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ABSTRACT

Monitoring time between events (TBE) is essential in many industrial settings. Traditional methods assume a time-invariant failure
rate which is unsuitable for complex systems where the failure mechanism changes over time due to degradation. The Non-
Homogeneous Poisson Process (NHPP) better models these systems by allowing a time-varying failure intensity. Additionally,
failure patterns of such systems are often influenced by risk factors like environmental conditions and human interventions.
Restoration of such systems also imposes multiple cost constraints. This work proposes a novel approach: a risk-adjusted control
chart based on the NHPP model, specifically designed for monitoring the ratio, Cost/TBE, called the average cost per time
unit. Risk-adjustment enhances the chart’s detectability of shifts in the failure process by isolating the risk factors’ contribution.
Moreover, incorporating cost-based monitoring statistics not only emphasizes the cost impacts beside the failures themselves but
also improves the chart’s interpretability. The effectiveness of the proposed method is demonstrated through a comprehensive
numerical study showing its superior performance compared to existing methods. The comparison study shows that ignoring
the risk factors in the chart design leads to numerous false alarms, undermining the chart’s effectiveness. We also illustrated the
proposed method through a case study on monitoring a network of oil pipeline accidents.

ing, network monitoring, and change-point problems, see for
example [2-8]. In an industrial context, SPM techniques can

1 | Introduction

An important focus of statistical process monitoring (SPM) meth-
ods is to develop efficient control charts to monitor the quality
of a process over time, and to improve process performance by
providing valuable insights into the process stability and the
variability [1]. Though the ideas were first introduced to monitor
industrial processes (e.g., a manufacturing process), they have
now gained a strong foothold in many nonindustrial sectors,
including medicine, healthcare and public health, surveillance,
financial markets, climate and environment, chemical engineer-
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noticeably contribute to improving the quality of manufacturing
processes by monitoring the output of the process over time. As
another example, in a financial context, SPM tools can be used for
various financial applications such as portfolio monitoring and
stock trading [9].

One important application of SPM is in the context of monitoring
defectives or failures, where attribute control charts (e.g., p
chart) have been traditionally used. However, for monitoring

Quality and Reliability Engineering International, 2025; 0:1-25
https://doi.org/10.1002/qre.70066

10f 25


https://orcid.org/0000-0001-8519-346X
https://orcid.org/0000-0002-2678-5198
mailto:adel.ahmadinadi@uwaterloo.ca
https://doi.org/10.1002/qre.70066
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fqre.70066&domain=pdf&date_stamp=2025-09-06

high-quality processes, where the number of defectives (failures)
is often (most) likely to be zero, a more efficient monitoring
procedure is to focus on the elapsed time between two successive
defective items and not on monitoring the number of defectives.
Time-between-events (TBE) control charts are widely used for
this purpose. Note that in this context, although traditionally, the
event of interest has been the“production of a defective item,”
the idea is not limited to this case, and the event of interest can
include a broad range of applications, even in nonmanufacturing
contexts, such as the time between disease outbreaks in a
healthcare context or the time between failures of operating
systems in the industrial sector. To be consistent, throughout
the paper, “system” will refer to a “manufactured item,” or
a “production process,” or a “repairable system.” Likewise, a
“failure or defective” will refer to any such event of interest,
depending on the context.

Most of the studies on TBE charts assume that the failures
occur according to a homogeneous Poisson process (HPP), which
results in the TBE distribution being the well-known exponential
distribution [10-13]. This means that the deterioration mecha-
nism of an equipment, say its hazard rate function, is assumed
to be constant over time. While this assumption may apply in
some cases, it may not be valid, even for noncomplex production
equipments, where more deterioration is expected with time. This
argument could also be true in other process monitoring settings.
For example, if the goal is to monitor the real-time condition of
a repairable system via monitoring the time between its failures,
then the HPP may not be an efficient choice. A repairable system
is a system that can be repaired after breaking down; thus its
failure rate is most likely to change with time and accordingly
the non-homogeneous Poisson process (NHPP) is a more realistic
choice to model the number of failures of such a system [14]. In
practice, many systems exhibit complexities and dynamic behav-
iors, making it challenging to assume a constant failure rate.
In such cases, the NHPP offers a more accurate representation
of such systems by accounting for varying rates and capturing
different failure patterns [15, 16]. That is why the NHPP plays a
central role in modeling the failure counts of complex systems
in reliability analysis and maintenance literature [17-21]. Despite
this, the attention to NHPP has been relatively low in the SPM
literature.

It is essential to recognize that any failure of a system may come
with some costs to bring it back to operation. These costs may
include expenses for repairs and replacements, parts and labor,
downtime, warranty claims, as well as potential penalties and
fines, either individually or in combination. Since the total cost
(TC) associated with each failure may be affected by various
factors, it makes more sense to treat it as a random quantity
(variable). In the TBE literature, the “amplitude” variable is often
used to represent the random variable TC. Many techniques have
been developed for monitoring the TBE and the amplitude/TC
variables, simultaneously, that are also known as the TBEA
control charts [22-24].

Note that the failure time datasets often include information
about some risk factors (also known as the covariates or con-
founding variables) in addition to the time to failures and their
costs. These factors provide a wide range of information and can
noticeably affect the performance of the system. Ignoring them

in the analysis can be costly, causing a high degree of variation
and overall deterioration in the system’s performance [25, 26].
There are several models in the literature to incorporate the
relevant risk factor information. These include the well-known
Cox proportional hazards model, which is more likely to be
applied to account for system-reliability-related risk factors in
an industrial context, and the accelerated failure time model,
which is more commonly used to account for health-related
risk factors in a clinical context [27]. Applying a proper risk
model to account for the effects of the risk factors provides
a more informative framework [28]. In the healthcare-related
SPM domain, several control charts have been developed that
account for the effect of patient’s preoperative risk factors.
Among the pioneering works in this area, Steiner et al. [29,
30] studied risk-adjusted control charts to track patient death
rates. Since then, a huge body of risk-adjusted monitoring
methods has been proposed by different scientists [31-33]. Also,
Paynabar et al. [34] introduced a comprehensive phase I risk-
adjusted control chart for monitoring binary surgical outcomes
by considering categorical covariates. Steiner [35] provides a list
of justifications for risk adjustment in the health context. For
example, they stated that patients may have different conditions
before treatment and thus are not expected to be homogeneous
(unlike manufactured parts). One can argue the same is true
in the case of monitoring the performance of systems in the
presence of different risk factors such as material, labor, weather
conditions, and so forth. Risk adjustment in this case takes care
to distinguish the failure mechanism of the system itself from
the risk model. By doing this, the monitoring method would be
more sensitive to the changes of system failures and associated
costs [36, 37].

Although risk-adjusted control charts have been extensively
studied in healthcare, their application in SPM for industrial
settings remains relatively unexplored. This paper aims to fill
this gap by developing a dynamic risk-adjusted control chart
for monitoring the average cost per time unit, defined as the
ratio TC/TBE, using the NHPP model to account for the time-
varying failure intensity. Integrating TC and risk factors directly
into the control chart enhances interpretability and sensitivity,
providing a more effective approach to monitoring the failure
mechanisms. The rest of the paper is structured as follows: Sec-
tion 2 presents a motivational example based on pipeline accident
data that forms the background of this work. Section 3 briefly
introduces the NHPP with two widely used intensity models, as
well as discusses the risk adjustment approach. Section 4 offers
an overview of the basic principles and background of copula
theory. Moving on, Section 5 focuses on the construction of the
proposed control chart, while Section 6 presents a numerical
study that evaluates the performance of the charts. In Section 7,
a practical application of the proposed charts based on real
data examples is discussed. Finally, the study is concluded
in Section 8 with a concise summary of the main findings
and conclusions, along with suggested directions for future
research.

2 | Motivational Example

The Pipeline and Hazardous Materials Safety Administration
(PHMSA) of the United States Department of Transportation
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has released a comprehensive report, including a dataset, on oil
pipeline accidents between January 1, 2010, and September 1,
2017. The accident/failure of oil pipelines refers to an incident
in which the pipeline leaks or ruptures, releasing the contents of
the pipeline. Such failures can be hazardous and can potentially
cause damage to the environment and human health as well as
economic losses [38-41]. The financial consequences of pipeline
accidents are also substantial [42]. The TC of oil spill response
and cleanup operations globally ranges from tens of millions
to billions of dollars annually [43]. That is why it is crucial to
provide efficient strategies to inspect the pipelines, monitor their
potential failures, and develop emergency response plans in case
of a failure. All these kinds of efforts could be highly beneficial to
minimize the risk and cost of failures, as well as to prevent any
unexpected failures. By closely monitoring pipeline accidents,
operators can detect potential issues at an early stage and take
corrective and preventive actions before they either escalate or
happen again in the future.

