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This research aims to identify the behavioral characteristics of a biased IPMC sensor and maximize its sensitivity by optimizing
the related parameters. For this purpose, an IPMC strip was stimulated with a custom setup and the experimental data was
recorded. Then, a multiple linear regression model was used to determine the basic functional factors of the biased IPMC sensor.
Finally, the optimal operating point of the sensor was estimated using the partial derivative method and contour plots. Statistical
analysis showed that the mechanical excitation frequency, electrical bias frequency, electrical bias amplitude, and the value of bias
resistance had a significant effect on the sensitivity of the IPMC sensor. Adjusted/predicted R-squared in the proposed model was
calculated 0.9498/0.9435, respectively, which indicates high accuracy in data fitting. Also, analysis of the residuals showed that the
model has the required adequacy. In addition, the consistency of the optimal operating point from the optimization method with
practical experiments shows the synergy of partial derivatives and plot counters can be used as an efficient method in further

optimization studies.
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1. Introduction

The IPMC sensor is a type of ion-electroactive material that has
become increasingly popular as a displacement and bending
sensor during the last two decades [1-9]. An IPMC sensor
consists of a Nafion membrane coated with two layers of metal
or other conductive materials Figure 1 [2, 10, 11]. The mem-
brane contains an anionic lattice, hydrated cations, and water
molecules that have a quite uniform distribution in rest mode
(Figure la) [1-10], whereas bending the IPMC sensor will
cause a disturbance in this ionic balance [2, 5, 6, 11]. As
Figure 1b illustrates, by applying mechanical stress to the
IPMC sensor, ion migration would occur due to the inside
strain gradient and will then result in a potential difference
between two electrode layers [2, 10, 11, 13]. As a result, any
mechanical deformation in the IPMC sensor generates an

electrical signal, making it an effective displacement measure-
ment sensor [1-10, 12].

In various studies, IPMCs have been explored for their
advantages including their lightness [13], flexibility [14-16],
ease of miniaturization [5], and biocompatibility [15]. How-
ever, they also have limitations, such as dependance on tem-
perature and ambient humidity [17-21], slow dynamic
response [22], hysteresis effect [23, 24], and low output voltage
level [10]. Researchers have attempted to improve the perfor-
mance and behavior identification of IPMC sensors through
two primary optimization strategies—modifications to the fab-
rication process, encompassing structural, chemical, and
manufacturing techniques [8, 20, 25-30], and operational pro-
tocols, incorporating electrical and environmental adjustments
[31-35]—to improve sensitivity, stability, linearity, and
response time.
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FIGURE 1: Structure and working principles of IPMC sensors [10]. (a) Rest mode and (b) sensory mode.

In the fabrication process, for structural optimization, Lee
et al. [31] proposed using IPMC as a stretchable Kirigami-
inspired sensor to detect strain and torsion. Their findings
revealed that the Kirigami structure markedly enhances sensor
sensitivity, achieving over 300% sensitivity to uniaxial strain
deformation and a broad sensing range of up to 80% strain.
For chemical optimization, Lee et al. [26] developed a nonin-
vasive, intelligent throat sensor by coating the IPMC with
corrosion-resistant gold. To further boost sensitivity and con-
formality, they engineered the Nafion membrane with a
sponge-like microstructure, yielding an output with excep-
tional linearity and high sensitivity. Similarly, Hong et al.
[36] enhanced IPMC performance by applying a conductive
network composite layer of gold nanoparticles and poly-
allylamine hydrochloride onto the Nafion membrane, acceler-
ating ion transport and elevating sensitivity. Likewise, Lei et al.
[20] proposed coating the IPMC with an external parylene
layer to mitigate drying in ambient environments, maintaining
consistent water content and enabling stable sensing perfor-
mance, even in dry conditions. For manufacturing optimiza-
tion, Ming et al. [25] devised an innovative fluid—bed reactor
for batch production of IPMC sensors, significantly improving
sensitivity and stability and positioning these sensors as viable
for diverse applications.

