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Abstract

Detecting defects in 3D printing has become crucial as additive manufacturing gains traction in key industries like aerospace,
automotive, and healthcare. This paper offers a thorough review of the methods used for defect detection in 3D printing,
highlighting image processing, machine vision, and the integration of deep learning techniques. It contrasts traditional
methods, which depend on manual feature extraction and classification algorithms, with modern deep learning approaches
that automate feature extraction and classification in a unified process. Additionally, the paper compares full-reference meth-
ods—where defects are detected by comparing printed parts against ideal reference models—with no-reference methods
that identify anomalies without predefined models. The review also explores real-time monitoring systems that allow for
early defect detection during printing, reducing production failures and material waste. Future developments are anticipated
to focus on autonomous feedback mechanisms, fostering innovation in defect prevention and improving the sustainability

of 3D printing processes.
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1 Introduction

Defect detection in 3D! printing has become a critical area
of research, particularly as additive manufacturing (AM)
technologies are increasingly used in high-stakes industries
such as aerospace, automotive, and healthcare [1, 2]. While
3D printing offers unique advantages in producing complex
geometries and custom parts, the process is prone to various
defects that can compromise the structural integrity, dimen-
sional accuracy, and surface finish of the printed objects
[3-7]. These defects, if undetected, may lead to significant
material waste, increased production costs, and failures in
functional components. As such, real-time defect detection
has emerged as an essential tool for ensuring the quality and
reliability of 3D-printed parts [8].

3D printing, also known as additive manufacturing, is
a process that builds objects layer by layer from digital
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models. Among the commonly used 3D printing technolo-
gies are fused deposition modeling (FDM), stereolithogra-
phy (SLA), selective laser sintering (SLS), and direct metal
laser sintering (DMLS). Each technology comes with its
own set of advantages and limitations, but all are susceptible
to defects that can impact the final product.

For example, in FDM, defects such as layer misalign-
ment, stringing, and under-extrusion are common due to
the extrusion process’s inherent limitations and environ-
mental factors like uneven cooling [9]. Similarly, porosity
and surface roughness are typical issues in SLS and DMLS,
where incomplete sintering of the powder can lead to poor
layer bonding and reduced mechanical strength [10]. These
defects necessitate the development of advanced monitoring
systems to detect issues as they arise and prevent defective
parts from being produced.

As 3D printing technologies evolve, there is an increas-
ing demand for reliable, automated defect detection sys-
tems. Traditional post-production inspection methods, such
as manual, X-ray, or ultrasonic scanning, are costly, time
consuming, and impractical for use in real time. Moreover,
these methods detect defects only after the part has been
fully printed, making it impossible to correct errors during
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the process and resulting in material waste and production
delays [11].

Real-time defect detection, on the other hand, can identify
and address defects as they occur, ensuring that errors are
corrected during the printing process itself. This capability
is particularly important for industries where part failure can
have serious consequences, such as in aerospace or medi-
cal applications. By minimizing waste and improving the
reliability of printed components, real-time defect detection
plays a critical role in enhancing the efficiency and sustain-
ability of 3D printing [12, 13].

Image processing and machine vision technologies offer
promising solutions to the challenges of real-time defect
detection in 3D printing [1, 3, 14-19]. These technologies
utilize cameras and image analysis algorithms to continu-
ously monitor the printing process and detect anomalies such
as surface roughness, layer misalignment, and incomplete
deposition. By employing techniques like edge detection,
texture analysis, and feature extraction, image processing
systems can identify defects in real time, triggering correc-
tive actions before the defect affects the entire part [20].

In recent years, machine learning and deep learning have
also been integrated into defect detection systems, enabling
more accurate and predictive monitoring. Machine learning
models can be trained on large datasets of 3D-printed parts
with known defects, allowing them to automatically classify
and detect issues during the printing process. This combina-
tion of traditional image processing techniques with machine
learning models offers a powerful approach to ensuring the
quality and reliability of 3D-printed parts [21].

While limited studies have explored defect detection in
additive manufacturing, our paper offers a distinct contribu-
tion by providing a comprehensive review of both classical
and modern image processing techniques in defect detec-
tion, integrating recent advancements in deep learning. A
closely related study by Kim et al. [22] provides an exten-
sive survey of image-based fault monitoring, emphasizing
machine learning algorithms and vision-based methods for
detecting anomalies in AM processes. Their work focuses
on the application of sensor-driven monitoring systems and
deep learning models to classify defects using image data.
However, our review expands upon this by incorporating
a comparative analysis of full-reference and no-reference
approaches, evaluating their effectiveness across different
3D printing technologies. Additionally, our study provides
a structured comparison of defect detection methodologies,
categorizing them based on their computational complex-
ity, adaptability, and real-time applicability. By highlighting
the strengths and limitations of both classical and Al-driven
defect detection systems, our work serves as a foundation
for future research in hybrid Al-enhanced monitoring sys-
tems that integrate image processing with adaptive feedback
mechanisms for real-time quality control in 3D printing.
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In the remainder of this paper, Sect. 2 will provide an
overview of various 3D printing technologies while also
introducing the defects that may arise during the printing
process. Given the importance of detecting these defects in
real time, which can not only reduce material waste but also
lower production time and costs, the latter part of Sect. 2
will explore various defect detection methods based on vis-
ual inspection. Next, Sect. 3 will offer a more detailed dis-
cussion of classical and modern defect detection techniques,
highlighting their similarities and differences. Sections 4 and
5 will then present published research related to these two
categories of techniques. The classification of defect detec-
tion methods into no-reference and full-reference approaches
has also been considered in distinguishing between these two
categories. Following this, Sect. 6 will compare different
detection algorithms. Since defect detection can serve as a
real-time feedback mechanism in 3D printers, allowing the
printer to attempt defect correction, Sect. 7 will introduce
real-time feedback systems. Finally, Sect. 8 will provide a
conclusion and discuss future directions in the field.

2 Background

As additive manufacturing (AM) becomes integral to high-
precision industries such as aerospace, biomedical engineer-
ing, and automotive production, ensuring defect-free fabri-
cation is paramount. Even minor defects can compromise
structural integrity, mechanical performance, and aesthetic
quality, necessitating robust defect detection methodolo-
gies. These methodologies leverage advanced computational
techniques, including image processing, machine vision,
and deep learning, to enhance quality control and optimize
manufacturing efficiency.

The overarching goal of defect detection is to enable
real-time identification and correction of anomalies, thereby
reducing material waste, minimizing production costs, and
enhancing the reliability of printed components. Significant
advancements in sensor technology, artificial intelligence,
and data analytics have paved the way for automated and
highly accurate defect detection mechanisms. This sec-
tion provides a comprehensive examination of the founda-
tional technologies of 3D printing, common defect typolo-
gies, and the evolution of state-of-the-art defect detection
methodologies.

2.1 Classification of 3D printing technologies

AM technologies are broadly categorized based on either
the material used, polymer-based and metal-based systems,
or the underlying printing mechanism, light-induced and
nozzle-based methods.
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e Polymer-based AM utilizes thermoplastic filaments,
photopolymer resins, or polymer powders. Common
techniques include fused deposition modeling (FDM),
stereolithography (SLA), digital light processing
(DLP), and selective laser sintering (SLS). These
methods are widely used for prototyping and produc-
ing lightweight components.

e Metal-based AM fabricates metal parts using pow-
der or wire feedstock and high-energy sources. Key
technologies include laser powder bed fusion (LPBF),
directed energy deposition (DED), wire arc additive
manufacturing (WAAM), additive friction stir depo-
sition (AFSD), and cold spray. These processes are
essential for high-performance applications in aero-
space, defense, and industrial manufacturing.

A second, equally important classification is based on
the fabrication mechanism, which organizes processes
into two main groups: light-induced methods and nozzle-
based methods. This classification is particularly relevant
for understanding common defects.

2.1.1 Light-induced methods

These processes use a focused light source (e.g., a laser
or digital projector) to selectively fuse or cure material
in a layer-by-layer fashion. This category includes both
polymer- and metal-based techniques.

e Stereolithography (SLA): A UV laser cures a pho-
topolymer resin, producing high-resolution parts with
a smooth surface finish. Common defects include
over-curing, under-curing, and layer detachment [12].

e Digital light processing (DLP): Like SLA, DLP uses
a digital projector for faster curing. Typical issues are
voxel distortion and uneven curing.

e Laser powder bed fusion (LPBF): This process, which
includes selective laser melting (SLM), employs a
high-powered laser to fully melt and fuse metal pow-
ders. Defects such as keyhole porosity, lack of fusion,
and residual thermal stress are common due to high
thermal gradients [10] [11]. Selective laser sintering
(SLS) is a related process for polymers that uses a
laser to partially sinter powdered material, which can
lead to surface roughness and porosity.

e Continuous liquid interface production (CLIP):
An advanced form of photopolymerization, CLIP
improves mechanical properties and reduces visible
layer lines. Limitations include resin instability and
oxygen diffusion inconsistencies.

2.1.2 Nozzle-based methods

These methods build objects by extruding or depositing
material through a nozzle. The category includes both pol-
ymer-based extrusion and high-temperature deposition for
metals.

e Fused deposition modeling (FDM): Also known as fused
filament fabrication (FFF), this method melts and depos-
its thermoplastic filament layer by layer. Typical defects
include warping, layer misalignment, and under-extru-
sion [9].

e Direct ink writing (DIW): Also referred to as robocast-
ing, this process deposits pastes or gels through fine
nozzles. Common issues are flow inconsistencies and
air entrapment.

e Directed energy deposition (DED): Also known as laser
metal deposition (LMD), this process injects powder or
wire into a melt pool created by a laser or electron beam.
Defects often include surface roughness, un-melted par-
ticles, and low dimensional precision.

e Wire arc additive manufacturing (WAAM): An elec-
tric arc melts metal wire to deposit layers. While cost-
effective for large parts, WAAM is prone to high residual
stresses and dimensional inaccuracies that require post-
processing.

e Additive friction stir deposition (AFSD): A solid-state
process where a rotating tool plastically deforms and
deposits material. Defects may include void formation,
irregular material flow, and a lack of bonding in complex
geometries.

e Cold spray: This solid-state process accelerates metal
particles to supersonic speeds for deposition without
melting. This method avoids thermal distortion, though
it can still be affected by porosity and weak bonding.

