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alloy particles on the mechanical behavior of
aluminum matrix composites produced by
accumulative roll bonding
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Abstract
The objective of this research is to achieve a suitable combination of strength and ductility in an aluminummatrix composite
reinforced with high entropy alloy (HEA) particles by using the accumulative roll bonding (ARB) process. The novelty of this
study is that several new high-entropy alloys have been used to fabricate new aluminum matrix composites by the ARB
process and to find the optimal mechanical properties of the composite. For this purpose, three types of high entropy alloy
with different chemical compositions were added to aluminummatrix composite by using the ARB process. The selection of
high entropy alloys was based on the fact that all three types of crystal structures FCC, BCC, and FCC + BCC were formed
in the composite production. The effect of the parameters of the number of rolling passes, weight percentage of HEA, and
type of HEA was investigated on the tensile strength, elongation, hardness and microstructure of the composite. The results
showed that the highest tensile strength and elongation were obtained for the sample produced with 2 wt% Al0.4-
CoCr0.5NiFeTi0.6 at six rolling passes. Moreover, the highest hardness was obtained for sample produced with 4 wt%
Al1.5MnCoCrNiFe. However, the samples produced with MnCoCrNiFe indicated the lowest tensile strength.
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Introduction

Today, various manufacturing technologies such as welding,
soldering, machining, forming, etc. are used to produce new
products with desirable microstructure and improved me-
chanical properties.1–9 Aluminum alloys are widely used in
the production of numerous products. This material is
suitable for use in many applications, including the auto-
motive, aerospace, and electronics industries.10,11 Alumi-
num alloys can exhibit relatively high strength and ductility
at a relatively low cost compared to other metals. Therefore,
increasing strength or reducing modification costs could
make aluminum more attractive for a wider range of ap-
plications. The mechanical, chemical, or physical properties
of metal sheets can be controlled by changing its
microstructure.11–22

Fabrication of nanoscale structures is an emerging and
innovative approach to modify the structure of metals.23

This improves the properties of materials for the industrial
applications. One approach is to apply very high levels of
strain to metal sheets in the form of multilayer sandwich
structures, which increases the strength-to-weight ratio of

the material.23–29 Nanoscale aluminum-based sheets are
attractive due to their structural integrity, ease of fabrication,
exceptional strength, and low cost.30–32 This leads to the
fabrication of lighter and cheaper products with optimized
life cycles. The production of nanomaterials through layered
composite structures can lead to new combinations of
properties of metals and alloys.33 The main challenge in the
development of this type of materials is to find a com-
mercially feasible manufacturing method that is able to
produce a suitable structure at a competitive cost.34,35 Re-
cently, the accumulative roll bonding (ARB) process has
been developed as a promising method for producing
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nanostructures in the form of layered composite sheets.33–35

In this method, two different metal sheets of the same
thickness are stacked on top of each other and a 50% re-
duction in thickness is achieved using a single-pass rolling.
In the next step of the ARB cycle, the joined sheets are cut in
half and prepared for subsequent ARB cycles.36 Accumu-
lative roll bonding (ARB) is an effective technique for
increasing the tensile strength of metal sheets through grain
structure modification. In this method, successive rolling
and reduction of sheet thickness results in the formation of
an ultrafine grain structure (UFG). In the ARB technique,
tensile strength increases with increasing work hardening
and grain boundary.37 Gholami et al.38,39 reported that the
tensile strength of composites produced by the ARB process
improved after different cycles. However, products fabri-
cated by this method exhibit low ductility because prema-
ture necking reduces the total energy required for failure.40

Recently, to overcome this problem, composite sheets have
been produced using two different materials, soft and hard.41

The ARB process can also be used to join dissimilar ma-
terials. Heydari Vini et al.42,43 investigated the bonding
properties of Al/Cu joint obtained by ARB process. Jasim
et al.44 also used the ARB process to produce Al/Al2O3 bulk
composites. Sajjadi Nikoo et al.45 fabricated dissimilar
laminated composite of the AA2024 and
AA5083 aluminum alloys by four cycles of the ARB
process. They observed that the grain size of microstructure
was significantly decreased and dislocation density was
increased, leading to an improvement in the tensile strength
and hardness.