The database comprises details of 2781 accidents and is pub-
licly available on the Kaggle website (https://www.kaggle.com/
datasets/usdot/pipeline-accidents). Various costs (e.g., property
damage costs, lost commodity costs, emergency damage costs,
etc.) were incurred in order to repair the pipeline and bring
it back into the network. In addition, the dataset provides
the TC associated with each accident, which is the aggregate
sum of all incurred costs. Furthermore, at the time of each
accident, information regarding the pipeline type and location,
the type of hazardous liquid involved, the accident location,
and the accident cause has also been recorded. All these risk
factors could potentially affect the intensity or pattern of the
accidents. A number of articles on the analysis of pipeline
failures show that an NHPP provides a satisfactory model
for pipeline incidents, for example [44, 45]. Accordingly, an
NHPP that accounts for a time-dependent accident rate and
adjusts for risk factors is expected to provide a better statistical
model for the accident mechanism of pipelines. In this context,
there is a need to develop a monitoring technique based on
a risk-adjusted NHPP model (RANHPP). Thus, the proposed
monitoring approach can serve as a real-time surveillance sys-
tem to detect statistically and practically significant (unusual)
deviations (increases and decreases) in the times between suc-
cessive accidents and the associated TC from the baseline of
(expected) accident patterns. Accordingly, the proposed method-
ology can help in dealing with and mitigating these undesirable,
and unsafe situations and managing the associated risks and
costs.

In what follows, we present additional information about the
dataset to provide a deeper understanding. Note that the majority
of these incidents are concentrated in the central and southern
regions of the United States (US). This geographical distribution
of accidents across the US is depicted in Figure 1. For instance, the
state of Texas has reported 1004 accidents, whereas the number of
accidents is considerably lower in the northwest of the US, such as
in the state of Oregon state, where only four accidents have been
recorded (see Figure 2). According to Figure 2, approximately
50% of accidents occur in pipelines that are used for transport-
ing crude oil. However, when considering the location of the
pipelines, 99% of the accidents happen with onshore pipelines,
with 53% of them being above ground. Additionally, about 51%

of accidents are attributed to material, welding, or equipment
failures.

Figure 3a,b shows the letter-value plots for the TBE data (observa-
tions) (ranging from 0 to 250 h) and the TC data (ranging from 0
to 50 million USD). The letter-value plot provides a more accurate
visualization compared to the traditional box plots for large and
highly skewed data sets [46], which is indeed the case in this
pipeline accidents dataset. Based on these figures, it’s evident
that the majority of TBE data points fall within the interval of
(0, 50) h, indicating that most failures occur in close succession.
Additionally, a significant portion of the TC data is concentrated
in the range of zero to five million dollars, suggesting that most
incidents are associated with relatively lower costs. Both these
figures suggest right-skewed distributions for both TBE and TC
variables while showing a small number of outliers in the dataset.

3 | Risk-Adjusted Nonhomogeneous Poisson
Process

The NHPP is a counting process that allows the process failure
rate/intensity to change with time. Denoting an NHPP with N(¢)
for £ > 0, where N(t) represents the number of failures that
occurred in the time interval (0, t]. The process N(t) can be fully
characterized by the intensity function A(t) that quantifies the
failure rate at time ¢. The NHPP satisfies the following conditions:

* N(0) = 0, which means that no failures occur at time t = 0.

* The process has independent increments, which means that
the number of failures in disjoint intervals (s;, s,] and (¢, t,]
are independent.

* At most one failure can occur in any infinitesimal time
interval, i.e., P(N(t + At) = N(t) > 2) = 0.

* The probability that a failure occurs in the time interval [¢, t +
At] is given by P(N(t + At) — N(t) = 1) = A(t)At + o(At).

It follows that in an NHPP, the number of failures in the
time interval (s, t] follows a Poisson distribution with parameter
A(t) — A(s) where A(t) = E(N(t)) = /OI A(u)du is called the mean
function (also known as cumulative intensity function) of the
process. Thus, we have:

Pr(N(t) - N(s) = k) =

k
LORIIO S

—A®),k=0,1,2, ... @

According to Equation (1), it can be inferred that the N(t)
follows a Poisson distribution with the parameter A(t). When the
intensity function is constant, i.e., A(t) =y, the NHPP reduces
to the HPP with the constant rate y. The intensity function
A(t) can take different mathematical forms. However, in many
applications, the log-linear and the power-law models are the
most widely used. The following two subsections provide a brief
introduction to these models.
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FIGURE 1 | The distribution of the accidents across the US along with TC in USD.
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3.1 | Power Law Intensity Model

The power law intensity function, which is also known as the

Weibull model, is a widely used failure rate function in NHPP
applications with the mathematical form:

A(t) = ynpt1 1, @)

= 85
1] 2 8 128%°823221592 1 1453
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and with the mean function:
t
A= [ ypridu=ye, ®
0

where y > 0 is the scale and 7 > 0 is shape parameter. According
to (2), » > 1 results in a shorter time between failures, while 0 <
7 < 1leads to a longer TBE. If = 1, the failure process becomes
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FIGURE 3 | Letter-value plots for TBE and TC.

an HPP and the TBE follows an exponential distribution with rate
y.

3.2 | Log-Linear Intensity Model

Another common way to model the intensity function of an NHPP
is using a log-linear model with the following mathematical
form:

A(r) = exp(y + i), 4)

where y and 7 are real constants; changes have been made
here y corresponds to the initial failure rate (at time t = 0)
and 7 quantifies the magnitude of the failure rate’s changes
proportional to the time. The mean function corresponding to the
log-linear model can be calculated as:

A = / exp(y + mu)de = L(expl(y +70) — exp(r). )

The values of y and 7 in the above setting allow for modeling
a diverse range of time-dependent patterns in failure rates,
including accelerating, decelerating, and constant failure rates,
over time. According to (4), the value of 7 > 0 shows a positive
association between the failure intensity and time, which results
in a shorter time between failures, while a negative 7 leads to a
longer time between failures. On the other hand, when 7 =0,
the failure process reduces to an HPP, and the TBE follows an
exponential distribution with rate e”.

We conclude this subsection with a brief discussion of the power
law and the log-linear intensity functions, which differ in how
they model the event rates in an NHPP. A key feature of the
log-linear model is that its failure intensity is strictly positive
at t = 0 and remains convex for any value of 7. This makes it
particularly suitable for modeling repairable systems that exhibit
a rapidly increasing failure rate. More broadly, these models
represent different temporal behaviors. The power law intensity
function assumes the event rate scales as a power of time, making
itwell-suited for systems like aging hardware or equipment where
failures accelerate or decelerate over time. Conversely, the log-
linear intensity function assumes that the event rate changes

30-

TC

10-

(b) TC (in million USD).

exponentially with time, capturing more complex and nonlinear
failure patterns. This makes it ideal for applications such as
software reliability, maintainability modeling, or environmen-
tal monitoring. Ultimately, the choice between these models
depends on the context, the nature of the data, specifically,
whether event rates evolve gradually or sharply, and whether the
pace of change is constant or dynamic.

3.3 | Risk Adjustment

Within the NHPP framework, acknowledging the impact of
various risk factors on system failure mechanisms emphasizes the
essential need for a model that adjusts for these risks. This sec-
tion is devoted to discussing the RANHPP (risk-adjusted NHPP)
model. In many real-world applications, the failure mechanism of
a system can be influenced by various risk factors. For instance,
in our motivating example, factors such as the pipeline type, the
cause of the accident, and the type of hazardous liquid can all
affect pipeline failures. When risk factors are present, a risk-
adjusted model allows for a separate estimation of the intensity
function from the effects of the risk factors. This leads to a more
reliable estimate of the system’s failure rate.

The Cox proportional hazards (PH) model is the most widely
employed technique in survival studies for analyzing time-to-
event data in the presence of risk factors. This model assumes
that risk factors have a multiplicative influence on the hazard
function, without necessitating a constant hazard function or
adherence to a specific distribution. The PH model relates
the hazard function at time ¢ with the vector of risk factors
Z = (z”,z[z,...,z,p) collected at this time to a baseline hazard
(intensity) function as:

A(t|z,) = A(t) exp (B'z,), (6

where g = (B,,B,,....B,) is a vector of p unknown regression
coefficients and A(¢) is the baseline intensity function which only
depends on time ¢ and is given in Equations (2) and (4). The
interpretation of beta values depends on the scale and nature of
the risk factors. The risk-adjusted intensity function A(t|z,) in (6)
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can be used to derive the risk-adjusted mean function as:

Altlz) = / Aulz)du = A exp (B'20), ™

where A(t) is given in Equations (3) and (5). As per the
Equation (6), the impact of risk factors on failures is quantified
through the regression coefficients 8. In the presence of one
risk factor (p = 1), a positive 8 value implies that exp (8z,) > 1,
which in turn increases the expected number of failures in the
time interval (0, ¢] and thus reduces the time between failures.
Conversely, negative 5 values suggest a decrease in the expected
number of failures resulting in a longer time between failures.
In the upcoming section, we will delve into the dependence
among variables.

