
Vol.:(0123456789)

The International Journal of Advanced Manufacturing Technology 
https://doi.org/10.1007/s00170-025-16382-1

ORIGINAL ARTICLE

Defect detection in 3D printing: a review of image processing 
and machine vision techniques

Elham Armin1 · Saleh Ebrahimian1 · Mehdi Sanjari1 · Peyman Saidi2 · Hamid‑Reza Pourreza3 

Received: 26 April 2025 / Accepted: 11 August 2025 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025

Abstract
Detecting defects in 3D printing has become crucial as additive manufacturing gains traction in key industries like aerospace, 
automotive, and healthcare. This paper offers a thorough review of the methods used for defect detection in 3D printing, 
highlighting image processing, machine vision, and the integration of deep learning techniques. It contrasts traditional 
methods, which depend on manual feature extraction and classification algorithms, with modern deep learning approaches 
that automate feature extraction and classification in a unified process. Additionally, the paper compares full-reference meth-
ods—where defects are detected by comparing printed parts against ideal reference models—with no-reference methods 
that identify anomalies without predefined models. The review also explores real-time monitoring systems that allow for 
early defect detection during printing, reducing production failures and material waste. Future developments are anticipated 
to focus on autonomous feedback mechanisms, fostering innovation in defect prevention and improving the sustainability 
of 3D printing processes.
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1  Introduction

Defect detection in 3D1 printing has become a critical area 
of research, particularly as additive manufacturing (AM) 
technologies are increasingly used in high-stakes industries 
such as aerospace, automotive, and healthcare [1, 2]. While 
3D printing offers unique advantages in producing complex 
geometries and custom parts, the process is prone to various 
defects that can compromise the structural integrity, dimen-
sional accuracy, and surface finish of the printed objects 
[3–7]. These defects, if undetected, may lead to significant 
material waste, increased production costs, and failures in 
functional components. As such, real-time defect detection 
has emerged as an essential tool for ensuring the quality and 
reliability of 3D-printed parts [8].

3D printing, also known as additive manufacturing, is 
a process that builds objects layer by layer from digital 

models. Among the commonly used 3D printing technolo-
gies are fused deposition modeling (FDM), stereolithogra-
phy (SLA), selective laser sintering (SLS), and direct metal 
laser sintering (DMLS). Each technology comes with its 
own set of advantages and limitations, but all are susceptible 
to defects that can impact the final product.

For example, in FDM, defects such as layer misalign-
ment, stringing, and under-extrusion are common due to 
the extrusion process’s inherent limitations and environ-
mental factors like uneven cooling [9]. Similarly, porosity 
and surface roughness are typical issues in SLS and DMLS, 
where incomplete sintering of the powder can lead to poor 
layer bonding and reduced mechanical strength [10]. These 
defects necessitate the development of advanced monitoring 
systems to detect issues as they arise and prevent defective 
parts from being produced.

As 3D printing technologies evolve, there is an increas-
ing demand for reliable, automated defect detection sys-
tems. Traditional post-production inspection methods, such 
as manual, X-ray, or ultrasonic scanning, are costly, time 
consuming, and impractical for use in real time. Moreover, 
these methods detect defects only after the part has been 
fully printed, making it impossible to correct errors during 

 *	 Hamid‑Reza Pourreza 
	 hpourreza@um.ac.ir

1	 AI-Innovate Solutions Inc, Oakville, ON, Canada
2	 Queen’s University, Kingston, ON, Canada
3	 Ferdowsi University of Mashhad, Mashhad, Iran 1  Three-dimensional.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-025-16382-1&domain=pdf
http://orcid.org/0000-0002-3560-8070


	 The International Journal of Advanced Manufacturing Technology

the process and resulting in material waste and production 
delays [11].

Real-time defect detection, on the other hand, can identify 
and address defects as they occur, ensuring that errors are 
corrected during the printing process itself. This capability 
is particularly important for industries where part failure can 
have serious consequences, such as in aerospace or medi-
cal applications. By minimizing waste and improving the 
reliability of printed components, real-time defect detection 
plays a critical role in enhancing the efficiency and sustain-
ability of 3D printing [12, 13].

Image processing and machine vision technologies offer 
promising solutions to the challenges of real-time defect 
detection in 3D printing [1, 3, 14–19]. These technologies 
utilize cameras and image analysis algorithms to continu-
ously monitor the printing process and detect anomalies such 
as surface roughness, layer misalignment, and incomplete 
deposition. By employing techniques like edge detection, 
texture analysis, and feature extraction, image processing 
systems can identify defects in real time, triggering correc-
tive actions before the defect affects the entire part [20].

In recent years, machine learning and deep learning have 
also been integrated into defect detection systems, enabling 
more accurate and predictive monitoring. Machine learning 
models can be trained on large datasets of 3D-printed parts 
with known defects, allowing them to automatically classify 
and detect issues during the printing process. This combina-
tion of traditional image processing techniques with machine 
learning models offers a powerful approach to ensuring the 
quality and reliability of 3D-printed parts [21].

While limited studies have explored defect detection in 
additive manufacturing, our paper offers a distinct contribu-
tion by providing a comprehensive review of both classical 
and modern image processing techniques in defect detec-
tion, integrating recent advancements in deep learning. A 
closely related study by Kim et al. [22] provides an exten-
sive survey of image-based fault monitoring, emphasizing 
machine learning algorithms and vision-based methods for 
detecting anomalies in AM processes. Their work focuses 
on the application of sensor-driven monitoring systems and 
deep learning models to classify defects using image data. 
However, our review expands upon this by incorporating 
a comparative analysis of full-reference and no-reference 
approaches, evaluating their effectiveness across different 
3D printing technologies. Additionally, our study provides 
a structured comparison of defect detection methodologies, 
categorizing them based on their computational complex-
ity, adaptability, and real-time applicability. By highlighting 
the strengths and limitations of both classical and AI-driven 
defect detection systems, our work serves as a foundation 
for future research in hybrid AI-enhanced monitoring sys-
tems that integrate image processing with adaptive feedback 
mechanisms for real-time quality control in 3D printing.

In the remainder of this paper, Sect. 2 will provide an 
overview of various 3D printing technologies while also 
introducing the defects that may arise during the printing 
process. Given the importance of detecting these defects in 
real time, which can not only reduce material waste but also 
lower production time and costs, the latter part of Sect. 2 
will explore various defect detection methods based on vis-
ual inspection. Next, Sect. 3 will offer a more detailed dis-
cussion of classical and modern defect detection techniques, 
highlighting their similarities and differences. Sections 4 and 
5 will then present published research related to these two 
categories of techniques. The classification of defect detec-
tion methods into no-reference and full-reference approaches 
has also been considered in distinguishing between these two 
categories. Following this, Sect. 6 will compare different 
detection algorithms. Since defect detection can serve as a 
real-time feedback mechanism in 3D printers, allowing the 
printer to attempt defect correction, Sect. 7 will introduce 
real-time feedback systems. Finally, Sect. 8 will provide a 
conclusion and discuss future directions in the field.

2 � Background

As additive manufacturing (AM) becomes integral to high-
precision industries such as aerospace, biomedical engineer-
ing, and automotive production, ensuring defect-free fabri-
cation is paramount. Even minor defects can compromise 
structural integrity, mechanical performance, and aesthetic 
quality, necessitating robust defect detection methodolo-
gies. These methodologies leverage advanced computational 
techniques, including image processing, machine vision, 
and deep learning, to enhance quality control and optimize 
manufacturing efficiency.

The overarching goal of defect detection is to enable 
real-time identification and correction of anomalies, thereby 
reducing material waste, minimizing production costs, and 
enhancing the reliability of printed components. Significant 
advancements in sensor technology, artificial intelligence, 
and data analytics have paved the way for automated and 
highly accurate defect detection mechanisms. This sec-
tion provides a comprehensive examination of the founda-
tional technologies of 3D printing, common defect typolo-
gies, and the evolution of state-of-the-art defect detection 
methodologies.

2.1 � Classification of 3D printing technologies

AM technologies are broadly categorized based on either 
the material used, polymer-based and metal-based systems, 
or the underlying printing mechanism, light-induced and 
nozzle-based methods.
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•	 Polymer-based AM utilizes thermoplastic filaments, 
photopolymer resins, or polymer powders. Common 
techniques include fused deposition modeling (FDM), 
stereolithography (SLA), digital light processing 
(DLP), and selective laser sintering (SLS). These 
methods are widely used for prototyping and produc-
ing lightweight components.

•	 Metal-based AM fabricates metal parts using pow-
der or wire feedstock and high-energy sources. Key 
technologies include laser powder bed fusion (LPBF), 
directed energy deposition (DED), wire arc additive 
manufacturing (WAAM), additive friction stir depo-
sition (AFSD), and cold spray. These processes are 
essential for high-performance applications in aero-
space, defense, and industrial manufacturing.

A second, equally important classification is based on 
the fabrication mechanism, which organizes processes 
into two main groups: light-induced methods and nozzle-
based methods. This classification is particularly relevant 
for understanding common defects.

2.1.1 � Light‑induced methods

These processes use a focused light source (e.g., a laser 
or digital projector) to selectively fuse or cure material 
in a layer-by-layer fashion. This category includes both 
polymer- and metal-based techniques.

•	 Stereolithography (SLA): A UV laser cures a pho-
topolymer resin, producing high-resolution parts with 
a smooth surface finish. Common defects include 
over-curing, under-curing, and layer detachment [12].

•	 Digital light processing (DLP): Like SLA, DLP uses 
a digital projector for faster curing. Typical issues are 
voxel distortion and uneven curing.

•	 Laser powder bed fusion (LPBF): This process, which 
includes selective laser melting (SLM), employs a 
high-powered laser to fully melt and fuse metal pow-
ders. Defects such as keyhole porosity, lack of fusion, 
and residual thermal stress are common due to high 
thermal gradients [10] [11]. Selective laser sintering 
(SLS) is a related process for polymers that uses a 
laser to partially sinter powdered material, which can 
lead to surface roughness and porosity.

•	 Continuous liquid interface production (CLIP): 
An advanced form of photopolymerization, CLIP 
improves mechanical properties and reduces visible 
layer lines. Limitations include resin instability and 
oxygen diffusion inconsistencies.

