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2 Negative dependence random variables

Different forms of non-independent random variables have been of 1n-
terest for many years. Lehmann (1966) investigated various concepts of
positive and negative dependence 1in the bivariate cases. Strong concepts
of bivariate positive and negative dependence were mtroduced by Esary
and Proschen (1967). Also Esary , Proschen and Walkup (1972) introduced
a concept of association which implied a strong form of positive depen-
dence. Their concept has been very useful in reliability theory and its

applications. Multivariate generalizations of these concepts of dependence

were initiated by Ebrahimi and Ghosh (1981) and Bozorgnia et.al.(1996).
Y\



Definition 3. The random wvariables X,.---.,.X,, are salid to be IND

if we have

Pl(X; = x;)] = 11 P[X; < =5, (2)
J=1 i=1
and
PI(X; = x;)] = 1] PIX; = =5]. (3)
J=1 i=1
for all x4, ---.,x, € R . An infinite sequence

{X,, , n = 1} is said to be ND if every finite subset X,,---,.X,, is
ND. The conditions (2) and (3) are equivalent for n = 2, but these do
not agree for nn = 3.

The sequence {X,,} is said pair-wise negative dependence (PND)if for all

i 7# 7. X; and X; are NQD, means that for all real numbers x. vy,

PX;, =x,Y, <y) < P(X; <x)P(Y; < uy).



Some peroperties

Lemma 3. ¢) Let X, ---, X,, be ND random variables and f; ---. f,, be

a sequence of Borel functions which all are monotone increasing (or all are

monotone decreasing) , then fi(Xy),---. f.(X,) are ND random vari-
ables.
i1) Let X{,---,X, be ND nonnegative random variables. Then

X, {HE

_-}:]_ :




Modes of Convergence for Random Variables

Random variables can converge in several different ways. Here is a brief introduction, highlighting examples of the different
behaviors that can occur. Many of the examples below are taken from Stoyanov (2013).

There are at least six different notions of convergence for random variables.

1. X, converges to X pointwise if X, (w) — X(w) for all w.

2. X, converges to X almost surely or almost everywhere if X,,(w) — X(w) for almost all w, i.e, for all w in a set of prob-
ability 1. Thus, almost sure convergence requires Pr({w | X;(w) = X(w)}) = L

3. X, converges to X in probability if for any € > (0 we have Pr(| X, (w) — X(w)| > €) = 0asn — .

4. X, converges to X in distribution or law or weakly or in the weak* topology if F,,(z) — F(z) for all  for which F{(z)
is continuous, where F},, F are the distribution functions of X, X.

5. X,, converges to X in the L'-norm if [|X;,(w) — X(w)| Pr(dw) — 0 as n — oc. More generally, for p > 1 there is con-
vergence for the LP-nerm if [ | X, (w) — X(w)|P Pr(dw) — 0.

6. X, converges to X in the sup-norm if supg, | X, — X| — 0.
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ABSTRACT

We establish complete convergence results for arrays of rowwise m-negatively associated
random wvariables. Some results for negatively associated and independent random
wvariables in the literature can be obtained as corollaries.

© 2009 Elsevier Litd. All rights reserved.
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MOMENT INEQUALITIES FOR m-NOD RANDOM VARIABLES
AND THEIR APPLICATIONS*

X. J. WANGT, S. H. HUT, AND A. I. VOLODIN?

Abstract. The concept of m-negatively orthant dependent (m-NOD) random variables is in-
troduced, and the moment inequalities for m-NOD random variables, especially the Marcinkiewicz—
Zygmund-type inequality and Rosenthal-type inequality, are established. As one application of the
moment inequalities, we study the L, convergence and strong convergence for m-NOD random vari-
ables under some uniformly integrable conditions. On the other hand, the asymptotic approximation
of inverse moments for nonnegative m-NOD random variables with finite first moments is established.
The results obtained in the paper generalize or improve some known ones for independent sequences
and some dependent sequences.
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REGULAR ARTICLE

Moment inequalities for m-negatively associated
random variables and their applications

Aiting Shen! - Yu Zhang! - Bengiong Xiao! -

Andrei Volodin?

Inspired by the definition of NA random variables, Hu et al. (2009) introduced the
concept of m-negatively associated random variables as follows.