2.2 Common defects in 3D printing

The output quality of additive manufacturing is influ-
enced by several critical parameters, including layer thick-
ness, printing speed, extrusion temperature, and material
properties. A thorough understanding of the AM process,
encompassing material characteristics and the interplay of
process-structure-properties, is essential to ensuring high
product quality. Identifying and addressing defects early in
the fabrication process is crucial to mitigating faults and
improving the reliability of printed parts. Defects in AM
can be categorized based on their impact on geometry and
dimensions, surface quality, microstructure, or mechanical
properties. The most common defects include the following:

Geometrical inaccuracy: Geometrical inaccuracy
refers to the deviation of a printed object’s shape or dimen-
sions from its intended design. This defect arises due to
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factors such as improper bed leveling, insufficient cooling,
or residual stress accumulation. Advanced in situ monitor-
ing techniques, such as structured light scanning and digi-
tal image correlation, enable early detection and correction
of dimensional deviations.

Layer misalignment: This defect occurs when suc-
cessive layers are misaligned during printing, usually due
to mechanical errors such as poor calibration or external
vibrations. Layer misalignment can compromise both the
structural integrity and aesthetic quality of the printed
object. For instance, in FDM printing, this defect is a lead-
ing cause of weak inter-layer bonding, which can result in
part failure under load [9] (Fig. 1a).

Porosity: Porosity refers to voids or air pockets within
the printed object. In powder-based processes like SLS
and DMLS, incomplete fusion of powder particles often
results in porous structures. Porosity significantly weakens
the part’s mechanical properties, making it more prone to
failure under stress. Detection of porosity during printing

(d)

Fig.1 The most common types of defects encountered in 3D print-
ing: (a) layer misalignment, (b) porosity, (https://3dincredible.com/
the-rising-concern-of-porosity-in-metal-3d-printing-materials/.)  (c)
surface roughness and texture defects, (d) warping, (e) incomplete
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is essential to ensure the durability of the final product
[10] (Fig. 1b).

Surface roughness and texture defects: Surface rough-
ness and inconsistencies in texture are common across vari-
ous 3D printing methods, often resulting from incomplete
layer bonding or improper curing. Although surface defects
primarily affect the aesthetic quality of the part, they can
also lead to mechanical issues, especially in parts requiring
high precision. Detecting and correcting surface roughness
is important for ensuring part performance [8] (Fig. 1c).

Warping: Warping occurs when parts cool unevenly dur-
ing the printing process, causing the edges or corners to
deform. This defect is particularly common in FDM and
SLA processes due to thermal expansion and contraction of
the material. Warping can lead to dimensional inaccuracies,
preventing the part from meeting design specifications. Early
detection of warping can prevent apart from becoming unus-
able, reducing material wastage [20] (Fig. 1d).

Incomplete layer deposition: Incomplete layer depo-
sition occurs when insufficient material is extruded or

layer deposition, (f) cracking and residual stress (https://3dprinting
industry.com/news/zurich-researchers-simulate-residual-deformatio
ns-in-slm-3d-printed-parts-172408/.)
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deposited, resulting in thin layers or gaps. This can be
caused by clogged nozzles, under-extrusion, or incorrect
printing parameters. This defect weakens the part, leading
to structural deficiencies. In applications requiring load-
bearing components, early detection of under-extrusion is
critical to ensuring part viability [23] (Fig. le).

Cracking and residual stress: Cracking occurs in high-
temperature processes like DMLS due to residual stresses
that build up as the material cools unevenly. If the internal
stresses exceed the material’s yield strength, cracks may
form, compromising the part’s integrity. Cracks are particu-
larly dangerous in metal components intended for high-stress
environments. Detecting such defects in real time allows for
adjustments to printing parameters that can mitigate thermal
stress [11] (Fig. 11).

Based on the idea presented by Kim et al. [22], Fig. 2
classifies typical defect types in AM based on their impact
domains, such as geometry, surface quality, microstructure,
and mechanical performance. It is important to distinguish
that defects like porosity, delamination, and cracking are not
mechanical properties themselves, but rather they adversely
affect mechanical properties such as strength, ductility, or
fatigue life.

Another important source of defects, particularly in
metal-based additive manufacturing processes, is the
reheating effect that occurs during multi-layer printing.
As new layers are deposited, the underlying material
experiences repeated thermal cycling, which can lead to

the remelting and re-solidification of previously solidi-
fied regions. This reheating may induce the formation of
new pores due to molten material flow and gas entrap-
ment. Additionally, repeated heating promotes abnormal
grain growth and recrystallization, which can deteriorate
the microstructure and reduce mechanical performance.
It may also lead to the redistribution or accumulation
of residual stress across the build, increasing the risk of
warping, delamination, or cracking in subsequent layers.
Understanding and mitigating the impact of thermal his-
tory is critical for improving the reliability of multi-layer
printed components.

2.3 Evolution of defect detection methodologies

Defect detection has progressed from manual post-process-
ing inspections to real-time automated monitoring systems.
Advanced computational approaches have revolutionized
defect identification, enabling proactive quality control.

2.3.1 Manual inspection and traditional methods

Historically, defect detection relied on human inspection,
X-ray imaging, and ultrasonic testing. While effective,
these approaches were time intensive and unsuitable for
real-time process control.

Defects in AM

Geometry and

. A Surface
Dimension

Geometrical Inaccuracy Sufrace Roughness

Dimensional Inaccuracy Balling

"Warping Surface Deformation

Over-Extrusion Surface Oxidation

Under-Extrusion Splatter

Fig.2 Classification of common additive manufacturing defects
based on the aspect of the printed part they affect. Note: Defects such
as porosity, cracking, and delamination are not mechanical properties

Microstructures Affect Mechanical

Performance
Anisotropy Strength
Hetrogeeity Ductility
Porosity !Hardness
Cracking

Fatigue Resistance
Delamination

Porosity

themselves but contribute to the degradation of mechanical perfor-
mance metrics like strength or ductility
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2.3.2 Automated inspection

Automated inspection techniques have become essential in
modern additive manufacturing (AM) for ensuring high-
quality output and reducing material waste. Among various
automatic inspection techniques, visual inspection remains
one of the most critical due to its ability to rapidly detect
surface-level defects in real time. Automated visual inspec-
tion systems leverage high-resolution imaging, computer
vision algorithms, and artificial intelligence to analyze and
classify surface anomalies. These systems can detect cata-
strophic defects such as layer misalignment, incomplete, and
spaghetti easily.

A visual inspection system for defect detection comprises
an imaging module, which includes a camera and an illumi-
nation system. The camera operates in either the visible or
infrared spectrum. Visible-spectrum cameras are typically
used for capturing high-resolution 2D images of printed
surfaces, while infrared (thermal) cameras are increas-
ingly employed to monitor the heat distribution and detect
anomalies such as overheating, under-sintering, or thermal
delamination [24]. The use of thermographic imaging not
only helps to detect surface defects but can also be used to
identify subsurface defects [25]. Thermal cameras, however,
require careful calibration to ensure accurate temperature
measurements. For this purpose, thermocouples are fre-
quently used as ground-truth temperature references during
setup and process validation [26]. Although thermocouples
provide only one-dimensional (1D) data, their readings are
essential for validating thermal models and calibrating infra-
red imaging systems. In some hybrid monitoring systems,
thermocouple data is also used in real time to detect abnor-
mal thermal events and inform corrective actions during the
build process.

In addition to 2D and thermal imaging, 3D reconstruction
techniques are also employed—particularly for post-print
inspection—where a complete point cloud of the final object
is generated using structured light scanners or laser-based
3D scanners. These techniques allow for a full geometric
comparison with the original CAD model, enabling the
detection of dimensional deviations, warping, or surface
anomalies that may not be apparent in 2D images.

For in situ inspection during the printing process, it is
crucial to synchronize image acquisition with the active
printing layer or movement defined in the G-code. To enable
this synchronization, modifications are often made to the
G-code to insert camera trigger commands or metadata tags
at predefined intervals [4, 5]. This approach ensures that
each captured image corresponds to a specific layer or print
event, facilitating accurate layer-wise defect detection and
process analysis.

Captured images are analyzed using traditional or advanced
image processing and machine vision techniques to identify
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defects. Upon defect detection, the system may either halt the
printing process or initiate corrective actions to address the
issue.

Early vision-based automated defect detection systems
relied on classic computer vision techniques [27]. These
conventional approaches extracted mid-level features such
as edges, textures, and contours using handcrafted meth-
ods. Defect identification was then performed using simple
decision-making algorithms. While computationally efficient,
these methods struggled with complex geometries and varia-
tions in the manufacturing process.

To enhance detection accuracy, machine learning algo-
rithms were later integrated to classify these manually
extracted features. While machine learning improved pat-
tern recognition and defect classification [28], the reliance on
manual feature engineering remained a limitation, reducing
adaptability to varying defect types.

In contrast, modern deep learning—based models have revo-
lutionized defect detection by eliminating the need for manual
feature extraction. These models achieve unprecedented pre-
cision by learning feature representationsand classification
directly from raw data, enabling more robust and adaptive
defect detection [28].

We will explain these methods in more detail below.

To provide a structured understanding of defect detection
methodologies, Fig. 3 and Table 1 present a hierarchical classi-
fication of defect detection strategies, spanning classic inspec-
tion methods to state-of-the-art Al-driven solutions.