2.1.2 � Nozzle‑based methods

These methods build objects by extruding or depositing 
material through a nozzle. The category includes both pol-
ymer-based extrusion and high-temperature deposition for 
metals.

•	 Fused deposition modeling (FDM): Also known as fused 
filament fabrication (FFF), this method melts and depos-
its thermoplastic filament layer by layer. Typical defects 
include warping, layer misalignment, and under-extru-
sion [9].

•	 Direct ink writing (DIW): Also referred to as robocast-
ing, this process deposits pastes or gels through fine 
nozzles. Common issues are flow inconsistencies and 
air entrapment.

•	 Directed energy deposition (DED): Also known as laser 
metal deposition (LMD), this process injects powder or 
wire into a melt pool created by a laser or electron beam. 
Defects often include surface roughness, un-melted par-
ticles, and low dimensional precision.

•	 Wire arc additive manufacturing (WAAM): An elec-
tric arc melts metal wire to deposit layers. While cost-
effective for large parts, WAAM is prone to high residual 
stresses and dimensional inaccuracies that require post-
processing.

•	 Additive friction stir deposition (AFSD): A solid-state 
process where a rotating tool plastically deforms and 
deposits material. Defects may include void formation, 
irregular material flow, and a lack of bonding in complex 
geometries.

•	 Cold spray: This solid-state process accelerates metal 
particles to supersonic speeds for deposition without 
melting. This method avoids thermal distortion, though 
it can still be affected by porosity and weak bonding.

2.2 � Common defects in 3D printing

The output quality of additive manufacturing is influ-
enced by several critical parameters, including layer thick-
ness, printing speed, extrusion temperature, and material 
properties. A thorough understanding of the AM process, 
encompassing material characteristics and the interplay of 
process-structure-properties, is essential to ensuring high 
product quality. Identifying and addressing defects early in 
the fabrication process is crucial to mitigating faults and 
improving the reliability of printed parts. Defects in AM 
can be categorized based on their impact on geometry and 
dimensions, surface quality, microstructure, or mechanical 
properties. The most common defects include the following:

Geometrical inaccuracy: Geometrical inaccuracy 
refers to the deviation of a printed object’s shape or dimen-
sions from its intended design. This defect arises due to 
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factors such as improper bed leveling, insufficient cooling, 
or residual stress accumulation. Advanced in situ monitor-
ing techniques, such as structured light scanning and digi-
tal image correlation, enable early detection and correction 
of dimensional deviations.

Layer misalignment: This defect occurs when suc-
cessive layers are misaligned during printing, usually due 
to mechanical errors such as poor calibration or external 
vibrations. Layer misalignment can compromise both the 
structural integrity and aesthetic quality of the printed 
object. For instance, in FDM printing, this defect is a lead-
ing cause of weak inter-layer bonding, which can result in 
part failure under load [9] (Fig. 1a).

Porosity: Porosity refers to voids or air pockets within 
the printed object. In powder-based processes like SLS 
and DMLS, incomplete fusion of powder particles often 
results in porous structures. Porosity significantly weakens 
the part’s mechanical properties, making it more prone to 
failure under stress. Detection of porosity during printing 

is essential to ensure the durability of the final product 
[10] (Fig. 1b).

Surface roughness and texture defects: Surface rough-
ness and inconsistencies in texture are common across vari-
ous 3D printing methods, often resulting from incomplete 
layer bonding or improper curing. Although surface defects 
primarily affect the aesthetic quality of the part, they can 
also lead to mechanical issues, especially in parts requiring 
high precision. Detecting and correcting surface roughness 
is important for ensuring part performance [8] (Fig. 1c).

Warping: Warping occurs when parts cool unevenly dur-
ing the printing process, causing the edges or corners to 
deform. This defect is particularly common in FDM and 
SLA processes due to thermal expansion and contraction of 
the material. Warping can lead to dimensional inaccuracies, 
preventing the part from meeting design specifications. Early 
detection of warping can prevent apart from becoming unus-
able, reducing material wastage [20] (Fig. 1d).

Incomplete layer deposition: Incomplete layer depo-
sition occurs when insufficient material is extruded or 

(e)

Fig. 1   The most common types of defects encountered in 3D print-
ing: (a) layer misalignment, (b) porosity, (https://​3dinc​redib​le.​com/​
the-​rising-​conce​rn-​of-​poros​ity-​in-​metal-​3d-​print​ing-​mater​ials/.) (c) 
surface roughness and texture defects, (d) warping, (e) incomplete 

layer deposition, (f) cracking and residual stress (https://​3dpri​nting​
indus​try.​com/​news/​zurich-​resea​rchers-​simul​ate-​resid​ual-​defor​matio​
ns-​in-​slm-​3d-​print​ed-​parts-​172408/.)

https://3dincredible.com/the-rising-concern-of-porosity-in-metal-3d-printing-materials/
https://3dincredible.com/the-rising-concern-of-porosity-in-metal-3d-printing-materials/
https://3dprintingindustry.com/news/zurich-researchers-simulate-residual-deformations-in-slm-3d-printed-parts-172408/
https://3dprintingindustry.com/news/zurich-researchers-simulate-residual-deformations-in-slm-3d-printed-parts-172408/
https://3dprintingindustry.com/news/zurich-researchers-simulate-residual-deformations-in-slm-3d-printed-parts-172408/
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deposited, resulting in thin layers or gaps. This can be 
caused by clogged nozzles, under-extrusion, or incorrect 
printing parameters. This defect weakens the part, leading 
to structural deficiencies. In applications requiring load-
bearing components, early detection of under-extrusion is 
critical to ensuring part viability [23] (Fig. 1e).

Cracking and residual stress: Cracking occurs in high-
temperature processes like DMLS due to residual stresses 
that build up as the material cools unevenly. If the internal 
stresses exceed the material’s yield strength, cracks may 
form, compromising the part’s integrity. Cracks are particu-
larly dangerous in metal components intended for high-stress 
environments. Detecting such defects in real time allows for 
adjustments to printing parameters that can mitigate thermal 
stress [11] (Fig. 1f).

Based on the idea presented by Kim et al. [22], Fig. 2 
classifies typical defect types in AM based on their impact 
domains, such as geometry, surface quality, microstructure, 
and mechanical performance. It is important to distinguish 
that defects like porosity, delamination, and cracking are not 
mechanical properties themselves, but rather they adversely 
affect mechanical properties such as strength, ductility, or 
fatigue life.

Another important source of defects, particularly in 
metal-based additive manufacturing processes, is the 
reheating effect that occurs during multi-layer printing. 
As new layers are deposited, the underlying material 
experiences repeated thermal cycling, which can lead to 

the remelting and re-solidification of previously solidi-
fied regions. This reheating may induce the formation of 
new pores due to molten material flow and gas entrap-
ment. Additionally, repeated heating promotes abnormal 
grain growth and recrystallization, which can deteriorate 
the microstructure and reduce mechanical performance. 
It may also lead to the redistribution or accumulation 
of residual stress across the build, increasing the risk of 
warping, delamination, or cracking in subsequent layers. 
Understanding and mitigating the impact of thermal his-
tory is critical for improving the reliability of multi-layer 
printed components.

2.3 � Evolution of defect detection methodologies

Defect detection has progressed from manual post-process-
ing inspections to real-time automated monitoring systems. 
Advanced computational approaches have revolutionized 
defect identification, enabling proactive quality control.

2.3.1 � Manual inspection and traditional methods

Historically, defect detection relied on human inspection, 
X-ray imaging, and ultrasonic testing. While effective, 
these approaches were time intensive and unsuitable for 
real-time process control.

Fig. 2   Classification of common additive manufacturing defects 
based on the aspect of the printed part they affect. Note: Defects such 
as porosity, cracking, and delamination are not mechanical properties 

themselves but contribute to the degradation of mechanical perfor-
mance metrics like strength or ductility
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2.3.2 � Automated inspection

Automated inspection techniques have become essential in 
modern additive manufacturing (AM) for ensuring high-
quality output and reducing material waste. Among various 
automatic inspection techniques, visual inspection remains 
one of the most critical due to its ability to rapidly detect 
surface-level defects in real time. Automated visual inspec-
tion systems leverage high-resolution imaging, computer 
vision algorithms, and artificial intelligence to analyze and 
classify surface anomalies. These systems can detect cata-
strophic defects such as layer misalignment, incomplete, and 
spaghetti easily.

A visual inspection system for defect detection comprises 
an imaging module, which includes a camera and an illumi-
nation system. The camera operates in either the visible or 
infrared spectrum. Visible-spectrum cameras are typically 
used for capturing high-resolution 2D images of printed 
surfaces, while infrared (thermal) cameras are increas-
ingly employed to monitor the heat distribution and detect 
anomalies such as overheating, under-sintering, or thermal 
delamination [24]. The use of thermographic imaging not 
only helps to detect surface defects but can also be used to 
identify subsurface defects [25]. Thermal cameras, however, 
require careful calibration to ensure accurate temperature 
measurements. For this purpose, thermocouples are fre-
quently used as ground-truth temperature references during 
setup and process validation [26]. Although thermocouples 
provide only one-dimensional (1D) data, their readings are 
essential for validating thermal models and calibrating infra-
red imaging systems. In some hybrid monitoring systems, 
thermocouple data is also used in real time to detect abnor-
mal thermal events and inform corrective actions during the 
build process.

In addition to 2D and thermal imaging, 3D reconstruction 
techniques are also employed—particularly for post-print 
inspection—where a complete point cloud of the final object 
is generated using structured light scanners or laser-based 
3D scanners. These techniques allow for a full geometric 
comparison with the original CAD model, enabling the 
detection of dimensional deviations, warping, or surface 
anomalies that may not be apparent in 2D images.

For in situ inspection during the printing process, it is 
crucial to synchronize image acquisition with the active 
printing layer or movement defined in the G-code. To enable 
this synchronization, modifications are often made to the 
G-code to insert camera trigger commands or metadata tags 
at predefined intervals [4, 5]. This approach ensures that 
each captured image corresponds to a specific layer or print 
event, facilitating accurate layer-wise defect detection and 
process analysis.