4 | Dependence Modeling

Dependence among the variables is an important factor in
practical applications. Copula modeling has emerged as a
widely adopted technique for capturing dependencies in various
domains of application. It offers the ability to disentangle the
dependence structure from the joint distribution function of
a set of variables while preserving their individual univariate
marginals. Sklar’s theorem plays a pivotal role in this process,
allowing us to establish the joint distribution H(x, y) of two ran-
dom variables, namely X and Y, with marginal CDF F(.|6x) and
Fy(.|6y), respectively. The equation for H(x, y|6y, 6y, C) involves
the copula model C once its parametric form is determined,
where:

H(x’y|6X’9Y’C)=C(FX(x|6X)’FY(y|eY)Iec)’ (8)

where 6y (6y) is the vector of X (Y) distribution’s parameters and
6. is the parameter of the copula function C. A key advantage
of Sklar’s theorem lies in its guarantee that a unique copula C
exists when dealing with continuous marginal distributions, as is
the case in our study. Before delving into specific copula models,
it is essential to introduce the dependence measure known as
Kendall’s tau .

4.1 | Kendall’s Taur

Kendall’s tau 7 € [-1,1] is a widely used metric for quantifying
dependencies and associations between two random variables.
For continuous random variables X and Y with a copula C,
Kendall’s tau is defined specifically in terms of cumulative
distribution functions (CDFs). This approach highlights the
nonparametric nature of Kendall’s tau and its independence
from specific distributional assumptions. Kendall’s tau 7 can be
computed using the formula:

T= 4//|0!1|2 C(u,v)dC(u,v) — 1. 9

Here, C(u, v) represents the joint CDF of the transformed random
variables U = Fy(X) and V = F,(Y), where X and Y are con-
tinuous random variables with marginal CDFs F(x) and Fy(y),
respectively. According to the probability integral transform [47],

the variables U and V each follows the standard uniform distri-
bution. The coefficient 7 in (9) measures the associations between
two variables. Values 7 € (0,1) indicate a positive association
between X and Y (both variables increase/decrease together),
while a 7 € (-1,0) expresses a negative association (as one
variable increases, the other one decreases). On the other hand,
7 =1(tr = —1) shows a perfect positive (negative) association
and 7 = 0 indicates no association between the variables. It is
also interesting to note that the integral in (9) represents the
expected value of the random variable C(U, V'), where individual
variables U and V follow a standard uniform distribution, i.e., 7 =
4E(C(U,V)) — 1. Indeed, there exists a diverse range of copula
functions with varying properties. In the subsequent subsection,
we introduce the Gumbel copula from Archimedean family and
highlight its distinctive characteristics.

4.2 | Gumbel Copula Model

There could be different dependence structures between the
TBE and TC variables that we aim to monitor jointly over time.
Castagliola et al. [12] presented examples in which there is a
positive or negative or even a lack of association between TBE and
TC variables. However, in the case study, they discussed that there
is a strong positive association, which is equivalent to saying that
the TC becomes smaller as the TBE becomes shorter. This is also
more likely to happen in our case study of monitoring pipeline
accidents. Accordingly, this paper focuses on the Gumbel model,
which belongs to the well-known bivariate Archimedean family
of copulas. The Gumbel family can represent only independence
and positive dependence, as its dependence parameter is bounded
between the independence copula and the Frechet-Hoeffding
upper bound copula. It exhibits strong upper tail dependence and
relatively weak lower tail dependence. However, the application
of the proposed method is not restricted to this choice, and
other copula functions that are able to model various kinds of
dependency can be easily used.

The Gumbel copula, also known as the Gumbel-Hougaard
model, was introduced by Gumbel [48]. Mathematically, the
Gumbel copula is expressed as:

C(u,v) = exp <—<(— In@w)* + (= In(v))’* ) & > (10)

where the dependence parameter 6, is confined to the interval
[1, ). The relationship between Kendall’s tau 7 and the Gumbel
copula parameter 8, is given by:

, an

where the Gumbel copula parameter (6,) is utilized within
the copula function (Equation 11), whereas Kendall’s tau (7) is
employed to characterize the dependence in numerical analysis
in Section 6.
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FIGURE 4 | Data collection schematic.
5 | Proposed Dynamic Monitoring Technique Eventually, the conditional CDF of X; given T;_; = ¢;_, and z; can

Recall that the main aim of this work is to develop a control
chart to monitor the TBE variable and its associated TC, while
accounting for the risk factors recorded at the time of each
failure. In this setting, one reasonable quantity for monitoring
the stability of such a process, that incorporates the effects of
these two factors, is the average cost per unit time (AC), so
that AC = TC/TBE. The average cost per unit time metric also
has a meaningful interpretation, making the control chart more
practically meaningful and providing valuable insights into the
financial implications. Both of these are relevant aspects of the
decision-making process.

We assume that the system starts to operate at time T, = 0.
As time passes, failures may occur at random times T,,T,, ...
resulting in TBEs X, =T,,X, =T, — T}, .... In addition, at time
t; of failure i =1,2,..., data on the risk factors and the TC
variable denoted by z;,..,%;, and Y;, respectively, are col-
lected. Figure 4 shows a schematic of this data collection
process.

To calculate the control limits of the proposed monitoring
scheme, we first derive the conditional CDF of the ith failure time
T; given the vector of risk factors z; and the fact that T;_, =¢;_,
as:

P(T; < 4|Tioy = £1,%1,0x) = 1 =P(N (t;) = N (T;_1) = 0|Ti_y = t;_1)
=1-P(N (%) - N(ti-1)=0)

=1-exp(-A(t;]z) + A(ti11z)), (12)

where 6y = (y,7,B) is the vector of parameters regarding the
intensity function and risk model and A(.|zg;) is given in (7).
The second equality in (12) is obtained using the independent
increments of NHPP and the third one is obtained using the fact
that:

P(N(t;_; +x) = N(t;_)) = k|T;_; = t;_1,%;, 6x)

k
— [A(ti—l + x|Zi) - A(ti—llZi)] e—[/\(lifl‘*x\zi)—/\(lif] |Zi)]_ (13)

k!

be obtained using Equation (12) as follows:

P(X; < x|Ti_y = t;_4,%:, 6x)
=1-exp(=Ati_; +x|z;) + A(ti_112:))- 14)
As aresult, the conditional probability density function (PDF) of
X, can be calculated as:
Stz (x16x) = Atizy + x1z;)
exp (At + x|z;) + A(ti_112:) 5)
Let Y; be the corresponding random TC of failure i = 1, 2, ... hav-
ing the CDF Fy,(.) and PDF fY,(.) with the vector of parameters

Oy. Furthermore, let us assume X; and Y; to be dependent and
their joint CDF is given by:

F(Xi-YiIinzi)(x’yle) = C(F(Xi\ti,l,zi)(x|6X)’FYi(y|6Y)|ec)y (16)

where C(u, v|6,) is a Copula model containing all information on
the dependence structure between Y; and X; and 6 = (6, 6y, 6,).
Accordingly, the joint PDF of Y; and X; can be derived as:

f(x,-,Y,-\z,-,l,zi)(xsﬂe) = f(x,-\z,-,l,zi)(x|ex)-fyi (»16y)x

C(F(X,vui,l,z,-)(xleX)ﬂFYi (Y|ey)|9c)s 7)

where fix,,_,.z(-10x) is given in (15), fy,(.|6y) is the PDF of Y,

3C(u,vl6.) .

and c(u,v | 6,) = o S the copula density.

5.1 | The Monitoring Statistic

According to the background provided in the previous subsection,
the average cost per time unit, at the time of failure, i can be

defined by AC = E (%) and be calculated as:

Y 7
E<)? |ti—1’zi’ G) = / / _f(Xi,Yilfifl’Zi,e)(x’y)dyidxi’ (18)
i 0 0 Xi

where f(x, v,i_,.z.6) 1S given in (17). By the definition, a small
value of AC is typically desired as it indicates lower average
costs incurred per failure. We propose to calculate the following
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ALGORITHM 1 | ARL and SDRL calculation algorithm.

Input : a,y,n,u4,6.,8,7T.
Output: ARL, SDRL

RL < (...)

for i=1 to large number do
j< 1t < 05

repeat

for k=1 to 10,000 do

(Uka Vk) ~ C(Us Vlec)s

Ysi
Ws, « —;
XSy

end

UCL; < Quantile(Ws,1 — %);
LCL; < Quantile(W’s, %);

U, V) ~CU,V106.);

b=t + X3

j< i+

until W; > UCL; or W; < LCL;;
RL[i] «j;

end
ARL « E(RL); SDRL « SD(RL)

X« F};(U“j—l»zj,ex)a Y, « F A (VIw), W; « "

> Initialize the vector to store RL values

> Time to start (¢, = 0).

z, <« sample({1,2,3}, size =1, replace = TRUE, prob = dpois({1,2,3},1));

X5 < F'(Ugltieors 2k, Ox), Y < Fy' (Vi w);

> For next failure;

z; < sample({1,2,3}, size = 1, replace = TRUE, prob = dpois({1,2, 3}, 1));

Y.
;
j

monitoring statistic at the time of failure i:
i=12,.., 19)

with the aim of detecting possible deviations of the AC from its
in-control (IC) state to an out-of-control (OC) state as quickly
as possible. Let 8, and 6, denote the vectors of IC and OC
parameters. Accordingly, monitoring the AC over time could be
done by developing a proper control chart for the sequence of W,.
The proposed monitor statistic W; further satisfies the following
properties:

1. W, decreases with X; and increases with Y.

2. W, increases with X; and decreases with Y.

Let Fy, (.|t;_1, Z;, ©) be the conditional CDF of W, given t;_;, z; and
0. Then, it can be calculated as follows:

Fy, (wlt;_1,%;,0) = PW; S wlt;_1,%;,6)

Y.
= P<)T‘ < wltH,zi,6>

- / / Foorin oz (ylO)dydx,  (20)
0 0

where fx. v.1i._, z0(»-16) is given in (17).