Adding reinforcement particles in the early cycles of
ARB can create a metal composite and reinforcing particles.
Reinforcing particles increase the hardness and strength of
the produced composite.46,47 Composites reinforced with
hard ceramic particles such as nitrides, borides, carbides and
oxides increase the strength significantly but severely reduce
the ductility and machinability. On the other hand, due to the
poor interface between the matrix and the ceramic particles,
the force transfer to the particles is not good. Also, these
particles are the site of micro-crack initiation, which reduces
the fracture toughness.48 It has been reported that the ad-
dition of nanoparticles to aluminum and magnesium ma-
trixes has improved ductility and strength. However, one of
the most important problems in the addition of nanoparticles
is agglomeration and non-uniform distribution of
particles.49–54

In recent years, high-entropy alloys (HEAs) have been
used in film and bulk forms to reinforce metal matrix
composites due to their excellent coating properties, cor-
rosion resistance, high strength and ductility, and high
thermal stability.49,50,55–59 High-entropy alloys are a new
class of engineering materials consisting of five or more
primary elements in equimolar or non-equimolar ratios.51,52

The atomic ratio of each element is usually between 5 and
35%. It should be noted that other nanoparticles, such as

carbon nanotubes and ceramic nanoparticles, do not im-
prove all mechanical properties simultaneously. However,
HEA particles are composed of different alloying elements,
each of which improves one of the mechanical properties.
On the other hand, the manufacturability and cost of HEA
particles are lower than other nanoparticles. Another reason
for choosing high-entropy particles as reinforcements for
metal matrix composites is that these particles are more
compatible with the matrix from a metallurgical point of
view. Also, the reduction in the flexibility of the final sample
by high-entropy particles is much less than that of ceramic
particles. Previous studies indicated that the use of high-
entropy reinforcing particles has improved the strength,
fracture toughness, and ductility of aluminum, titanium, and
copper.60,61 Tan et al.53 improved the strength and ductility
by adding high-entropy particles of Al0.6CoCrFeNi to
aluminum matrix composite using the spark plasma sin-
tering (SPS) method. Lu et al.54 reported that the plasticity of
the SiC-2024Al composite improved by addition of CoN-
iFeCrAl0.6Ti0.4 high-entropy alloy particles. Zhang et al.62

stated that the yield strength, tensile strength and com-
pressive strength of 2124 aluminum alloy were enhanced by
adding AlCoCrFeNi high entropy alloy using spark plasma
sintering. Yuan et al.63 also used spark plasma sintering to
prepare 2024 aluminum composite by addition of CoCr-
FeMnNi high-entropy alloy particles. They reported that the
hardness of the composite increased by 63.7%. Zhu et al.64

used FeCoNiCrAl high-entropy alloy particles to fabricate
Cu matrix composites by friction stirring process and ob-
served that the hardness, tensile strength and elongation of
the fabricated composite increased by 54.86%, 17.17% and
8.4%, respectively. Xiang et al.65 optimized the yield
strength, ultimate compressive strength and compressive
strain of titanium matrix composite by addition of the
TiZrNbTa high-entropy alloy. LUO et al.66 enhanced the
mechanical properties of aluminum matrix composites re-
inforced with Al0.5CoCrFeNi high-entropy alloy particles
using asymmetric cryorolling. They reported that the
asymmetric cryorolling indicated finer grain sizes, fewer
microvoids, and higher dislocation density in the aluminum
matrix composite reinforced with high-entropy alloy com-
pared to asymmetric rolling. Wang et al.67 applied vacuum
hot press sintering process to produce Ti/Al laminated
composites reinforced with Al0.5CoCrFeNi high entropy
alloy particles and reported that the materials prepared at a
temperature of 730°C indicated better flexural strength and
fracture toughness. Improvement of mechanical properties
of metal matrix composites by adding high entropy alloys
has also been reported by Zhang et al.,68 Liu et al.,69

