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ABSTRACT
A straightforward one-pot synthesis of novel trisubstituted methanes (TRSMs) has been attained through a three-component 
reaction involving 4-hydroxybenzo[h]quinolin-2(1H)-one, 4-amino-2H-chromen-2-one, and various aldehyde derivatives, using 
p-TSA. p-Toluene sulfonic acid (p-TSA), a non-toxic, cost-effective, easily accessible, and environmentally friendly organic acid 
catalyst, was investigated for its ability to mediate this reaction. The salient features of this protocol are: good to excellent yields 
of products (84%–92%), short reaction times, excellent compatibility with various functional groups, and a cost-effective catalyst 
that eliminates the need for column chromatography. Furthermore, these TRSMs are expected to make significant contributions 
as highly valuable compounds in drug design and the development of novel therapies, owing to their broad and diverse biolog-
ically active moieties. The structures of these newly synthesized TRSMs were determined using IR, 1H NMR, 13C NMR, mass 
spectrometry, and elemental analysis.

1   |   Introduction

Tri-substituted methanes (TRSMs) [1, 2] exhibit fascinating 
chemical properties due to their unique structure, where a 
central sp3 hybridized carbon atom is linked to three other 
moieties. This class of compounds stands out for its distinctive 
arrangement, highlighting the significance of the central car-
bon atom and its chemical reactivity in organic chemistry [3–5]. 
Furthermore, they can also serve as molecular chemosensors 
[6], be utilized in dendrimer synthesis [7], and function as or-
ganic photoconductors [8].

TRSMs linked to chromen-2-one (coumarin) are highly valued 
for their diverse pharmacological applications [9–17]. They have 
also been studied as acetylcholinesterase inhibitors to reduce 
the progression of Alzheimer's disease [18, 19]. The electron-
rich structure of 4-amino-2H-chromen-2-one is a key element 

in coumarin derivatives, enabling the synthesis of various het-
erocyclic compounds [20, 21]. They have an amino group and a 
carbon enamine that are highly reactive to electrophiles [22–24]. 
Compounds A and B display anticancer and antioxidant activity, 
respectively. Compound C was evaluated for antitumor activ-
ity [25, 26] (Figure 1A–C).

Similarly, the polynuclear azaheterocycle benzo[h]quinoline 
moiety with extended π–π conjugation is a crucial scaffold in 
organic chemistry, optoelectronics, and agriculture [27–31]. 
Incorporating the benzo[h]quinoline structure into the design 
of specific compounds can create new derivatives with biolog-
ical activity. For example, compound (D) is effective for DNA-
intercalating antitumor agents [32] (Figure 1D). In addition to 
the extensive therapeutic benefits, benzo[h]quinoline is also 
used as a coupling component for the preparation of some new 
azo disperse dyes [33] (Figure 1E).

© 2025 Wiley Periodicals LLC.
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Therefore, the design of a novel heterocyclic scaffold of trisub-
stituted methanes (TRSMs) incorporating both chromene and 
benzo[h]quinoline pharmacophores could serve as a valuable 
framework for medicinal chemistry studies and future drug 
discovery. Although synthetic protocols for TRSMs have been 
previously reported with different bioactive molecules [34–36], 
there remains a significant demand for more efficient and 
straightforward methodologies that allow the incorporation of 
diverse and novel pharmacophoric units. A literature review 
shows that most approaches rely on similar starting materials 
with minimal innovation. Current methods often suffer from 
low yields, by-product formation, limited functional group com-
patibility, and the use of toxic or metal-based catalysts [37–42].

In continuation of our ongoing studies on the synthesis of 
new heterocyclic compounds with potential biological activi-
ties [43, 44], we have, for the first time, established new prod-
ucts from the TRSMs family using multicomponent reactions 
(MCRs) that are compatible with green chemistry. MCRs, as 
powerful synthetic tools, offer an efficient, sustainable approach 
to synthesizing complex molecules by forming multiple bonds in 
a single step, reducing waste and cost [45–47]. Notably, organo-
catalysts such as p-TSA have gained significant attention for 
their low toxicity, metal-free nature, and forming C–C and C–
heteroatom bonds in organic synthesis [48–50]. To this end, 
we present the first synthesis of novel Chromen and Benzo [h]
quinoline-based TRSMs. This was achieved via a one-pot, three-
component reaction catalyzed by p-TSA in ethanol (Scheme 1).

