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Abstract: In this study, the performance of the modified soil moisture analytical relationship (MSMAR) in concurrent estimation of deep
soil moisture (DSM), evapotranspiration (ET), and deep percolation (DP) derived from surface soil moisture (SSM) variations on a sprinkler-
irrigated Triticale farm in northeast Iran was investigated. Soil moisture content across the growing season was monitored using time-domain
reflectometry (TDR) sensors at seven depths down to 3 m, deployed at five locations on the farm. For model evaluation, HYDRUS-1D served
as the benchmark, utilizing initial soil hydraulic parameters derived from RETC and ROSETTA software based on soil texture measurements.
As a resource-efficient model, MSMAR underwent two calibration schemes employing MATLAB’s genetic algorithm. The first scheme
aimed to minimize the MSMAR’s DSM errors with the TDR measurements, resulting in MSMAR’s consistent DP and ET estimates com-
parable to those of HYDRUS-1D. Notably, the performance of the MSMAR’s DSM estimates is equal or superior than those of HYDRUS-1D
depending on the soil simulation depth. The second calibration scheme aimed to minimize the errors between the MSMAR’s outputs with
those of HYDRUS-1D (i.e., SM, ETand DP) demonstrating MSMAR adaptability relying on minimal information about soil texture, climate,
and surface soil moisture variations. Detailed analysis via percentage root mean square error and R2 values across depths highlighted
MSMAR’s superior performance within the 50–100 cm soil depth. HYDRUS-1D’s consideration of root water uptake led to sharp declines
in DSM and DP at the Triticale root depth (100 cm), contrasting MSMAR’s gradual decline continuing to 200 cm. As a promising
tool, MSMAR can be implemented in diverse environmental applications, notably in resource-scarce regions. DOI: 10.1061/JIDEDH.
IRENG-10454. This work is made available under the terms of the Creative Commons Attribution 4.0 International license, https://
creativecommons.org/licenses/by/4.0/.
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Introduction

The quantification of hydrological components in the soil is crucial
for different water resource management applications such as irri-
gation, drinking water, and industry (Brunner and Simmons 2012).
The hydrological variability is predicted to increase with climate
change, making predictions for recharge and groundwater storage
even more important to implement and to maintain sustainable
water use (Vogel 2019). Groundwater is usually the only source
of water in arid and semiarid regions due to the low amount
of precipitation and lack of surface water resources. Water bal-
ance estimation is one of the most sensitive steps in groundwater
management, which have a critical component in the commonly
known “recharge rate estimation” (Vázquez-Suñé et al. 2006;
Spelman et al. 2013).

Most of the soil water processes in agricultural fields occur
while the soil is in unsaturated conditions (Hillel 1998). The
unsaturated soil is well-known as a complicated porous medium
due to its temporally and spatially variable parameters. Conse-
quently, the unsaturated water flow in such condition is hard to
measure or simulate, especially when hysteresis (i.e., the depend-
ence of soil water retention curve on whether soil is wetting or
draining) and root water uptake are taken into account (Lipiec
and Tarkiewicz 1990; Hillel 1998). Recently, unsaturated flow
modeling has become one of the most active topics of research in
hydrology and soil physics (Simunek et al. 2008; Zhang et al.
2019).
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Many models of varying degree of complexity and dimension-
ality have been developed during the past several decades to quan-
tify the basic physical and chemical processes affecting water flow
and pollutant transport in the unsaturated zone (Langergraber and
Simunek 2005; Simunek et al. 2005). These models are now being
used increasingly for a wide range of applications in research and
management of natural subsurface systems. Modeling approaches
range from relatively simple analytical and semianalytical models
[e.g., SWI (Wagner et al. 1999) and SMAR (Manfreda et al. 2014)]
to more complex numerical codes [e.g., HYDRUS (Simunek et al.
2008), MODFLOW-SURFACT (Panday and Huyakorn 2008),
STOMP (White et al. 2008), SWAP (van Dam et al. 2008), and
TOUGH2 (Finsterle et al. 2008)] that permit consideration of a
large number of simultaneous nonlinear processes. Among the vari-
ous proposed methodologies (Mansell et al. 2002; An et al. 2010;
An and Yu 2014), the numerical simulation of transient water flow
in saturated–unsaturated porous media carried out using HYDRUS
software has been widely used in many different research areas
such as drip and pitcher irrigation modeling (Ebrahimian et al.
2013; Mohammad et al. 2014; Yang et al. 2019), root zone and
deep vadose zone modeling (Kornelsen and Coulibaly 2014; Zhang
et al. 2020), groundwater modeling (Assefa and Woodbury 2013;
Vogel 2019), and hydrology (Jandl et al. 2002; Hilten et al. 2008).

Almost all of the abovementioned models require information
about the soil moisture status; however, the field measurements of
soil moisture and soil characteristics are often time-consuming and
require great efforts to adequately sample even small farms making
the model with high complexity or requirement to the measured
data limited to small scales and research applications (Manfreda
et al. 2014). With the advancement of satellite technologies
(e.g., passive microwave data, Radar data, etc.) and the production
of surface soil moisture data on a daily basis for the entire globe,
a very suitable possibility for modeling the soil water balance in the
large and small scales has been created. On the one hand, satellite
data are only representative of the top 5–10 cm of the top soil maxi-
mum; on the other hand, the high volume of calculations and input
data of advanced numerical models has greatly limited the pos-
sibility of distributed modeling in large scales with them (Wagner
et al. 1999; Manfreda et al. 2014; Ragab 1995). The solution to
these problems would be to find a robust straightforward relation-
ship between the surface soil moisture and deep soil moisture.
While the empirical and semiempirical methods for finding the re-
lationship between the surface and deep soil moisture are limited to
the areas they were developed for, the description of an analytical
relationship between the soil moisture in the first centimeters of the
soil column, hereafter referred to as surface soil moisture (SSM),
and the next meters of it, hereafter referred to as deep soil moisture
(DSM), has been emphasized as a significant challenge (Ragab
1995; Puma et al. 2005; Sabater et al. 2007; Albergel et al. 2008;
Ochsner et al. 2013).