Captured images are analyzed using traditional or advanced 
image processing and machine vision techniques to identify 

defects. Upon defect detection, the system may either halt the 
printing process or initiate corrective actions to address the 
issue.

Early vision-based automated defect detection systems 
relied on classic computer vision techniques [27]. These 
conventional approaches extracted mid-level features such 
as edges, textures, and contours using handcrafted meth-
ods. Defect identification was then performed using simple 
decision-making algorithms. While computationally efficient, 
these methods struggled with complex geometries and varia-
tions in the manufacturing process.

To enhance detection accuracy, machine learning algo-
rithms were later integrated to classify these manually 
extracted features. While machine learning improved pat-
tern recognition and defect classification [28], the reliance on 
manual feature engineering remained a limitation, reducing 
adaptability to varying defect types.

In contrast, modern deep learning–based models have revo-
lutionized defect detection by eliminating the need for manual 
feature extraction. These models achieve unprecedented pre-
cision by learning feature representationsand classification 
directly from raw data, enabling more robust and adaptive 
defect detection [28].

We will explain these methods in more detail below.
To provide a structured understanding of defect detection 

methodologies, Fig. 3 and Table 1 present a hierarchical classi-
fication of defect detection strategies, spanning classic inspec-
tion methods to state-of-the-art AI-driven solutions.

It should be noted that most defect detection methods 
have attempted to detect the defect while printing. In other 
words, they are based on real-time implementation. Imaging 
and execution of the defect detection algorithm are generally 
performed layer by layer or, for every few layers, printed. The 
low printing speed causes the time interval between two con-
secutive images to be so long that it does not pose a major 
concern for the implementation of the algorithms in real time. 
The variety of computational load in different techniques 
(Table 1) allows for the selection of a suitable algorithm for 
real-time detection, depending on the available processing 
infrastructure.

As AM continues to evolve, the need for high-fidelity 
defect detection is more pressing than ever. The transition 
from manual inspections to AI-powered real-time monitoring 
has significantly improved defect identification and resolution. 
Future research should focus on hybrid AI systems, integrating 
multimodal sensor data, and adaptive machine learning models 
to further enhance defect detection capabilities in AM.
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3 � Defect detection: classic and modern 
algorithms

Defect detection is basically a pattern classification prob-
lem. Pattern classification is a fundamental process in 
machine learning and computer vision, aimed at assign-
ing input data to predefined categories or classes based on 
identifiable patterns. A pattern classification system typi-
cally consists of two main components: feature extraction 
and feature classification [29, 30].

Feature extraction: This is the process of identifying and 
selecting the most relevant features from raw data that best 
represent the underlying patterns. In image processing, for 
example, features could be edges, textures, shapes, or colors. 
The goal of feature extraction is to reduce the complexity of 
the data while preserving the important information neces-
sary for distinguishing between different classes.

Feature classification: Once features are extracted, the 
classification component uses these features to assign the 
data to a specific category. This step involves applying 
classification algorithms to decide which class the input 
data belongs to, based on the extracted feature set.

Pattern recognition methods can be classified into two 
categories based on how the feature vector is generated. The 
first category involves manually creating the feature vector, 
often referred to as classical methods. In contrast, modern 
methods rely on the feature vector being derived through a 
learning process. The following sub-sections will provide a 
short description and comparison of these two approaches.

3.1 � Classical approach to pattern classification

In traditional pattern classification systems, these two stages, 
feature extraction and classification, are handled separately. 
Feature extraction was usually performed using handcrafted 
methods, where domain experts manually designed algo-
rithms to extract specific features that are known to be use-
ful. For example, in image processing, techniques like edge 
detection (e.g., Sobel or Canny filters) or texture analysis 
(e.g., Gabor filters) were often used [27, 28].

For classification, classical algorithms such as Support 
Vector Machines (SVMs), k-Nearest Neighbors (k-NN), and 
Decision Trees were applied to the extracted features. These 
models relied on a predefined set of rules or functions to 
classify the input data based on the identified patterns. While 

Fig. 3   Comparison of defect 
detection strategies

Table 1   Key features of defect detection strategies

Approach Feature extraction Classification Accuracy Compu-
tational 
complexity

Advantages Limitations

Classical approaches Manual (edge detec-
tion, thresholding)

Manual Moderate Low Fast, computationally 
efficient

Limited robustness, 
struggles with com-
plex geometries

Learning-driven 
approaches

Manual feature engi-
neering (SVM, Ran-
dom Forest, KNN)

Automated High Moderate Improved accuracy over 
classical methods

Requires labeled data, 
feature engineering 
effort

Deep learning 
approaches

Automated feature 
extraction (CNNs, 
Autoencoders, Trans-
formers)

Automated Very High High Fully automated, highly 
accurate

Requires large datasets 
and computational 
resources
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effective in many applications, this approach had limitations, 
especially when dealing with complex, high-dimensional 
data, as the performance heavily depended on the quality of 
the hand-engineered features [28, 29].

3.2 � Modern, deep learning–based approach

In contrast, modern approaches to pattern classification, 
especially in deep learning, integrate feature extraction and 
classification into a single, learning-based system. This has 
been made possible by advancements in neural networks, 
particularly Convolutional Neural Networks (CNNs) for 
image-based tasks. In these systems, the network automati-
cally learns the best features from the data during training, 
eliminating the need for manually designed feature extrac-
tors [31].

In deep learning models, feature extraction is performed 
in the early layers of the network, where the model learns 
to detect low-level features like edges or textures. As the 
data passes through deeper layers, the network learns more 
abstract and high-level features, such as shapes and object 
parts. The classification is handled in the final layers, where 
the network uses the learned features to classify the input 
data into specific categories. This approach not only simpli-
fies the design process but also significantly improves per-
formance, particularly in tasks involving complex data, such 
as image [31].

The integration of feature extraction and classification 
into a single, end-to-end learning system has made modern 
pattern classification more powerful and scalable. These 
systems excel in handling large amounts of data and can 
automatically learn from it without the need for domain-
specific knowledge. This paradigm shift has led to signifi-
cant advancements in fields like image recognition, speech 
processing, and defect detection in manufacturing [32].

Defect detection is a specialized case of pattern classi-
fication that focuses on identifying anomalies or defects in 
products, processes, or materials. In this context, the task is 
to classify data into “defective” or “non-defective” catego-
ries by detecting patterns that deviate from normal behav-
ior. This challenge is heightened by the fact that defects can 
manifest in various subtle and irregular ways, such as sur-
face imperfections, cracks, or dimensional inaccuracies. For 
example, in additive manufacturing, defect detection sys-
tems often employ machine vision and image processing to 
identify flaws in 3D-printed parts by recognizing anomalous 
patterns in layer deposition or surface texture [20]. As a 
form of pattern classification, defect detection requires effec-
tive feature extraction and robust classification models to 
ensure high accuracy, especially in real-time applications 
where early detection is critical for minimizing waste and 
ensuring product quality [8].

4 � Classic techniques for defect detection

Several papers have been presented on defect detection in 
3D printing using classical methods, which can be catego-
rized into two groups. The first group includes methods that 
utilize reference information for defect detection, referred 
to here as full-reference methods. In contrast, the second 
group consists of methods that perform defect detection 
without using any reference, which will be referred to as 
no-reference methods.

In the following, the description of the methods presented 
in these two categories will be discussed.

4.1 � Classical full‑reference methods

In full-reference methods, sensor data collected during the 
printing process is compared to an ideal reference to identify 
defects. This discussion focuses on image sensors, which 
capture either two-dimensional or three-dimensional data, 
and evaluate either layer by layer during printing or only at 
the final stage. This data can include visual aspects of the 
printed part, such as appearance, dimensions, and the move-
ment path of the print head. Reference data can be prepared 
using CAD2 design files or images from prior prints. Below, 
we present articles in this category, arranged chronologically 
to showcase the progression of these algorithms.

Cheng and Jafari [33] used a camera-based system for 
real-time monitoring of 3D printing processes, capturing 
video frames of printed objects. They employed a thresh-
olding algorithm to segment images into binary forms, 
distinguishing the object from the background. The system 
identifies errors like object detachment from the print bed 
and missing material flow by analyzing the movement and 
continuity of the printed layers. Optical markers are used 
for camera calibration, and blob detection techniques track 
objects and detect deviations. The system achieved a detec-
tion rate of 60–80% for identified failures, showing poten-
tial for reducing material waste and enhancing 3D print-
ing efficiency through early error detection (printing type: 
nozzle-based).

Straub [9] developed an image processing method to 
detect defects in 3D-printed objects by capturing images 
from multiple angles during printing and comparing them 
with a reference model. Differences are computed at the 
pixel level based on brightness values, with a scaling factor 
to determine the significance of discrepancies, flagging these 
as defects. This method can identify issues like incomplete 
prints or filament misplacement, allowing early detection of 
failures (printing type: nozzle-based).

2  Computer-aided design.



The International Journal of Advanced Manufacturing Technology	

Hurd et al. [34] proposed a quality assurance algorithm 
that relies on capturing images of selected print layers using 
a mobile device mounted above the printer bed. These 
images are compared with 2D reference images generated 
from the original 3D model to identify discrepancies. The 
system uses two main methods: image subtraction and image 
searching. In the image subtraction method, the difference 
between two consecutive images highlights newly printed 
areas. The searching algorithm compares captured images 
directly to the expected layout, identifying deviations. If 
errors exceed a predefined threshold, the print is paused, 
and user feedback is requested to either resume or stop the 
process. This approach ensures cost-effective quality assur-
ance by enabling error detection mid-print, saving time and 
materials (printing type: nozzle-based).

Ceruti et al. [35] designed a real-time monitoring sys-
tem using augmented reality (AR) to compare real-time 
images of printed objects with a virtual reference model. 
Image processing detects deviations between printed layers 
and the expected model, enabling operators to intervene and 
stop printing if necessary. This AR-based system enhances 
defect detection during additive manufacturing (printing 
type: nozzle-based).

Johnson et al. [36] proposed an inspection algorithm 
where inspections are triggered at predefined intervals dur-
ing printing, and each printed layer’s data is analyzed against 
set tolerances. When deviations from the reference are 
detected, the system identifies potential defects and notifies 
the operator. The algorithm allows flexibility in inspection 
frequency based on part complexity, ensuring timely flaw 
detection without unnecessary print interruptions (printing 
type: nozzle-based).