While a higher shift in the AC may be more of interest to detect
from a financial point of view, detecting lower shifts can be
valuable in assessing any improvements made to the process.
Therefore, we propose implementing a two-sided control chart

capable of detecting changes in the AC that may occur in either
direction, above or below the IC value. The probability-type
control limits for the proposed chart at the time of failure i =
1,2, ... can be calculated as:

a
LCL = Fi (5 1t:26)),
—1 [e4
ver, =F(1- 5 140,26, @)

where « is the probability of a type I error (also known as false
alarm rate) and F;,}i (.. | tiZ15 %3, 6,) is the inverse of the CDF of
W, given in (20). Thus the control limits can be obtained by
solving equations Fy, (wlt;_;,%;,0) = g and Fy, (w|t;_y,%;, 6p) =
1- % for w numerically. Note that the index i of LCL; and UCL,; in
(21) shows that they are step-wise limits and should be calculated
at the time of each failure based on the information from the
previous failure (¢;_;) and current failure (z;) as well as the IC
vector 6,. Thus, at the time of failure i = 1, 2, ..., one needs to first
calculate the control limits and then compare W; with them; if
W, > UCL; or W; < LCL;, the control chart triggers an OC signal,
if not, process monitoring continues.

The average run length (ARL) is one of the most popular
measures to assess the performance of a control chart and to
compare it with alternative charts (see Gibbons and Chakraborti
[49]). ARL is the expected value of Run Length (RL), defined as
the average number of samples taken before the first OC signal
(the monitoring statistic falls beyond the control limits). When
the successive monitoring statistics are independent, the IC RL
(RL,) follows a Geometric distribution with probability o where
a is the probability of a false alarm, that is, when an IC process
is diagnosed as OC by the control chart. In this case, we have
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| (Continued)

TABLE 1

B =-050

B =—2.00

0.25 0.75 1.00 1.25 2.00 0.25 0.75 1.00 1.25 2.00

(6,,6,) 6,

95.2 (95.0))
144.5 (144.3)

164.9 (164.7)
82.2 (82.0)

158.1 (157.9)
61.7 (61.5)

23.6 (23.4) 128.5 (128.3)

155.1 (154.9)
67.1(66.9)
37.7 (37.5)

107.3 (107.1)

86.9 (86.7)
23.8 (23.6)
1.9 (11.7)

56.8 (56.6)
14.3 (14.1)
6.0 (5.8)
29.7(27.9)

6.3 (6.1)

1.5(1.4)

1.2 (L1)
11.6(10.7)
1.4(13)

(0.25,1.25)

41.3 (41.1)
20.4(20.2)

3.1(2.9)

1.6 (1.4)
19.6(18.4)
2.5(2.3)

35.0 (34.8)

(0.75,1.25)

92.1(91.9)
108.4(108.0)
29.5(29.3)

49.5 (49.3)

34.7(34.5)

17.9 17.7)

(1.25,1.25)

75.9(74.0)

17.7 (17.5)
9.9 (9.7)
7.4(7.2)
5.7(5.5)

63.1(62.6)
14.3 (14.1)

50.7(50.4)
103 (10.1)

67.3(67.0)

44.2(42.8)
4.4 (4.3)
2.9(2.8)
2.4(2.3)
2.1(2.0)

37.1(35.2)
3.6 (3.5)

(2.00,1.25)

6.7 (6.6)
4.2(4.1)
3.5(3.4)
2.9(2.8)

2.8(2.7)

(0.25,2.00)
(0.75,2.00)
(1.25,2.00)
(2.00,2.00)

16.6 (16.4)
12.6 (12.4)
9.6 (9.4)

7.7(7.5)
5.6 (5.4)
43(4.1)

5.4(5.2)

1.6 (1.5)
1.4(1.3)

2.4(2.3)

1.9(1.8)
1.7(1.6)
1.5(1.4)

1.2 (L1)
1.1(1.0)
1.1(1.0)

3.9(3.7)

2.0 (1.9)

3.1(2.9)

1.3(1.2)

1.8(1.7)

ARL, = L.Itis shown thatin (22) the ICRL (RL,) of the proposed
a

control chart is also distributed as a Geometric random variable.

We have, when the process is in the IC state,

i=1

P(RL, > n) = P<ﬂ{LCLi <W, < UCLi})

n
=[] racL <w, <UCL | 11,26,

i=1

=[[a-o
=(1-a), (22)

where the second equality is obtained due to the independence
between W, for i = 1,2, ..., which follows from the independent-
increments feature of the NHPP. The OC ARL (ARL,) of
the proposed chart can be calculated using the Monte-Carlo
approach, which is described in Algorithm 1 in Section 6. The
standard deviation of the run length (SDRL) is another widely
used metric for evaluating the performance of a control chart.
Algorithm 1 in Section 6 outlines the procedure for comput-
ing both IC and OC SDRL values, denoted by SDRL, and
SDRL, hereafter, using Monte Carlo simulations in the current
setting.

6 | Numerical Analysis

In order to assess the performance of the proposed control chart
and investigate its sensitivity with respect to various factors, this
section aims to conduct a numerical study based on the ARL
and SDRL metrics. First, let us set ARL, = 200. In addition,
consider a system where its failures come from an NHPP with
power law or log-linear intensity function. The IC parameters
are assumed to be 7, = 1.50 for the power law model, 7, =
2.00 for the log-linear model, and y, = 0.05. These choices of
intensity parameters represent increasing failure rates, a scenario
more probable in deteriorating systems. Furthermore, we assume
the associated TC represented by Y follows an Exponential
distribution with IC rate x, = 1.00. The joint distribution of Y and
X is also characterized by a Gumbel copula model. Furthermore,
we introduce a single risk factor z (p = 1), which impacts the
TBE. The risk factor will be a factor ranging from 1 to 3, generated
using a truncated Poisson distribution with rate 1, which means
the numbers 1, 2, and 3 will be generated with probabilities
0.36,0.18 and 0.06, respectively. In addition, the regression coef-
ficient 8 takes values from the set {—2.00, —0.50, 0.00, 0.50, 2.00}
to cover different association levels between the risk factor
and TBE. To capture different levels of dependence between
the TBE and the TC when they are positively associated, we
consider the dependence parameter 7 from the set {0.3,0.8}.
This will enable us to explore moderate and strong positive
dependencies.

To conduct the numerical analysis, we assume the parameters
y and 7 regarding the TBE variable and the parameter u of the
TC variable are subject to shift, while § and 6, /7 are assumed to
remain unchanged. Let us donete the vector of IC parameters by
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6y = (Yo, Mo» Mo)- To calculate the ARL, values, the vector of OC

