h;(p) = (L; 1(p))®pY, i = 1,2, a; > 0, v; > 1. Tt follows that

2

L(p) = hi(L1(p))ha(La(p)) = p* 122 (L1 (p)) " (La(p))2,

which serves as an extension of the Lorenz curves characterized by the Sarabia-Castillo-
Slottje class.
e Let hi(p) =1 — (1 — p)exp{—y[l — (1 —p)M?]}, B € (0,1]; v; > 0. Then, we have

L(p) =1 — (1 — p)" 2 exp{—(1 +72)p},

which acts as an extension of the Lorenz curve presented by Zuxiang et al. (2009).
e Define h;(p) = (L1(p))® (La2(p))?, o, B; > 1. This formulation represents an exten-
sion of the Lorenz curve introduced by Wang et al. (2011).

e —1

e The expression L(p) = p®[1 — L (1—p)?]", where Ly (p) = A > 0, corresponds

ex—1
to the Lorenz curve proposed by Chotikapanich (1993). The function L(p) is closely
related to L*(p) = p®[1 — (1 — p)?]", which can serve as a generator for efficient Lorenz
curve models as discussed in Wang and Smyth (2007).
The elasticity of the Lorenz curve L(p) can be defined in terms of elasticity as
follows

p € (0,1).
For the Lorenz curve L(p) introduced in equation (2), we can state the following the-
orem.

Theorem 4.3. Let L;(p) fori = 1,2 be Lorenz curves, and let h; fori = 1,2 be convex
distortions. The distorted Lorenz curve is defined as follows

L(p) = €1, (p)en, (L1(p)) + L, (P)eny (L2(p)).- (3)

Proof. By utilizing the definition of the elasticity function in conjunction with equation
(2), we arrive at the following conclusions

ez(p) = p%/((;)))
_ pLi(p)h'l(Ll(p))h2(L2(p)) + Ly(p)hty (L2 (p))ha (L1 (p))
hi(L1(p))ha(L2(p))
_ L) hi(Li(p)) | L5(p) hy (L2 (p))
= L) P R@e) T L) P haar)
= &L (p)ghl (Ll(p)) +eEr, (p)5h2 (Lz(p))7
which explicitly achieves (3). O

Remark 4.4. For all the specific cases outlined in Sordo et al. (2017), we can determine

the elasticity function for the distorted versions. For instance, if we have E(p) =
(L1(p))*(L2(p))?, then the elasticity function can be expressed as

e (p) = aer, (p) + Ber, (p).
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Additionally, the Bonferroni curve can also be represented using the distorted elasticity
function.

Theorem 4.5. Let B;(p) for i = 1,2 represent Bonferroni curves, and let h; for
i = 1,2 denote convex distortions. Then,
€§(p) = €Z(p) —1.
Proof. Noting that B(p) = @ where L(p) is defined in (2), we have
~ =~ li
dB(p) (M) ~
L'(p
P :pN( )flzsz(p)fl.

B(p) L) L(p)

O

Remark 4.6. A special case of Theorem 4.5 can be easily identified. For erxample,
when B(p) = (B(p))*G(B(p)), then

ez(p) = [a+ec(B®))les®).
Remark 4.7. Let the random wvariable Z have a cumulative distribution function

(CDF) F and a probability density function (PDF') f, and let w(z) be a weight depending
on the observed value x such that the density of f., is given by

o If w(.) is increasing (decreasing) and w(z)h(z) is decreasing (increasing), then F, is
DGFR (IGFR). If w(x)h(x) is decreasing (increasing), then F, is DGRFR (IGFR).

e Consider
- w(x) - F(z)

hy(x) = a7y (x) = (x) .
Elw(X)] " Ly (F(z))
We also calculated the elasticity of the elasticity function, which led us to the
interesting result below.

e(e(f) =1+ €f(p) — €s(p)-
e(e(f)) represents the elasticity of the elasticity function. This indicates how the elastic-
ity of a function responds to changes in its own elasticity. €}(p) denotes the derivative
of the elasticity function. In other words, this value shows how the elasticity of the
main function responds to changes in price. €7(p) value represents the elasticity of the
main function, indicating how sensitive demand is to changes in price.

Thus, the equation shows that the elasticity of the elasticity function (e(e(f))) is
equal to one plus the derivative of the elasticity function minus the elasticity of the
main function.

This result can be shows, the elasticity of the elasticity function depends on changes
in the elasticity of the main function. In other words, if the elasticity of the main
function changes, this change affects not only the value of the elasticity itself but also
how the elasticity function responds to changes in price. Essentially, this equation
tells us that the elasticity of the elasticity function is, in a way, a feedback from the
elasticity of the main function and its variations.
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5 Discussion and conclusions

In conclusion, this study highlights the intricate relationship between elasticity func-
tions and their applications in both economic theory and reliability measures. By
examining the characteristics of elasticity, we have demonstrated its significance in un-
derstanding how output variables respond to changes in input variables, particularly
in the context of generalized failure rates and economic inequality. The insights gained
from analyzing the elasticity of Lorenz curves and other related functions provide
valuable tools for assessing risk management strategies across various fields, including
economics and public health. As we move forward, further exploration of the interplay
between elasticity and reliability measures will undoubtedly yield deeper insights, fos-
tering a more robust understanding of these critical concepts in both theoretical and
practical applications.
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