It should be noted that most defect detection methods
have attempted to detect the defect while printing. In other
words, they are based on real-time implementation. Imaging
and execution of the defect detection algorithm are generally
performed layer by layer or, for every few layers, printed. The
low printing speed causes the time interval between two con-
secutive images to be so long that it does not pose a major
concern for the implementation of the algorithms in real time.
The variety of computational load in different techniques
(Table 1) allows for the selection of a suitable algorithm for
real-time detection, depending on the available processing
infrastructure.

As AM continues to evolve, the need for high-fidelity
defect detection is more pressing than ever. The transition
from manual inspections to Al-powered real-time monitoring
has significantly improved defect identification and resolution.
Future research should focus on hybrid Al systems, integrating
multimodal sensor data, and adaptive machine learning models
to further enhance defect detection capabilities in AM.
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Fig.3 Comparison of defect
detection strategies

Classic Methods

Increasing the degree of automation

Increasing computational complexity

Learning-Driven Methods Deep-learning Methods
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Table 1 Key features of defect detection strategies

Approach Feature extraction

Classification Accuracy

Compu- Limitations
tational

complexity

Advantages

Classical approaches Manual (edge detec- Manual
tion, thresholding)
Learning-driven Manual feature engi- Automated
approaches neering (SVM, Ran-
dom Forest, KNN)
Deep learning Automated feature Automated

approaches extraction (CNNss,
Autoencoders, Trans-

formers)

Moderate Low

High

Very High High

Limited robustness,
struggles with com-
plex geometries

Fast, computationally
efficient

Moderate Improved accuracy over Requires labeled data,
classical methods feature engineering

effort

Fully automated, highly Requires large datasets
accurate and computational
resources

3 Defect detection: classic and modern
algorithms

Defect detection is basically a pattern classification prob-
lem. Pattern classification is a fundamental process in
machine learning and computer vision, aimed at assign-
ing input data to predefined categories or classes based on
identifiable patterns. A pattern classification system typi-
cally consists of two main components: feature extraction
and feature classification [29, 30].

Feature extraction: This is the process of identifying and
selecting the most relevant features from raw data that best
represent the underlying patterns. In image processing, for
example, features could be edges, textures, shapes, or colors.
The goal of feature extraction is to reduce the complexity of
the data while preserving the important information neces-
sary for distinguishing between different classes.

Feature classification: Once features are extracted, the
classification component uses these features to assign the
data to a specific category. This step involves applying
classification algorithms to decide which class the input
data belongs to, based on the extracted feature set.

Pattern recognition methods can be classified into two
categories based on how the feature vector is generated. The
first category involves manually creating the feature vector,
often referred to as classical methods. In contrast, modern
methods rely on the feature vector being derived through a
learning process. The following sub-sections will provide a
short description and comparison of these two approaches.

3.1 Classical approach to pattern classification

In traditional pattern classification systems, these two stages,
feature extraction and classification, are handled separately.
Feature extraction was usually performed using handcrafted
methods, where domain experts manually designed algo-
rithms to extract specific features that are known to be use-
ful. For example, in image processing, techniques like edge
detection (e.g., Sobel or Canny filters) or texture analysis
(e.g., Gabor filters) were often used [27, 28].

For classification, classical algorithms such as Support
Vector Machines (SVMs), k-Nearest Neighbors (k-NN), and
Decision Trees were applied to the extracted features. These
models relied on a predefined set of rules or functions to
classify the input data based on the identified patterns. While
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effective in many applications, this approach had limitations,
especially when dealing with complex, high-dimensional
data, as the performance heavily depended on the quality of
the hand-engineered features [28, 29].

3.2 Modern, deep learning-based approach

In contrast, modern approaches to pattern classification,
especially in deep learning, integrate feature extraction and
classification into a single, learning-based system. This has
been made possible by advancements in neural networks,
particularly Convolutional Neural Networks (CNNs) for
image-based tasks. In these systems, the network automati-
cally learns the best features from the data during training,
eliminating the need for manually designed feature extrac-
tors [31].

In deep learning models, feature extraction is performed
in the early layers of the network, where the model learns
to detect low-level features like edges or textures. As the
data passes through deeper layers, the network learns more
abstract and high-level features, such as shapes and object
parts. The classification is handled in the final layers, where
the network uses the learned features to classify the input
data into specific categories. This approach not only simpli-
fies the design process but also significantly improves per-
formance, particularly in tasks involving complex data, such
as image [31].

The integration of feature extraction and classification
into a single, end-to-end learning system has made modern
pattern classification more powerful and scalable. These
systems excel in handling large amounts of data and can
automatically learn from it without the need for domain-
specific knowledge. This paradigm shift has led to signifi-
cant advancements in fields like image recognition, speech
processing, and defect detection in manufacturing [32].

Defect detection is a specialized case of pattern classi-
fication that focuses on identifying anomalies or defects in
products, processes, or materials. In this context, the task is
to classify data into “defective” or “non-defective” catego-
ries by detecting patterns that deviate from normal behav-
ior. This challenge is heightened by the fact that defects can
manifest in various subtle and irregular ways, such as sur-
face imperfections, cracks, or dimensional inaccuracies. For
example, in additive manufacturing, defect detection sys-
tems often employ machine vision and image processing to
identify flaws in 3D-printed parts by recognizing anomalous
patterns in layer deposition or surface texture [20]. As a
form of pattern classification, defect detection requires effec-
tive feature extraction and robust classification models to
ensure high accuracy, especially in real-time applications
where early detection is critical for minimizing waste and
ensuring product quality [8].
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4 Classic techniques for defect detection

Several papers have been presented on defect detection in
3D printing using classical methods, which can be catego-
rized into two groups. The first group includes methods that
utilize reference information for defect detection, referred
to here as full-reference methods. In contrast, the second
group consists of methods that perform defect detection
without using any reference, which will be referred to as
no-reference methods.

In the following, the description of the methods presented
in these two categories will be discussed.

4.1 Classical full-reference methods

In full-reference methods, sensor data collected during the
printing process is compared to an ideal reference to identify
defects. This discussion focuses on image sensors, which
capture either two-dimensional or three-dimensional data,
and evaluate either layer by layer during printing or only at
the final stage. This data can include visual aspects of the
printed part, such as appearance, dimensions, and the move-
ment path of the print head. Reference data can be prepared
using CAD? design files or images from prior prints. Below,
we present articles in this category, arranged chronologically
to showcase the progression of these algorithms.

Cheng and Jafari [33] used a camera-based system for
real-time monitoring of 3D printing processes, capturing
video frames of printed objects. They employed a thresh-
olding algorithm to segment images into binary forms,
distinguishing the object from the background. The system
identifies errors like object detachment from the print bed
and missing material flow by analyzing the movement and
continuity of the printed layers. Optical markers are used
for camera calibration, and blob detection techniques track
objects and detect deviations. The system achieved a detec-
tion rate of 60—-80% for identified failures, showing poten-
tial for reducing material waste and enhancing 3D print-
ing efficiency through early error detection (printing type:
nozzle-based).

Straub [9] developed an image processing method to
detect defects in 3D-printed objects by capturing images
from multiple angles during printing and comparing them
with a reference model. Differences are computed at the
pixel level based on brightness values, with a scaling factor
to determine the significance of discrepancies, flagging these
as defects. This method can identify issues like incomplete
prints or filament misplacement, allowing early detection of
failures (printing type: nozzle-based).

2 Computer-aided design.
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Hurd et al. [34] proposed a quality assurance algorithm
that relies on capturing images of selected print layers using
a mobile device mounted above the printer bed. These
images are compared with 2D reference images generated
from the original 3D model to identify discrepancies. The
system uses two main methods: image subtraction and image
searching. In the image subtraction method, the difference
between two consecutive images highlights newly printed
areas. The searching algorithm compares captured images
directly to the expected layout, identifying deviations. If
errors exceed a predefined threshold, the print is paused,
and user feedback is requested to either resume or stop the
process. This approach ensures cost-effective quality assur-
ance by enabling error detection mid-print, saving time and
materials (printing type: nozzle-based).

Ceruti et al. [35] designed a real-time monitoring sys-
tem using augmented reality (AR) to compare real-time
images of printed objects with a virtual reference model.
Image processing detects deviations between printed layers
and the expected model, enabling operators to intervene and
stop printing if necessary. This AR-based system enhances
defect detection during additive manufacturing (printing
type: nozzle-based).

Johnson et al. [36] proposed an inspection algorithm
where inspections are triggered at predefined intervals dur-
ing printing, and each printed layer’s data is analyzed against
set tolerances. When deviations from the reference are
detected, the system identifies potential defects and notifies
the operator. The algorithm allows flexibility in inspection
frequency based on part complexity, ensuring timely flaw
detection without unnecessary print interruptions (printing
type: nozzle-based).

Nuchitprasitchai et al. [37] utilized optical monitoring
to compare finished printed parts with reference models
(STL files), using a single-camera setup for 2D shape com-
parison and a two-camera setup for 3D reconstruction. If
errors exceed a 5% threshold, the system halts the print for
user intervention. This low-cost approach supports various
geometries and filament colors (printing type: nozzle-based).

Straub [38] also leveraged visible light imaging to detect
both macro- and micro-defects in 3D-printed objects. By
capturing multiple images from different perspectives, dis-
crepancies in size, orientation, and fill levels are compared
against a reference model. This method ensures the detec-
tion of visible and micro-defects, enhancing the reliability of
printed products, especially for safety—critical applications
(printing type: nozzle-based).

Holzmond and Li [12] proposed an algorithm using 3D
digital image correlation (3D-DIC) to capture the geometry
of each printed layer and compare it with the corresponding
CAD model. Point clouds from the CAD model and 3D-DIC
data are aligned using the iterative closest point (ICP) algo-
rithm, calculating Z-axis deviations to detect defects like

blobs or holes without halting the print (printing type:
nozzle-based).