The soil moisture analytical relationship (SMAR) was derived
from a simplified soil water balance equation for arid and semiarid
environments in the absence of the lateral flow providing a relation-
ship to estimate DSM from the SSM variations (Manfreda et al.
2014). SMAR has some advantages over the aforementioned mod-
els making it theoretically robust and practically low-demanding:
(1) it has an analytical solution to a robust physical soil water bal-
ance equation; (2) it requires a few input parameters and variables;
and (3) its parameters can be directly determined knowing the soil
texture and climate conditions of the study area. Applications of the
SMAR model in estimating the DSM from the time series of in situ
and remotely sensed SSM proved its performance in providing a
good description of DSM at both local and regional scales [e.g.,
(Manfreda et al. 2014; Baldwin et al. 2017; Faridani et al. 2017a, b;

Gheybi et al. 2019; Zhuang et al. 2020)]. In the original model pro-
posed by Manfreda et al. (2014), the water loss function was as-
sumed to be a linear function of current soil moisture content
and maximum water loss in the soil, which is in a way equal to
the sum of maximum evapotranspiration and deep percolation. Far-
idani et al. (2017b) proposed to improve SMAR’s performance by
assuming a soil water loss function that could account for the non-
linearity of the water loss process, suggesting this modified SMAR
(MSMAR) model could estimate other soil hydrological variables.

The aim of this study was, first, to translate the variability ob-
served in SSM into the hydrological constituents of the underlying
soil profile through redefining the MSMARmodel to produce daily
DSM, evapotranspiration (ET), and deep percolation (DP)—within
arid and semiarid regions, specifically in scenarios devoid of lateral
flow. Second, the study sought to assess and compare these outcomes
with those derived from the widely utilized numerical method,
HYDRUS-1D, by utilizing field measurements conducted in a
sprinkler-irrigated farm situated in northeast Iran.

Materials and Methods

Data and Study Area

For the purpose of this research, the information presented by
Naghedifar et al. (2018) was exploited including the soil moisture
measurements, meteorological data, soil physical properties, volume
of applied irrigation water, and cultivation dates. The study area in
this research was a 17-ha farm (F) growing triticale (x Triticosecale
Wittmack) under sprinkler irrigation and located near Neishabour
(58° 39′ 2″ E and 36° 11′ 3″ N), Iran [Figs. 1(a and b)]. Triticale is
a hybrid of wheat and rye with maximum rooting depth of 100 cm
and soil water depletion fraction of 0.55, which is the average fraction
of total available soil water that can be depleted from the root zone
before plant water stress (reduction in ET) occurs (Allen et al. 1998).
Annual average precipitation and potential evapotranspiration at the
experimental site are 247 and 2,335 mm, respectively (Naghedifar
et al. 2018). The highest and lowest monthly-averaged precipitations
occur in March and August (51 and 0.16 mm, respectively).

The daily soil moisture profile in the study area [Fig. 1(a)], was
monitored via five observation wells [Fig. 1(b)] equipped with eight
REC time-domain reflectometry (TDR) sensors (Naghedifar et al.
2018) installed down to 3 m to capture the root zone soil moisture
variations at a high vertical resolution [Fig. 1(c)]. Several soil
samples were obtained whilst drilling each of the observation wells,
which were analyzed in the Laboratory of Water Science and En-
gineering Department of Ferdowsi University of Mashhad to deter-
mine the soil parameters and water content of different soil layers in
the field. Sensor calibration was performed following the procedure
outlined by Cobos and Chambers (2010) and using the regression
equation between the calibrated and measured soil water contents
(y ¼ 0.9959xþ 0.0007; R2 ¼ 0.947). These data were also used to
set up initial conditions of the models and validate the simulation
results. The overall soil water content in the field was then calcu-
lated averaging the TDR values obtained from the five monitoring
wells (i.e., spatial average). Table 1 summarizes the results of the
soil physical properties at the experimental site.

HYDRUS-1D Numerical Model

HYDRUS-1D (Simunek et al. 2005) is a physically based model to
solve and couple governing equations of water flow, solute, and
heat transport along with root water and nutrient uptake. Water flow
in a variably saturated soil in HYDRUS-1D is described by the
mixed form of a Richards’ equation (Richards 1931)
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∂θ
∂t ¼

∂
∂z

�
KðψÞ ∂ψ∂z þ KðψÞ

�
− RWU ð1Þ

where θ = volumetric water content [L3L−3]; ψ = soil water pres-
sure head [L]; K = saturated/unsaturated hydraulic conductivity
[LT−1]; t = time [T]; z = vertical space coordinate [L]; and
RWU = root water uptake [L3L−3T−1]. Thanks to the constitutive
relations of soil water retention curve θðψÞ and saturated/
unsaturated hydraulic conductivity, HYDRUS-1D employs a
so-called modified-Picard iteration scheme (Celia et al. 1990)
to solve Eq. (1) iteratively. Among different options available
in HYDRUS-1D, the following constitutive relations of Van
Genuchten (1980) have been used:

θðψÞ ¼ θr þ
θs − θr

ð1þ ðαψÞλÞϕ ð2Þ

KðψÞ ¼ KsS
1
2
e

�
1 −

�
1 − S

1
ϕ
e

�ϕ�2
where ϕ ¼ 1 − 1

λ
; λ > 1

ð3Þ

Se ¼
θ − θr
θs − θr

ð4Þ

where Se = effective saturation [L3L−3]; θs and θr = saturated and
residual water contents, respectively [L3L−3]; α = inverse of
air-entry value [L−1]; ϕ and λ = pore size distribution indices;
and Ks = saturated hydraulic conductivity [LT−1]. The root water
uptake module of HYDRUS-1D (Šimůnek and Hopmans 2009)
employs the following equation to obtain noncompensated actual
root water uptake:

RWUðψ · z · tÞ ¼ αsðψ · z · tÞbðz · tÞTpðtÞ ð5Þ

where αs (ψ; z; t) = stress response function; b = one-dimensional
(1D) normalized water uptake distribution function [L−1]; and Tp =
potential transpiration rate [LT−1]. In this study, the normalized
water uptake distribution function of Hoffman and Van Genuchten
(1983) and stress response function of Feddes (1982) have been
employed, which are demonstrated by Eqs. (6) and (7)

Fig. 1. (Color) (a) Location of study farm in Neishabour watershed; and (b) layout of sprinkler and furrow irrigation systems along with the locations
of two- and three-meter-deep monitoring wells. The natural look image was take from Google Earth (base map © Google Earth, Image © 2024Maxar
Technologies). (c) Schematic diagram showing the installation of soil moisture sensors into the monitoring wells (adapted from Naghedifar et al.
2018).