/

Definition 1.2 Let m>1 be a fixed integer. A sequence of random variables {X,,,n >
1} is said to be m-negatively associated (m-NA, in short) if for any n > 2 and
any i1, 12, ...,I, such that |i; — .iJ-| > mforalll < k # j < n, we have that
Xflv X,‘z, e X; are NA.
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Definition of m-NOD random sequencs

DEFINITION 2. Let m > 1 be a fixed integer. A sequence {X,,, n > 1} of random variables is said to be

m-negatively orthant dependent (m-NOD) if for all n > 2 and iy,...,%, such that |1y — ;| > m for all
1 <k # 5 < n,we have that X; X; are NOD.

l?ll-l-:‘

An array {X,;, i > 1, n > 1} of random variables is said to be rowwise m-NOD if for every n > 1,
{Xpi, @ > 1} is a sequence of m-NOD random variables. For m = 1, the concept m-NOD random variables
reduces to the NOD random variables. Hence the concept of m-NOD random variables is a natural extension of
NOD random variables, which includes independent random variables and negatively associated (NA) random
variables.

The m-NOD property is preserved under monotonic functions:

Lemma 1. (See [18].) Let {X,,, n > 1} be a sequence of m-NOD random variables. If {g,, n > 1} are all
nondecreasing (or nonincreasing) functions, then a sequence of random random variables {g, (X,), n > 1}
is also an m-NOD random sequence.



Jajte-Method

Jajte [8] studied a large class of summability methods defined as follows: a sequence {X,,, n = 1} of
random variables is said to be almost surely summable to a random variable X by the method (h, g) if

1 ~— 1 as
—_— X — X, n— oo.
70 2= TolR)

For a sequence { X;,, n = 1} of i.i.d. random variables, Jajte proved that { X,, — EX,,I{x |<w@m), 7 = 1}
is almost surely summable to 0 by the method (h, g) iff E¢»~1(|X1]) < oo (1»~! is the inverse of ), where
g, h, and ¥(y) = g(y)h(y) are functions satisfying some additional conditions. The most up-to-date survey
on this matter may be found in Fazakas et al. [5], Wang [19], Matuta and Seweryn [11], Shen [14], Tang [17],
Son et al. [16], and Naderi et al. [12, 13].

Now we recall the concept of stochastic domination.

DEFINITION 3. A sequence { X,,, n > 1} of random variables is said to be stochastically dominated by a ran-
dom variable X if there exists a positive constant C' such that

P(| X, >z) < CP(|X| > x)

forall x = 0Oand n = 1.

The next section will be devoted to the study of the rate of complete convergence for weighted m-NOD
random variables in format of method (4, g).

We further denote by C' positive constants, not depending on n, which may be different in various places
by |-] the integer part of a number, and by I 4 the indicator function of a set A.

\\



Jajite-Method

/

We begin with the assumptions that will be imposed on our weights. Let g : [0,00) — Rand h : [0,00) = R
be nonnegative functions, and let 1)(y) = g(y)h(y). We assume that the functions g, h, and v satisfy the
following conditions:

(A1) h is nondecreasing, and v is strictly increasing with ([0, 00)) = [0, o),
(A2) there exist constants a,b > 0,7 > 1, and @ € (1, 2] and a strictly increasing function H such that

o=l
Lﬁ&(ﬂ)/ Jﬁ(m) dr <aH(s)+b Vs> 0,

(A3) there exists a constant C' > 0 such that for some « € (1, 2],

| n
ORI )

n
1=

1

\\



Some Results

Lemma 2. Let { X,,, n = 1} be a sequence of random variables stochastically dominated by a random vari-
able X. For all 3 > 0 and b > 0, we have the following inequalities:

E|Xn‘ﬁ1{|X.,l|gb} Cl [E|X|SI{|X|Qb} -+ bﬁjP(‘X‘ = b)]‘

<
< C2E‘X|ﬁ1{|X|>b}a

E|X,| I x, |>b)

where C1 and Co are positive constants. It is also obvious that E(| X, |?) < CE(|X|?).

Lemma 3 [Rosenthal-type inequality]. Ler {X,,, n = 1} be a sequence of m-NOD random variables with
EX, = 0and E|X,,|P < oo for some p > 1 and every n = 1. Then there exist positive constants C', , and
Dy, p, depending only on m and p, such that for all n = m,

i=1

We further need a basic inequality for the m-NOD random variables.

P n P <p<
. {cm,p S ElX| for1<p<2, 1)

Dm,p{zz;l Eu‘fﬂiD + (Z?:l EX?)p'fz} Jorp > 2.

Lemma 4. Let {X,,, n > 1} be a sequence of m-NOD random variables. Then there exists a positive con-
stant C' such that for all x = 0 and n = 1,

(l—P(ma}( |X;c|>$)) ZP(|X|>$) CP(IIIED{ |X|>:1:)

1<i<n 1<i<n

\\



Some Results

In the following, {X,,, n > 1} is a sequence of m-NOD random variables dominated by a random vari-
able Y. We will also use the notations X; = —v(n)Iix,«_ym)r + Xil{x,|<om)y + (1) x,>¢@n)) and
m(n,z) = EXEI-[|XE|$;_1,:(n)} for ?;} n=1.