Nuchitprasitchai et al. [37] utilized optical monitoring 
to compare finished printed parts with reference models 
(STL files), using a single-camera setup for 2D shape com-
parison and a two-camera setup for 3D reconstruction. If 
errors exceed a 5% threshold, the system halts the print for 
user intervention. This low-cost approach supports various 
geometries and filament colors (printing type: nozzle-based).

Straub [38] also leveraged visible light imaging to detect 
both macro- and micro-defects in 3D-printed objects. By 
capturing multiple images from different perspectives, dis-
crepancies in size, orientation, and fill levels are compared 
against a reference model. This method ensures the detec-
tion of visible and micro-defects, enhancing the reliability of 
printed products, especially for safety–critical applications 
(printing type: nozzle-based).

Holzmond and Li [12] proposed an algorithm using 3D 
digital image correlation (3D-DIC) to capture the geometry 
of each printed layer and compare it with the corresponding 
CAD model. Point clouds from the CAD model and 3D-DIC 
data are aligned using the iterative closest point (ICP) algo-
rithm, calculating Z-axis deviations to detect defects like 

blobs or holes without halting the print (printing type: 
nozzle-based).

Lyngby et al. [39] developed an algorithm employing a 
calibrated camera system to capture images after each layer 
is deposited. These images are segmented and compared 
with expected segmentation masks from the CAD model, 
using logical exclusive disjunction to identify issues such as 
warping and extrusion failure (printing type: nozzle-based).

Delli and Chang [40] integrated image processing with 
supervised machine learning for real-time 3D printing moni-
toring. The system captures images at checkpoints, analyzes 
them using pixel-based RGB3 analysis, and classifies parts 
as “good” or “defective” using an SVM. The system halts 
printing if defects are detected, reducing material and time 
waste (printing type: nozzle-based).

Malik et al. [41] proposed an algorithm that captures top-
view images of each layer during the 3D printing process, 
reconstructing a 3D model in real time. It processes these 
images using MATLAB, aligning them with the layer infor-
mation extracted from the G-code. This alignment ensures 
accurate layer identification and enables detailed inspec-
tion of both surface and internal structures. Defects can be 
detected layer by layer through this model reconstruction 
process, which enhances print monitoring and provides valu-
able insights into the quality of the printed object. Addi-
tionally, augmented reality tools, such as the HoloLens,4 
allow users to interact with and inspect the reconstructed 
model in a mixed-reality environment, further supporting 
process improvement and defect detection (printing type: 
nozzle-based).

Wasserfall et al. [42] an algorithm that for identifying 
failures involves capturing high-resolution images of each 
printed layer using a camera system integrated into the 3D 
printer. These images are stitched together to form com-
plete layer visuals, which are segmented based on plastic 
or conductive ink extrusions using support vector machines 
(SVM). The system compares the segmented images with 
the expected layer layout extracted from the G-code to detect 
discrepancies such as insufficient or excessive ink extru-
sion and interruptions. If a defect is identified, the printing 
process is paused to prevent further errors. This real-time 
inspection ensures the quality of printed electronic circuits 
by closely monitoring the deposition of materials (printing 
type: nozzle-based).

Xu et al. [43] developed an algorithm for real-time defect 
detection in 3D construction printing using point cloud com-
parison. A 3D camera captures point clouds of each layer, 
compared against the CAD model using a cloud-to-plane 
(C2P) distance metric. Deviations trigger corrective actions, 

3  Red–green–blue.
4  https://​www.​micro​soft.​com/​en-​us/​holol​ens.

https://www.microsoft.com/en-us/hololens
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adjusting the printhead’s motion to maintain accuracy (print-
ing type: nozzle-based).

Bowoto et al. [11] proposed an image processing algo-
rithm for real-time detection of defects such as porosity and 
cracks in printed layers. The system compares real-time 
images with a CAD model, using grayscale conversion, 
thresholding, and K-means clustering to measure defect 
regions, determining if they are within acceptable limits or 
if printing should be stopped (printing type: nozzle-based).

Shen et al. [20] designed an algorithm to detect surface 
defects by comparing the contours of printed objects with 
theoretical contours derived from the 3D model’s point 
cloud. Images are captured at intervals, and contours are 
extracted using image processing. Discrepancies below a 
similarity threshold flag defects for early detection (printing 
type: nozzle-based).

Kopsacheilis et al. [44] introduced a visual quality control 
system using RGB-D cameras and point cloud data. The 
system compares the real-time geometry of printed parts 
with theoretical models generated from G-code, detecting 
dimensional deviations in the layer structure without inter-
rupting the printing process (printing type: nozzle-based).

Petsiuka and Pearce [4] developed an algorithm that 
monitors 3D printing layer by layer, focusing on global and 
local parameters. The system detects height issues, compares 
global shapes with G-code trajectories, and performs local 
texture analysis to identify anomalies, addressing defects by 
modifying the G-code or pausing the print (printing type: 
nozzle-based).

Patil et al. [10] proposed an image processing algorithm 
for detecting defects and measuring features in laser addi-
tive manufacturing. Grayscale images are processed using 
Gaussian filters, morphological operations, and Canny 
edge detection to measure dimensions and detect surface 
defects within a 1.5 to 3.5% error range (printing type: 
light-induced).

Petsiuka and Pearce [5] also developed an algorithm to 
detect anomalies in 3D printing by comparing visual features 
of each layer with synthetic reference images generated in 
Blender. The system uses Histograms of Oriented Gradients 
(HOG) to calculate similarity metrics and detect errors like 
infill defects or layer shifts (printing type: nozzle-based).

Forte et al. [8] created the DaR3D5 system, which uses 
image processing to detect slippage defects during 3D 
printing. Images captured at intervals are compared with 
previously stored images using the Normalized Root Mean 
Squared Error (NRMSE) algorithm. Deviations beyond 
thresholds indicate slippage, triggering user alerts (printing 
type: nozzle-based).

Rahmani Dabbagh et al. [45] proposed a machine learn-
ing–based algorithm to optimize 3D printing parameters. A 
gradient boosting regression model predicts printing out-
comes based on temperature, pressure, and design complex-
ity, helping users optimize parameters and reduce material 
waste and trial-and-error (printing type: nozzle-based).

Rill-García et al. [46] presented an anomaly detection 
algorithm for 3D concrete printing, using RGB cameras for 
image acquisition and deep learning–based segmentation. 
The system identifies geometrical anomalies and classifies 
the concrete’s texture into categories, detecting material-
related defects during the print (printing type: nozzle-based).

Zhao et al. [47] introduced a surface defect detection 
algorithm using 3D point clouds. The MBH-INRoPS6 fea-
ture descriptor enhances accuracy, while Euclidean cluster-
ing identifies defects, effectively separating defect regions 
from noise (printing type: nozzle-based).

Binder et al. [48] developed a framework linking ther-
mal images with 3D models in fused filament fabrication 
(FFF). The system monitors temperature distribution to 
detect defects like warping and over-extrusion, allowing 
real-time adjustments to printing parameters (printing type: 
nozzle-based).

Oleff et al. [1] introduced an algorithm that uses dark-
field illumination to capture high-contrast images of 
printed layers. Anomalies are detected using unsupervised 
machine learning techniques, such as isolation forests, to 
compare features of each layer with normal patterns, pro-
viding real-time monitoring across subareas (printing type: 
nozzle-based).

4.2 � Classical no‑reference methods

In no-reference methods, defect detection does not rely on 
comparing the printed part to reference data or its intended 
design. Instead, it focuses on identifying features that are 
independent of the specific part being printed, meaning the 
design itself is not a factor in detection. Typically, visual 
indicators suggest potential printing issues to identify fail-
ures. Below, we present papers that use classical, no-ref-
erence methods to detect defects in printed or in-progress 
parts.

Baumann and Roller [49] captured video frames during 
FFF builds and used image segmentation and frame differ-
encing to detect layer misalignments or part detachment. 
Their system checked for shifts in the printed object’s posi-
tion between consecutive layers and could thus flag “detach-
ment” or “deformation” events early. Heuristic techniques 
have also been used—for example, placing a bounding box 
around the printed region and tracking its centroid can reveal 

5  Detect and recognizing 3D printing.
  defects. 6  Improved normal rotated projection statistics.
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a “missing extrusion” if the deposited material suddenly 
shrinks or shifts off-center. These vision-based methods 
rely on changes in shape or color over time (without any 
ground truth), and are relatively simple but limited to detect-
ing gross deviations or specific failure modes (printing type: 
nozzle-based).

Fastowicz and Okarma [50] proposed an algorithm for 
assessing 3D print quality using texture analysis based on 
the Gray-Level Co-occurrence Matrix (GLCM) and Haralick 
features. The method converts images of 3D-printed objects 
into grayscale, then calculates the GLCM in four direc-
tions—horizontal, vertical, and two diagonal orientations. 
Homogeneity in texture is assessed using Haralick features, 
which analyze pixel intensity relationships to identify struc-
tural defects. Peaks and oscillations in homogeneity values 
indicate defects, with low-quality prints displaying reduced 
texture consistency. This approach allows continuous quality 
monitoring during printing without the need for predefined 
reference images (printing type: nozzle-based).

Wu et al. [23] introduced an image classification method 
to detect defects during the 3D printing process. Their sys-
tem captures images during the infill printing stage and 
extracts features such as grayscale mean, standard devia-
tion, and pixel counts above a threshold. These features 
are divided into sections for detailed analysis. The system 
classifies images as defective or non-defective using Naive 
Bayes Classifier and J48 Decision Trees (printing type: 
nozzle-based).

Yi et al. [51] integrated machine vision with statistical 
process control to enhance quality. Images of each printed 
layer are captured using a digital camera and processed to 
extract contour and area information for statistical analysis. 
Control charts are used to detect deviations from expected 
geometric parameters, enabling real-time detection of sur-
face defects and irregularities. The system has a monitoring 
accuracy of 0.5 mm, ensuring better quality control in addi-
tive manufacturing (printing type: nozzle-based).