For operational protocols, in electrical optimization, Fang
et al. [32] employed an amplitude modulation—demodulation
technique to create an IPMC sensing/actuating transducer,
where the sensor’s output voltage varies with the electrical

resistance of its electrodes under bending. They explored three
IPMC variants, differing in material processing and solvent
conditions, and found that manufacturing variations induced
deformations in static or low-frequency measurements. In
environmental optimization, Ando et al. [33] placed an
IPMC sensor in a small vial filled with ferrofluid to customize
the behavior characteristics of IPMC. Results showed that their
IPMC-based device could detect equilibrium variations, but the
response of the device was limited by the output frequency of
the IPMC sensor. So, through further research, Ando et al. [34]
advanced this approach by leveraging external magnetic fields
to control the ferrofluid environment, further refining IPMC
performance. These fabrications and recording strategies sup-
port further advancements, such as our statistical analysis of
biased IPMC sensors [37].

Previous studies reached some remarkable achievements,
but the amplitude of the voltage generated by the IPMC sensor
was still low and could be considered an obstacle; hence,
through our previous study [37], a new method was introduced
to improve the IPMC’s performance. We applied a low ampli-
tude high-frequency sinusoidal bias voltage signal to the IPMC,
recorded its output voltage, and observed that the signal could
pick up hydrated cations from stasis and facilitate their move-
ment in the Nafion membrane, thus improving sensitivity. In
this research, the influencing factors on the IPMC biased sensor
and its optimal working point have been quantitatively investi-
gated with the help of statistical methods. It is hoped that the
proposed method will be a step forward in future researches in
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FiGURre 2: Laboratory equipment for excitation of biased IPMC sen-
sor and data recording.

the field of optimizing the performance of sensors based on
smart materials.

2. Materials and Methods

2.1. Material. In this study, a preprepared IPMC strip with a
mass of 0.17 g and dimensions of 43 mmx 5 mm with a thick-
ness of 0.5mm was used. The electrolyte was Na*, and the
membrane was DuPont Nafion 117 PES, coated with two
thin layers of Ag. Such IPMCs are typically prepared by clean-
ing the Nafion membrane in dilute acid and deionized water,
followed by ion exchange with silver nitrate to impregnate Ag*
ions, chemical reduction to deposit Ag electrodes, and soaking
in a sodium salt solution to introduce Na™ ions. Due to the
influence of structural characteristics, such as length-to-width
ratio and electrode-layer thickness, on IPMC behavior [8, 22],
these properties are reported for validation and repeatability of
experiments. According to Figure 2, the experimental setup was
located in a custom incubator equipped with LM35 tempera-
ture sensor and HIH4000 hygrometer was used to maintain a
constant temperature (25°C) and humidity (60%) to prevent
their influence on the sensor performance. This prevented tem-
perature and humidity from affecting the results of the
experiments.

2.2. Hardware. Figure 3 presents the schematic structure of the
experimental setup used in this study. The stepper motor driver
circuit rotates the motor based on the given direction and
frequency. Motor rotations are converted into linear motions
via a mechanical coupling and bend the IPMC sensor up to
50.4° left and right of its initial position. The mechanical wave-
form frequency is selected proportionately to the physical lim-
itations of IPMCs [22] and is between 0.1 and 1Hz.
Furthermore, a sinusoidal signal generator is used to provide
a bias electrical wave with amplitudes of 1, 1.5, and 2V
and frequencies of 100, 200, 500, 1000, 2000, 3000, ..., and
10,000 Hz through a variable resistor named R, (0.1, 1, and
10k€2). The output voltage of the IPMC is recorded by a PC-
based data logger (12-bit resolution, 100kS/s sample rate in
continuous streaming mode) connected to a laptop. Finally,
the effect of each factor (mechanical waveform frequency, elec-
trical bias amplitude, electrical bias frequency, and R, value) on
the output voltage (sensitivity) of IPMC is statistically analyzed.

2.3. Data Analysis. Based on previous studies, the relationship
between the output voltage and tip displacement of the IPMC
sensor is almost linear [9, 12, 38]. Therefore, linear models can
identify key functional factors of the biased IPMC sensor. The
current study provides a suitable statistical method to analyze
the collected experimental data from a biased IPMC sensor. By
performing appropriate statistical analysis, it is possible to iden-
tify the optimal levels of key factors to achieve the maximum
output voltage and present a model for a biased IPMC sensor.