. ’ﬁ = g E § g. g g S parameters is also defined as 6, = (y1,7,, #,) = (8, 70> 8,70, S tho)
S|t 2l 5 where § > 0 quantifies the shift magnitude in each parameter. We
N E a g ; % % ; § g set 8, = 0.25,0.75,1.25, 2.90 fgrk =y,7 agdu to account for both
- = o~ upward and downward shifts in the associated parameters.
~ o = S8 ac~ The results of the ARL and SDRL analysis are presented in
M N 5 o 9 adaanH e
% | g 5 @ 8 @ § 5/ 5 juf ffables. 1-5. Spe?lflcally,.Tables 1-3 correspor.ld to the powe.r law
e B T = T intensity function, while Tables 3-5 pertain to the log-linear
S E § g 8T &2 intensity function. By examining these results, we gain valuable
insights into the performance and effectiveness of the proposed
control charts across various scenarios and deviations from the
S o ;lﬂ: GRS IC condition. ARL and SDRL values in these tables are computed
N8|l 8 88T HREEE through Monte Carlo simulations described in Algorithm 1.
=] 7= 52 55 o Though ARL, can be calculated theoretically by ARL, = L from
«Q "R A 8RR AIASCS . . a
— = - (22), it could also be calculated from Algorithm 1 by generating
X; and Y; from 6,. Moreover, ARL, and SDRL, can be computed
~ from Algorithm 1 by generating X; and Y; using 6,.
cdSeaaed 4
Rle 286588 23cC
Sl n 3 x o 1 o ¥ N el :
% 9 8 & S = 6.1 | Sensitivity Analysis
The primary result shown by the tables is that the proposed
P - chart is ARL-unbiased across all shift combinations and both
e g/ LQ'/ \E., \% g/ 5 g \g/- ;/ intensity models, i.e., we always have ARL, > ARL,. Now, let
S|lg mma T o ¥ 0 K us continue by assessing the ability of the proposed chart to
i SRR I G I~ T detect shifts in y. The tables show that when &, < 1, the chart
usually detects downward shifts in y sooner than its upward
P shifts. For example, in the power law intensity function, when
2 R22328R B =-2.00,7 =0.3,5, =0.75 and &, = 0.25, the ARL, (SDRL,)
8128288 kBad883 corresponding to &, = 0.25,0.75,1.25,2.00 are 19.7 (18.3), 55.7
i | 0 o 3] o) i
N 8. S % 5 g § “ g 3 (55.3), 88.6 (87.7) and 128.3 (126.5) (Table 1), respectively. On
= 49 the contrary, when §, > 1, the control chart detects upward
shifts in y sooner than its downward shifts. For example, in
N DB o~ o~ the log-linear intensity function, when g =0.00,7 =0.8,6, =
" ; g §' :[\,: § 5 § ; E:; 2.00 and §, = 2.00, the ARL, (SDRL,) corresponding to &, =
ajlccct I d o 0.25,0.75,1.25, 2.00 are 51.9 (48.2), 41.0 (37.8), 31.5 (28.9) and 20.5
|l % & n oo 0 n a9 .
S g § g dags o (18.8) (Table 3), respectively.
Assessing the chart’s performance in detecting shifts in 7 is
Q @ § S ®ITaga 2 another important case due to its impact on system deterioration.
c|8 \F\f/ =) @ 5 8/ 1) = RS An increase in the shape parameter 7 leads to an increase in the
=1 o 9 g o2 o o o 9 frequency of failures. The observed trend in the chart’s ability
Q T 0w 0w Q5 5 a3 . . . . . . .
T o o n o to identify shifts in » appears consistent with its performance
in detecting shifts in y. This suggests that the chart usually
T o~ —_ detects downward (upward) shifts in # and p sooner than
" E S % 3 :. g 2T ’ﬁ their upward (downward) deviations when &, < 1 (6, > 1). For
N2z example, in the power law intensity function, when § = 2.00,7 =
S|t 9 ¥ 5 9 % 9 9 n .
F g T U g oo ¥ 0.3,8, =0.25 and §, = 1, the ARL; (SDRL,) corresponding to
= 8, = 0.25,0.75,1.25,2.00 are 3.9 (1.2), 33.0 (32.1), 158.6 (156.7) and
112.4 (111.1) (Table 2), respectively. These findings suggest that
Y o~ o~ the chart is more effective at detecting shifts in y and 7 when
= n g/ g e} ?}, o g g 8, ;-/ they occur in the same direction, compared to shifts in opposite
g S|lo w4 4 © & m =n directions.
g =~ g Y a4 ¢ a d =
=1
S We are also interested in evaluating the performance of the chart
_ - o — when a shift has occurred in the mean of TC y. As an example
~ ' g T(Q\ ’;QT ﬁ aq 8 8 8 8 regarding shifts in u, in the case of the power law intensity
e H 4 4 = i & ; - - — —
3 0 g g; ‘5» s g z; E» 2“ S function when §=0.00,7=0.3,5, = 1.25, and §, = 2.00, the
2 @ SR ; SR g S ARL,; (SDRL,) corresponding to §, = 0.25,0.75,1.00, 1.25, 2.00
& are 13.5 (12.9), 26.9 (26.1), 33.2 (32.5), 38.9 (37.8), and 52.2 (50.6)
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(Table 3), respectively. Similarly, for the log-linear intensity

’ﬁ E- ;’:? E SN function under the same configuration of § = 2.00,7 = 0.8, 5, =
8 \S;, \% = §, ?g 31-0/ 5 @ § 1.25, and &, = 2.00, the ARL; (SDRL,) values corresponding
Nz ; é < % ;:: ; g S to 8, = 0.25,0.75,1.00,1.25,2.00 are 34.8 (32.1), 48.4 (44.1), 62.4
- = = (57.2), and 98.3 (89.5) (Table 5), respectively.
RGNS 568 o It is well known that the risk factors impact the failure mech-
e § g LI ¥ 2 95 S anism of the system. On the other hand, we know that =0
~ |l I8 " s EET suggests no effect of the risk factor on the hazard rate. In this
§ @ § g m 3 &&= case, the chart’s sensitivity to shifts remains at a baseline level,
not influenced by the risk factor. By looking at the tables, it can
—~ o~ be observed that the control chart declares an OC alarm when
= S e aemneagg B < 0(B > 0) sooner (later) than in the scenario of the absence
S 8, 22 % 3 2 8_, & 2 = of a risk factor, denoted by § = 0. For example, in the log-linear
Q'(IL - E % g g 2 g; % ;; ; intensity function, when 7 =0.3,6, = 0.25,5, = 2.00 and &, =
- = 1.00, the ARL,; corresponding to 8 = —2.00, —0.50, 0.50, 2.00 are
36.9 and 48.1 (from Table 4) and 78.4 and 128.9 (from Table 5),
DR R Ao e e ~ respef;ti\./ely. This indicates that r.isk f:.jlctors exhibiting a negative
0 § § 4 F =5 o g ﬁ association with TBE have a positive impact on the performance
S|l ST Faaa =& of the proposed chart, while those with a positive association
8488 SR negatively impact the efficiency of the monitoring technique. This
insight stands out as a key finding in our simulation study. This
trend could be justified by understanding how the sign of 3 relates
w | S 6;' Saaocaasa to the sensitivity of the control chart to detect shifts. A § <0
g \:_{ % [i:/ g, < §/ g’, ;1 = suggests a reduction in the hazard rate associated with the risk
Q4 2 @~ e factor, implying that the effect of the risk factor is associated
with a lower likelihood of the shift occurring. Consequently, the
chart is more sensitive to changes, detecting shifts sooner because
e 5 S8 o5 a5 o e the risk factor is acting as a mitigating or stabilizing factor. On
S s g g '% o g g < the other hand, a § > 0 implies an increase in the hazard rate
<% = S o - N = = e associated with the risk factor, suggesting that the risk factor
S8R g8d 8= is associated with an elevated likelihood of the shift occurring.
Thus, the chart is less sensitive to changes, detecting shifts later,
as the risk factor contributes to a higher baseline risk of shifts.
~ a0 A~ —_
" g % § % g E g E g It can also be observed from the tables that the dependency
a P av-alv-di g parameter 7 noticeably affects the OC performance of the pro-
g E § E I R4 = o posed monitoring scheme. From the tables, ARL, decreases when
7 increases. This means that the chart detects the OC conditions
sooner when the degree of dependency between TBE and TC is
= ~ T A~ o~ o~ stronger. Thus, the higher degree of dependency between TBE
S| E § o% 5 g ;] = g g and TC improves the performance of the chart. This finding is also
«"L 3 et T: g ;; i ‘5 S 5 a crucial outcome of our simulation study. This could be justified
© § S ¢ 4 F 9 o by the fact that when there is a higher degree of dependency
between TBE and TC, it implies that they are more closely related
. or influenced by each other. As a result, changes in one variable
S i a0 e T are likely to be reflected in the other and consequently, the chart
2 L\@; E i) & =) 2 RGNS becomes more sensitive to changes in the joint distribution of the
e E § 5 g E Q e I3 two variables.
T 6.2 | Performance Comparison
~ n | @ o @9 9 v o vy
B Nl I e aldl . .
‘é’ S| o 2 ° oo =50 The stu(?y ?onducted by Ali [50] introduced a. control chart
g i) for monitoring the TBE based on the NHPP with power law
3 intensity, without accounting for risk factors and the TC variable.
: - e~~~ In this subsection, we evaluate the performance of the proposed
n /k_)j‘ § ﬁ EQT @ ﬂ 8 8_ 8 § chart in comparison to Ali’s chart, using the ARL metric. In the
& ' g 5 ‘5» 5, § z; E» E g initial phase, we generate 5000 TBES with parameters Yo ='0.05,
2 W|d S S 84S S & a 7o = 1.50, and f = 0.50,2.00 using the RANHPP (r1sk—a.djusted
= NHPP) model. Then the parameters are estimated using the
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IFM approach explained in the Appendix. For the proposed