Lyngby et al. [39] developed an algorithm employing a
calibrated camera system to capture images after each layer
is deposited. These images are segmented and compared
with expected segmentation masks from the CAD model,
using logical exclusive disjunction to identify issues such as
warping and extrusion failure (printing type: nozzle-based).

Delli and Chang [40] integrated image processing with
supervised machine learning for real-time 3D printing moni-
toring. The system captures images at checkpoints, analyzes
them using pixel-based RGB® analysis, and classifies parts
as “good” or “defective” using an SVM. The system halts
printing if defects are detected, reducing material and time
waste (printing type: nozzle-based).

Malik et al. [41] proposed an algorithm that captures top-
view images of each layer during the 3D printing process,
reconstructing a 3D model in real time. It processes these
images using MATLAB, aligning them with the layer infor-
mation extracted from the G-code. This alignment ensures
accurate layer identification and enables detailed inspec-
tion of both surface and internal structures. Defects can be
detected layer by layer through this model reconstruction
process, which enhances print monitoring and provides valu-
able insights into the quality of the printed object. Addi-
tionally, augmented reality tools, such as the HoloLens,*
allow users to interact with and inspect the reconstructed
model in a mixed-reality environment, further supporting
process improvement and defect detection (printing type:
nozzle-based).

Wasserfall et al. [42] an algorithm that for identifying
failures involves capturing high-resolution images of each
printed layer using a camera system integrated into the 3D
printer. These images are stitched together to form com-
plete layer visuals, which are segmented based on plastic
or conductive ink extrusions using support vector machines
(SVM). The system compares the segmented images with
the expected layer layout extracted from the G-code to detect
discrepancies such as insufficient or excessive ink extru-
sion and interruptions. If a defect is identified, the printing
process is paused to prevent further errors. This real-time
inspection ensures the quality of printed electronic circuits
by closely monitoring the deposition of materials (printing
type: nozzle-based).

Xu et al. [43] developed an algorithm for real-time defect
detection in 3D construction printing using point cloud com-
parison. A 3D camera captures point clouds of each layer,
compared against the CAD model using a cloud-to-plane
(C2P) distance metric. Deviations trigger corrective actions,

3 Red-green—blue.
4 https://www.microsoft.com/en-us/hololens.
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adjusting the printhead’s motion to maintain accuracy (print-
ing type: nozzle-based).

Bowoto et al. [11] proposed an image processing algo-
rithm for real-time detection of defects such as porosity and
cracks in printed layers. The system compares real-time
images with a CAD model, using grayscale conversion,
thresholding, and K-means clustering to measure defect
regions, determining if they are within acceptable limits or
if printing should be stopped (printing type: nozzle-based).

Shen et al. [20] designed an algorithm to detect surface
defects by comparing the contours of printed objects with
theoretical contours derived from the 3D model’s point
cloud. Images are captured at intervals, and contours are
extracted using image processing. Discrepancies below a
similarity threshold flag defects for early detection (printing
type: nozzle-based).

Kopsacheilis et al. [44] introduced a visual quality control
system using RGB-D cameras and point cloud data. The
system compares the real-time geometry of printed parts
with theoretical models generated from G-code, detecting
dimensional deviations in the layer structure without inter-
rupting the printing process (printing type: nozzle-based).

Petsiuka and Pearce [4] developed an algorithm that
monitors 3D printing layer by layer, focusing on global and
local parameters. The system detects height issues, compares
global shapes with G-code trajectories, and performs local
texture analysis to identify anomalies, addressing defects by
modifying the G-code or pausing the print (printing type:
nozzle-based).

Patil et al. [10] proposed an image processing algorithm
for detecting defects and measuring features in laser addi-
tive manufacturing. Grayscale images are processed using
Gaussian filters, morphological operations, and Canny
edge detection to measure dimensions and detect surface
defects within a 1.5 to 3.5% error range (printing type:
light-induced).

Petsiuka and Pearce [5] also developed an algorithm to
detect anomalies in 3D printing by comparing visual features
of each layer with synthetic reference images generated in
Blender. The system uses Histograms of Oriented Gradients
(HOG) to calculate similarity metrics and detect errors like
infill defects or layer shifts (printing type: nozzle-based).

Forte et al. [8] created the DaR3D? system, which uses
image processing to detect slippage defects during 3D
printing. Images captured at intervals are compared with
previously stored images using the Normalized Root Mean
Squared Error (NRMSE) algorithm. Deviations beyond
thresholds indicate slippage, triggering user alerts (printing
type: nozzle-based).

3 Detect and recognizing 3D printing.
defects.

@ Springer

Rahmani Dabbagh et al. [45] proposed a machine learn-
ing—based algorithm to optimize 3D printing parameters. A
gradient boosting regression model predicts printing out-
comes based on temperature, pressure, and design complex-
ity, helping users optimize parameters and reduce material
waste and trial-and-error (printing type: nozzle-based).

Rill-Garcia et al. [46] presented an anomaly detection
algorithm for 3D concrete printing, using RGB cameras for
image acquisition and deep learning—based segmentation.
The system identifies geometrical anomalies and classifies
the concrete’s texture into categories, detecting material-
related defects during the print (printing type: nozzle-based).

Zhao et al. [47] introduced a surface defect detection
algorithm using 3D point clouds. The MBH-INRoPS® fea-
ture descriptor enhances accuracy, while Euclidean cluster-
ing identifies defects, effectively separating defect regions
from noise (printing type: nozzle-based).

Binder et al. [48] developed a framework linking ther-
mal images with 3D models in fused filament fabrication
(FFF). The system monitors temperature distribution to
detect defects like warping and over-extrusion, allowing
real-time adjustments to printing parameters (printing type:
nozzle-based).

Oleff et al. [1] introduced an algorithm that uses dark-
field illumination to capture high-contrast images of
printed layers. Anomalies are detected using unsupervised
machine learning techniques, such as isolation forests, to
compare features of each layer with normal patterns, pro-
viding real-time monitoring across subareas (printing type:
nozzle-based).

4.2 Classical no-reference methods

In no-reference methods, defect detection does not rely on
comparing the printed part to reference data or its intended
design. Instead, it focuses on identifying features that are
independent of the specific part being printed, meaning the
design itself is not a factor in detection. Typically, visual
indicators suggest potential printing issues to identify fail-
ures. Below, we present papers that use classical, no-ref-
erence methods to detect defects in printed or in-progress
parts.

Baumann and Roller [49] captured video frames during
FFF builds and used image segmentation and frame differ-
encing to detect layer misalignments or part detachment.
Their system checked for shifts in the printed object’s posi-
tion between consecutive layers and could thus flag “detach-
ment” or “deformation” events early. Heuristic techniques
have also been used—for example, placing a bounding box
around the printed region and tracking its centroid can reveal

% Improved normal rotated projection statistics.
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a “missing extrusion” if the deposited material suddenly
shrinks or shifts off-center. These vision-based methods
rely on changes in shape or color over time (without any
ground truth), and are relatively simple but limited to detect-
ing gross deviations or specific failure modes (printing type:
nozzle-based).

Fastowicz and Okarma [50] proposed an algorithm for
assessing 3D print quality using texture analysis based on
the Gray-Level Co-occurrence Matrix (GLCM) and Haralick
features. The method converts images of 3D-printed objects
into grayscale, then calculates the GLCM in four direc-
tions—horizontal, vertical, and two diagonal orientations.
Homogeneity in texture is assessed using Haralick features,
which analyze pixel intensity relationships to identify struc-
tural defects. Peaks and oscillations in homogeneity values
indicate defects, with low-quality prints displaying reduced
texture consistency. This approach allows continuous quality
monitoring during printing without the need for predefined
reference images (printing type: nozzle-based).

Wau et al. [23] introduced an image classification method
to detect defects during the 3D printing process. Their sys-
tem captures images during the infill printing stage and
extracts features such as grayscale mean, standard devia-
tion, and pixel counts above a threshold. These features
are divided into sections for detailed analysis. The system
classifies images as defective or non-defective using Naive
Bayes Classifier and J48 Decision Trees (printing type:
nozzle-based).

Yi et al. [51] integrated machine vision with statistical
process control to enhance quality. Images of each printed
layer are captured using a digital camera and processed to
extract contour and area information for statistical analysis.
Control charts are used to detect deviations from expected
geometric parameters, enabling real-time detection of sur-
face defects and irregularities. The system has a monitoring
accuracy of 0.5 mm, ensuring better quality control in addi-
tive manufacturing (printing type: nozzle-based).

Okarma et al. [52] applied Structural Similarity (SSIM)
metrics to assess 3D print quality without requiring a refer-
ence model. Images of the 3D-printed objects are analyzed
for local self-similarity to detect distortions indicative of
lower quality. Modified metrics, Complex Wavelet SSIM
(CW-SSIM) and Structural Texture Similarity (STSIM),
enhance defect detection sensitivity. The algorithm divides
images into blocks, calculates similarity scores, and averages
them to classify overall print quality. While SSIM alone may
yield inconsistent results, CW-SSIM and STSIM provide
more reliable assessments (printing type: nozzle-based).

Okarma and Fastowicz [53] proposed a novel visual qual-
ity assessment approach for 3D-printed surfaces using image
entropy. The algorithm assumes regular patterns in printed
objects exhibit low entropy values, while distortions increase
entropy, indicating potential quality issues. To address color

dependency, the method combines local entropy calculations
with their variance across the hue component in the HSV
color space and the RGB channels. This combined entropy
approach effectively distinguishes between different qual-
ity levels in printed surfaces, independent of filament color
(printing type: nozzle-based).

Shen et al. [54] developed a multi-view vision detection
system using a CCD camera to capture images of the printed
part’s outer surface. After image preprocessing to enhance
contrast and reduce noise, the system applies a dual-kernel
detection technique based on morphological image pro-
cessing. Rectangle and square kernels cover horizontal and
vertical directions to detect potential defects. Contours are
analyzed using the minimum enclosing rectangle (MER)
method, and defects are classified by aspect ratio and
area distribution, diagnosing issues like over-extrusion or
mechanical problems (printing type: nozzle-based).