2.3.1. Multiple Linear Regression Model. In statical modeling,
regression analysis is a set of statistical processes for estimating
the relationships between a dependent variable and one or
more independent variable(s). Generally, the multiple linear
regression model is defined as follows [39]:

y=Xp+e
N L X X .. Xk
y= Y2 X — L ox X o Xy
=yﬂ 1 Xp1 X2 -eo Xpk N (1)
3 €]
£
p= | e=|"
_ﬂn &y

where y is a vector of observed values, X is a matrix of
regressors, /3 is the vector of estimated regression coefficients,
and ¢ is a random error vector. Also, n represents the num-
ber of observations, and k + 1 is the number of parameters of
the regression model [39]. Here, the multiple linear regres-
sion is developed based on some assumptions:

1. A linear relationship exists between the dependent and
independent variables.

2. The dependent variables are not highly correlated with
each other.

3. The variance of the residuals is constant.

4. The observations are independent of one another.

5. The residuals are normally distributed.

Given such assumptions, the least-squares (LSs) method
can be used as a reliable and consistent method to obtain the
parameters of the regression model [40].

2.3.2. Testing the Significance of the Model and Its Parameters
(Coefficients). To evaluate the significance of the regression
model based on the regressors in the X matrix, the following
hypothesis test is proposed:

{Hoiﬂozﬂlz“‘:ﬂk:o ' (2)

Here, the regression model is recognized as a statistically-
significant model (H,, is rejected) if at least one of the X matrix
regressors is statistically significant. Variance analysis (F-test) is
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FIGURE 3: Schematic structure of the proposed hardware system for applying electrical bias and mechanical excitation to the IPMC and

recording the potential difference created by it.

TasLE 1: Characteristics of tested variables.

Case Symbol Levels Values Unit
Mechanical wave frequency fs 3 0.1-0.4-1 Hz
Bias voltage frequency fo 12 0.1-0.5-1-2-3-4-5-6-7-8-9-10 kHz
Bias voltage amplitude D, 3 1-1.5-2 Vv
Variable resistance of the bias path Ry 3 0.1-1-10 kQ
used to perform this hypothesis test. In (Equation 2), the null oy dy ay

hypothesis Hy is rejected if Fy >F, (k, n—k—1), where « is the d_xl - (3_3(2 - d—xp =0. (4)

risk of making a type I error. According to the p-value
approach, H, will be rejected if the p-value of the Fy-statistic
is less than a [39].

To evaluate the significance of each parameter the follow-
ing hypothesis test is proposed:

{Hozﬁj:O

Hy:f;#0 G)

According to the T-test, the hypothesis Hy is rejected if
|to|>tasn (n—k—1) and according to the p-value approach, H,
will be rejected as well if the p-value of the #,-statistic is less than
the a [39].

The results of tests (2) and (3) are reliable when: ¢ ~
NID(0, 62) [39].

2.3.3. Determining the Optimal Operating Point. To deter-
mine the optimal point of a model concerning factors x;, x,,
ces Xpy partial derivatives are used. This point (if available) can
be calculated from the following equation [39]:

In (Equation 4), y represents the model estimation of the
actual response, and the calculated operating point is called the
stationary point [39]. This point can maximize or minimize the
model response or be a saddle point. A contour plot is used to
detect the resulting condition for the calculated operating point
[39]. In addition, if it is not possible to fine-tune the stationary
point in practical conditions, the contour plot helps to obtain a
certain range of factor(s) for which an acceptable response is
still received.