Okarma et al. [52] applied Structural Similarity (SSIM) 
metrics to assess 3D print quality without requiring a refer-
ence model. Images of the 3D-printed objects are analyzed 
for local self-similarity to detect distortions indicative of 
lower quality. Modified metrics, Complex Wavelet SSIM 
(CW-SSIM) and Structural Texture Similarity (STSIM), 
enhance defect detection sensitivity. The algorithm divides 
images into blocks, calculates similarity scores, and averages 
them to classify overall print quality. While SSIM alone may 
yield inconsistent results, CW-SSIM and STSIM provide 
more reliable assessments (printing type: nozzle-based).

Okarma and Fastowicz [53] proposed a novel visual qual-
ity assessment approach for 3D-printed surfaces using image 
entropy. The algorithm assumes regular patterns in printed 
objects exhibit low entropy values, while distortions increase 
entropy, indicating potential quality issues. To address color 

dependency, the method combines local entropy calculations 
with their variance across the hue component in the HSV 
color space and the RGB channels. This combined entropy 
approach effectively distinguishes between different qual-
ity levels in printed surfaces, independent of filament color 
(printing type: nozzle-based).

Shen et al. [54] developed a multi-view vision detection 
system using a CCD camera to capture images of the printed 
part’s outer surface. After image preprocessing to enhance 
contrast and reduce noise, the system applies a dual-kernel 
detection technique based on morphological image pro-
cessing. Rectangle and square kernels cover horizontal and 
vertical directions to detect potential defects. Contours are 
analyzed using the minimum enclosing rectangle (MER) 
method, and defects are classified by aspect ratio and 
area distribution, diagnosing issues like over-extrusion or 
mechanical problems (printing type: nozzle-based).

Kazemian et al. [55] designed a real-time quality moni-
toring system for extrusion processes using computer vision 
techniques. The system captures video frames of freshly 
extruded layers and measures their width, comparing it to a 
predetermined target width. Techniques like Gaussian blur-
ring and Otsu’s binarization segment the extruded layer, and 
contours are extracted to compute the average width across 
several frames. The system also features a closed-loop feed-
back mechanism, automatically adjusting the extrusion rate 
to maintain print quality, regardless of material property 
variations (printing type: nozzle-based).

Okarma and Fastowicz [56] adapted full-reference image 
quality assessment (IQA) metrics for automatic evaluation of 
3D-printed surfaces. The system captures images of printed 
layers during the manufacturing process, detecting distor-
tions and assessing quality. IQA metrics like Structural Sim-
ilarity Index (SSIM) and Feature Similarity Index (FSIM) 
compare segments of the printed surface with expected 
quality, assuming higher similarity values indicate better 
quality. Images are processed by converting to grayscale, 
adjusting contrast, and analyzing fragments. The system suc-
cessfully classifies prints into quality levels, achieving high 
accuracy in distinguishing quality variations (printing type: 
nozzle-based).

Fastowicz et al. [57] developed a method for objective 
3D-printed surface quality assessment using entropy analy-
sis of depth maps obtained from 3D scanning. Scanning cre-
ates detailed depth maps, which are processed to compute 
entropy values—a statistical measure of randomness. Lower 
entropy values correspond to high-quality surfaces with reg-
ular patterns. The method incorporates local entropy vari-
ance to account for non-uniformities in depth maps, allowing 
for reliable surface quality classification. The system effec-
tively distinguishes between high and low-quality samples, 
providing a practical solution for online monitoring (printing 
type: nozzle-based).
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In another work, Okarma and Fastowicz [58] applied 
various computer vision techniques to conduct non-
destructive quality assessments of 3D-printed objects. 
Texture analysis using GLCM extracts features for clas-
sifying surface quality, while image entropy detects sur-
face irregularities. Additionally, the Hough Transform 
identifies straight lines on printed objects. This real-time 
system uses strategically placed cameras to monitor the 
printing process without interrupting it, effectively identi-
fying defects and assessing surface quality (printing type: 
nozzle-based).

Fastowicz and Okarma [59] also proposed a method for 
assessing the quality of 3D-printed flat surfaces using image 
analysis. Photographs of printed samples are captured, and 
the Hough Transform is used to detect straight lines cor-
responding to filament layers. Preprocessing steps like 
brightness compensation and CLAHE enhance image qual-
ity, aiding line detection. By analyzing the average length 
of detected lines, the algorithm generates a quality metric 
that classifies samples into high and low-quality categories, 
independent of filament color (printing type: nozzle-based).

Okarma and Fastowicz [60] introduced a color-independ-
ent method for 3D-printed surface quality assessment using 
image entropy. Distorted surfaces exhibit increased entropy 
values, indicating irregularities. The algorithm combines 
local entropy calculations with their variance across color 
spaces (RGB and HSV), processing images to evaluate 
local entropy and classify print quality. The system detects 
surface defects regardless of filament color, providing reli-
able assessments during and after printing (printing type: 
nozzle-based).

Liu et al. [61] proposed an algorithm that integrates image 
processing techniques like textural analysis through GLCM 
for defect detection and a PID-based feedback control 
system for defect mitigation. The system adjusts machine 
parameters such as material flow rate and extruder tempera-
ture based on detected defects (printing type: nozzle-based).

Yan et al. [16] introduced a defect detection algorithm 
for FDM 3D printing, using traditional image processing 
techniques. The system captures images of printed layers 
with a monocular camera, extracting the stacked area using 
K-means clustering. A 2D Gabor wavelet transform detects 
wire drawing defects by analyzing texture differences in 
printed layers. The Hough line detection algorithm identi-
fies defects, providing real-time detection to enhance the 
printing process (printing type: nozzle-based).

Zhou et al. [19] developed an algorithm for detecting 
surface defects like pits, bubbles, and bulges in ceramic 
3D printing. The region of interest (ROI) is identified, and 
images are preprocessed using Gaussian filtering to reduce 
noise. Morphological operations preserve the object’s shape 
and structure, while specific defects are detected based on 
their characteristics. Defects are classified by comparing 

their size, shape, and location to predefined thresholds using 
a dual-threshold approach (printing type: nozzle-based).

Mohr et al. [62] focused on developing a method for real-
time defect detection during the LPBF. They used a com-
bination of mid-wave infrared (MWIR) thermography and 
optical tomography to monitor the melt pool and identify 
process deviations. The thermography camera was used to 
analyze thermal signals and identify “time over threshold” 
(TOT) events, which indicate potential defects. The optical 
tomography camera provided additional data on the melt 
pool geometry and signal intensity. The results from these 
in situ monitoring methods were then compared to micro-X-
ray computed tomography (µCT), a high-resolution ex situ 
method, to validate the effectiveness of their approach in 
detecting defects like lack of fusion and keyholes.

Mazzarisi et al. [63] discusses the use of infrared ther-
mography as a method for real-time monitoring of the laser 
metal deposition (LMD) process. The research focuses on 
an ad hoc algorithm implemented in MATLAB to analyze 
the thermal data captured by an IR camera. This algorithm is 
used to extract key thermal metrics such as maximum tem-
peratures, thermal gradients, and cooling rates. The study’s 
findings are applied to understand the thermal behavior of 
different deposition strategies and their impact on the final 
product, with the goal of improving quality control in LMD 
manufacturing.

AbouelNour and Gupta [26] present a method for in-pro-
cess defect detection in additive manufacturing by utilizing a 
multi-sensor approach. The study uses both optical imaging 
and infrared thermography to monitor the build process. The 
core of the work involves analyzing the acquired images to 
detect and characterize defects, such as hotspots, by evaluat-
ing metrics like average specimen temperature, global aver-
age hotspot temperature, total number of hotspots, perimeter, 
and surface area. This approach aims to provide a reliable 
way to monitor the quality of additively manufactured parts 
as they are being built.

De Santana et al. [25] evaluates an active thermography 
algorithm for detecting subsurface defects. The algorithm 
uses thermographic signal reconstruction, thermal con-
trast, and heat transfer principles to analyze heat flow in an 
object after it has been excited by a heat source. Any internal 
defects, such as voids or inconsistencies, disrupt the heat 
flow, causing a change in the surface temperature that can be 
captured by an infrared camera. The study also highlighted 
the significant effect of infill percentage on the heat transfer 
behavior of the workpieces, noting that samples with 100% 
infill showed more well-defined defective regions compared 
to those with 30% infill.

Höfflin et al. [64] focus on in situ defect detection dur-
ing the LPBF process. The proposed method utilizes active 
thermography to monitor the melt pool and surrounding 
area. The study introduces a novel approach for detecting 
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defects by analyzing the spatial temperature distribution in 
these thermographic images. It evaluates two specific algo-
rithms, a gradient approach and a derivative approach, both 
designed to identify irregularities in the temperature profile 
that indicate potential defects. This work aims to provide 
a real-time quality control system for LPBF, ensuring the 
integrity of the printed parts.

Montinaro et al. [65] present a numerical and experimen-
tal study using a remote laser thermographic methodology 
called “Flying Laser Inner Probing Thermography” (FLIPT) 
to detect micrometric defects in metal additive manufactured 
(AM) parts. The authors employed a finite element analysis 
(FEA) to simulate the thermal behavior of a sample and opti-
mize the parameters of the technique to enhance its sensitiv-
ity to defects. The study’s results indicate that the technique 
is successful in identifying flaws. The authors propose that 
this method is suitable for integration into the AM manufac-
turing process for continuous in-line inspection.

In summary, full-reference methods detect defects by 
comparing the printed part to an ideal reference model or 
dataset, such as a CAD model or simulated data like STL 
files or G-code. In contrast, no-reference methods detect 
defects without relying on reference data or predefined 
models, instead focusing on identifying visual or structural 
anomalies within the printed part, independent of its design.

4.3 � Comparative analysis of classical defect 
detection techniques

The classical approaches for defect detection in 3D print-
ing have been extensively studied and implemented over 
the years. These methods primarily fall into two categories: 
“full-reference methods,” which compare printed parts to 
a pre-defined ideal reference, and “no-reference methods,” 
which analyze the printed part without relying on a specific 
reference model. While both categories have demonstrated 
success in defect detection, they exhibit unique advantages 
and limitations.