< 3 i P NN N model with § = 0.50, the estimated parameters are 7 = 0.05, 7 =
8 8 = 2 8 3‘% 8 & 2 g 1.52, and f = 0.52 that are fairly close the known values. In
o33 " - PR R contrast, the NHPP-based method proposed by [50] yields param-
ﬁ <+ O ﬂ n §§ N N~ . N N . :
- = = eter estimates of 7 = 0.11 and 7 = 1.43. These biased estimates,
especially in the case of y, are caused by the noise incurred by
O e 5 ~ the risk factor that has not been accounted for in the estimation
e g § :;'_;/ % 8 o 8 5 E process. This unaccounted noise is expected to impact the chart’s
-] 8 © w8 n I I & performance.
2388 ¥Redr
— o
Given the estimated parameters, we calculated the control limits
PR of the proposed method (by ignoring TC) from the conditional
% s 2 g N S o N < g CDF of X; given in (14) and the limits of the alternative method
wn q . . . . . .
°| S S g % :S\;’ %, g, §, %:; \2, from [50]. This means that the risk factor is ignored in the
on
| el € 8 g d d design of the alternative approach. Then, the performance of
ha - both approaches is compared using the ARL metric across 17
combinations of (g,,d,). Table 6 presents the ARL values of
S ~ o~ . the RANHPP-based and NHPP-based methods when monitoring
PR I TS g AR ’:? < TBEs in the presence of a risk factor. The crucial finding in the
0 — . . . .
g g_ & \:-/ 151 &:/ & ?2/ =g \2/ table is that, while Ali’s approach detects some shifts sooner than
& I £ 9. the proposed method, its actual ARL, consistently falls below the
target value of 200. Specifically, the IC ARL for this approach
is 187.56 and 28.65 when = 0.50 and 8 = 2.00, respectively.
—_~ D o~ o~ o~ o~ o~ o~ Ultimately, it can be concluded that although the alternative
d| o & vwddddd g approach outperforms in some instances, this improved perfor-
Ol N RV DV B S B mance comes at the cost of generating numerous false alarms,
- particularly when S is relatively large. These frequent alarms
lose their warning role and are unlikely to trigger an audit each
@gqpaggﬁg time.
) T 2 = a
glscegisieug
N " E 8o % a K %3
Sggd TS~ , ,
— 6.3 | The Impact of Ignoring the Risk Factor
We further investigate the impact of the risk factors on the IC
e R I performance of the proposed chart that has been designed with
n $ § 9§ 9 o 3L = & ignorance of the risk factor. In other words, we are interested in
= a3 \@./ 27 g ﬁ./ E./ 3 :7‘: understanding the consequences of a risk factor affecting TBE
@ B F o~ that has not been considered in the design of the corresponding
chart. To do this, we follow the Algorithm 1 except for steps
= 10 and 11 where we calculate the control limits from the CDF
$ SIS 4o oo o of W, in (20) that is not conditioned on z;. The simulation
i =4 %!i b \% S S fon o setting is based on the parameters mentioned earlier in this
Q|m|Ee @ 7 n 9 2 S ¥ 9 section with a nominal ARL, = 200. The results of this study
— s m [ER <t N on N
" (not presented here) showed that the actual false alarm rate of
the chart is considerably higher than its nominal value. This
observation aligns with our findings when comparing the results
NG : i
w | & oW o6 S AN with those of [50]. For example, the ARL, values corresponding
el )
Sle T FaETEERS to f = —2.00, -0.50,0.50, 2.00 were 6.83,111.72,96.37, and 4.33,
TS @@ mad respectively. These findings highlight the noticeable influence
of neglecting the risk factors on the statistical properties of the
monitoring technique.
~
0 M NN N AN
s| |g/22329323873
. N N A N N e g N N/
E S R A T BT B
= = o a7 7 = 7 | A Case Study: Monitoring Pipeline Accidents
o
O
_ . P — In this section, our objective is to apply the suggested control
< /«_)j' g ﬁ ’;QT @ q 8 8 8 8 chart within an SPM context for the analysis of pipeline accident
3 WS @doa s = &3 X A data briefly introduced in Section 2. The dataset in question
- D AN N N ©O AN O . . [ . . . .
2 WG S S 94 & S S 9. contains an extensive set of oil pipeline accidents, including leaks
N— N— N— N— N— N— N— N— N—' N—
= and spills. Our primary goal is to explore how the proposed
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TABLE 6 | ARL values of the RANHPP and the NHPP TBE control

S 2= 2 N ng charts.
2lg 882888 g3
S|P EE FF 8 R e T B =050 B =2.00
¥ d ¥ 95 F 8 « L 9
By f°d5gR 099
(6,,6,) RANHPP NHPP RANHPP NHPP
e = (0.25,0.25) 1.06 1.07 1.33 1.54
R B I S
0 % § E § B UN_) (\‘;‘/ [u\: 5o (0.75,0.25) 1.19 1.20 1.65 2.08
| F FFa % 8 F %
il IS B S B v B B (1.00,1.00) 198.98 187.56 197.43 28.65
S EEgsan 3 ®e
(1.25,0.25) 1.28 1.32 1.92 2.38
(2.00,0.25) 1.41 1.46 2.17 2.83
o LN N N e e e
2 ° o£ ;‘9 g 3 g $ °[\o @ 5 ;]\ (0.25,0.75) 1.62 1.76 2.21 4.28
elss5< SHEF Y (0.75,0.75) 3.60 4.20 6.13 30.73
X on M = >~ n > 0 o
e SANCEI-BECEISER R (1.25,0.75) 6.64 7.95 13.24 45.59
(2.00,0.75) 13.37 16.72 30.21 35.01
g o ?-on\ ’é © S AQ e a = (0.25,1.25) 196.56 146.54 142.16 27.37
O
Q|2 \i—/ 3 g, £ 25 7 8 S (0.75,1.25) 105.7 87.95 141.2 19.42
S| ™M =} o o N < ]
EEEAdRFTERI A (1.25,1.25) 73.28 64.16 102.2 17.18
(2.00,1.25) 55.68 44.79 72.51 14.75
- —_ - (0.25,2.00) 29.12 26.18 48.05 13.52
N~ Q N S~ ~ o N o~ A~
a 8 g g S E \:_, ?‘; g 3 g (0.75,2.00) 20.58 18.4 35.76 11.92
e ; h § 5 o g § RN (1.25,2.00) 17.61 16.32 30.72 10.78
(2.00,2.00) 15.35 41.32 26.54 9.16
<|22583538889¢
g 53 % % \E/ 5 % \2 T " method can be effectively utilized and demonstrate the steps
) § 2 § E LR ¥ 2@ involved in its implementation using this dataset as a case study.
3327882238 L
m| S & 8 ﬁ g8 93485 7.1 | Data Description
SlEESSYESEESY
2 Er @ § E 8§ &S 2 Following the details outlined in Section 2, it encompasses a
collection of 2,781 records documenting oil pipeline accidents,
P encompassing leaks or spills, which were reported to the PHMSA
2 = 422 a SIS during the period spanning from 2010 to 2017. While the letter-
sl 8 @ 2 2 =2 L § 8 § 2 = value plots in Figure 3a,b show a few outliers in TBEs and TCs,
a1 N — .
= E b g ; % 3 3 S E 5 we decided to keep them and apply the proposed method. Table 9
e - = - presents the information on the last 50 accidents.
D~ D o~ o~ The accident date variable denotes the precise date of the oil spill,
10 E E §' g 3 g £ g g §' and it will serve as the basis for calculating the TBE, represented
S| T F § N8 ® I AK as X; and measured in hours. The TC variable represents the sum
§ 5 & FI N ST of various costs, including Property Damage Costs, Lost Com-
modity Costs, Public/Private Property Damage Costs, Emergency
Response Costs, Environmental Remediation Costs, and Other
D T T o~ o~ o~ Costs (which be measured by 100,000 USDs), and will be denoted
= s g a 5 9 ;i a = E é i by Y;. Additionally, there are five confounding variables that will
5 ejlwm ¥ a g xR g A be used as risk factors which are shown in Table 7.
=
S Panels (a)—(c) of Figure 5 show the observations of the X (TBE)
_ . P e and Y (TC) variables along with the W’s against the time index
" ,q_)j' @ 2 E\}\ ’;QT 49 8 8 S 8 i. In this Figure, panel (a) reveals that a substantial portion of
m < 2 § E]» E» ;“ § E ‘E » § the TBE falls within the 0 to 50h range. Meanwhile, panel (b)
g @ S ) g ) g S illustrates that the TC of failures typically ranges from 0 to 5
= million USD. Consequently, this suggests that the AC for most
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TABLE 7 | Information on risk factors.

Covariate Description

Pipeline location (PL) Classifies pipelines into two categories: (1) onshore (ONS) or (2) offshore (OFS).

Pipeline type (PT) Categorizes pipelines as follows: (1) Aboveground (ABG), (2) Underground (UNG), (3)
Tank (TAN), or (4) Transition Area pipelines (TRA).

Liquid type (LT) Discriminates between various liquid oil types, including (1) Biofuel/Alternative Fuel

(BAF), (2) CO2, (3) Crude Oil (CRO), (4) HVL or Other Flammable or Toxic Fluid, GA
(HFT), and (5) Refined and/or Petroleum Product (RPL).

Accident state (AS) The report provides data for forty-six states across the US.