3. Result

3.1. Description of Variables. The characteristics of the tested
variables (mechanical excitation frequency [f,], electrical bias fre-
quency [f,], electrical bias amplitude [D,], and variable resistance
value [R]) can be seen in Table 1. In all experiments, the amount
of bending created in the IPMC was considered at & 50.40° (Sec-
tion 2.2). So, the effect of bending amplitude is removed from the
sensor response. As mentioned in Section 2.1, the ambient
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FiIGURE 4: The individual effect of each parameter on the sensitivity of the biased IPMC sensor (Viensor—Viias)- (@) The effect of bias
amplitude (f;=0.1Hz, f, =5kHz, and R;=1k®), (b) the effect of bias frequency (f;=0.1Hz, D,=1.5V, and R;=1k), (c) the effect of
mechanical wave frequency (D, =1.5V, f,, =5kHz, and R;=1ke), and (d) the effect of resistance of the bias path (f;=0.1Hz, f,, =5kHz,

and D,=1.5V).

temperature and humidity as well as the structural parameters
(aspect ratio, thickness, etc.) affect the behavior of the IPMC
sensor. However, in order to avoid model complexity and focus
on bias parameters, the aforementioned items have been kept
constant (Section 2.1).

Figure 4 depicts the separate effect of each parameter on the
sensitivity of the biased IPMC sensor. In examining each factor,
other variables are held constant. The results clearly show that
changing the value of each parameter affects the sensitivity of the
biased sensor. Applying an electrical bias to the IPMC will result
in the oscillation of the hydrated cations and facilitate their
movement across the Nafion membrane. In this regard, the
amplitude and frequency of the electrical bias determine the

number of hydrated cations that oscillate and their velocity of
fluctuation around their position. Therefore, if the bias frequency
is too high, due to the slow dynamics of the IPMC in response to
electrical stimulation, the hydrated cations will not have enough
time to migrate toward the cathode completely and will vibrate
in the middle of the membrane. Therefore, if the bias signal
frequency exceeds a certain value, the amplitude of the IPMC
output voltage will drop, which is not entirely unexpected. Incre-
ment in the bias signal amplitude results in a similar outcome.
This could be explained by the fact that increasing the amplitude
of the bias signal is equivalent to a rise in the number of the
moving hydrated cations, which, in turn, increases the probabil-
ity of the collision of induced hydrated cations. During
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TaBLE 2: Analysis of variance for significance of regression related to
the default model.
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TasLE 4: Analysis of variance for significance of regression related to
the reduced model.

Source DF AdjSS AdjMS  F-value  p-Value Source DF AdjSS AdjMS  F-value p-Value
Regression 12 17.9 1.492 168.07 <0.001 Regression 12 17.9 1.492 168.07 <0.001
Error 95 0.843 0.009 — — Error 95 0.843 0.009 — —
Total 107 18.743 — — — Total 107 18.743 — — —

TasLE 3: Coefficients for transformed response related to the default
model.

TasLe 5: Coefficients for transformed response related to the
reduced model.

Term Coef SE coef T-value p-Value Term Coef SE coef T-value p-Value
Constant —1.764 0.288 —6.13 <0.001 Constant —1.764 0.288 —6.13 <0.001
fs —0.565 0.165 —343 0.001 fs —0.565 0.165 —343 0.001
Jo 0.1332 0.021 6.33 <0.001 o 0.1332 0.021 6.33 <0.001
D, 5.743 0.361 15.93 <0.001 D, 5.743 0.361 15.93 <0.001
R, 0.7232 0.0438 16.52 <0.001 R 0.7232 0.0438 16.52 <0.001
fXfs 0.128 0.133 0.96 0.339 foXfo —0.01638 0.00103 —15.87 <0.001
fb be —0.01638 0.00104 —15.79 <0.001 D, x Dy, —1.928 0.1 —19.24 <0.001
Dyx Dy, —1.869 0.118 —15.82 <0.001 RX R, —0.06133 0.00272 —22.58 <0.001
RX R, —0.06116 0.00273 —22.37 <0.001 stRs —0.2347 0.0656 —3.58 <0.001
£, 0.01179 0.00901 131 0.194

fiX R —0.2347 0.0659 —3.56 0.001

foX Dy 0.0066 0.0118 0.56 0.578 with a value of 2= 0.25 was applied to the response (amplitude
fuX R, 0.000375 0.000918 0.41 0.684 of the voltage received from IPMC). Table 2 shows the results

successive collisions, the hydrated cations release their kinetic
energy in the Nafion membrane and cause turbulence. Subse-
quently, the movement of other hydrated cations across the
membrane will be disrupted. On the other hand, the output
voltage drop in response to higher amplitudes of the bias signal
could be related to the electrolysis phenomenon [41, 42]. Regard-
ing the mechanical stimulation frequency, a lower frequency will
bring on a higher amplitude response of the IPMC, since IPMC
tip displacement with low frequencies provides hydrated cations
with more time to move across the membrane. In the case of the
values of R, inherent impedance properties of the IPMC should
be noted. Therefore, the optimal value of R obtained from the
optimization method, must have a significant relationship with
the inherent impedance of IPMC.