Full-reference methods rely on comparison-based tech-
niques, utilizing CAD models, previous prints, or prede-
fined structures as a reference. These approaches tend to 
offer higher accuracy in identifying geometric defects, layer 
misalignments, and incomplete depositions. However, they 
require the generation and storage of accurate reference 
models, making them less flexible for variable and highly 
customized 3D prints.

No-reference methods, on the other hand, leverage sta-
tistical and machine vision techniques to identify defects by 
analyzing texture, contour consistency, or material distribu-
tion without predefined reference data. These methods offer 
greater adaptability but might be less precise when detect-
ing structural defects that deviate subtly from the expected 
geometry.

Table 2 summarizes the key characteristics of classic 
techniques for defect detection, focusing on the type of 
reference used, the extracted features, evaluation metrics, 
data format, input size, and inference time. This comparison 
highlights the diversity in data acquisition and analysis strat-
egies, ranging from full-reference geometric comparisons to 
no-reference texture-based methods.

To provide a general indication of computational perfor-
mance, an “Inference Time per Image” column has been 
added to the rightmost side of the table. These values are 
directly extracted from the referenced articles and should be 
interpreted with caution, as differences in hardware specifi-
cations, software implementations, and testing environments 
make direct comparisons unreliable. They are intended 
solely as rough indicators of computational cost. Notably, 
many studies do not report this value, possibly because the 
inherently slow pace of 3D printing allows ample time for 
image processing, especially when using high-performance 
vision hardware.

5 � Modern techniques for defect detection

Both full-reference and no-reference approaches have been 
applied in modern defect detection methods. However, 
a statistical analysis of articles in this field indicates that 
researchers are increasingly focusing on no-reference meth-
ods. This shift may be attributed to the powerful capabili-
ties of deep learning. The following sections will present a 
review on the papers within this category.

5.1 � Modern full‑reference methods

As this article has already covered how full-reference meth-
ods function, we will now shift to presenting works in this 
category that utilize deep learning.

Muktadir and Yi [15] introduced a machine learning algo-
rithm using the PointNet neural network to detect defects 
in 3D-printed objects by analyzing point cloud data. The 
algorithm processes 3D images from CAD models and 3D 
scanners, converting them into point clouds. These point 
clouds are segmented and analyzed using the PointNet 
model, trained on both normal and defective data. This 
allows the system to classify and detect defects such as sur-
face roughness and structural inconsistencies in real time, 
without relying on pre-existing reference images (printing 
type: nozzle-based).

Sun et al. [66] explored the application of both traditional 
machine learning and deep learning techniques in optimiz-
ing the bioprinting process. These algorithms model the 
relationships between printing parameters (e.g., nozzle 
diameter, extrusion pressure, and bioink viscosity) and the 
quality of bioprinted constructs. Deep learning techniques, 
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like CNNs, are used for real-time image analysis to detect 
defects and anomalies. The models predict outcomes such 
as fiber diameter, shape fidelity, and cell viability, provid-
ing dynamic feedback to optimize printing parameters and 
improve the quality of bioprinted structures (printing type: 
nozzle-based).

Niu et al. [67] proposed a semi-Siamese convolutional 
neural network that takes as input both the planned model 
image and the camera-captured image from the 3D printer, 
and outputs a pixel-wise defect map. By learning to directly 
compare these two visual domains, the model demonstrates 
strong robustness to variations in camera angles and light-
ing conditions, achieving an F1-score greater than 0.9 and 
processing each layer image in approximately 0.5 s on a 
standard laptop (printing type: nozzle-based).

Charia et al. [68] addressed stringing defects by fine-tun-
ing a convolutional neural network (CNN) to detect stray 
“spaghetti” filament. Their approach involves subtracting 
a synthetic reference silhouette, rendered directly from the 
G-code, from the real camera image to isolate extraneous 
material. This method generates a color-coded error map in 
real time and operates without the need for specialized hard-
ware. The use of a simple binary reference image enhances 
robustness against variations in lighting conditions and 
camera configurations, making the system highly practi-
cal for standard 3D printing environments (printing type: 
nozzle-based).

5.2 � Modern no‑reference methods

As this article has already discussed the workings of no-
reference methods, we will now focus on introducing works 
in this category that utilize deep learning.

Caggiano et al. [14] presented a bi-stream Deep Convo-
lutional Neural Network (DCNN) for detecting defects in 
the selective laser melting (SLM) process. Their approach 
analyzes real-time images of both powder layers and part 
slices, capturing surface patterns that indicate defects due to 
improper process conditions. The DCNN extracts multi-level 
features, and a softmax classifier identifies defect patterns. 
This approach effectively correlates irregularities in powder 
layers with defects in part slices to ensure part quality (print-
ing type: light-induced).

Jin et  al. [69] proposed a Convolutional Neural Net-
work (CNN)–based algorithm to classify 3D printing qual-
ity into under-extrusion, good-quality, and over-extrusion 
categories. The CNN, trained on labeled images, monitors 
real-time printing and automatically adjusts the flow rate 
to correct printing conditions, iteratively ensuring print 
quality with minimal human intervention (printing type: 
nozzle-based).

Razaviarab et al. [70] developed a closed-loop machine 
learning system that optimizes additive manufacturing Ta
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processes in real time. After offline training with sensor 
data, the system uses deep CNNs to monitor the print’s 
condition and autonomously adjust parameters like laser 
power or material flow to prevent defects (printing type: 
light-induced).

Banadaki et al. [71] proposed an algorithm that involves 
a deep convolutional neural network (CNN) that processes 
images of each printed layer to detect defects, such as over-
fill or voids, which can degrade the structural integrity of 
the printed part. The CNN is trained on images from vari-
ous printing speeds and temperatures to classify the qual-
ity of prints into five grades. The system monitors the AM 
process in real time, detecting anomalies and predicting 
failure risks early. If the quality deviates from acceptable 
levels, the feedback mechanism adjusts print parameters—
such as extrusion speed and temperature—automatically to 
correct the process (printing type: nozzle-based).

Garfo et al. [72] used the MobileNet-SSD model for 
defect detection in 3D-printed parts. By processing real-
time images and identifying surface defects such as rough-
ness and cracks, the system achieves high accuracy in 
localizing defective areas, benefiting from its efficient fea-
ture extraction architecture (printing type: nozzle-based).

Baumgart et al. [73] optimized CNN architecture using 
depthwise-separable convolutions to detect defects like 
delamination during laser-powder bed fusion (L-PBF). 
Thermographic images captured during printing are ana-
lyzed by the CNN, providing defect detection with mini-
mized computational costs (printing type: light-induced).

Paraskevoudis et  al. [74] introduced a deep CNN 
for detecting stringing defects in 3D printing, using 
live video footage. The model outputs bounding boxes 
around detected defects and alerts the user or stops the 
print process if the probability of a defect exceeds a set 
threshold, prioritizing speed and accuracy (printing type: 
nozzle-based).

Farhan Khan et al. [75] developed a CNN-based system 
that analyzes top-view images of printed layers in real time 
to detect defects like weak infill or misalignment, pausing the 
process if a defect is detected, thus reducing material waste 
and improving reliability (printing type: nozzle-based).

Brion et al. [76] proposed an algorithm that utilizes a 
deep learning–based object detection approach using the 
YOLOv3 model to identify warp deformation during print-
ing. Images captured during the printing process are ana-
lyzed to detect warping in real time. The model calculates 
key metrics, such as the area and volume of warped regions, 
the number of detections, and the confidence of predictions. 
These metrics are used to assess the severity of the deforma-
tion, which informs corrective actions. The system inter-
venes by adjusting print parameters such as bed tempera-
ture and fan speed to prevent further warping. Additionally, 
insights from detected warp patterns are applied to future 

prints to refine the printing process and reduce the likelihood 
of recurrence (printing type: nozzle-based).

Brion and Pattinson [77] utilized a multi-head neural 
network to detect and correct errors in real time during 3D 
printing. This system monitors parameters like flow rate and 
Z offset, adjusting them dynamically to ensure consistent 
quality across different materials and geometries (printing 
type: nozzle-based).

Nguyen et al. [78] proposed a hybrid machine learning 
model combining an MLP and CNN to optimize 3D printing. 
The MLP manages physical parameters, while the CNN ana-
lyzes geometric properties, improving process efficiency by 
learning from simulation data (printing type: nozzle-based).

Zhang et al. [17] employed a CNN, FDMNet, to detect 
defects like interlayer stripping in multi-axis 3D printing. A 
CCD camera captures images during printing, and the CNN, 
trained with data augmentation, classifies prints with a high 
accuracy of 83.1% (printing type: nozzle-based).

Cao et al. [79] incorporated an attention module into a 
YOLOv8 model to detect extrusion irregularities—such as 
under-extrusion and over-extrusion—during the 3D print-
ing process. Their real-time vision system was directly inte-
grated into the printer’s control loop, enabling automatic 
adjustment of the extrusion speed when a flow defect was 
detected. This closed-loop approach demonstrates the fea-
sibility and practicality of no-reference defect detection for 
immediate corrective intervention in FFF processes, signifi-
cantly enhancing print reliability and consistency (printing 
type: nozzle-based).

Wang et al. [18] enhanced the YOLOv8 model for real-
time defect detection in additive manufacturing, integrating 
a coordinate attention mechanism and EIOU loss function to 
detect defects like scratches and holes, achieving high-speed, 
accurate defect identification (printing type: nozzle-based).

Hu et al. [80] also reported the application of an enhanced 
YOLOv8 deep learning algorithm for defect detection in 3D 
printing, further demonstrating the potential of advanced 
object detection models for real-time monitoring and qual-
ity assurance in additive manufacturing (printing type: 
nozzle-based).

Aksoy and Ozsoy [81] achieved approximately 97% 
classification accuracy on a diverse image dataset of com-
mon FDM print failures by utilizing a MobileNetV3 model, 
highlighting the effectiveness of lightweight CNN archi-
tectures for automated error detection. These CNN-based 
approaches learn to recognize a combination of texture and 
shape features—such as the roughness of a warped edge or 
the wispy patterns of stringing—directly from the training 
images, making them highly sensitive to the specific defects 
they were trained to detect. Beyond simple classification, 
object detection networks have also been employed to locate 
defects spatially within images, further enhancing the prac-
ticality of deep learning methods for real-time monitoring 
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and quality control in additive manufacturing (printing type: 
nozzle-based).