Oil Cause categories (CC) Encompasses the following categories: (1) All other causes (AOC), (2) Other outside force
damage (OFD), (3) Corrosion (COR), (4) Excavation damage (EXD), (5) Incorrect
operation (INO), (6) Material/Weld/Equip failure (MWE), and (7) Natural force damage
(NFD).
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FIGURE 5 | Pipelines accidents raw data.
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TABLE 8 | Estimated parameters of the power law RANHPP model for pipeline accidents data.
7 7 B B2 s Ba Bs Jz Copula 7 AIC
0.024 1.071 —0.131 0.002 0.016 0.001 0.010 3.21e-06 Gumbel 0.001 —95039.97
HR — — — 0.877 1.002 1.016 1.001 1.010 — —
Z
(a) Control chart based on original observations.
w | rog(UCL,
§ -
log(LCL,
(b) Control chart for W; based on log-transformed observations and control limits.
a . vV ~ \I < v \.\[ o eoceor,
(¢) Control chart for Y; based on log-transformed observations and control limits.
log(UCL;
3 _ | ° ) Y i I !
log(LCL;
(d) Control chart for X; based on log-transformed observations and control limits.
FIGURE 6 | Control chart for pipeline accidents in Phase II.
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failures is close to 100,000 USD, as depicted in panel (c) of
Figure 5.

7.2 | Estimating the Process Parameters

For illustration purposes, we randomly selected the last 100 data
points for monitoring purposes in Phase II and the rest of them
are used to estimate the process parameters. To estimate the
parameters, we employed the IFM approach explained in the
Appendix. In the initial step, we employed the HPP as well as
both power-law and log-linear models to fit the TBE variable
based on a RANHPP and chose the model based on the Akaike
Information Criterion (AIC). Among them, the power-law model
yielded a better fit. The estimated parameters are in Table 8 where
81,6, 85, B, and B are the regression coefficients of PL, PT,
LT, AS, and CC, respectively. The hazard ratios (HR) defined as
ef regarding risk factors are also reported in this table. In this
context, HR quantifies the multiplicative change in the hazard
rate for a one-unit increase in the risk factor. In this way, HR >
1 (< 1) indicates an increase (decrease) in the hazard rate
associated with a one-unit change in the risk factor. Furthermore,
HR =1 implies that there is no change in the hazard rate
associated with a one-unit change in the predictor variable.

Based on the table, 7 > 1 indicates that the hazard rate of
the pipelines is increasing over time, which aligns with our
expectation given their degradation nature. This translates to a
higher frequency of failures or a shorter TBE in the presence of
aging. Furthermore, the estimated coefficients of the risk model
show that there is a negative association between the risk factors
PL and the TBE variable (8, < 0 with corresponding HR < 1),
whereas covariates PT, LT, AS, and CC are positively associated
with TBE (8, > 0,85 > 0,5, > 0, and 5 > 0 with corresponding
HR > 1). Furthermore, according to the HR criteria, we can see
that the risk factor PL (pipeline location) has the most effect on
TBE compared to the other risk factors.

Now, turning to the TC variable denoted by Y. To assess the dis-
tribution of Y;’s, a Kolmogorov-Smirnov test with corresponding
p-value = 0.025 suggests that an exponential distribution with
mean l = 311,905 USD could be a reasonable model for the

TC Var{lable. In the second step of our analysis, the focus shifts
to selecting the most suitable copula based on the estimated
parameters obtained in the first step. We search through three
Archimedean copula functions, including Gumbel, Frank and
Clayton, to find the most suitable model for describing the depen-
dence structure between variables X;|T;_;,z; and Y;. Based on
the AIC metric, the Gumbel copula with 7 = 0.001 is the optimal
choice that indicates a weak positive dependence between the
TBE and TC variables. Eventually, the estimated parameters in
Table 8 can be used to establish the control limits of the proposed
approach in Phase II to monitor the AC over time through the
ratios W, = % fori=1,2,...

7.3 | Phase II Analysis

To calculate the control limits in this phase, we set ARL, = 200
corresponding to the false alarm rate a = 0.005. Figure 6a depicts

the control chart representing the last one hundred observations
of W;. Since the distribution of W/ is highly right-skewed, is hard
to conclude the stability of the process from this figure. Thus, to
better illustrate, Figure 6b shows the control chart after taking
a logarithm of the monitor statistics and their corresponding
control limits. The updated figure makes it much easier to assess
the random behavior of W; within the IC zoon and to highlight
its OC observations. Figure 6b shows nine OC signals by plotting
W, below the LCL;. For more illustration, Table 9 presents the
information of the last 50 failures. The OC signals are shown by
bold-red values in this table. Considering all this information, the
proposed control chart suggests evidence of a potential decrease
(improvement) in the AC parameter.

Although the control chart for AC provides valuable insights
into the process, it does not address whether the TBE, the TC,
or both of them have shifted. This is a known disadvantage of
control charts based on more than characteristics. In such cases,
one idea is to develop control charts for monitoring TBE and TC
individually to find the main source of shift in the AC. Figure 6c,d
show separate control charts for X; and Y;. Note that the control
limits of TBE and TC charts are obtained based on the quantiles of
the conditional CDF of X; in (14) and the quantiles of the CDF of
the exponential distribution, respectively. Figure 6d indicates that
the TBE variable remains relatively stable statistically throughout
this period. However, in panel (c), the control chart of TC displays
several OC signals, particularly towards the end of the monitoring
period. This coincides with the presence of OC signals on the AC
chart (panel (a) of this figure). On the other hand, the TC’s control
chart shows a downward shift in Y;, which is the same as the
direction of AC’s shift. By analyzing the insights provided by both
the joint and individual control charts, it can be concluded that
the downward deviation in TC is the root cause of the observed
OC condition in the AC’s control chart.

It is important to note that while a downward shift in AC/TC
is a positive sign, the inspectors should continue the monitoring
process for some time to ensure that the improvement is sustained
and that other aspects of the process are not adversely affected.
Since the TC is the aggregate sum of all incurred costs, the man-
ager can investigate what specific cost factor(s) have contributed
to the decrease in TC. In case a sustained decrease in TC is
approved, the quality inspector should plan to collect data and
reestablish control limits based on new data.

8 | Conclusion

This article introduced a risk-adjusted control chart to simulta-
neously monitor the time between and the cost associated with
consecutive failures of systems. This is done by monitoring the
ratio of the TC and the TBE variables based on an NHPP model.
The inclusion of risk adjustment serves to account for risk factors
that improve the chart’s sensitivity to variations in process failure
and cost. The TBE and TC variables are assumed to be dependent
such that a copula model can describe their dependency. The
effectiveness of the proposed methods is assessed using the ARL
and SDRL metrics. Extensive simulations have been conducted to
evaluate the performance of the control chart with respect to the
various process parameters. In general, there are three categories
of parameters, the parameters corresponding to the TBE (y and
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TABLE 9 | The information on the last 50 accidents.
i T; X; Y; W; LCL; UCL; Zy; Zy; Zy; Zy; Zs;
2732 59562.4 75.2 4575 60.8 36.9 13197434.0 ONS ABG CRO OH MWE
2733 59565.4 3.0 46280 15341.4 37.0 13168685.0 ONS UNG HFT IL MWE
2734 59583.8 18.4 73569 3998.3 37.1 13132831.0 ONS ABG RPL CA MWE
2735 59584.2 0.5 3571 7652.1 36.3 13439985.0 ONS ABG CRO KS MWE
2736 59586.3 21 4020 1961.0 38.1 12772968.0 ONS UNG HFT TX MWE
2737 59652.9 66.7 5011 75.2 36.6 13330405.0 ONS TAN RPL NJ AOC
2738 59684.6 31.7 2336 73.7 38.5 12624830.0 ONS TAN RPL SD MWE
2739 59695.9 11.3 60000 5301.9 37.3 13084386.0 ONS ABG CRO TX MWE
2740 59712.1 16.2 157221 9725.0 36.7 13303158.0 ONS ABG CO2 TX MWE
2741 59769.9 57.8 4120 71.3 36.4 13410679.0 ONS UNG CRO TX COR
2742 59871.1 101.2 4521 44.7 37.3 13081148.0 ONS ABG CRO X MWE
2743 59892.1 21.1 5417 257.3 37.9 12853827.0 ONS ABG HFT X MWE
2744 59894.7 2.6 145310 56249.0 351 13876192.0 ONS UNG CRO CA COR
2745 59903.1 8.4 1016236 121462.5 35.9 13564725.0 ONS UNG HFT MO AOC
2746 59914.1 11.1 3089580 279600.0 37.6 12966895.0 ONS ABG RPL LA MWE
2747 59936 21.9 157000 7174.4 38.5 12619194.0 ONS ABG RPL TX MWE
2748 59936.6 0.6 22203 39181.8 353 13810797.0 ONS ABG CO2 UT AOC
2749 59943.4 6.9 70015 10171.7 37.3 13079746.0 ONS ABG CRO TX MWE
2750 59962.4 19.0 825 43.5 37.1 13133272.0 ONS ABG RPL AR MWE
2751 59963.1 0.7 800 1142.9 38.0 12795613.0 ONS TRA CRO WY NFD
2752 59971.9 8.8 400 45.5 36.2 13460802.0 ONS ABG CRO IL MWE
2753 60039.1 67.2 7500 111.6 35.5 13721322.0 ONS UNG CRO ND AOC
2754 60070.2 31.1 45 14 36.9 13216967.0 ONS ABG CRO TX INO
2755 60081.7 11.5 100500 8713.9 37.8 12894699.0 ONS ABG HFT SC MWE
2756 60143.9 62.1 523 8.4 37.2 13105401.0 ONS UNG RPL TX AOC
2757 60168.1 243 1820500 75072.2 38.1 12763518.0 ONS ABG RPL TX INO
2758 60171.1 3.0 1000 339.0 37.5 13006054.0 ONS ABG HFT NM MWE
2759 60173.9 2.8 27580 9850.0 38.1 12761980.0 ONS ABG RPL TX INO
2760 60212.8 38.9 43 1.1 37.5 12990762.0 ONS ABG HFT TX INO
2761 60230.4 17.7 20200 1143.4 37.9 12847206.0 ONS ABG HFT TX MWE
2762 60244.8 14.4 30400 2111.1 38.0 12789663.0 ONS UNG RPL VA EXD
2763 60252.6 7.8 15000 1931.3 36.9 13214086.0 ONS ABG CRO TX INO
2764 60259.7 7.1 6400 903.5 36.0 13536355.0 ONS UNG CRO TX AOC
2765 60281.8 22.1 119829 5418.0 38.6 12554030.0 ONS TAN RPL OH NFD
2766 60322.6 40.8 9450 231.6 36.9 13211372.0 ONS TAN CRO NJ MWE
2767 60371.4 48.8 1050 21.5 37.3 13073569.0 ONS ABG CRO TX MWE
2768 60378.4 7.1 375 52.9 37.7 12931277.0 ONS ABG CRO TX NFD
2769 60378.8 0.3 100 300.0 35.8 13625136.0 ONS UNG CRO OK AOC
2770 60379.4 0.6 10993 18845.1 36.4 13399666.0 ONS ABG CRO LA MWE
2771 60404.9 25.5 7803 306.0 35.8 13625152.0 ONS UNG CRO OK AOC
2772 60424.3 19.4 300 15.5 36.3 13439608.0 ONS ABG CRO IN MWE
2773 60458.0 33.8 227 6.7 36.6 13319821.0 ONS ABG CRO MO MWE
2774 60475.6 17.6 5000 284.4 35.8 13607860.0 ONS ABG CRO TX AOC
2775 60494.2 18.6 2600 139.9 37.3 13070748.0 ONS ABG CRO TX MWE
(Continues)
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TABLE 9 | (Continued)