Despite the useful information obtained from the indepen-
dent examination of each parameter, statistical analysis of the
results is necessary to determine the significance and contribu-
tion of each parameter to the sensor output, as well as to
achieve the optimal operating point.

3.2. Determining the Optimal Regression Model. Before pre-
senting the regression model, it is necessary to identify the
regressors that have no significant effect on the response and
remove them from the X matrix to minimize model complex-
ity. A variance analysis table can be used for this purpose [39].
Considering a second-order structure as the default model, the
results presented in Tables 2 and 3 were obtained. In calculating
the elements of these tables, effects DX f, and Dj, X R; could not
be calculated and were removed. In addition, to create sufficient
adequacy in the statistical model, the Box—Cox transformation

of the variance analysis performed to evaluate the significance
of the default model. Given a=0.05, since F; o,5 (k, n—k—1) =
1.856 < F-value (p-value <a) it is clear that the default model is
significant. However, it should be noted that the removal of
low-value regressors (regressors that have no significant effect
on the model) reduces model complexity. According to the
results presented in Table 3, the effects coefficients f; X f;, f, X
S fo X Dy, and f;, X R, are nonsignificant due to t, gp5 (n—k—1)
>|T-value| (p-value >a). So, their regressors can be removed
from the model. If these regressors are removed from the model
using the backward elimination method [39], the result of the
variance analysis performed to evaluate the significance of the
reduced model and its effect coefficients will be as presented in
Tables 4 and 5.

As can be seen in Table 4, by removing the regressors f, X f,,
[ X o> fo X Dy, and f;, X R from the model and transferring them
to the error component, the degree of freedom of the model is
reduced from 12 to 8. In other words, the reduced model is less
complex than the default model. Also, the F-value of the
reduced model is higher than the default model. Therefore,
the reduced model is better than the default model in terms
of performance.

Table 5 shows the results of the variance analysis on the
reduced model coefficients. According to ty o5 (n—k—1)=
1.984 < |T-value| (p-value <a), all coefficients of the reduced
model are significant and should be considered in the regres-
sion model. Considering these coefficients, the reduced (opti-
mal) regression model will be as follows:

Voltage i _pi)*?* = —1.994 — 0.3644f; + 0.1491f;, + 5.951D,
+0.7251R, — 0.01638f,, X f;, — 1.928D, X D,
- 0.06133R, X R, — 0.2347f, X R,.
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FIGURE 5: Assessing the adequacy of the regression model based on residues. (a) The comparison of residues distribution with the normal
distribution. (b) The distribution of residues versus observations. (c) The trend of residues changes versus fitted values.

Based on the T-values and the reduced regression model
coefficients, it is found that mechanical excitation frequency
(), electrical bias frequency (f;), electrical bias amplitude (D,),
and variable resistance value (R,) are effective in the biased
IPMC sensor response. Among the various effects, the ampli-
tude of the electrical bias and the resistance of the bias path, and
also their squares, play a greater role in the voltage amplitude
received from IPMC, and the frequencies of the electrical bias
and mechanical excitation waves are of secondary importance.
Therefore, it can be said that the response of the biased [IPMC
sensor is resistant to changes in the frequency of bias signal and
mechanical excitation, and is sensitive to changes in the ampli-
tude of the electrical bias and the resistance of the bias path.