Kazemian et al. [55] designed a real-time quality moni-
toring system for extrusion processes using computer vision
techniques. The system captures video frames of freshly
extruded layers and measures their width, comparing it to a
predetermined target width. Techniques like Gaussian blur-
ring and Otsu’s binarization segment the extruded layer, and
contours are extracted to compute the average width across
several frames. The system also features a closed-loop feed-
back mechanism, automatically adjusting the extrusion rate
to maintain print quality, regardless of material property
variations (printing type: nozzle-based).

Okarma and Fastowicz [56] adapted full-reference image
quality assessment (IQA) metrics for automatic evaluation of
3D-printed surfaces. The system captures images of printed
layers during the manufacturing process, detecting distor-
tions and assessing quality. IQA metrics like Structural Sim-
ilarity Index (SSIM) and Feature Similarity Index (FSIM)
compare segments of the printed surface with expected
quality, assuming higher similarity values indicate better
quality. Images are processed by converting to grayscale,
adjusting contrast, and analyzing fragments. The system suc-
cessfully classifies prints into quality levels, achieving high
accuracy in distinguishing quality variations (printing type:
nozzle-based).

Fastowicz et al. [57] developed a method for objective
3D-printed surface quality assessment using entropy analy-
sis of depth maps obtained from 3D scanning. Scanning cre-
ates detailed depth maps, which are processed to compute
entropy values—a statistical measure of randomness. Lower
entropy values correspond to high-quality surfaces with reg-
ular patterns. The method incorporates local entropy vari-
ance to account for non-uniformities in depth maps, allowing
for reliable surface quality classification. The system effec-
tively distinguishes between high and low-quality samples,
providing a practical solution for online monitoring (printing
type: nozzle-based).
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In another work, Okarma and Fastowicz [58] applied
various computer vision techniques to conduct non-
destructive quality assessments of 3D-printed objects.
Texture analysis using GLCM extracts features for clas-
sifying surface quality, while image entropy detects sur-
face irregularities. Additionally, the Hough Transform
identifies straight lines on printed objects. This real-time
system uses strategically placed cameras to monitor the
printing process without interrupting it, effectively identi-
fying defects and assessing surface quality (printing type:
nozzle-based).

Fastowicz and Okarma [59] also proposed a method for
assessing the quality of 3D-printed flat surfaces using image
analysis. Photographs of printed samples are captured, and
the Hough Transform is used to detect straight lines cor-
responding to filament layers. Preprocessing steps like
brightness compensation and CLAHE enhance image qual-
ity, aiding line detection. By analyzing the average length
of detected lines, the algorithm generates a quality metric
that classifies samples into high and low-quality categories,
independent of filament color (printing type: nozzle-based).

Okarma and Fastowicz [60] introduced a color-independ-
ent method for 3D-printed surface quality assessment using
image entropy. Distorted surfaces exhibit increased entropy
values, indicating irregularities. The algorithm combines
local entropy calculations with their variance across color
spaces (RGB and HSV), processing images to evaluate
local entropy and classify print quality. The system detects
surface defects regardless of filament color, providing reli-
able assessments during and after printing (printing type:
nozzle-based).

Liu et al. [61] proposed an algorithm that integrates image
processing techniques like textural analysis through GLCM
for defect detection and a PID-based feedback control
system for defect mitigation. The system adjusts machine
parameters such as material flow rate and extruder tempera-
ture based on detected defects (printing type: nozzle-based).

Yan et al. [16] introduced a defect detection algorithm
for FDM 3D printing, using traditional image processing
techniques. The system captures images of printed layers
with a monocular camera, extracting the stacked area using
K-means clustering. A 2D Gabor wavelet transform detects
wire drawing defects by analyzing texture differences in
printed layers. The Hough line detection algorithm identi-
fies defects, providing real-time detection to enhance the
printing process (printing type: nozzle-based).

Zhou et al. [19] developed an algorithm for detecting
surface defects like pits, bubbles, and bulges in ceramic
3D printing. The region of interest (ROI) is identified, and
images are preprocessed using Gaussian filtering to reduce
noise. Morphological operations preserve the object’s shape
and structure, while specific defects are detected based on
their characteristics. Defects are classified by comparing
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their size, shape, and location to predefined thresholds using
a dual-threshold approach (printing type: nozzle-based).

Mohr et al. [62] focused on developing a method for real-
time defect detection during the LPBF. They used a com-
bination of mid-wave infrared (MWIR) thermography and
optical tomography to monitor the melt pool and identify
process deviations. The thermography camera was used to
analyze thermal signals and identify “time over threshold”
(TOT) events, which indicate potential defects. The optical
tomography camera provided additional data on the melt
pool geometry and signal intensity. The results from these
in situ monitoring methods were then compared to micro-X-
ray computed tomography (UCT), a high-resolution ex situ
method, to validate the effectiveness of their approach in
detecting defects like lack of fusion and keyholes.

Mazzarisi et al. [63] discusses the use of infrared ther-
mography as a method for real-time monitoring of the laser
metal deposition (LMD) process. The research focuses on
an ad hoc algorithm implemented in MATLAB to analyze
the thermal data captured by an IR camera. This algorithm is
used to extract key thermal metrics such as maximum tem-
peratures, thermal gradients, and cooling rates. The study’s
findings are applied to understand the thermal behavior of
different deposition strategies and their impact on the final
product, with the goal of improving quality control in LMD
manufacturing.

AbouelNour and Gupta [26] present a method for in-pro-
cess defect detection in additive manufacturing by utilizing a
multi-sensor approach. The study uses both optical imaging
and infrared thermography to monitor the build process. The
core of the work involves analyzing the acquired images to
detect and characterize defects, such as hotspots, by evaluat-
ing metrics like average specimen temperature, global aver-
age hotspot temperature, total number of hotspots, perimeter,
and surface area. This approach aims to provide a reliable
way to monitor the quality of additively manufactured parts
as they are being built.

De Santana et al. [25] evaluates an active thermography
algorithm for detecting subsurface defects. The algorithm
uses thermographic signal reconstruction, thermal con-
trast, and heat transfer principles to analyze heat flow in an
object after it has been excited by a heat source. Any internal
defects, such as voids or inconsistencies, disrupt the heat
flow, causing a change in the surface temperature that can be
captured by an infrared camera. The study also highlighted
the significant effect of infill percentage on the heat transfer
behavior of the workpieces, noting that samples with 100%
infill showed more well-defined defective regions compared
to those with 30% infill.

Hofflin et al. [64] focus on in situ defect detection dur-
ing the LPBF process. The proposed method utilizes active
thermography to monitor the melt pool and surrounding
area. The study introduces a novel approach for detecting
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defects by analyzing the spatial temperature distribution in
these thermographic images. It evaluates two specific algo-
rithms, a gradient approach and a derivative approach, both
designed to identify irregularities in the temperature profile
that indicate potential defects. This work aims to provide
a real-time quality control system for LPBF, ensuring the
integrity of the printed parts.

Montinaro et al. [65] present a numerical and experimen-
tal study using a remote laser thermographic methodology
called “Flying Laser Inner Probing Thermography” (FLIPT)
to detect micrometric defects in metal additive manufactured
(AM) parts. The authors employed a finite element analysis
(FEA) to simulate the thermal behavior of a sample and opti-
mize the parameters of the technique to enhance its sensitiv-
ity to defects. The study’s results indicate that the technique
is successful in identifying flaws. The authors propose that
this method is suitable for integration into the AM manufac-
turing process for continuous in-line inspection.

In summary, full-reference methods detect defects by
comparing the printed part to an ideal reference model or
dataset, such as a CAD model or simulated data like STL
files or G-code. In contrast, no-reference methods detect
defects without relying on reference data or predefined
models, instead focusing on identifying visual or structural
anomalies within the printed part, independent of its design.

4.3 Comparative analysis of classical defect
detection techniques

The classical approaches for defect detection in 3D print-
ing have been extensively studied and implemented over
the years. These methods primarily fall into two categories:
“full-reference methods,” which compare printed parts to
a pre-defined ideal reference, and “no-reference methods,”
which analyze the printed part without relying on a specific
reference model. While both categories have demonstrated
success in defect detection, they exhibit unique advantages
and limitations.

Full-reference methods rely on comparison-based tech-
niques, utilizing CAD models, previous prints, or prede-
fined structures as a reference. These approaches tend to
offer higher accuracy in identifying geometric defects, layer
misalignments, and incomplete depositions. However, they
require the generation and storage of accurate reference
models, making them less flexible for variable and highly
customized 3D prints.

No-reference methods, on the other hand, leverage sta-
tistical and machine vision techniques to identify defects by
analyzing texture, contour consistency, or material distribu-
tion without predefined reference data. These methods offer
greater adaptability but might be less precise when detect-
ing structural defects that deviate subtly from the expected
geometry.

Table 2 summarizes the key characteristics of classic
techniques for defect detection, focusing on the type of
reference used, the extracted features, evaluation metrics,
data format, input size, and inference time. This comparison
highlights the diversity in data acquisition and analysis strat-
egies, ranging from full-reference geometric comparisons to
no-reference texture-based methods.

To provide a general indication of computational perfor-
mance, an “Inference Time per Image” column has been
added to the rightmost side of the table. These values are
directly extracted from the referenced articles and should be
interpreted with caution, as differences in hardware specifi-
cations, software implementations, and testing environments
make direct comparisons unreliable. They are intended
solely as rough indicators of computational cost. Notably,
many studies do not report this value, possibly because the
inherently slow pace of 3D printing allows ample time for
image processing, especially when using high-performance
vision hardware.