Singh et al. [82] utilized a Data-Efficient Image Trans-
former (DeiT) architecture, fine-tuned to recognize three 
major types of print quality issues: bed warping, layer 
delamination, and gaps in raster infill lines. By attending 
to the overall structural patterns within an image, the trans-
former-based system was able to accurately identify these 
defects across a range of print geometries. Early results sug-
gest that transformer models, particularly when pretrained 
on large datasets, can achieve high classification accuracy 
for FFF print anomalies, comparable to that of Convolu-
tional Neural Networks (CNNs). However, due to their 
greater data and computational requirements, lightweight 
CNN-based solutions remain preferable for real-time defect 
detection applications (printing type: nozzle-based).

Szymanik et  al. [83] present a method for detecting 
and identifying defects in 3D-printed dielectric structures 
using thermographic inspection and deep neural networks 
(DCNNs). The approach involves applying a heat pulse to 
the object and using an infrared camera to capture a sequence 
of thermal images as the object cools down. These images 
are then analyzed using two methods: a correlation coeffi-
cient analysis to find the area of interest, and a deep convolu-
tional neural network (DCNN) for classification. The DCNN 
is trained to classify the presence, diameter, and depth of 
various defects, which are introduced into the 3D-printed 
samples. The key contribution is the hybrid approach that 
combines signal analysis with deep learning to achieve high 
accuracy in detecting and characterizing defects in a non-
contact and non-destructive manner.

5.3 � Comparative analysis of modern defect 
detection techniques

Modern defect detection techniques in 3D printing leverage 
advanced computational methods, including “machine learn-
ing, deep learning” and “real-time monitoring systems.” 
Unlike classical methods, these approaches do not solely 
rely on predefined reference models or handcrafted features; 
instead, they can autonomously learn feature representations 
and make intelligent predictions.

Machine learning and deep learning–based methods offer 
enhanced precision and adaptability in defect detection. 
They utilize vast datasets to train models that can detect and 
classify defects based on historical print data. Convolutional 
Neural Networks (CNNs), autoencoders, and transformers 
are some of the most commonly used architectures in mod-
ern defect detection.

These approaches outperform classical methods in han-
dling complex and large datasets, but they also require sig-
nificant computational power and large labeled datasets for 
training.

Table 3 summarizes the key characteristics of modern 
techniques for defect detection, focusing on the type of 
reference used, the extracted features, evaluation metrics, 
data format, input size, and inference time. This comparison 
highlights the diversity in data acquisition and analysis strat-
egies, ranging from full-reference geometric comparisons to 
no-reference texture-based methods.

To offer a rough estimate of computational performance, 
an “Inference Time per Image” column is included on the 
right side of the table.

Beyond computational efficiency, one of the key chal-
lenges in machine learning–based defect detection is the 
annotation of training data. Given the high variability of 
part geometries and defect types in AM, constructing large, 
labeled datasets is often impractical. Consequently, recent 
approaches increasingly rely on unsupervised or one-class 
learning techniques, which are trained solely on normal 
(defect-free) samples. This reduces the annotation burden 
and improves adaptability across different printing scenarios.

6 � Comparison of defect detection 
algorithms

6.1 � Classical algorithms versus modern algorithms

Classical pattern classification methods separate feature 
extraction and classification, relying on manually designed 
algorithms to extract features, followed by classifiers. These 
approaches are limited by the quality of hand-engineered 
features. In contrast, modern deep learning algorithms 
integrate feature extraction and classification into a single, 
learning-based process. This automatic feature learning sig-
nificantly improves performance and scalability, especially 
with complex and large datasets, driving advancements in 
fields like image recognition and defect detection. Table 4 
compares these two approaches.

6.2 � Full‑reference algorithms versus no‑reference 
algorithms

In full-reference methods, defect detection is performed by 
comparing the printed part to an ideal reference model or 
dataset. This reference could be a CAD model, a previously 
printed ideal part, or simulated data (such as STL files or 
G-code). While, in no-reference methods, defect detection 
does not depend on any reference data or predefined models. 
Instead, the method focuses on identifying visual or struc-
tural anomalies within the part being printed, independent 
of the specific design. Table 5 compares these two different 
approaches.
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Table 3   Comparative summary of modern techniques for defect detection

The table outlines the reference type, extracted features, evaluation metrics, data format, input image size, and inference time (if reported) for 
each method
*FlR: Full reference; **NR: not reported; ***NoR: No reference

Paper Ref. type Model type Metric used Data format Input size Inference 
time per 
image

Muktadir et al. [15] FlR* PointNET Accuracy Point cloud NR* NR
Sun et al. [66] FlR CNN Detection accuracy, 

fiber continuity, 
regularity, and surface 
uniformity

NR NR NR

Niu et al. [67] FlR Semi-Siamese con-
volutional neural 
network

Accuracy, macro-F1-
score, precision, 
recall, IOU, and 
F1-score for each 
class

A pair of 2D images 
for a single layer

NR 0.419 s

Caggiano et al. [14] NoR*** MobileNet-SSD Mean defective condi-
tion, accuracy

NR 160 × 160 pixels NR

Jin et al. [69] NoR CNN Accuracy RGB images 224 × 224 pixels NR
Razaviarab et al. [70] NoR CNN Classification accuracy RGB images NR NR
Banadaki et al. [71] NoR CNN F-score, sensitivity, 

precision, specificity, 
and accuracy

RGB images 600 × 600 pixels NR

Garfo et al. [72] NoR MobileNet-SSD Mean average preci-
sion, intersection-
over-union, accuracy

RGB images 300 × 300 pixels NR

Baumgart et al. [73] NoR CNN Balanced accuracy, 
class averaged 
sensitivity, precision, 
Cohen’s Kappa score

Thermographic images 270 × 270 images NR

Paraskevoudis et al. 
[74]

NoR CNN Precision, recall, 
F1-score, and average 
precision

RGB image 300 × 300 pixels 71 ms

Farhan Khan et al. 
[75]

NoR CNN Accuracy and uniform-
ity

RGB images NR NR

Brion et al. [76] NoR YOLOv3 Precision, recall, 
F1-score

RGB images 1280 × 720 pixels NR

Brion et al. [77] NoR Multi-head NN Accuracy RGB images 224 × 224 images NR
Nguyen et al. [78] NoR CNN Mean square error, 

mean absolute error
RGB images NR NR

Zhang et al. [17] NoR FDMNet Accuracy, sensitiv-
ity, specificity, ROC 
curve

Gray images 227 × 227 pixels 1.5 μs

Cao et al. [79] NoR YOLOv8 Mean average precision RGB images 640 × 480 pixels 80 ~ 480 ms
Wang et al. [18] NoR YOLOv8 Precision, recall, aver-

age precision, mean 
average precision, 
accuracy

RGB images 640 × 640 pixels 13.9 ms

Hu et al. [80] NoR YOLOv8 Precision, recall, mean 
average precision, 
F1-score

RGB images 3072 × 2048 pixels 10.8 ms

Aksoy et al. [81] NoR CNN Accuracy, precision, 
recall, and F1-score

RGB images 224 × 224 pixels NR

Singh et al. [82] NoR CNN Weighted classification 
accuracy, accuracy, 
precision, recall, 
F1-score

RGB images 224 × 224 pixels 0.1121 s

Szymanik et al. [83] NoR CNN Accuracy Thermographic images NR NR
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Table 5   Comparing the full-reference and no-reference methods

Aspect Full-reference methods No-reference methods

Reference dependence Relies on a reference model (e.g., CAD, STL) No reference model required
Detection approach Compare the print to an ideal reference Focuses on detecting visual or structural anomalies
Accuracy High accuracy due to comparison with ideal Less precise, focuses on generalized defect indicators
Setup complexity Requires generation and storage of reference models Easier setup, no model creation required
Application Best for controlled, precision environments Suitable for flexible or varied manufacturing tasks
Examples of use Geometric errors, misalignment, extrusion issues Surface defects, texture inconsistencies, cracks
Pros High reliability, suitable for precision parts Adaptable, low setup requirements
Cons Time consuming, inflexible for variable designs Less accurate, may miss subtle or small defects

Table 6   Evaluation results of different algorithms methods

Defect detection method: classic, full-reference

Paper Defect type or measurement Evaluation result

Patil et al. [10] Dimension measurement Error: 1.5 ~ 3.5%
Forte et al. [8] Slippage in prints Accuracy: 89.6%
Dabbagh et al. [45] Extrusion defects Prediction performance: 95.4%
Rill-García et al. [46] Lines separating of layers

Material texture classification
F-score: 91%
F-score: 94%

Zhao [47] Hump
Collapse
Poor bridging
Collapse and poor bridging
Hump and poor ridging
Hump and collapse

Accuracy: 99.89%
99.94%
99.68%
99.53%
99.66%
99.80%

Defect detection method: classic, no-reference
Paper Defect type Evaluation result
Wu et al. [23] Infill defects Accuracy: 95.51%
Yi et al. [51] Counter profile Accuracy: 0.5 mm
Kazemian et al. [55] Extrusion width variations Accuracy: within ± 1.7 mm
Okarma et al. [56] Surface quality distortions Accuracy: 96.8%
Fastowicz et al. [57] Surface quality distortions Accuracy: 90.5%
Okarma et al. [58] Surface quality distortions Accuracy: 96.8%
Fastowicz et al. [59] Surface quality distortions Accuracy: 79.5%
Liu et al. [61] Defects of under-fill Accuracy: 85%
Zhou et al. [19] Surface defects Accuracy: 97.20%
Defect detection method: modern, full-reference
Paper Defect type Evaluation result
Muktadir et al. [15] Surface defects Accuracy: 87.50%
Defect detection method: modern, no-reference
Paper Defect type Evaluation result
Caggiano et al. [14] Surface defects Accuracy: 99.40%
Jin et al. [69] Under-extrusion, over-extrusion Accuracy: 98.00%
Razaviarab et al. [70] Surface defects Accuracy: 100%
Garfo et al. [72] Surface defects Accuracy: 80.00%
Baumgartl et al. [73] Delamination and splatter Accuracy: 96.80%
Paraskevoudis et al. [74] Stringing F1-Score: 0.82 on training data
Farhan Khan et al. [75] Infill patterns Accuracy: 84.00%
Zhang et al. [17] Interlayer stripping Accuracy: 83.10%
Wang et al. [18] Surface defects Accuracy: 91.05%
Niu [67] Surface defects F1-Score: 0.9
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6.3 � Objective comparison of defect detection 
algorithms

Objectively comparing the presented methods poses signifi-
cant challenges. While some studies report quantitative per-
formance metrics, others offer only qualitative assessments, 
and direct comparisons are further complicated by variations 
in printer hardware, defect types, and dataset characteristics. 
Nevertheless, Table 6 provides a summary of the reported 
objective results across different studies.