Table 1. Soil physical properties of experimental plots at different layers

Soil depth (cm)

Soil mineral particles (%)

Soil texture ρba (g=cm3) SVWCb (%) θs
c Ks

d (cm=day)Sand Silt Clay

0–50 29.08 30.00 40.92 Clay loam 1.60 42 0.4418 3.84
50–100 44.25 34.65 21.10 Loam 1.52 34 0.3991 9.30
100–150 32.75 35.75 31.50 Clay loam 1.65 41 0.4418 2.81
150–200 61.00 26.75 12.25 Sandy loam 1.50 36 0.387 31.62
200–250 68.50 19.50 12.00 Sandy loam 1.61 32 0.387 28.41
250–300 55.60 24.40 20.00 Sandy loam 1.56 36 0.387 13.99
aBulk density.
bSaturated volumetric water content.
cThe calibrated parameters of van Genuchten’s water retention model: soil moisture at saturation point.
dThe calibrated parameters of van Genuchten’s water retention model: hydraulic conductivity at saturation point.
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bðzÞ ¼

8>>>>>>><
>>>>>>>:

1.6667
LR

z > L − 0.2LR

2.0833
LR

�
1 − L − z

LR

�
L − LR < z < L − 0.2LR

0 z < L − LR

ð6Þ

αðhÞ ¼

8>>>>>>>>>><
>>>>>>>>>>:

h − h4
h3 − h4

h4 < h ≤ h3

1 h3 < h ≤ h2

h − h1
h2 − h1

h2 < h ≤ h1

0 h ≤ h4 or h > h1

ð7Þ

where L = total depth of soil that is intended to be simulated [L];
LR = maximum root depth [L]; and h1, h2, h3, and h4 = pressure
head threshold parameters [L]. Eq. (1) is a partial differential equa-
tion requiring initial condition and two boundary conditions. The
initial soil moisture was measured during the experiment by means
of soil moisture sensors installed in the observation wells. The
lower boundary condition was set as the free drainage boundary,
and the upper boundary (at soil surface) was set as the atmospheric
boundary condition. This requires the variations of the potential
evaporation rate to be specified during the experiment. To this
end, the potential evapotranspiration rate (ETP [LT−1]) was calcu-
lated following the recommendations of Allen et al. (1998).

During the iterative process of solving Richards’ equation,
HYDRUS-1D calculates the distribution of pressure head in the soil
profile at each time step. Therefore, water flux q [L3L−2T−1] can be
computed at an arbitrary nodal point by discretizing the Darcy–
Buckingham equation

q ¼ −KðψÞ dψ
dz

ð8Þ

where positive and negative fluxes at each node represent upward
and downward movement of water in the soil profile, representing
ET and DP, respectively.

Modified Soil Moisture Analytical Relationship

Manfreda et al. (2014) presented the SMAR model to define a soil
water balance relationship in a two-layered soil profile in which
infiltration is the most important flux between the two layers
and other processes, such as lateral flow and capillary rise, are
assumed negligible. The infiltration is not expressed as a function of
precipitation, but as a function of the percentage of soil moisture in
the first layer, which allows us to obtain soil moisture in the second
layer as a function of soil moisture in the top layer:

n1Zr1yðtÞ ¼ n1Zr1y½s1ðtÞ · t� ¼ n1Zr1

� ðs1ðtÞ− sc1Þ: sc1 < s1ðtÞ
0: s1ðtÞ ≤ sc1

ð9Þ

where yðtÞ = fraction of soil saturation infiltrating into the deep
layer; n1 = soil porosity; Zr1 [L] = soil depth; s1ð¼ θ1=n1Þ = surface
relative saturation; and sc1 = value of field capacity relative satura-
tion. From now on the subscripts 1 and 2 in the formula represent the
soil’s first/surface and second/deep layers, respectively. The flux
from the surface layer is only considered significant if the moisture
content is higher than the field capacity and it occurs in less than

1 day following the Green–Ampt infiltration relationship (Green
and Ampt 1911). By defining x2 ¼ ðs2-sw2Þ=ð1-sw2Þ as the effective
relative saturation of the soil second layer and ω0 ¼ ð1-sw2Þn2Zr2 as
the maximum soil water storage, the SMAR soil water balance is
described as

ð1 − sw2Þn2Zr2
dx2ðtÞ
dt

¼ n1Zr1yðtÞ − V2x2ðtÞ ð10Þ

where s2 = second layer’s current relative saturation; sw2 = relative
saturation at the wilting point; n2 = soil porosity; Zr2 [L] = soil
depth; V2 [LT−1] = soil water loss coefficient accounting for both
evapotranspiration and percolation losses; and x2 = effective relative
soil saturation of the second soil layer. The second term of the right
side of Eq. (10) represents a linear soil water loss function where soil
water loss would be linearly reduced from a maximum value at the
saturation point to zero at the wilting point (Fig. 2).