5 Modern techniques for defect detection

Both full-reference and no-reference approaches have been
applied in modern defect detection methods. However,
a statistical analysis of articles in this field indicates that
researchers are increasingly focusing on no-reference meth-
ods. This shift may be attributed to the powerful capabili-
ties of deep learning. The following sections will present a
review on the papers within this category.

5.1 Modern full-reference methods

As this article has already covered how full-reference meth-
ods function, we will now shift to presenting works in this
category that utilize deep learning.

Muktadir and Yi [15] introduced a machine learning algo-
rithm using the PointNet neural network to detect defects
in 3D-printed objects by analyzing point cloud data. The
algorithm processes 3D images from CAD models and 3D
scanners, converting them into point clouds. These point
clouds are segmented and analyzed using the PointNet
model, trained on both normal and defective data. This
allows the system to classify and detect defects such as sur-
face roughness and structural inconsistencies in real time,
without relying on pre-existing reference images (printing
type: nozzle-based).

Sun et al. [66] explored the application of both traditional
machine learning and deep learning techniques in optimiz-
ing the bioprinting process. These algorithms model the
relationships between printing parameters (e.g., nozzle
diameter, extrusion pressure, and bioink viscosity) and the
quality of bioprinted constructs. Deep learning techniques,
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Table 2 (continued)
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Springer

NR

Optical: 375x 165

Optical and thermal images

Hotspot temperature Correlation between the global

NoR

AbouelNour et al. [26]

Thermal: 160x 120

average hotspot tempera-

ture and the total number of

embedded defects
Sensitivity to defect depth

NR NR

Thermographic images

NoR Thermal amplitude, time con-

De Santana et al. [25]

stant, and thermal contrast

Gradient approach: 3.1 s

for 2000 frames
Derivative approach:

160 x 160 pixels

Infrared camera

Metallographic analysis

Thermal gradient

NoR

Hofflin et al. [64]

3.9 s for 2000 frames

NR

640X 512 pixels

Comparison of numerical Infrared camera

Mean and SD of temperature

NoR

Montinaro et al. [65]

results and real examples

distribution in a region of

interest

The table outlines the reference type, extracted features, evaluation metrics, data format, input image size, and inference time (if reported) for each method

*FIR: Full reference; **NR: not reported; ***NoR: No reference

like CNNs, are used for real-time image analysis to detect
defects and anomalies. The models predict outcomes such
as fiber diameter, shape fidelity, and cell viability, provid-
ing dynamic feedback to optimize printing parameters and
improve the quality of bioprinted structures (printing type:
nozzle-based).

Niu et al. [67] proposed a semi-Siamese convolutional
neural network that takes as input both the planned model
image and the camera-captured image from the 3D printer,
and outputs a pixel-wise defect map. By learning to directly
compare these two visual domains, the model demonstrates
strong robustness to variations in camera angles and light-
ing conditions, achieving an F1-score greater than 0.9 and
processing each layer image in approximately 0.5 s on a
standard laptop (printing type: nozzle-based).

Charia et al. [68] addressed stringing defects by fine-tun-
ing a convolutional neural network (CNN) to detect stray
“spaghetti” filament. Their approach involves subtracting
a synthetic reference silhouette, rendered directly from the
G-code, from the real camera image to isolate extraneous
material. This method generates a color-coded error map in
real time and operates without the need for specialized hard-
ware. The use of a simple binary reference image enhances
robustness against variations in lighting conditions and
camera configurations, making the system highly practi-
cal for standard 3D printing environments (printing type:
nozzle-based).

5.2 Modern no-reference methods

As this article has already discussed the workings of no-
reference methods, we will now focus on introducing works
in this category that utilize deep learning.

Caggiano et al. [14] presented a bi-stream Deep Convo-
lutional Neural Network (DCNN) for detecting defects in
the selective laser melting (SLM) process. Their approach
analyzes real-time images of both powder layers and part
slices, capturing surface patterns that indicate defects due to
improper process conditions. The DCNN extracts multi-level
features, and a softmax classifier identifies defect patterns.
This approach effectively correlates irregularities in powder
layers with defects in part slices to ensure part quality (print-
ing type: light-induced).

Jin et al. [69] proposed a Convolutional Neural Net-
work (CNN)-based algorithm to classify 3D printing qual-
ity into under-extrusion, good-quality, and over-extrusion
categories. The CNN, trained on labeled images, monitors
real-time printing and automatically adjusts the flow rate
to correct printing conditions, iteratively ensuring print
quality with minimal human intervention (printing type:
nozzle-based).

Razaviarab et al. [70] developed a closed-loop machine
learning system that optimizes additive manufacturing
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processes in real time. After offline training with sensor
data, the system uses deep CNNs to monitor the print’s
condition and autonomously adjust parameters like laser
power or material flow to prevent defects (printing type:
light-induced).

Banadaki et al. [71] proposed an algorithm that involves
a deep convolutional neural network (CNN) that processes
images of each printed layer to detect defects, such as over-
fill or voids, which can degrade the structural integrity of
the printed part. The CNN is trained on images from vari-
ous printing speeds and temperatures to classify the qual-
ity of prints into five grades. The system monitors the AM
process in real time, detecting anomalies and predicting
failure risks early. If the quality deviates from acceptable
levels, the feedback mechanism adjusts print parameters—
such as extrusion speed and temperature—automatically to
correct the process (printing type: nozzle-based).

Garfo et al. [72] used the MobileNet-SSD model for
defect detection in 3D-printed parts. By processing real-
time images and identifying surface defects such as rough-
ness and cracks, the system achieves high accuracy in
localizing defective areas, benefiting from its efficient fea-
ture extraction architecture (printing type: nozzle-based).

Baumgart et al. [73] optimized CNN architecture using
depthwise-separable convolutions to detect defects like
delamination during laser-powder bed fusion (L-PBF).
Thermographic images captured during printing are ana-
lyzed by the CNN, providing defect detection with mini-
mized computational costs (printing type: light-induced).

Paraskevoudis et al. [74] introduced a deep CNN
for detecting stringing defects in 3D printing, using
live video footage. The model outputs bounding boxes
around detected defects and alerts the user or stops the
print process if the probability of a defect exceeds a set
threshold, prioritizing speed and accuracy (printing type:
nozzle-based).

Farhan Khan et al. [75] developed a CNN-based system
that analyzes top-view images of printed layers in real time
to detect defects like weak infill or misalignment, pausing the
process if a defect is detected, thus reducing material waste
and improving reliability (printing type: nozzle-based).

Brion et al. [76] proposed an algorithm that utilizes a
deep learning—based object detection approach using the
YOLOV3 model to identify warp deformation during print-
ing. Images captured during the printing process are ana-
lyzed to detect warping in real time. The model calculates
key metrics, such as the area and volume of warped regions,
the number of detections, and the confidence of predictions.
These metrics are used to assess the severity of the deforma-
tion, which informs corrective actions. The system inter-
venes by adjusting print parameters such as bed tempera-
ture and fan speed to prevent further warping. Additionally,
insights from detected warp patterns are applied to future

prints to refine the printing process and reduce the likelihood
of recurrence (printing type: nozzle-based).

Brion and Pattinson [77] utilized a multi-head neural
network to detect and correct errors in real time during 3D
printing. This system monitors parameters like flow rate and
Z offset, adjusting them dynamically to ensure consistent
quality across different materials and geometries (printing
type: nozzle-based).

Nguyen et al. [78] proposed a hybrid machine learning
model combining an MLP and CNN to optimize 3D printing.
The MLP manages physical parameters, while the CNN ana-
lyzes geometric properties, improving process efficiency by
learning from simulation data (printing type: nozzle-based).

Zhang et al. [17] employed a CNN, FDMNet, to detect
defects like interlayer stripping in multi-axis 3D printing. A
CCD camera captures images during printing, and the CNN,
trained with data augmentation, classifies prints with a high
accuracy of 83.1% (printing type: nozzle-based).

Cao et al. [79] incorporated an attention module into a
YOLOV8 model to detect extrusion irregularities—such as
under-extrusion and over-extrusion—during the 3D print-
ing process. Their real-time vision system was directly inte-
grated into the printer’s control loop, enabling automatic
adjustment of the extrusion speed when a flow defect was
detected. This closed-loop approach demonstrates the fea-
sibility and practicality of no-reference defect detection for
immediate corrective intervention in FFF processes, signifi-
cantly enhancing print reliability and consistency (printing
type: nozzle-based).

Wang et al. [18] enhanced the YOLOv8 model for real-
time defect detection in additive manufacturing, integrating
a coordinate attention mechanism and EIOU loss function to
detect defects like scratches and holes, achieving high-speed,
accurate defect identification (printing type: nozzle-based).

Hu et al. [80] also reported the application of an enhanced
YOLOVS deep learning algorithm for defect detection in 3D
printing, further demonstrating the potential of advanced
object detection models for real-time monitoring and qual-
ity assurance in additive manufacturing (printing type:
nozzle-based).

Aksoy and Ozsoy [81] achieved approximately 97%
classification accuracy on a diverse image dataset of com-
mon FDM print failures by utilizing a MobileNetV3 model,
highlighting the effectiveness of lightweight CNN archi-
tectures for automated error detection. These CNN-based
approaches learn to recognize a combination of texture and
shape features—such as the roughness of a warped edge or
the wispy patterns of stringing—directly from the training
images, making them highly sensitive to the specific defects
they were trained to detect. Beyond simple classification,
object detection networks have also been employed to locate
defects spatially within images, further enhancing the prac-
ticality of deep learning methods for real-time monitoring

@ Springer
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and quality control in additive manufacturing (printing type:
nozzle-based).