Emamifar et al.,70 Zhang et al.,71 Konovalov et al.,72 and
Luo et al.73 The results of previous research have also shown
that the thermal stability of composites reinforced with HEA
particles is good and their mechanical properties do not
change much up to high temperatures.74–77 Shadangi et al.74

found that AA 6082 Al matrix composite reinforced with
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AlSiCrMnFeNiCu high-entropy alloy are thermally stable
up to 650°C. Sathiyamoorthi et al.75 reported that the
composite reinforced with CoCrFeNi high entropy alloy
exposed to 700°C for 600 h showed negligible change in
hardness and grain size. Jadhav et al.76 reported that the
room temperature FCC + BCC phases of FeCoCrNi2Al high
entropy alloy remains stable up to 1000°C. Zhang et al.77

stated that FeCoNiCu HEA particles are highly stable at
high temperatures and impose a pinning effect on the grain
boundaries, which significantly restricts grain growth up to
900°C. The long-term performance (fatigue and creep) of
the composites reinforced with high entropy particles was
also investigated by some authors. Rozman et al.78 stated
that about half of the CoCrFeNiMn creep specimens ex-
ceeded 34% strain. Liu et al.79 observed that multi-phase
high entropy alloys, particularly the metastable ones, are
favorable to fatigue resistance over single-phase alloys.
Song et al.80 investigated the tensile creep behavior and
mechanism of CoCrFeMnNi high entropy alloy and found
that apparent dynamic recovery and recrystallization occur
for creep at 973 K while high dislocation density can be
observed for creep at 923 K and lower temperatures.

A review of previous research shows that composites
reinforced with high entropy particles have not been pro-
duced by the ARB method. Therefore, in this research, the
ARB method is used to fabricate aluminum matrix com-
posite with high entropy reinforcing particles. In fact, the
main novelty of this paper is that the ARB process is used to
fabricate new aluminum matrix composites by addition of
new high-entropy alloys. The selected high-entropy alloys
generate BCC, FCC, and FCC + BCC crystal structures in
the composite. It should be noted that the high-entropy alloy
with FCC structure has good ductility, and the high-entropy

alloy with BCC structure has high strength. Therefore, the
high-entropy alloy with FCC and BCC structure has a good
combination of ductility and strength. On the other hand, the
aluminum element, which is similar to the composite matrix,
is different in the three samples. The other novelty of this
study is to achieve a unique combination of high tensile
strength and ductility through the ARB process. Then, the
microstructure of the fabricated composite was analyzed by
SEM, EDS and XRD to find a relationship between the
microstructure and mechanical properties. Since the strength
and ductility of the produced composite are simultaneously
improved, it can be used in the automotive and aerospace
industries.

Materials and methods

Materials

In this research, three types of high-entropy alloy (HEA)
particles with different crystal structures were used, as
shown in Table 1. The chemical and physical properties of
high-entropy alloys are given in Tables 2–4. HEA com-
positions were prepared based on the previous research49–54

and the results of XRD analysis. It should be noted that the
Al is a BCC stabilizer in HEAs. Therefore, in the first HEA
compound where the Al content is low (Al0.4Ti0.6-
CoCr0.5NiFe), the FCC + BCC structure is formed. In the
second HEA compound where the Al content is increased
(Al1.5MnCoCrNiFe), the BCC structure is formed. And in
the third HEA compound where the Al is removed
(MnCoCrNiFe), the FCC structure is formed. It should be
also stated that the Mn is a FCC stabilizer in HEAs. The
composite matrix is made of 1050 aluminum alloy, the

Table 1. Different HEAs used in this research.

Type 1 2 3

Name Al0.4Ti0.6CoCr0.5NiFe Al1.5MnCoCrNiFe MnCoCrNiFe
Lattice FCC + BCC BCC FCC
Melting point (°C) 1755.5 1550 1735
Mesh size 250–300 270–325 260–310

Table 2. Chemical and physical properties of HEA type 1.

Fe Ni Cr Co Ti Al Elements

1 1 0.5 1 0.6 0.4 Molar coefficients
22.222 22.222 11.111 22.222 13.333 8.889 Atomic percentage
45 10 63 10 40 20 Particles size (µm)
4.68 4.93 2.17 4.93 2.42 0.87 Weight (g)
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chemical composition of which is given in Table 5. The
primary metal powders were prepared from the Pourian
Chemical Institute, Iran. Figure 1 shows the size distribution
of the HEA particles. The average particle diameter of HEA
powders is 21.4 μm.