Faridani et al. (2017b) presented the MSMAR model by substi-
tuting the constant V2 with a variable coefficient LðtÞ that estimates
a different maximum soil water loss in each day as the sum of
potential ET and DP in that day:

LðtÞ ¼ ETðtÞ þ DPðtÞ ð11Þ

where at a certain soil saturation in the second layer (s2),
LðtÞ [LT−1] = total soil water loss; ETðtÞ [LT−1] = soil water loss
due to evapotranspiration; and DPðtÞ [LT−1] = soil water loss due
to deep percolation. According to Laio et al. (2001), the maximum
DP occurs under saturated conditions and decreases exponentially
with decreasing soil hydraulic conductivity from Ks at saturation
point to zero at field capacity:

DPðtÞ ¼
�
Kss2ðtÞc sc2 < s2ðtÞ ≤ 1

0 sw2 < s2ðtÞ ≤ sc2
ð12Þ

where Ks [LT−1] = hydraulic conductivity of soil saturation; and
c = empirical parameter of power function. The amount of loss due
to evapotranspiration was also calculated from the following
equation (Laio et al. 2001):

Fig. 2. (Color) Typical water loss function [LðsÞ] of SMAR model
(green) and MSMAR model (blue) for the typical climate, soil, and
vegetation conditions in arid and semiarid regions.
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ETðtÞ ¼

8><
>:

ETmaxðtÞ s�2 < s2ðtÞ ≤ 1

ETw þ ðETmaxðtÞ− ETwÞ
s2ðtÞ− sw2
s� − sw2

sw2 < s2ðtÞ ≤ s�2

ð13Þ
where sw2 = second layer’s saturation degree at the wilting point;
s� = saturation degree at the stomata closure; ETmax [LT−1] =
daily potential evapotranspiration; and ETw [LT−1] = evapotran-
spiration at the wilting point. The water loss function of the
MSMAR can be compared with that of SMAR in Fig. 2. In this
regard, L2ðtÞ can be replaced with V2 to account for nonlinearity
of the soil water loss, and Eq. (11) becomes

ð1 − sw2Þn2Zr2
dx2
dt

¼ n1Zr1yðtÞ − L2ðtÞx2ðtÞ ð14Þ

Eq. (14) can be redefined using the coefficients a and b as
follows:

a ¼ LðtÞ
ð1 − sW2Þn2Zr2

· b ¼ n1Zr1
ð1 − sW2Þn2Zr2

ð15Þ

The value of these parameters can be directly related to the depth
of the two layers and the soil water loss coefficient. As a result, the
soil water balance relationship becomes

dx2ðtÞ
dt

¼ byðtÞ − ax2ðtÞ ð16Þ

Assuming an initial condition for relative saturation x2ðtÞ equal
to zero, the analytical solution for this linear differential equation is

x2ðtÞ ¼
Z

t

0

beaðt 0−tÞyðt 0Þdt 0 ð17Þ

For practical applications, the relationship can be represented
discretely:

x2ðtjÞ ¼
Xj

i¼0

beaðti−tjÞyðtiÞdt ð18Þ

Assuming Δt ¼ ½tðjÞ − tðj-1Þ� and extending Eq. (18), the
following equation is obtained for soil moisture in the second layer
based on the time series of surface soil moisture:

x2ðtjÞ ¼ x2ðtj−1Þe−aðtj−tj−1Þ þ byðtjÞðtj − tj−1Þ ð19Þ

And it can be rewritten as a function of s2 as follows:

s2ðtjÞ ¼ sw2 þ ðs2ðtj−1Þ − sw2Þe−aðtj−tj−1Þ
þ ð1 − sw2ÞbyðtjÞðtj − tj−1Þ ð20Þ

The main parameters of MSMAR include Zr1, Zr2, n1, n2, sc1,
sc2, s�2, sw2, Ks, c, ETmax, and ETw. Since there is a clear physical
meaning to each parameter, they can be determined according to
the soil texture using reference tables in the literature (e.g., Laio
et al. 2001; Manfreda et al. 2014; Faridani et al. 2017b) or can be
calibrated based on the field data. In the case of ETmax and ETw,
they can be determined based on the climatic conditions of the
study area.

Data Refactoring and Calibration

HYDRUS-1D can calculate most of its outputs (i.e., DSM and DP)
at each node of the mesh created from the whole soil column;

however, MSMAR’s outputs represent the overall estimate of the
whole second layer of soil. Therefore, the outputs from both models
as well as TDR measurements should be refactored in a way that
they represent the same concept. In this regard, the weighted aver-
age of the TDR measurements and HYDRUS-1D DSM estimates
according to their representing depth should be calculated [see
Fig. 1(c)]. The resulted values should then be divided by the second
layer porosity (n2) to represent the soil relative saturation as
MSMAR does. For example, the average relative saturation of a
soil column with 100 cm depth (i.e., 15 cm of surface layer + 85 cm
of second layer) is calculated as s2100 cm ¼ 1=n2½ð15=85Þ×
θ30 cm þ ð20=85Þ × θ50 cm þ ð50=85Þ × θ30 cm�.

The DP estimates of MSMAR and HYDRUS-1D refer both to
the same concept, which is the water amount passed through a
certain depth in the soil, so there is no need for change. In the case
of actual evapotranspiration (ETa), HYDRUS-1D estimates the
amount of ETa as a function of crop coefficient and independent
from the SM status, whereas MSMAR estimates it as a function of
SM status. In other words, HYDRUS-1D produces only one ETa
with which all MSMAR ETa values must be compared.

In order to calibrate HYDRUS-1D, the initial guess for soil
hydraulic parameters can be obtained using RETC (Leij et al. 1992)
and ROSETTA (Schaap et al. 2001) software based on the soil
texture measurements (Table 1). These values can then be fine-tuned
in the calibration phase to improve the accuracy of simulations.
Root water uptake parameters of Feddes’ function (Feddes 1982)
can be selected from Wesseling et al. (1991).

The MSMAR’ parameters can be calibrated using a genetic
algorithm in the MATLAB software (The MathWorks, n.d.) with
the objective function of minimum root mean square error (RMSE)
between the observed and estimated values assuming the lower
boundary (LB) and upper boundary (UB) conditions according to
the soil and climatic characteristics.