i T; X; Y; Wi LCL; UCL; Zy; Zyi Zs; Zy; Zs;

2776 60539.9 458 906900  19823.0 36.2 134799490  ONS ~ ABG  CRO TX COR
2777 60565.3 25.3 26315 1038.8 36.6 13318231.0 ONS ABG CRO MO  MWE
2778 60596.9 317 17456 551.2 35.8 136344490  ONS ~ UNG  HFT LA AOC
2779 60611.3 14.3 170 11.9 37.1 131342820 ONS  TAN  CRO OK  MWE
2780  60734.6 1233 20333 164.9 37.0 13166475.0 ONS  UNG RPL PA AOC
2781 608763 1417 165593 1168.9 36.9 132056250  ONS ~ ABG  CRO TX INO

1) and TC (u) variables, the vector of coefficients B associated
with the risk model, and the parameter of the copula model 6..
During the simulation study, we only focused on assessing the
performance of the proposed technique in monitoring y, 7 and u.
In summary, the numerical study yields the following insights:

* The proposed chart is ARL-unbiased across all shift combina-
tions, i.e., we always have ARL, > ARL,.

* A higher degree of dependency between TBE and TC
improves the chart’s ability to detect shifts sooner.

* The risk factors exhibiting a negative association with TBE
have a positive impact on the performance of the proposed
chart, while those with a positive association negatively
impact the efficiency of the monitoring technique.

* Risk factors can notably increase the false alarm rate if not
accounted for properly in the design of the chart.

The last two bullet points underscore the critical importance of
incorporating risk adjustment to improve the effectiveness of the
proposed control chart. By accounting for the risk factors, the
chart’s detection capability is enhanced through the isolation of
the underlying failure mechanism, achieved via separate estima-
tion of the effects associated with those risk factors. Furthermore,
the superiority of the proposed approach over existing methods
that disregard such factors has been demonstrated through com-
parative numerical simulations, reinforcing its practical value in
real-world monitoring applications.

To implement the proposed method effectively, several model
parameters must be estimated from a clean (in-control or
reference) data set. Prior studies have shown that parameter
estimation errors can significantly affect the performance of
control charts. Therefore, evaluating the impact of estimation
errors in Phase I on the monitoring performance in Phase II
presents a valuable direction for future research. Additionally,
although our proposed chart incorporates the TC associated with
failures in its monitoring statistic, the design is based purely on
statistical considerations, such as in-control and out-of-control
performance metrics. In practice, however, failure events often
involve various tangible costs. Although these were included
in the original version of the dataset analyzed in Section 7,
they were not reported in this study and include property
damage, emergency response, and environmental remediation
costs. Integrating such cost components into the design of the
control chart could help achieve not only desirable statistical
properties but also minimize financial loss. Thus, an economic-

statistical design of the proposed methodology represents
another promising and practically relevant avenue for future
research.
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Appendix A: Estimation method

This section offers the required methodology to estimate the parameters
of the model. Consider the continuous TBE and TC random variables,
denoted as X; and Y; so that their joint distribution function is described
by the copula function C. The joint PDF of TBE and TC is given in (17).
Then, the likelihood function to estimate the unknown vectors 6y, 6y,
and 0, can be calculated based on the paired observations (x;,;);_;
as:

n
Ine(Fx, 1, 2)(%i16x), Fy (v:16y)16,)
in1

n n
+ 2010 fo i (ilBx) + I fy(vi16y), (A1)
i=1 i=1

where c is copula pdf. When dealing with multivariate models, it’s
common to encounter situations where closed-form estimators, such as
maximum likelihood or other analytical methods, are not readily avail-
able. In such cases, numerical techniques become essential. Moreover,
as the dimensionality of the problem increases, the challenges associated
with numerical optimization become more pronounced, especially in the
presence of a copula function. In light of these complexities, Joe and
Xu (1996) proposed an approach called inference function for margins
(IFM) which is particularly useful when we have data from multiple
variables and we want to model their joint distribution using copulas.
Joe and Xu (1996) showed that the IFM approach has some benefits
over the traditional maximum likelihood estimation (MLE) method; it
tends to be computationally simpler compared to MLE, especially for
complex copula models and it can be more robust to misspecification of
the marginal distributions. Even if the marginal models are not perfectly
specified, the IFM approach can still provide reliable estimates of the
copula parameters. In the current setting, one may encounter a problem
with tens of risk factors, potentially significantly increasing the dimension
of the parameter space. Therefore, we adopt the IFM approach to estimate
the parameters. According to this approach, we apply the following two
steps in the estimation procedure.

1. Estimate the parameters of the margins 8y and 6y as:

6y =argmax ¢y (Ey10)iy 0 )» (a2

éX =argmax 'y (le(xi)i=1 ____ n ), (A3)
where ¢y and ¢x are the log-likelihood functions based Y; and
X;|(ti_q,z;) for i = 1,2,..., n, respectively. If Y; follows an Exponen-

tial distribution, like the case study, we have 8y = y and:

n

Z?:l Yi

p= (A4)

2. Given 8y and 6y obtained in step 1, estimate the copula parameter 6,
as:

6, = argmax £, (8, 6y, by 061,y ) (AS)
where ¢ is the copula log-likelihood function.

To estimate the parameters using (A.3), the Equation (15) will be used to
determined the log-likelihood function as:

Cx(Ox|x1, X35 e 5 X))

B

n

= 2 108ty +x1120)) = D) (MG +x1120) = At 120)]

i=1 i=1

= ) log(A(tiy + x) exp (B'z,)) — Z [Altiy + X)) = A(ti-)] exp (B'z:)
i=1 i=1
= D) log(Altiy + X)) + Z (B'z) - Z [ACiy +x) = Altiy)] exp (B'z)).
i=1 =t =t
(A.6)

Accordingly, if we consider the power law intensity, then (A.6) reduces
to:

Ux (ﬁ’,y,nlxl,xb ,Xn)

=Y log(yn(tiey +x)" D+ Y (8'z:)
i=1

i=1

= 2 (G +x)7 1) exp (B'zi)

i=1
n
= nlog(y) + nlog(n) + (7 — 1) Y. log(t;_; +x;)
i=1

n

+ ) (Bz) = 2 r[tia +x)" =1 Jexp (B'z) (A7)
=1

i i=1

In the same way, in the case of the Log-Linear intensity, (A.6) reduces to:

fX (ﬁ”y’ 7]|x1, X9y eees xn)

= Y log(exp(y +n(tiy + X)) + Y. (B'z:)
i=1

i=1

-y %(exz)(y +7(tioy + X)) — exp(y +nt;_1)) exp (B'z;)
i=1
=ny+n Z(ti—l +x;) + Z (5’21‘)
i=1 i=1

exp(y) <
- S0 X [exp(n(tis +x) — exp(ti-Dlexp®'z). (A
i=1
Eventually, Oy can be obtained in both scenarios by substituting (A.7) and
(A.8) in (A.3) and solving the optimization problem.
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