Singh et al. [82] utilized a Data-Efficient Image Trans-
former (DeiT) architecture, fine-tuned to recognize three
major types of print quality issues: bed warping, layer
delamination, and gaps in raster infill lines. By attending
to the overall structural patterns within an image, the trans-
former-based system was able to accurately identify these
defects across a range of print geometries. Early results sug-
gest that transformer models, particularly when pretrained
on large datasets, can achieve high classification accuracy
for FFF print anomalies, comparable to that of Convolu-
tional Neural Networks (CNNs). However, due to their
greater data and computational requirements, lightweight
CNN-based solutions remain preferable for real-time defect
detection applications (printing type: nozzle-based).

Szymanik et al. [83] present a method for detecting
and identifying defects in 3D-printed dielectric structures
using thermographic inspection and deep neural networks
(DCNNs). The approach involves applying a heat pulse to
the object and using an infrared camera to capture a sequence
of thermal images as the object cools down. These images
are then analyzed using two methods: a correlation coeffi-
cient analysis to find the area of interest, and a deep convolu-
tional neural network (DCNN) for classification. The DCNN
is trained to classify the presence, diameter, and depth of
various defects, which are introduced into the 3D-printed
samples. The key contribution is the hybrid approach that
combines signal analysis with deep learning to achieve high
accuracy in detecting and characterizing defects in a non-
contact and non-destructive manner.

5.3 Comparative analysis of modern defect
detection techniques

Modern defect detection techniques in 3D printing leverage
advanced computational methods, including “machine learn-
ing, deep learning” and ‘“real-time monitoring systems.”
Unlike classical methods, these approaches do not solely
rely on predefined reference models or handcrafted features;
instead, they can autonomously learn feature representations
and make intelligent predictions.

Machine learning and deep learning—based methods offer
enhanced precision and adaptability in defect detection.
They utilize vast datasets to train models that can detect and
classify defects based on historical print data. Convolutional
Neural Networks (CNNs), autoencoders, and transformers
are some of the most commonly used architectures in mod-
ern defect detection.

These approaches outperform classical methods in han-
dling complex and large datasets, but they also require sig-
nificant computational power and large labeled datasets for
training.

@ Springer

Table 3 summarizes the key characteristics of modern
techniques for defect detection, focusing on the type of
reference used, the extracted features, evaluation metrics,
data format, input size, and inference time. This comparison
highlights the diversity in data acquisition and analysis strat-
egies, ranging from full-reference geometric comparisons to
no-reference texture-based methods.

To offer a rough estimate of computational performance,
an “Inference Time per Image” column is included on the
right side of the table.

Beyond computational efficiency, one of the key chal-
lenges in machine learning—based defect detection is the
annotation of training data. Given the high variability of
part geometries and defect types in AM, constructing large,
labeled datasets is often impractical. Consequently, recent
approaches increasingly rely on unsupervised or one-class
learning techniques, which are trained solely on normal
(defect-free) samples. This reduces the annotation burden
and improves adaptability across different printing scenarios.

6 Comparison of defect detection
algorithms

6.1 Classical algorithms versus modern algorithms

Classical pattern classification methods separate feature
extraction and classification, relying on manually designed
algorithms to extract features, followed by classifiers. These
approaches are limited by the quality of hand-engineered
features. In contrast, modern deep learning algorithms
integrate feature extraction and classification into a single,
learning-based process. This automatic feature learning sig-
nificantly improves performance and scalability, especially
with complex and large datasets, driving advancements in
fields like image recognition and defect detection. Table 4
compares these two approaches.

6.2 Full-reference algorithms versus no-reference
algorithms

In full-reference methods, defect detection is performed by
comparing the printed part to an ideal reference model or
dataset. This reference could be a CAD model, a previously
printed ideal part, or simulated data (such as STL files or
G-code). While, in no-reference methods, defect detection
does not depend on any reference data or predefined models.
Instead, the method focuses on identifying visual or struc-
tural anomalies within the part being printed, independent
of the specific design. Table 5 compares these two different
approaches.
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Table 3 Comparative summary of modern techniques for defect detection

Paper Ref. type Model type Metric used Data format Input size Inference
time per
image

Muktadir et al. [15] FIR* PointNET Accuracy Point cloud NR* NR

Sun et al. [66] FIR CNN Detection accuracy, NR NR NR

fiber continuity,
regularity, and surface
uniformity

Niu et al. [67] FIR Semi-Siamese con- Accuracy, macro-F1- A pair of 2D images NR 0.419s

volutional neural score, precision, for a single layer
network recall, IOU, and

F1-score for each

class

Caggiano et al. [14] NoR***  MobileNet-SSD Mean defective condi- NR 160x 160 pixels NR

tion, accuracy

Jin et al. [69] NoR CNN Accuracy RGB images 224 %224 pixels NR

Razaviarab et al. [70] NoR CNN Classification accuracy RGB images NR NR

Banadaki et al. [71] NoR CNN F-score, sensitivity, RGB images 600 % 600 pixels NR

precision, specificity,
and accuracy

Garfo et al. [72] NoR MobileNet-SSD Mean average preci- RGB images 300x% 300 pixels NR

sion, intersection-
over-union, accuracy

Baumgart et al. [73] NoR CNN Balanced accuracy, Thermographic images 270x270 images NR

class averaged
sensitivity, precision,
Cohen’s Kappa score
Paraskevoudis et al. NoR CNN Precision, recall, RGB image 300 300 pixels 71 ms
[74] F1-score, and average
precision
Farhan Khan et al. NoR CNN Accuracy and uniform- RGB images NR NR
[75] ity
Brion et al. [76] NoR YOLOv3 Precision, recall, RGB images 1280720 pixels NR
Fl-score

Brion et al. [77] NoR Multi-head NN Accuracy RGB images 224 %224 images NR

Nguyen et al. [78] NoR CNN Mean square error, RGB images NR NR

mean absolute error

Zhang et al. [17] NoR FDMNet Accuracy, sensitiv- Gray images 227 %227 pixels 1.5 ps

ity, specificity, ROC
curve

Cao et al. [79] NoR YOLOv8 Mean average precision RGB images 640 %480 pixels 80~480 ms

Wang et al. [18] NoR YOLOv8 Precision, recall, aver- ~ RGB images 640 % 640 pixels 13.9 ms

age precision, mean
average precision,
accuracy

Hu et al. [80] NoR YOLOVS Precision, recall, mean RGB images 3072 %2048 pixels 10.8 ms

average precision,
F1-score

Aksoy et al. [81] NoR CNN Accuracy, precision, RGB images 224 x 224 pixels NR

recall, and F1-score

Singh et al. [82] NoR CNN Weighted classification RGB images 224 x224 pixels  0.1121's

accuracy, accuracy,
precision, recall,
F1-score
Szymanik et al. [83] NoR CNN Accuracy Thermographic images NR NR

The table outlines the reference type, extracted features, evaluation metrics, data format, input image size, and inference time (if reported) for

each method

*FIR: Full reference; **NR: not reported; ***NoR: No reference
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Table 5 Comparing the full-reference and no-reference methods

Aspect

Full-reference methods

No-reference methods

Reference dependence
Detection approach
Accuracy

Setup complexity
Application

Examples of use

Pros

Cons

Relies on a reference model (e.g., CAD, STL)
Compare the print to an ideal reference

High accuracy due to comparison with ideal
Requires generation and storage of reference models
Best for controlled, precision environments
Geometric errors, misalignment, extrusion issues
High reliability, suitable for precision parts

Time consuming, inflexible for variable designs

No reference model required

Focuses on detecting visual or structural anomalies
Less precise, focuses on generalized defect indicators
Easier setup, no model creation required

Suitable for flexible or varied manufacturing tasks
Surface defects, texture inconsistencies, cracks
Adaptable, low setup requirements

Less accurate, may miss subtle or small defects

Table 6 Evaluation results of different algorithms methods

Defect detection method: classic, full-reference

Paper

Defect type or measurement

Evaluation result

Patil et al. [10]

Forte et al. [8]
Dabbagh et al. [45]
Rill-Garcia et al. [46]

Zhao [47]

Defect detection method: classic, no-reference
Paper

Wu et al. [23]

Yietal. [51]

Kazemian et al. [55]

OKkarma et al. [56]

Fastowicz et al. [57]

OKkarma et al. [58]

Fastowicz et al. [59]

Liu et al. [61]

Zhou et al. [19]

Defect detection method: modern, full-reference
Paper

Muktadir et al. [15]

Defect detection method: modern, no-reference
Paper

Caggiano et al. [14]

Jin et al. [69]

Razaviarab et al. [70]

Garfo et al. [72]

Baumgartl et al. [73]

Paraskevoudis et al. [74]

Farhan Khan et al. [75]

Zhang et al. [17]

Wang et al. [18]

Niu [67]

Dimension measurement
Slippage in prints
Extrusion defects

Lines separating of layers
Material texture classification

Hump

Collapse

Poor bridging

Collapse and poor bridging
Hump and poor ridging
Hump and collapse

Defect type

Infill defects

Counter profile

Extrusion width variations
Surface quality distortions
Surface quality distortions
Surface quality distortions
Surface quality distortions
Defects of under-fill
Surface defects

Defect type
Surface defects

Defect type

Surface defects
Under-extrusion, over-extrusion
Surface defects

Surface defects
Delamination and splatter
Stringing

Infill patterns

Interlayer stripping
Surface defects

Surface defects

Error: 1.5~3.5%
Accuracy: 89.6%
Prediction performance: 95.4%

F-score: 91%
F-score: 94%

Accuracy: 99.89%
99.94%
99.68%
99.53%
99.66%
99.80%

Evaluation result
Accuracy: 95.51%
Accuracy: 0.5 mm
Accuracy: within+ 1.7 mm
Accuracy: 96.8%
Accuracy: 90.5%
Accuracy: 96.8%
Accuracy: 79.5%
Accuracy: 85%

Accuracy: 97.20%

Evaluation result
Accuracy: 87.50%

Evaluation result
Accuracy: 99.40%
Accuracy: 98.00%
Accuracy: 100%
Accuracy: 80.00%
Accuracy: 96.80%
F1-Score: 0.82 on training data
Accuracy: 84.00%
Accuracy: 83.10%
Accuracy: 91.05%
F1-Score: 0.9

@ Springer



The International Journal of Advanced Manufacturing Technology

6.3 Objective comparison of defect detection
algorithms

Objectively comparing the presented methods poses signifi-
cant challenges. While some studies report quantitative per-
formance metrics, others offer only qualitative assessments,
and direct comparisons are further complicated by variations
in printer hardware, defect types, and dataset characteristics.
Nevertheless, Table 6 provides a summary of the reported
objective results across different studies.