Upon data refactoring, the MSMAR model can undergo two
calibration schemes to understand how the MSMAR performed
compared to the measured data and to the numerical simulations.
These two calibration schemes aim at minimizing the RMSE
between the MSMAR estimates and two sets of reference data:
(1) measured TDR values; and (2) HYDRUS-1D outputs (i.e., SM,
ET, and DP), respectively. Ideally, the first calibration scheme
should have incorporated actual DP and ET measurements, poten-
tially obtained via field installations such as Lysimeters; however,
only TDR measurements were available due to the constraints.

Results

HYDRUS-1D and MSMAR models were calibrated following
the instructions in the section “Data Refactoring and Calibration”
for a triticale field in Iran. Table 2 provides the calibrated param-
eters for each calibration scheme as well as the UBs and LBs of the
MSMAR parameters based on the Table 1. The remaining MSMAR
parameters of Eq. (13) (i.e., ETw and ETmax) were assumed to be
equal to a constant daily value (0.001 cm=day) and daily potential
evapotranspiration (ETp) estimated by FAO dual crop coefficient
method (see section 3.2), respectively. In the next step, both models
simulated the soil water balance parameters (i.e., SM, ET, and DP)
of the triticale field for a period of six months starting from sow-
ing to harvest date (November 1, 2012 through April 22, 2013).
For HYDRUS-1D, the rooting depth of the triticale was assumed to
be 1 m and the effect of salinity was assumed to be negligible since
soil and water quality samples in the region showed average salinity
values of 2.89 and 2.24 dS ·m−1, respectively.
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Soil Moisture Status

The first TDR installed under soil surface assumed to represent the
surface layer of MSMAR model [Zr1 ¼ 15 cm, Fig. 1(c)], and its
measurements were used to calculate SSM and infiltration from the
first to the second layer in Eq. (9). Figs. 3(a–g) illustrate the SM
time series for a soil column with different depths (30, 50, 100, 150,
200, 250, and 300 cm) calculated by theMSMAR and HYDRUS-1D
as well as the TDRmeasurements. As explained in the section “Data
Refactoring and Calibration,” the values in Fig. 3 were refactored to
represent the average SM status for the soil column with specific
depth. Fig. 3(h) illustrates the precipitation and irrigation events dur-
ing the study period. Since such soil recharging events were very
important to the performance of MSMAR (Manfreda et al. 2014;
Faridani et al. 2017a, b; Gheybi et al. 2019), and since the TDR
data were missing during some of these events, it was assumed that
the precipitation and irrigation events greater than 15 mm could
reach the surface layer to the saturation state (i.e., s1 ¼ 1).

Fig. 3 shows that the precipitation and irrigation events could
effectively recharge the soil profile to the field capacity (≈0.8)
down to the triticale root zone (100 cm). For the HYDRUS-1D
model, the variation and magnitude of soil saturation decreased
dramatically beneath the root zone (Zr2 > 100 cm) indicating
the significance of considering the root water uptake in this model,
whereas the DSM decreased more gradually and reached to a
steady state in Zr2 > 200 cm for the MSMAR model as a result of
not considering directly the root water uptake into account. The
MSMAR DSM-30cm time series in Fig. 3(a) exhibited a charging/
discharging pattern after the infiltration event unlike the deeper
depths [Figs. 3(b–g)]. This normally happens when the fraction
of soil water infiltrated into the lower layer [yðtÞ in Eq. (9)] is
bigger than the total soil water losses [L (t) in Eq. (11)], so the
process of depleting the soil would last for a few days.

For quantitative interpretations, Table 3 presents statistical
errors (percentage of average root mean square error, RMSE%) and
correlation (coefficient of determination, R2) indices between the
DSM estimated by the MSMAR and HYDRUS-1D models. Since
the RMSE has the same unit of the study parameter, the magnitude
of data affects the magnitude the RMSE. Given the varying mag-
nitude of DSM along the soil column, the statistical indices needed
to be unit-less (i.e., normalized) for comparative purposes. Hence,
the RMSE for each depth was divided by the average of DSM
values at that depth to express it as a percentage (RMSE%).

The first and second rows of Table 3 show the performance of
MSMAR and HYDRUS-1D when both calibrated and compared
with the TDRs. The results showed that both models had the best
DSM estimates with a 100 cm soil column and that MSMAR had
higher performance than HYDRUS-1D in estimating DSM in all
depths in terms of higher R2 and lower RMSE%. The third and
fourth rows of Table 3 show the performances of MSMAR when
calibrated with the TDRs and HYDRUS-1D, respectively, and in
comparison with the HYDRUS-1D’s DSM results. The calibration
criterion in the fourth row was to produce the minimum RMSE
among all the produced variables by the two models (i.e., SM, DP,
and ET), and the results showed that MSMAR produced much
more correlated (bigger R2) and slightly more accurate (smaller
RMSE%) results to those of the HYDRUS-1D. The best performances
of MSMAR when calibrated with the TDRs and HYDRUS-1D
results were in 50 and 100 cm soil columns, respectively.

Evapotranspiration

In order to estimate the potential evapotranspiration (ETP), the
FAO dual crop coefficient method was employed because of its
performance on a daily basis as a result of a dynamic soil

Table 2. MSMAR boundary conditions and calibrated parameters for different calibration schemes and soil depths using GA in MATLAB based on the
minimum RMSE

Boundary conditions Soil depth (cm) sc1
a sw2

b sc2
c n1

d n2
e Ks

f (cm=day) cg s�2
h

UBi 30–50 0.8 0.45 0.8 0.445 0.445 6 26 0.73
LBj 30–50 0.6 0.35 0.6 0.440 0.380 4 11 0.55
UB 100–300 0.8 0.45 0.8 0.445 0.470 17 26 0.73
LB 100–300 0.6 0.25 0.6 0.440 0.380 4 11 0.53
MSMAR calibration

Scheme 1. 30 0.630 0.447 0.792 0.443 0.434 5.997 11.009 0.723
Minimum RMSE between
MSMAR’s DSM and TDR data

50 0.613 0.445 0.796 0.441 0.421 5.988 11.184 0.726
100 0.688 0.449 0.769 0.442 0.415 16.936 13.347 0.705
150 0.787 0.326 0.690 0.442 0.416 16.892 11.562 0.617
200 0.798 0.266 0.685 0.442 0.386 16.986 11.013 0.602
250 0.600 0.449 0.799 0.440 0.470 16.836 23.543 0.729
300 0.800 0.250 0.602 0.445 0.381 16.998 11.002 0.531

Scheme 2. 30 0.788 0.450 0.610 0.443 0.401 4.003 25.980 0.578
Minimum RMSE between the ensemble of
HYDRUS-1D’s and MSMAR’s DSM,
ET and DP results.