Mechanical alloying

High entropy alloy particles are produced by mechanical
alloying. For this purpose, a planetary ball milling machine
(NARYA-MPM 2 × 250 H, Iran) with a rotation speed of
300 rpm and a ball-to-powder ratio of 1:10 was used. Due to
the presence of highly active elements, there is a possibility
of activation of the materials. An argon gas with a purity of
99% was used to prevent activation of the materials. The
size of the balls was determined by trial and error and based
on experience. Therefore, balls with diameters of 10, 15 and
20 mm were used for mechanical alloying process. Meth-
anol was also used to prevent the adhesion of powder to
balls. As can be seen from Figure 2, after 20 h mechanical
alloying, the adhesion of powder particles to balls was not
observed. Duration of milling for different alloy composi-
tions was 10, 20 and 30 h. In addition, ARB process was
performed at room temperature.

Accumulative roll bonding (ARB)

Before performing the ARB process, the aluminum samples
were annealed at 380°C for 2 h. Then, the surface of the cut
samples with dimensions of 50 × 100 × 1 mm was thor-
oughly brushed using a wire brush (Figure 3). Reinforcing
particles (4 wt%) were also sprayed on the surface of
samples using a 25 micron mesh sieve. Then, two aluminum
sheets were tied together using copper wire to prevent them
from moving. Then, the distance between the rollers of the
rolling machine was set to 1 mm to perform the first rolling
pass. After each rolling step, the sample was divided into
two parts in the middle and its surface was completely
brushed. In order to prevent the formation of bowing defect
in the sheet, the rollers were carefully adjusted, and in the
next pass, the sample was rotated 180° in the rolling di-
rection. It can be seen in Figure 4(a) that no cracks were
formed in the sample after the four rolling passes. However,
Figure 4(b) shows that after six rolling passes, cracks were
formed on the edges of the sheet. Therefore, the rolling
process was carried out in 4 and 6 passes. It should be noted

that to achieve uniform distribution of HEA particles within
the aluminum matrix, the parameters of the number of
rolling passes and the weight percentage of particles are
controlled.

The samples were prepared after the ARB process ac-
cording to Table 6. The input parameters include the weight
percentage of high entropy alloy, number of rolling passes,
and type of high entropy alloy.

Mechanical tests

Tensile specimens were prepared in the transverse direction
of rolling according to the sub size ASTM-E8 standard.
Dimensions of tensile specimen were shown in Figure 5.
Tensile test was performed with a speed of 1 mm/s at room
temperature. A 250 kN Zwick/Roell (Germany) tension
machine was used to execute the tensile test. The hardness of
the samples was also measured with a Vickers hardness
instrument.

Microstructure analysis

In order to investigate the distribution of high-entropy
particles, scanning electron microscope (SEM) model
FEI-quanta-450 was used. First, the samples were cut in the
transverse rolling direction and their cross-sections were
examined. The cross-sections of the samples were prepared
using sandpaper and polishing. Then, SEM analysis was
performed in a vacuum environment with an acceleration
voltage of 20 kV. In order to investigate and confirm the
formation of solid solution after mechanical alloying, XRD
analysis was performed. XRD analysis was also performed
to identify the formed elements and the structure of the high
entropy alloy. The XRD analysis was performed by a Ri-
gaku Ultima IV X-ray Diffractometer. The average grain
size of the samples was calculated using the ImageJ soft-
ware. The microstructure of samples was also observed by
an FEI Talos F200X transmission electron microscopy
(TEM).

Results and discussion

XRD analysis

XRD analysis was performed on HEA-type 1 after 5, 10, and
20 h mechanical alloying to confirm the formation of solid

Table 3. Chemical and physical properties of HEA type 2.

Fe Ni Cr Co Mn Al Elements

1 1 1 1 1 1.5 Molar coefficients
15.38 15.38 15.38 15.38 15.38 23.10 Atomic percentage
45 10 63 10 63 20 Particles size (µm)
3.48 3.65 3.24 3.68 3.42 2.53 Weight (g)

Table 4. Chemical and physical properties of HEA type 3.