Lemma 5. Let {X,,, n > 1} be a sequence of m-NOD random variables stochastically dominated by a ran-
dom variable Y. Assume that the functions g, h, and v satisfy conditions (A1) and (A3) and lim,, , ., nP(|Y] >
P(n)) = 0. Then

7/

Let us state our main result.

Theorem 1. Let { X,,, n > 1} be a sequence of m-NOD random variables stochastically dominated by a ran-
dom variable Y. Moreover, assume that the functions g, h, and 1) satisfy conditions (A1), (A2), and (A3) and
E(H@~(|Y)])) < oo. If for some r > 1,

E(v ' (Y]))" < o, (2.3)

then

T

X —m(n,1)
Z h(i)

S e

> Eg(n)) < oo Ve>DO0.

i=1



Some results

DEFINITION 4. A measurable function U : [a,00) — (0,00), a € R, is called regularly varying at infinity
with exponent p, denoted U € RV(p), if lim, oo U (t:z:)/ U(x) = tPforallt > 0. If p = 0, then we say
that U is slowly varying at infinity and write U € SV.

Theorem 2. Let { X,,, n = 1} be a sequence of identically distributed m-NOD random variables such that

P(| Xk > x) € RV(p). Moreover, assume that the functions g, h, and 1 satisfy condition (A1). If
i nT‘-QP( max i Xi—min,i)| Eg(n)) <o Ve>0, (2.4)
n=1 Isksn 53 h(i) |
then
E[v7'([Y])] <oo, r>2. (2.5)

/
Now following Theorem 11.2 of [6], we can restate the Hsu—Robbins-type theorem for m-NOD sequences.

Comllary 2. Let {X,,, n > 1} be a sequence of identically distributed m-NOD random variables. EX = 0
and EX? < oo, then

\

>r(|3n

En) < oo Ve>0.




Simulation Study

In this section, we 1llustrate the efficiency and rate of complete convergence in Theorem 1 through two nu-
merical examples. According to the Remark 1, we set h(n) = n”, g(n) = nf, and H(z) = 2" (where
p=05,¢=1r21 a=2)inTheorem 1, and for each r = 1,2, 3, we take the sample size n = 3(1)200.
For each n, we simulate m-NOD random variables X; = =y, ..., X, = z,, for m = 1 in Example 1 and
m = 2 in Example 2. We then compute s,, = (1/n)| )__ z;/i?|. By repeat EE[hIS procedure B = 20000

times we observe the vector {57, S5=2%0} and finally cmnpuePﬂ = ) ici Lisisey/B as an estimate
of P(| )\ i/ /nq > ¢). Now taking the cumulative sum of n"~*P, and plo ting the scatter plots of
(n, E;f:l w2 P(| YL, /][ > €)), we can analyze the behavior of complete convergence.

\




Example1

Example 1. In this example, to create an m-NOD sequence of random variables with m = 1, we use a multi-

variate normal distribution. For any fixed n > 3, we take an n-dimensional random vector (X1, ... ,XH)T ~
N, (0, 2), where 0 = (0, ... ,O)E}< , represents the zero vector, and the covariance matrix is
1+ 62 -0 0o - 0 0 0\
-0 1+6* -6 -~ 0 0 0
0 -0 1+6% --. 0 0 0
0 0 0 o 1462 —0
0 0 0 e —0 1+ 6? —6
\ 0 0 0 - 0 -0 1+62)

where 0 < # < 1 (we take # = 0.5). From [9] it is obvious that { X,,, n > 1} is a NOD sequence (m-NOD with
m = 1), and we can see that this sequence is stochastically dominated by a random variableY ~ N (0, 1+ 6?).

Itis clear that E(H[¢~1(|Y])]) = E(¢~1(|Y]))" = E(|Y|"/(P*9)) < co. Now all the conditions of Theorem 1
are satisfied, and we can easily show that m(n,i) = 0 foralln > 3 and 1 < 7 < n. The results of this example
are shown in Fig. 1(a).

N\
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Example-2

Example 2. In this example, we proceed exactly as in Example 1, with the difference that to create an m-
NOD sequence of random variables with m = 2, we take the covariance matrix of the multivariate normal
distribution

/1—92 0 —0 0 0 0 \
0 1—6%2 0 -6 0 0
-0 0 1—-62 0 —0 0
y = : ' : : : : :
0 —6 0 1—6? 0 —6
0 0 —6 0 1—62 0
\ 0 0 0 -6 0 1-62)

nxmn

The results of this example are shown in Fig. 1(b). |
Figure 1 exhibits the scatter plots of (n, R = Y% n"=*P(| > ]_; i/i|/j? > ¢)) for r = 1,2,3. Ob-

i=1
served that R is a increasing function of n that tends to a fixed value and is dominated by it foreachr = 1, 2, 3.
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