50 0.785 0.417 0.619 0.442 0.390 4.006 25.894 0.579
100 0.792 0.263 0.786 0.443 0.383 4.002 25.976 0.681
150 0.793 0.295 0.747 0.441 0.383 4.004 25.971 0.657
200 0.755 0.298 0.746 0.445 0.381 4.004 25.949 0.657
250 0.800 0.251 0.800 0.444 0.380 4.000 26.000 0.690
300 0.767 0.261 0.754 0.441 0.382 4.008 25.971 0.655

aRelative soil saturation of the first layer at field capacity.
bRelative soil saturation of the second layer at the wilting point.
cRelative soil saturation of the second layer at field capacity.
dSoil porosity of the first layer.
eSoil porosity of the second layer.
fSaturated hydraulic conductivity of the second soil layer.
gEmpirical parameter for the power function.
hRelative soil saturation at stomata closure for the second layer.
iUpper boundary condition.
jLower boundary condition.
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evaporation coefficient rather than an average value (Tolk and
Howell 2001). Allen et al. (1998) also reported that after precipi-
tations or irrigations, the dual crop coefficient approach had better
ET estimations. In the current study, the data provided by Allen
et al. (1998) and field observations were used to specify crop co-
efficient values and length of four growth stages. i.e., initial, crop
development, mid-season, and late season stages. The basal crop
coefficient values of mid-season and late season were then adjusted
for local climatic conditions and the mean plant height at each
stage. The variation of plant height was estimated using Richards’
function (Richards 1959), which is a well-known S-shaped function
commonly used for modeling plant growth. The initial value of

plant height at sowing time (November 1, 2012) was set to zero.
The function asymptotically approached to the maximum plant
height, which was assumed to be 1 m herein for triticale. Table 4
shows the adjusted crop coefficients and the length of each growth
stage used in this study, and Fig. 4 illustrates the time series of ETp
in the Triticale study farm calculated by the FAO dual coefficient
method (Allen et al. 1998).

HYDRUS-1D computed the actual evaporation and transpira-
tion separately at the upper boundary of soil profile governed by
atmospheric condition, and the sum of these parameters produced
daily actual evapotranspiration (ETa). Actual transpiration was
calculated by integrating nodal actual root water uptake [Eq. (5)] at

Fig. 3. (Color) Time series of relative saturation in a soil column with the depth of (a) 30 cm; (b) 50 cm; (c) 100 cm; (d) 150 cm; (e) 200 cm;
(f) 250 cm; and (g) 300 cm, including a 15 cm hypothetical surface layer for MSMAR. (h) Bar cart of the precipitation and irrigation events. (Blue)
surface layer’s TDR measurements; (red) deep layer’s refactored TDRs; (yellow) MSMAR’s DSM estimates calibrated with the TDRs; (purple)
MSMAR’s DSM estimates calibrated with the HYDRUS-1D results; and (green) HYDRUS-1D’s DSM estimates.

Table 3. RMSE and R2 values between the SM estimates of Hydrus-1D and MSMAR

DSM estimated, calibrated, and
validated by Statistical index

Root zone depths (cm)

30 50 100 150 200 250 300

HYDRUS_TDR_TDR RMSE% 0.130 0.136 0.087a 0.078 0.132 0.251 0.290
R2 0.048 0.063 0.077a 0.028 0.034 0.028 0.022

MSMAR_TDR_TDR RMSE% 0.099 0.109 0.061a 0.057 0.050 0.107 0.142
R2 0.362 0.068 0.267a 0.059 0.069 0.140 0.390

MSMAR_TDR_HYD RMSE% 0.654 0.607a 0.752 0.807 0.838 0.339 0.775
R2 0.324 0.578a 0.409 0.629 0.709 0.340 0.117

MSMAR_HYD_HYD RMSE% 0.769 0.925 1.086a 1.074 1.036 0.986 0.870
R2 0.448 0.696 0.839a 0.627 0.119 0.025 0.002

aBest performance of the model considering different depth of the soil column.
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each time step over the root zone. However, MSMAR calculated
ETa following Eq. (13), assuming Zr2 ¼ 30, 50, 100, 150, 200,
250, and 300 cm [Figs. 4(a–c)]. According to Fig. 4, ETp rises
at the beginning of spring due to the increase in the solar radiation,
resulting in the depletion of soil water content (S2). ETa estimated
by HYDRUS-1D and MSMAR followed the same pattern with a
distance from ETp resulting from water deficit in the soil. In the
absence of daily ETp data, MSMAR can assume a constant value
for ETmax in Eq. (13) according to the climatic conditions of the

study area or based on the calibration for the whole study period,
which would obviously provide less accurate results in comparison
with the current approach of calculation daily ETmaxð¼ ETpÞ.

The RMSE% and R2 values between the ET estimates of
HYDRUS-1D and MSMAR when calibrated with the TDRs and
HYDRUS-1D results are presented in Table 5. As explained earlier,
the ETa estimates of the models were compared with each other
due to the lack of field data. Since both models estimate ETa as
a fraction of daily ETp, the correlation values (R2) were naturally
high, meaning that RMSE%was more important in determining the
performance. According to Table 5, the MSMARmodel had its best
performance when calibrated with the TDRs and HYDRUS-1D
results in 50 and 100 cm soil columns, respectively.