Fe Ni Cr Co Mn Elements

1 1 1 1 1 Molar coefficients
20 20 20 20 20 Atomic percentage
45 10 63 10 63 Particles size (µm)
3.98 4.18 3.71 4.21 3.92 Weight (g)
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solution, as shown in Figure 6. According to Figure 6, the
comparison of X-ray diffraction patterns at different times
shows that mechanical alloying is completely performed
after 20 h. Moreover, the XRD results show that the pro-
duced high entropy structure includes both FCC and BCC
crystal structures. It should be noted that this type of high
entropy alloy has good ductility due to the presence of FCC
structure and high strength due to the presence of BCC
structure. The FCC and BCC phases interact with the
aluminum matrix during deformation by dislocation pinning
as reported in previous research.81,82 The presence of dis-
location pinning was shown by TEM image in Figure 7.
High-entropy alloys with FCC structure have more slip
planes and lower dislocation density than BCC structure.
Hence, the ductility of high-entropy alloys with FCC
structure is higher than that of BCC structure.

The XRD analysis results also showed that the intensity
of the peaks decreased with increasing milling time, which
could be due to the formation of a single solid-state so-
lution. This indicates the formation of a solid solution by
dissolution of most of the element in the lattice of Fe or
Cr.83 Moreover, with increasing milling time some amount

of peak broadening was observed. This was expected
because the increase of milling time decreases the crys-
tallize size and increases the lattice strain84. The lattice
parameters of the BCC and FCC phases at different milling
times were also measured from the XRD pattern, as shown
in Figure 6. The lattice parameters of both BCC and FCC
phases increase as the milling time prolongs. At the initial
stage of milling, the lattice parameters of BCC and FCC
phases are rather closed to that of Fe and Ni, respectively.
As the mechanical alloying process continues, the simple
solid solutions are gradually formed from the principle
components. The corporation of elements with larger
atomic size, for example Cr and Ti, results in the en-
largement in lattice parameter.85

Figure 8 shows XRD results for HEA-type 2 after 10 and
20 h mechanical alloying. XRD analysis in Figure 8 shows
that after 20 h, mechanical alloying has been well com-
pleted. The final structure of HEA-type 2 is BCC, which is
consistent with the results obtained in references 86,87. As
the milling time increases to 20 h, only peaks belongs to a
BCC structure can be identified, by which is deduced the
formation of a simple solid solution. The lattice parameters

Table 5. Chemical composition of 1050 aluminum alloy.

Elements Al Cu Zn Fe Si Cr Ti V

Weight percentage 99.69 0.01 0.02 0.12 0.11 0.01 0.02 0.02

Figure 1. Size distribution of the HEA particles.

Hamounpeyma et al. 5



of the BCC phase also increased with increasing
milling time.

HEA-type 3 was produced after 30 h mechanical al-
loying. Figure 9 shows the XRD analysis of HEA-type 3.

According to Figure 9, the mechanical alloying was well
done and the final crystal structure is FCC. The lattice
parameters of the FCC phase also increased with increasing
milling time. Throughout the milling process, the decrease

Figure 2. Mechanical alloying after 20 hours.

Figure 3. Samples prepared for the ARB process: (a) Brushed samples, (b) particle spraying on the sheet surface.
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in intensity, broadening of the peak and its subsequent
disappearance may result from the three following factors:
refined crystal size, high lattice strain and decreased
crystallinity.85

SEM analysis

Figure 10 shows SEM image of the morphology of the
produced high entropy particles. As is clear from Figure 10,
these particles do not have a specific and regular shape.