The lack of a standardized dataset and the use of local
datasets for algorithm evaluation prevent a fair and accurate
comparison of the accuracy of different algorithms. As a
result, comparing the accuracy values reported by various
algorithms would not be entirely fair or reliable. This high-
lights the necessity of creating a comprehensive and publicly
available dataset for benchmarking and comparing defect
detection algorithms. However, the diverse approaches taken
by different researchers to solve the problem make it highly
challenging to develop a dataset that can adequately meet
the needs of all algorithms.

7 Real-time feedback systems

Real-time feedback systems in 3D printers can be catego-
rized based on the type of feedback signals they use and the
control algorithms they implement.

7.1 Classification of real-time feedback systems

e Sensor-based feedback systems: optical (cameras), ther-
mal (infrared), acoustic (vibrations), and pressure sen-
Sors.

e Data processing and signal interpretation: techniques
such as edge detection, Fourier analysis, and Al-based
anomaly detection.

e Control algorithm taxonomy: PID control, adaptive con-
trol, and Al-driven predictive control.

7.2 Types of feedback signals used in defect
detection

e Geometric feedback: vision-based tracking for layer mis-
alignment.

Table 7 Comparison of feedback systems in 3D printers

e Thermal feedback: infrared sensors detecting overheating
or under-sintering.

e Acoustic and vibration feedback: detecting mechanical
inconsistencies via sound patterns.

7.3 Control algorithms for defect mitigation

e PID-based control: proportional-integral-derivative
adjustments.

e Fuzzy logic control: adaptive, rule-based error correc-
tion.

e Machine learning control: predictive Al models for defect
pre-emptive correction.

Table 7 shows a comparison between different feedback
systems.

Among them, real-time feedback, based on visual percep-
tion, play a vital role in 3D printing by integrating machine
vision and feedback loops to dynamically adjust the printing
process, preventing the propagation of defects. The inclusion
of these mechanisms significantly improves both print qual-
ity and efficiency.

In [69], the system identifies errors like insufficient mate-
rial flow or misalignment and implements real-time correc-
tions. Parameters such as flow rate, lateral speed, Z-offset,
and hotend temperature are adjusted dynamically, with
G-code commands updated on the fly to optimize the ongo-
ing print. Similarly, [77] employs a multi-head CNN trained
on extensive datasets to detect and correct multiple param-
eters in real time, such as print speed and flow rate. These
adjustments ensure optimal print outcomes across various
materials and printer setups.

The system in [78] uses real-time data analysis, guided
by machine learning models, to optimize printing param-
eters. Adjustments to extrusion rates and speeds are
reflected through G-code modifications, enhancing overall
efficiency. Article [59] discusses the use of real-time qual-
ity assessments, where filament feed rates and print speeds
are adjusted to meet desired specifications. By using image
entropy as a quality metric, the system fine-tunes parameters
based on surface characteristics.

In [57], a depth map-based quality assessment system
triggers G-code adjustments, further refining print outcomes.
The system can modify printer settings, such as layer height
and head calibration, based on detected defects. [38] focuses

Feedback type Detection mechanism Control method Advantages Limitations

Optical Image analysis Al-based correction High accuracy Requires high computing power
Thermal Infrared monitoring PID/fuzzy logic Effective for overheating Limited for small-scale defects
Acoustic Sound pattern recognition Adaptive Al Detects mechanical faults Limited dataset availability
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on identifying discrepancies in prints and dynamically
adjusts printer settings through recalibrations of the print
head and layer height, improving quality through continu-
ous feedback.

The feedback mechanism in [70] relies on a closed-loop
system to automatically adjust G-code commands. The sys-
tem can alter laser scanning parameters or material flow in
response to detected defects, improving the quality of the
final print. Meanwhile, [18] leverages cloud-based monitor-
ing for real-time defect analysis, enabling immediate G-code
adjustments and continuous quality control.

Article [33] shows how imaging feedback drives adjust-
ments to material flow rates, compensating for previously
detected defects. In [43], a phased feedback mechanism
detects defects and provides corrective feedback for sub-
sequent layers, implementing adjustments such as angle
modification and material refeeding. [66] underscores the
importance of in situ monitoring, using machine learning
models to detect anomalies in real time and initiate correc-
tive actions. Lastly, [55] discusses how real-time monitor-
ing assesses extrusion quality by detecting issues like over-
extrusion or under-extrusion, providing corrective signals to
enhance print quality.

7.4 Reinforcement learning for closed-loop control

Recently, reinforcement learning (RL) has gained attention
as a promising framework for closed-loop control in addi-
tive manufacturing, particularly in simulated environments.
RL enables the agent (e.g., the printer controller) to learn
optimal printing strategies by interacting with a simulated or
real process environment and receiving feedback in the form
of rewards or penalties. This is especially useful in dynamic
or non-linear processes such as layer deposition, temperature
regulation, or defect correction.

Some efforts employ RL (e.g., Q-learning) to adaptively
manage toolpath and orientation planning in fused deposi-
tion modeling (FDM), reducing support material use, print
time, and surface roughness compared to traditional genetic-
algorithm approaches [84]. Reinforcement learning has also
been used to control metal additive processes such as laser-
directed energy deposition by tuning laser power and scan
speed to maintain desirable melt-pool depths in real time—
without prior data or static models [85].

In parallel, closed-loop architectures using deep rein-
forcement learning—such as deep Q-learning or PPO—have
been integrated with vision or sensor feedback to moni-
tor and correct defects like over- or under-extrusion. For
instance, vision-aware RL controllers trained in simulation
can adjust extrusion parameters in real time with minimal
sim-to-real gap, significantly enhancing print consistency
and defect mitigation [86]. Additionally, hybrid RL frame-
works coupled with multi-objective optimization techniques

(e.g., neural nets, topology optimization) have yielded
15-25% reductions in material and time use and decreased
defect rates by up to 30% in validated production workflows
[87]. Overall, RL provides a versatile, dynamically adaptive
approach for real-time process control, defect reduction, and
parameter tuning across both FDM- and metal-based addi-
tive manufacturing.

7.5 Future directions

e Multi-sensor fusion: combining various sensors for better
accuracy.

e Edge processing: reducing latency by performing com-
putations locally.

e Self-learning adaptive systems: continual improvement
of models through real-time feedback data.

By integrating advanced real-time adaptive feedback
mechanisms, 3D printing can become more resilient against
defects, improving both efficiency and print quality while
minimizing material waste.

8 Conclusion and future directions

Defect detection in 3D printing is a critical area of research,
driven by the increasing adoption of additive manufactur-
ing technologies in high-stakes industries such as aerospace,
healthcare, and automotive. While 3D printing offers signifi-
cant advantages in terms of flexibility and design complex-
ity, it is also prone to defects that can compromise the struc-
tural integrity, surface quality, and dimensional accuracy
of the final product. Traditional post-production inspection
methods are often insufficient, prompting the need for real-
time monitoring systems that can detect and correct defects
during the printing process.

The review highlights the evolution from classical to
modern, deep learning—based approaches for defect detec-
tion. Classical methods rely on manually designed algo-
rithms and predefined feature extraction techniques, which,
while effective in certain cases, struggle to manage the
complexity and high dimensionality of modern 3D printing
processes. In contrast, deep learning models, particularly
Convolutional Neural Networks (CNNs), offer significant
improvements by automatically learning features and ena-
bling more accurate, real-time detection of defects.

Additionally, the review compares full-reference and no-
reference methods for defect detection. Full-reference meth-
ods provide high accuracy by comparing the printed part to
an ideal reference model, while no-reference methods are
more flexible, detecting visual or structural anomalies with-
out the need for predefined models. Both approaches have
their advantages, with full-reference methods excelling in
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precision environments and no-reference methods offering
adaptability and ease of use.

As real-time defect detection technologies continue to
advance, the integration of machine vision and deep learn-
ing promises to enhance the reliability, efficiency, and sus-
tainability of 3D printing. Future trends point toward the
development of more autonomous, closed-loop systems that
adjust printing parameters dynamically, minimizing defects
and material waste while ensuring the quality of printed
components.

8.1 Practical applications

The application of defect detection techniques in 3D print-
ing extends across multiple industries, including aerospace,
healthcare, automotive, and consumer goods manufactur-
ing. By integrating advanced defect detection systems,
manufacturers can significantly enhance production quality,
minimize material waste, and reduce costly post-production
inspections. For instance, real-time monitoring systems in
biomedical 3D printing can ensure the integrity of patient-
specific implants, while in aerospace, defect detection pre-
vents structural weaknesses in critical components.

8.2 Future directions

Further advancements in defect detection can be achieved
through the following directions:

e Integration of edge computing: enhancing real-time deci-
sion-making by processing defect detection data locally
rather than relying on cloud-based computation.

e Self-learning Al models: implementing adaptive machine
learning techniques that improve detection accuracy over
time by learning from newly identified defect patterns.

e Multi-sensor fusion systems: combining optical, thermal,
and acoustic sensors to provide a more holistic approach
to defect detection.

e Automated correction mechanisms: developing feed-
back-controlled printing adjustments to instantly rectify
detected defects during the printing process.

These innovations will further advance the reliability and
efficiency of 3D printing, making defect-free production
more attainable and sustainable.
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