Deep Percolation

HYDRUS-1D estimates DP at each control volume by means of
Darcy–Buckingham flux using pressure head distribution obtained

Table 4. Crop coefficient values and length of growth stages for Triticale

Crop

Crop coefficient (Kcb)
Length of growth

stages (day)

Kcb ini Kcbmid Kcb end Lini Ldev Lmid Llate

Triticale 0.5 1.16 0.25 30 120 60 30

Fig. 4. (Color) Time series of daily actual evapotranspiration (ETa) in a soil column with the depth of (a) 30 cm; (b) 50 cm; (c) 100 cm; (d) 150 cm;
(e) 200 cm; (f) 250 cm; and (g) 300 cm, including a hypothetical surface layer with 15 cm depth for the MSMAR. (Blue) MSMAR’s ETa estimates
calibrated with the TDRs; (red) MSMAR’s ETa estimates calibrated with the HYDRUS-1D results; (black) HYDRUS-1D’s ETa estimates; and
(green) potential evapotranspiration (ETp) calculated by FAO dual crop coefficient method.

Table 5. RMSE% and R2 values between the ETa estimates of Hydrus-1D and MSMAR

DP estimated, calibrated,
and validated by Statistical index

DP estimated by MSMAR for different root zone depths

30 50 100 150 200 250 300

MSMAR_TDR_HYD RMSE% 0.499 0.387a 0.396 0.398 0.403 0.435 0.427
R2 0.587 0.744a 0.733 0.739 0.734 0.731 0.736

MSMAR_HYD_HYD RMSE% 0.593 0.411 0.0001a 0.411 0.448 0.0001 0.0001
R2 0.457 0.704 0.725a 0.742 0.724 0.739 0.739

aBest performance of the model considering different depth for the soil column.
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at each time step, while MSMAR estimates this parameter as a
function of water content and hydraulic conductivity of the whole
second layer of soil following Eq. (12). Figs. 5(a–g) represent the
estimated DP by HYDRUS-1D and MSMAR models for different
soil column depths (30, 50, 100, 150, 200, 250, and 300 cm).

According to Fig. 5, the DP estimates of HYDRUS-1D and
MSMAR had consistent trends down to 100 cm deep; however,
the orders of magnitude for the DP estimates were different for
the models. HYDRUS-1D’s DP estimates became negligible
(DP < 1 mm) below the Triticale root depth (1 m), showing the
effect of considering root water uptake by the model, whereas
MSMAR’s DP estimates became negligible with a gradual manner
and after 200 cm.

Table 6 represent the RMSE% and R2 values between the DP
estimates of HYDRUS-1D and MSMAR when calibrated with the
TDRs and HYDRUS-1D. According to Table 6, MSMAR had its
best performance with 50 cm of soil in both calibration schemes;
nevertheless, the performance of MSMAR for 100 cm of soil

improved a lot and became pretty much close to that of 50 cm when
MSMAR was calibrated with the HYDRUS-1D results.

Discussion

The calibration of the HYDRUS-1D and MSMAR models for a
triticale field in Iran, as per the instructions in section 2.4, showcases
the models’ flexibility to adapt to specific agricultural settings. The
calibrated models simulated soil water balance parameters over a
six-month period, affirming that significant precipitation and irri-
gation events recharge the soil profile to field capacity down to the
root zone. This observation supports the models’ assumptions and
calibration strategies.

The MSMAR DSM-30 cm time-series displayed a charging/
discharging pattern after infiltration events, indicative of a dynamic
soil moisture response crucial for accurate soil water balance
modeling. A notable observation from the HYDRUS-1D model

Fig. 5. (Color) Time series of daily deep percolation (DP) in a soil column with the depth of (a) 30 cm; (b) 50 cm; (c) 100 cm; (d) 150 cm; (e) 200 cm;
(f) 250 cm; and (g) 300 cm, including a hypothetical surface layer with 15 cm depth for the MSMAR. (Blue) HYDRUS-1D’s DP estimates; (red)
MSMAR’s DP estimates calibrated with the TDRs; and (cyan) MSMAR’s DP estimates calibrated with the HYDRUS-1D results. (h) Bar cart of the
precipitation (magenta) and irrigation (green) events.

Table 6. RMSE% and R2 values between the DP estimates of Hydrus-1D and MSMAR

DP estimated, calibrated,
and validated by Statistical index

DP estimated by MSMAR for different root zone depths

30 50 100 150 200 250 300

MSMAR_TDR_HYD RMSE% 30.742 8.522a 14.054 13.940 15.644 374.231 56.695
R2 0.163 0.391a 0.089 0.077 0.002 0.003 0.342

MSMAR_HYD_HYD RMSE% 8.500 2.970a 1.358 4.128 6.142 280.355 51.165
R2 0.293 0.537a 0.239 0.008 0.007 0.002 0.459

aBest performance of the model considering different depth for the soil column.
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was the dramatic decrease in soil saturation beneath the root zone,
underscoring the importance of root water uptake in soil moisture
simulations. This could be an area of improvement for the MSMAR
model, which did not directly consider root water uptake and
showed a more gradual decrease in soil moisture.

The FAO dual crop coefficient method was employed for
potential evapotranspiration estimation, with crop coefficient
values tailored to local climatic conditions. HYDRUS-1D’s sepa-
rate computation of actual evaporation and transpiration, compared
to MSMAR’s aggregated approach, could have significant implica-
tions for water management practices.

MSMAR’s superior performance in estimating DSM across the
soil column depths ranging 50 to 100 cm, as indicated by higher R2

and lower RMSE%, suggests its reliability for soil moisture pre-
diction in the most crop root zone. However, the reasons behind
MSMAR’s enhanced performance could be further explored.

Conclusions

The MSMAR model offers a robust and efficient approach, utiliz-
ing minimal inputs such as surface soil moisture time series, soil
texture, and potential evapotranspiration. Its adaptability makes it
well-suited for integrating satellite data, facilitating large-scale
analyses with significant implications for various environmental
applications.