In order to accurately examine the distribution of high
entropy particles in the aluminum matrix, SEM images of
composite samples produced by the ARB method were
observed. Figure 11 shows SEM images of sample ARB144.
According to Figure 11, the particle distribution in this
sample is almost appropriate, but in some cases there is
agglomeration of particles, which results in deterioration of
mechanical properties. Agglomeration of HEA particles at
4 wt% was also observed by Luo et al.88 and Pandey et al.89

It was detected that the particle size is about 1 µm and less. It
should be explained that when HEA particles are uniformly
distributed in the composite matrix, the applied load to the

matrix is well transferred to the particles and the mechanical
properties are improved. In fact, the fine dispersion of HEA
particles improves the overall integrity of the composite by
providing additional sites for stress transfer.90–92 However,
particle agglomeration prevents the uniform distribution of
particles in the matrix, which can lead to deterioration of the
mechanical properties of the composite. Also, the ag-
glomeration of HEA particles in the aluminum matrix
composite leads to stress concentration and possibly poor
bonding between the HEA particles and the aluminum
matrix. It should be explained that further increases in HEA
content may lead to issues such as particle agglomeration,
which can create stress concentrations and act as potential
sites for crack initiation.90–92

Figure 12 shows SEM images of sample ARB126 at two
different magnifications. Figure 12 shows a good particle
distribution in sample ARB126, but agglomeration of
particles is still observed in some places. It is also observed
in Figure 12 that there are very small particle sizes around
30 nm. The SEM images clearly show that the ARB process
has been successfully carried out to prepare the composite
with high entropy particles. By comparing Figures 11 and

Table 6. Values of parameters for different samples.

Sample number Type of HEA Weight percentage of HEA Number of rolling passes

ARB144 1 4 4
ARB244 2 4 4
ARB344 3 4 4
ARB126 1 2 6
ARB226 2 2 6
ARB326 3 2 6

Figure 4. Rolled samples after (a) 4 rolling passes, (b) 6 rolling passes.
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12, it can be detected that the distribution of high entropy
particles at 2 wt% was more suitable than at 4 wt%, which
leads to an improvement in the tensile strength.

Figure 13 shows SEM images of sample ARB244.
According to Figure 13, in this sample, defects related to
ARB process and severe agglomeration of particles are
observed. Agglomerated particles can be susceptible to
crack nucleation and growth. In a similar work, Pandey
et al.89 observed that the agglomeration of HEA particles in
Al matrix composite produced many cracks on the fractured
surface. Moreover, agglomeration of particles prevents
uniform distribution of particles within the matrix, which
can lead to reduction of the strength of the composite. Huang
et al.93 found that the agglomeration of HEA particles in the

Al matrix composite leads to stress concentration and likely
poor bonding between HEA particles and Al matrix. Two
types of micro-cracks can be formed in the composite
structure after the formation of nanoparticle agglomeration.
One originates from the inside of agglomerated nano-
particles and propagates towards the aluminum matrix. The
other starts from the interface between the agglomerated
nanoparticles and the aluminummatrix and then propagates.
The formation of the second type of cracks is due to the
significant difference in elastic modulus between the HEA
particles and the aluminum matrix, which causes a high
stress gradient at the interface. It has been reported that if the
applied strain rate is not excessive, the propagation of both
types of micro-cracks is inhibited by the aluminummatrix.94

Figure 5. Dimensions of tensile specimen.

Figure 6. XRD analysis of HEA-type 1 with chemical composition Al0.4CoCr0.5NiFeTi0.6.
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Figure 14 shows the interface between the HEA particles
and the Al matrix. As can be seen from Figure 14, in all
samples a good bond was formed between the HEA particles
and the AL matrix. However, in samples where particle

agglomeration occurred, cracks were observed between the
particles and the AL matrix (Figure 14(c)).

Figure 15 shows SEM images of sample ARB326. The
particle size has been measured to be about 50 nm. Figure 15

Figure 7. TEM image of dislocation pinning in HEA-type 1.

Figure 8. XRD analysis of HEA-type 2 with chemical composition Al1.5MnCoCrNiFe.

Hamounpeyma et al. 9



shows that the particle distribution is appropriate, but micro-
cracks are visible at higher magnification, which reduce the
ultimate strength of the composite. The presence of micro-cracks
in the microstructure is due to the increased number of rolling

passes. In general, the SEM images indicated that a good particle
distribution was obtained in the samples produced by 2 wt%
HEA after six rolling passes. However, in the samples produced
by 4 wt% HEA, agglomeration of particles was observed.