The lack of a standardized dataset and the use of local 
datasets for algorithm evaluation prevent a fair and accurate 
comparison of the accuracy of different algorithms. As a 
result, comparing the accuracy values reported by various 
algorithms would not be entirely fair or reliable. This high-
lights the necessity of creating a comprehensive and publicly 
available dataset for benchmarking and comparing defect 
detection algorithms. However, the diverse approaches taken 
by different researchers to solve the problem make it highly 
challenging to develop a dataset that can adequately meet 
the needs of all algorithms.

7 � Real‑time feedback systems

Real-time feedback systems in 3D printers can be catego-
rized based on the type of feedback signals they use and the 
control algorithms they implement.

7.1 � Classification of real‑time feedback systems

•	 Sensor-based feedback systems: optical (cameras), ther-
mal (infrared), acoustic (vibrations), and pressure sen-
sors.

•	 Data processing and signal interpretation: techniques 
such as edge detection, Fourier analysis, and AI-based 
anomaly detection.

•	 Control algorithm taxonomy: PID control, adaptive con-
trol, and AI-driven predictive control.

7.2 � Types of feedback signals used in defect 
detection

•	 Geometric feedback: vision-based tracking for layer mis-
alignment.

•	 Thermal feedback: infrared sensors detecting overheating 
or under-sintering.

•	 Acoustic and vibration feedback: detecting mechanical 
inconsistencies via sound patterns.

7.3 � Control algorithms for defect mitigation

•	 PID-based control: proportional-integral-derivative 
adjustments.

•	 Fuzzy logic control: adaptive, rule-based error correc-
tion.

•	 Machine learning control: predictive AI models for defect 
pre-emptive correction.

Table 7 shows a comparison between different feedback 
systems.

Among them, real-time feedback, based on visual percep-
tion, play a vital role in 3D printing by integrating machine 
vision and feedback loops to dynamically adjust the printing 
process, preventing the propagation of defects. The inclusion 
of these mechanisms significantly improves both print qual-
ity and efficiency.

In [69], the system identifies errors like insufficient mate-
rial flow or misalignment and implements real-time correc-
tions. Parameters such as flow rate, lateral speed, Z-offset, 
and hotend temperature are adjusted dynamically, with 
G-code commands updated on the fly to optimize the ongo-
ing print. Similarly, [77] employs a multi-head CNN trained 
on extensive datasets to detect and correct multiple param-
eters in real time, such as print speed and flow rate. These 
adjustments ensure optimal print outcomes across various 
materials and printer setups.

The system in [78] uses real-time data analysis, guided 
by machine learning models, to optimize printing param-
eters. Adjustments to extrusion rates and speeds are 
reflected through G-code modifications, enhancing overall 
efficiency. Article [59] discusses the use of real-time qual-
ity assessments, where filament feed rates and print speeds 
are adjusted to meet desired specifications. By using image 
entropy as a quality metric, the system fine-tunes parameters 
based on surface characteristics.

In [57], a depth map–based quality assessment system 
triggers G-code adjustments, further refining print outcomes. 
The system can modify printer settings, such as layer height 
and head calibration, based on detected defects. [38] focuses 

Table 7   Comparison of feedback systems in 3D printers

Feedback type Detection mechanism Control method Advantages Limitations

Optical Image analysis AI-based correction High accuracy Requires high computing power
Thermal Infrared monitoring PID/fuzzy logic Effective for overheating Limited for small-scale defects
Acoustic Sound pattern recognition Adaptive AI Detects mechanical faults Limited dataset availability
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on identifying discrepancies in prints and dynamically 
adjusts printer settings through recalibrations of the print 
head and layer height, improving quality through continu-
ous feedback.

The feedback mechanism in [70] relies on a closed-loop 
system to automatically adjust G-code commands. The sys-
tem can alter laser scanning parameters or material flow in 
response to detected defects, improving the quality of the 
final print. Meanwhile, [18] leverages cloud-based monitor-
ing for real-time defect analysis, enabling immediate G-code 
adjustments and continuous quality control.

Article [33] shows how imaging feedback drives adjust-
ments to material flow rates, compensating for previously 
detected defects. In [43], a phased feedback mechanism 
detects defects and provides corrective feedback for sub-
sequent layers, implementing adjustments such as angle 
modification and material refeeding. [66] underscores the 
importance of in situ monitoring, using machine learning 
models to detect anomalies in real time and initiate correc-
tive actions. Lastly, [55] discusses how real-time monitor-
ing assesses extrusion quality by detecting issues like over-
extrusion or under-extrusion, providing corrective signals to 
enhance print quality.

7.4 � Reinforcement learning for closed‑loop control

Recently, reinforcement learning (RL) has gained attention 
as a promising framework for closed-loop control in addi-
tive manufacturing, particularly in simulated environments. 
RL enables the agent (e.g., the printer controller) to learn 
optimal printing strategies by interacting with a simulated or 
real process environment and receiving feedback in the form 
of rewards or penalties. This is especially useful in dynamic 
or non-linear processes such as layer deposition, temperature 
regulation, or defect correction.

Some efforts employ RL (e.g., Q-learning) to adaptively 
manage toolpath and orientation planning in fused deposi-
tion modeling (FDM), reducing support material use, print 
time, and surface roughness compared to traditional genetic-
algorithm approaches [84]. Reinforcement learning has also 
been used to control metal additive processes such as laser-
directed energy deposition by tuning laser power and scan 
speed to maintain desirable melt-pool depths in real time—
without prior data or static models [85].

In parallel, closed-loop architectures using deep rein-
forcement learning—such as deep Q-learning or PPO—have 
been integrated with vision or sensor feedback to moni-
tor and correct defects like over- or under-extrusion. For 
instance, vision-aware RL controllers trained in simulation 
can adjust extrusion parameters in real time with minimal 
sim-to-real gap, significantly enhancing print consistency 
and defect mitigation [86]. Additionally, hybrid RL frame-
works coupled with multi-objective optimization techniques 

(e.g., neural nets, topology optimization) have yielded 
15–25% reductions in material and time use and decreased 
defect rates by up to 30% in validated production workflows 
[87]. Overall, RL provides a versatile, dynamically adaptive 
approach for real-time process control, defect reduction, and 
parameter tuning across both FDM- and metal-based addi-
tive manufacturing.

7.5 � Future directions

•	 Multi-sensor fusion: combining various sensors for better 
accuracy.

•	 Edge processing: reducing latency by performing com-
putations locally.

•	 Self-learning adaptive systems: continual improvement 
of models through real-time feedback data.

By integrating advanced real-time adaptive feedback 
mechanisms, 3D printing can become more resilient against 
defects, improving both efficiency and print quality while 
minimizing material waste.

8 � Conclusion and future directions

Defect detection in 3D printing is a critical area of research, 
driven by the increasing adoption of additive manufactur-
ing technologies in high-stakes industries such as aerospace, 
healthcare, and automotive. While 3D printing offers signifi-
cant advantages in terms of flexibility and design complex-
ity, it is also prone to defects that can compromise the struc-
tural integrity, surface quality, and dimensional accuracy 
of the final product. Traditional post-production inspection 
methods are often insufficient, prompting the need for real-
time monitoring systems that can detect and correct defects 
during the printing process.

The review highlights the evolution from classical to 
modern, deep learning–based approaches for defect detec-
tion. Classical methods rely on manually designed algo-
rithms and predefined feature extraction techniques, which, 
while effective in certain cases, struggle to manage the 
complexity and high dimensionality of modern 3D printing 
processes. In contrast, deep learning models, particularly 
Convolutional Neural Networks (CNNs), offer significant 
improvements by automatically learning features and ena-
bling more accurate, real-time detection of defects.

Additionally, the review compares full-reference and no-
reference methods for defect detection. Full-reference meth-
ods provide high accuracy by comparing the printed part to 
an ideal reference model, while no-reference methods are 
more flexible, detecting visual or structural anomalies with-
out the need for predefined models. Both approaches have 
their advantages, with full-reference methods excelling in 
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precision environments and no-reference methods offering 
adaptability and ease of use.

As real-time defect detection technologies continue to 
advance, the integration of machine vision and deep learn-
ing promises to enhance the reliability, efficiency, and sus-
tainability of 3D printing. Future trends point toward the 
development of more autonomous, closed-loop systems that 
adjust printing parameters dynamically, minimizing defects 
and material waste while ensuring the quality of printed 
components.

8.1 � Practical applications

The application of defect detection techniques in 3D print-
ing extends across multiple industries, including aerospace, 
healthcare, automotive, and consumer goods manufactur-
ing. By integrating advanced defect detection systems, 
manufacturers can significantly enhance production quality, 
minimize material waste, and reduce costly post-production 
inspections. For instance, real-time monitoring systems in 
biomedical 3D printing can ensure the integrity of patient-
specific implants, while in aerospace, defect detection pre-
vents structural weaknesses in critical components.

8.2 � Future directions

Further advancements in defect detection can be achieved 
through the following directions:

•	 Integration of edge computing: enhancing real-time deci-
sion-making by processing defect detection data locally 
rather than relying on cloud-based computation.

•	 Self-learning AI models: implementing adaptive machine 
learning techniques that improve detection accuracy over 
time by learning from newly identified defect patterns.

•	 Multi-sensor fusion systems: combining optical, thermal, 
and acoustic sensors to provide a more holistic approach 
to defect detection.

•	 Automated correction mechanisms: developing feed-
back-controlled printing adjustments to instantly rectify 
detected defects during the printing process.

These innovations will further advance the reliability and 
efficiency of 3D printing, making defect-free production 
more attainable and sustainable.
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