This study demonstrates MSMAR’s ability to derive critical
hydraulic components of a 100 cm deep soil layer across varied
spatial scales. By utilizing in situ or remotely sensed surface soil
moisture data, the model provides detailed insights into soil mois-
ture, evapotranspiration, and deep percolation. This capability is
particularly valuable for agricultural and water resource management,
especially in developing countries and regions lacking extensive
gauging networks. Furthermore, coupling the MSMAR model
with other distributed hydrological models such as SWAT or
MODFLOW can enhance its ability to simulate both saturated and
unsaturated soil zones. However, the model is specifically designed
for arid and semiarid environments and does not account for lateral
underground flow.

Improving model parameters, integrating additional field data,
and exploring various soil and climatic conditions will increase the
model’s applicability across different landscapes. This comparative
analysis highlights MSMAR’s strengths and limitations in simulat-
ing soil water dynamics, emphasizing the importance of calibration
strategies in ensuring model accuracy and supporting its use in agri-
cultural and hydrological research.

Data Availability Statement

All data, models, and code generated or used during the study
appear in the published article.
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modelling as a tool for the European water framework directive (WFD)
application: The Llobregat case.” Phys. Chem. Earth A/B/C 31 (17):
1015–1029. https://doi.org/10.1016/j.pce.2006.07.008.

Vogel, M. 2019. Effects of model spin-up on simulated recharge using the
Hydrus-1D vadose zone model. Uppsala, Sweden: Uppsala Univ.

Wagner, W., G. Lemoine, and H. Rott. 1999. “A method for estimating soil
moisture from ERS scatterometer and soil data.” Remote Sens. Environ.
70 (2): 191–207. https://doi.org/10.1016/S0034-4257(99)00036-X.

Wesseling, J., J. Elbers, P. Kabat, and B. Van den Broek. 1991. SWATRE:
Instructions for input. Wageningen, Netherlands: Winand Staring
Centre.

White, M. D., M. Oostrom, M. L. Rockhold, and M. Rosing. 2008.
“Scalable modeling of carbon tetrachloride migration at the Hanford
site using the STOMP simulator.” Vadose Zone J. 7 (2): 654–666.
https://doi.org/10.2136/vzj2007.0070.

Yang, T., J. Šimůnek, M. Mo, B. Mccullough-Sanden, H. Shahrokhnia,
S. Cherchian, and L. Wu. 2019. “Assessing salinity leaching efficiency
in three soils by the HYDRUS-1D and-2D simulations.” Soil Tillage
Res. 194 (Nov): 104342. https://doi.org/10.1016/j.still.2019.104342.

Zhang, H., R. Yang, S. Guo, and Q. Li. 2020. “Modeling fertilization
impacts on nitrate leaching and groundwater contamination with
HYDRUS-1D and MT3DMS.” Paddy Water Environ. 18 (3):
481–498. https://doi.org/10.1007/s10333-020-00796-6.

Zhang, Y., W. Zhao, T. E. Ochsner, B. M.Wyatt, H. Liu, and Q. Yang. 2019.
“Estimating deep drainage using deep soil moisture data under young
irrigated cropland in a desert-oasis ecotone, Northwest China.” Vadose
Zone J. 18 (1): 1–10. https://doi.org/10.2136/vzj2018.10.0189.

Zhuang, R., Y. Zeng, S. Manfreda, and Z. Su. 2020. “Quantifying long-
term land surface and root zone soil moisture over Tibetan Plateau.”
Remote Sens. 12 (3): 509. https://doi.org/10.3390/rs12030509.

ASCE 04025035-11 J. Irrig. Drain. Eng.

 J. Irrig. Drain Eng., 2025, 151(6): 04025035 

 T
hi

s 
w

or
k 

is
 m

ad
e 

av
ai

la
bl

e 
un

de
r 

th
e 

te
rm

s 
of

 th
e 

C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

4.
0 

In
te

rn
at

io
na

l l
ic

en
se

. 

https://doi.org/10.2136/vzj2004.0166
https://doi.org/10.2136/vzj2004.0166
https://doi.org/10.5194/hess-18-1199-2014
https://doi.org/10.2113/1.2.222
https://doi.org/10.2113/1.2.222
https://doi.org/10.1007/s00271-013-0417-x
https://doi.org/10.1016/j.agwat.2018.07.036
https://doi.org/10.1016/j.agwat.2018.07.036
https://doi.org/10.2136/sssaj2013.03.0093
https://doi.org/10.2136/sssaj2013.03.0093
https://doi.org/10.2136/vzj2007.0052
https://doi.org/10.1016/j.advwatres.2004.08.015
https://doi.org/10.1016/0022-1694(95)02749-F
https://doi.org/10.1016/0022-1694(95)02749-F
https://doi.org/10.1093/jxb/10.2.290
https://doi.org/10.1063/1.1745010
https://doi.org/10.1063/1.1745010
https://doi.org/10.1175/JHM571.1
https://doi.org/10.1175/JHM571.1
https://doi.org/10.1016/S0022-1694(01)00466-8
https://doi.org/10.2136/vzj2007.0077
https://doi.org/10.2136/vzj2007.0077
https://doi.org/10.1016/j.ecolmodel.2008.11.004
https://doi.org/10.1016/j.ecolmodel.2008.11.004
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000647
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000647
https://www.mathworks.com/discovery/genetic-algorithm.html
https://www.mathworks.com/discovery/genetic-algorithm.html
https://doi.org/10.13031/2013.7040
https://doi.org/10.13031/2013.7040
https://doi.org/10.2136/vzj2007.0060
https://doi.org/10.2136/vzj2007.0060
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.1016/j.pce.2006.07.008
https://doi.org/10.1016/S0034-4257(99)00036-X
https://doi.org/10.2136/vzj2007.0070
https://doi.org/10.1016/j.still.2019.104342
https://doi.org/10.1007/s10333-020-00796-6
https://doi.org/10.2136/vzj2018.10.0189
https://doi.org/10.3390/rs12030509