3.3. Validation and Adequacy of the Model. To determine the
efficiency of a regression model, it is necessary to validate its
performance using appropriate evaluation criteria. In this
study, the adjusted coefficient of determination (R ) and

adjusted
prediction coefficient of determination (Rf)redi tion) Were used as

indicators to measure the efficiency of the model which are
defined as follows [39]:

SSg
_ —k-1
dejusted =1- nSST > (5)
n
PRESS
szyrediction =1- SST . (6)

In (Equation 6), PRESS is the predicted residual error sum
of squares and is calculated as follows [28]:

n n o 2
PRESS= Y ¢/, = 5 [y - ym} . (7)

i=1 =1

In (Equation 7), N — 1 observation is used to calculate ¥,
which does not includei™ observation [39]. If Ridjusted and
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R;redimon tend to one, the model will be efficient [39]. In this plot shows that errors have constant variance, with the resi-
study, the values of Ri Gusted AN Rére diction Were calculated as duals scattered randomly around zero. So, it is reasonable to

0.9498 and 0.9435, respectively, which shows that the proposed
model is highly fitted to the experimental data, and subsequent
observations are also highly predictable.

Residual (error vector) analysis is a very useful approach in
examining the adequacy of the modeling process [43]. The
regression model is valid if the components of the error vector
are normally distributed and mutually independent with zero
mean and constant variance [28]. Figure 5a compares residuals
distribution with normal distribution. Due to the presented
results, the mean of the residuals is equal to zero and the
distribution is equivalent to the normal distribution consider-
ing the 95% confidence interval (= 0.05). Figure 5b shows the
distribution of residuals versus observations (order of experi-
ments). The presence of a random trend in this graph confirms
mutually-independent error components. Furthermore, it sug-
gests that the order of the experiments had no significant effect
on the residuals. Figure 5¢ represents the trend of residual
changes versus fitted values (regression model output). The

assume that the error terms have a mean of zero. The vertical
width of the scatter does not appear to increase or decrease
across the fitted values; hence it can be assumed that the vari-
ance in the error terms is constant and the complexity consid-
ered for the regression model is quite appropriate.

3.4. Adjustment of Factors to Maximize the Output Voltage of
the Biased IPMC Sensor. Figure 6 shows the contour plots of
the output voltage of the biased IPMC sensor in terms of dif-
ferent frequencies of the mechanical stimulation, electrical bias
frequencies, electrical bias amplitudes, and values of R;. In the
contour plots, the violet shading displays maximum and the
red shading represents minimum voltage. Based on these plots,
the optimal values of mentioned factors to obtain maximum
sensitivity can be estimated approximately. Nevertheless, par-
tial derivatives were used to obtain the accurate value of factors
at the optimal operating point, according to the equation of the
proposed regression model and (Equation 4). The following
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output was achieved through optimization of the variables
(Table 1) range:

f.=0.1(Hz). f, = 4.6(kHz), D, = 1.4545(volt),
and R, = 5.7(k€2).

As specified by the contour plots Figure 6 and qualitative
graphs of the effect of each parameter on sensor sensitivity
Figure 4, it is conspicuous that this operating point is the
same point of the maximum voltage response of the biased
IPMC sensor.

4. Discussion and Conclusion

This study introduces a new approach to optimization of the
key factional factors biased IPMC sensors’ sensitivity, where a
bias voltage was applied to the IPMC sensor and the amplitude
of the output voltage (which was modulated over bias carrier)
was recorded as the sensor response. Statistical analysis showed
that the mechanical excitation frequency, electrical bias fre-
quency, electrical bias amplitude, and the value of bias resis-
tance have a significant effect on the amplitude of the voltage
received from the biased IPMC sensor. Based on the results of
statistical analysis, a regression model was proposed to predict
the behavior of this sensor. Validation results showed that the
proposed model had good accuracy and efficiency. Also,
through the synergy of the contours and the partial derivatives
method, the optimal operating point to enhance the sensitivity
of the IPMC sensor was determined. It is hoped that the results
of this study will play an effective role in the use of these smart
materials in commercial and industrial applications and subse-
quent research. It should be noted that in the modeling and
optimization process of this study, the effect of ambient tem-
perature and humidity and sensor structural parameters
(aspect ratio, thickness, etc.) on sensor behavior was omitted
in order to focus on bias parameters. Therefore, these critical
parameters should be considered in future studies.
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