Figure 9. XRD analysis of HEA-type 3 with chemical composition MnCoCrNiFe.

Figure 10. SEM image of the morphology of the produced high entropy particles.
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The results of this study indicated that by changing the
process parameters, the agglomeration of nanoparticles can
be prevented. For example, by increasing the number of
rolling passes, the distribution of nanoparticles is improved.

However, increasing the number of passes to 6 passes causes
cracks in the microstructure of the composite. It has been
reported that the agglomeration of nanoparticles can also be
reduced by the surface treatment of the HEA using different

Figure 11. SEM image of sample ARB144.

Figure 12. SEM image of sample ARB126.

Hamounpeyma et al. 11



methods such as electron beams and high-temperature
pulsed plasma flows.95,96

The microstructure of the ARB samples after each rolling
pass is shown in Figure 16. Moreover, Figure 17 shows the
effect of rolling passes on the grain size. It can be observed
from Figure 17 that the grain size of microstructure for 0, 2,
4 and 6 rolling passes is 34, 16, 9 and 6 µm, respectively.
Microstructural changes during the ARB process are usually
controlled by the stacking fault energy of material. The

development of fine-grained microstructure in the ARBed
Al as a high stacking fault energy metal can be explained as
follows.97 The early ARB cycles are accompanied by in-
creasing density of dislocations and subsequent interactions.
Increasing the strain results in the development of 3D
dislocation arrays, such as sub-grains, spreading throughout
the coarse-grained sample. The increase in the ARB cycles
is followed by formation of finer grains. Further strain leads
to the failure of the initial coarse grains and the formation of

Figure 14. SEM image of samples (a) ARB126, (b) ARB244, (c) ARB326.

Figure 13. SEM image of sample ARB244.
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new grain boundaries, ultimately resulting in fine-grained
microstructure.

Mechanical properties

The results of measuring the tensile strength, elongation,
hardness and agglomeration percentage of the compos-
ites prepared using ARB are presented in Table 7. Each
experiment was repeated twice (12 samples) and the error
of each experiment is given in Table 7. The results of
measuring the tensile strength, elongation, and hardness
of the composites were also shown in Figure 18. It can be
seen from Table 7 and Figure 18 that the highest tensile
strength and elongation were obtained for sample
ARB126. Therefore, the elongation and tensile strength
simultaneously increased in this sample. It can be
therefore concluded that by using high entropy particles
of Al0.4Ti0.6CoCr0.5NiFe, tensile strength and elongation
are simultaneously improved due to the presence of both
FCC and BCC structures. In fact, the FCC structure of
HEA-type 1 improved the ductility, and BCC structure
improved the strength of the composite. Simultaneous

improvement of tensile strength and elongation by ad-
dition of HEA particles to Al matrix composites was also
observed by Tan et al.53 Zhang et al.62 Li et al.70 and Luo
et al.88 However, Table 7 shows that the highest hardness
was obtained for sample ARB244, due to formation of
BCC structure in the high entropy particles of
Al1.5MnCoCrNiFe (HEA-type 2). Moreover, samples
prepared from HEA-type 2 particles are more suitable in
terms of strength, hardness and elongation than samples
prepared from HEA-type 3.

The results of Table 7 also showed that increasing the
amount of reinforcement caused a decrease in tensile
strength and elongation. As can observed from the SEM
images (Figures 11 and 13), with increasing the amount
of reinforcement, agglomeration of particles occurred,
which caused the initiation and propagation of cracks,
and consequently decreased the tensile strength and
elongation of the composite. However, increasing the
amount of HEA particles improved the hardness of the
composite because the hardness of HEA particles was
higher compared to the aluminum matrix. In a similar
study, An et al.98 reported that the increase of HEA
particles in the Al matrix composite improved the

Figure 15. SEM image of sample ARB326.
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hardness, but reduced the strength of the composite. The
amount of agglomerated nanoparticles under different
parameter conditions was quantified using ImageJ soft-
ware, as shown in Table 7. The agglomeration percentage

was calculated by surface area percentage. According to
the maximum particle size (70 μm), the minimum surface
area that leads to agglomeration was estimated and the
surface area percentage was calculated.

Figure 16. SEM image of ARB samples after (a) 0, (b) 2, (c) 4, (d) 6 rolling pass.

Figure 17. Effect of rolling passes on grain size.
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It can also be seen from Table 7 that increasing the
number of rolling passes has increased the tensile strength
and elongation. The most important reason for improve-
ment of the mechanical properties of the composite is that
with increasing the number of rolling passes, the distri-
bution of HEA particles in the Al matrix improved. An-
other reason for the improvement of mechanical properties
due to the increase in the number of rolling passes is the
refinement of the microstructure. As the grain size de-
creases, the grain boundaries increase, leading to an in-
crease in dislocation density, because the obstacles to

dislocation movement increase. An increase in the dislo-
cation density leads to an improvement in the tensile
strength However, it should be noted that the number of
rolling passes is lower in samples with a higher percentage
of HEA particles because in samples with a higher per-
centage of HEA particles, cracks are created in fewer
passes. In general, the results showed that cracks usually
started to appear after six rolling passes. However, in the
samples with a higher percentage of HEA particles (4 wt
%), cracks appeared after 4 passes. Therefore, the critical
number of rolling passes at which cracking becomes a

Table 7. Results of measuring the tensile strength, elongation, and hardness.

Samples
Type of
HEA

Weight percentage
of HEA

Number of rolling
passes

Elongation
(%)

Tensile strength
(MPa)

Hardness
(HV) Agglomeration percentage

ARB144 1 4 4 1.87 ± 0.1 178.5 ± 2 38.2 ± 0.6 2.4
ARB244 2 4 4 1.84 ± 0.1 182 ± 3 39.9 ± 0.7 2.1
ARB344 3 4 4 2.96 ± 0.2 175 ± 1 36.9 ± 0.5 2.9
ARB126 1 2 6 3.44 ± 0.2 202.5 ± 3 28.3 ± 0.5 0.6
ARB226 2 2 6 2.14 ± 0.1 190 ± 3 38.8 ± 0.4 0.4
ARB326 3 2 6 1.3 ± 0.1 169.5 ± 2 35.2 ± 0.6 0.7

Figure 18. Results of measuring the tensile strength, elongation, and hardness.
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significant concern is 6 and 4 passes for the samples with
2 and 4 wt% HEA, respectively.

Conclusion

In this paper, accumulative roll bonding (ARB) process is
used to produce aluminum matrix composite reinforced by
high entropy alloy (HEA) and achieve a suitable combi-
nation of strength and ductility. The results were summa-
rized as follows:

(1) A good particle distribution was obtained in the
samples produced by 2wt% HEA after six rolling
passes. However, in the samples produced by 4wt%
HEA, agglomeration of particles was observed.

(2) By using HEA particles of Al0.4Ti0.6CoCr0.5NiFe,
tensile strength and elongation are simultaneously
improved by 4% and 58% respectively, due to the
presence of both FCC and BCC structures. However,
the highest hardness of 39.9 HV was obtained for
sample prepared by HEA particles of Al1.5Mn-
CoCrNiFe, due to formation of BCC structure.

(3) With increasing the amount of reinforcement up to
4wt%, agglomeration of particles occurred, which
caused the initiation and propagation of cracks, and
consequently decreased the tensile strength and
elongation of the composite by about 54% and 12%
respectively.

(4) The increase of the number of rolling passes from
4 to 6 increased the tensile strength and elongation
by 84% and 13% respectively, because the distri-
bution of HEA particles in the Al matrix improved.

(5) The highest tensile strength (202.5MPa) and
elongation (3.44%) were obtained for the sample
produced with 2wt% Al0.4CoCr0.5NiFeTi0.6 at six
rolling passes. However, the highest hardness was
obtained for sample produced with 4wt%
Al1.5MnCoCrNiFe (39.9 HV).

(6) Due to the simultaneous increase in tensile strength
and elongation, the produced composite sample can
be used in the automotive and aerospace industries.
However, it should be noted that due to the layered
structure of the sheet after the ARB process, the
wear resistance of the sample decreases.99 Wear
resistance of the produced samples after the ARB
process can be enhanced by performing heat
treatments or coating process.100,101
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