2   |   Results and Discussion

To explore the feasibility and screening conditions, a three-
component reaction of 4-hydroxybenzo[h]quinolin-2(1H)-
one (1, 1 mmol), 4-amino-2H-chromen-2-one (2, 1 mmol), and 
4-chlorobenzaldehyde (3a, 1 mmol) was selected as a model re-
action. The model reaction was performed in various solvents 
like H2O, EtOH, H2O/EtOH (1:1), MeOH, acetic acid, CH3CN, 
DMF, PEG 400, DCM, and solvent-free (Table 1, entries 1–10). 
The experimental findings demonstrated that ethanol acts as an 
optimal and essential solvent for this reaction (Table 1, entry 2). 
Furthermore, the model reaction was scrutinized using various 
catalysts, including DABCO, L-proline, K2CO3, p-TSA, and ace-
tic acid in ethanol at reflux (Table 1, entries 11–15). Notably, p-
toluenesulfonic acid exhibited exceptional performance in terms 
of both reaction yield and temporal efficiency (Table 1, entry 14).

However, given the environmentally favorable characteristics of 
p-toluenesulfonic acid (p-TSA) [48], including its water solubility, 
compatibility with polar organic solvents, non-toxic nature, ease 
of handling, cost efficiency, and straightforward work-up proce-
dures, its selection was made for investigating the reaction scope 
in ethanol under reflux conditions. Following the determination 
of optimal catalyst and solvent conditions, the influence of cata-
lyst concentration variations on the model reaction was examined 
(Table 2, entries 1–4). Superior reaction outcomes were observed 
at reduced catalyst loadings, with optimal performance being 
achieved at 10 mol% catalyst concentration (Table 2, entry 2).

FIGURE 1    |    Some biologically active 4-amino-2H-chromen-2-one and benzo[h]quinoline moieties containing compounds.

SCHEME 1    |    p-TSA-catalyzed synthesis of trisubstituted methanes.
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Following optimization of reaction conditions, the generality 
of the methodology was systematically evaluated using a se-
ries of aromatic aldehydes bearing both electron-withdrawing 
(including 4-NO2, 4-CN, 4-Cl, 4-CF3, 2-Cl, and 3-Br) and 

electron-donating (comprising 4-OMe, 2,4-OMe, and 4-OH) 
substituents (Table 3). As evidenced by the results, all substrates 
were efficiently converted to their corresponding products 
within short reaction times, affording good to excellent yields 
(Table 3, compounds 4a–l). To further expand the scope of the 
reaction, thiophene-2-carbaldehyde (as a heterocyclic alde-
hyde) reacted efficiently to produce the desired product in an 
excellent yield of 91% (Table 3, 4k). Finally, propionaldehyde, 
acetaldehyde, capraldehyde (Hexanal), and butyraldehyde (as 
aliphatic aldehydes) were examined, and trace amounts of 
products were obtained in the optimized reaction conditions. 
The chemical structure of all products 4a–l was deduced from 
FT-IR, 1H-NMR,13C-NMR, Mass, and CHN analysis (Supporting 
Information S1).

For example, the IR spectrum of compound 4a confirms its 
successful synthesis, showing characteristic bands at 3473 
(OH stretching), 3403, and 3333 (NH₂ stretching), 3137 (NH 
stretching), and 1634 and 1592 cm−1 (C  O stretching). The 
1HNMR spectrum of 4a exhibited three singlet signals at 

TABLE 1    |    Optimization of reaction conditions of 4aa.

Entry Catalysts (10 mol%) Solvent Temperature (°C) Time (h) Yield (%)b

1 — H2O Reflux 6 20

2 — EtOH Reflux 6 63

3 — EtOH/H2O (1:1) Reflux 6 26

4 — MeOH Reflux 6 35

5 — Acetic acid Reflux 5 48

6 — CH3CN Reflux 8 39

7 — DMF 110 8 42

8 — PEG 400 110 8 29

9 — CH2Cl2 r.t 5 25

10 Solvent-free 110 3 32

11 DABCO EtOH Reflux 6 37

12 L-proline EtOH Reflux 6 34

13 K2CO3 EtOH Reflux 6 68

14 P-TSA EtOH Reflux 3 91

15 AcOH EtOH Reflux 6 72
aReaction conditions: 4-hydroxybenzo[h]quinolin-2(1H)-one (1.0 mmol), 4-amino-2H-chromen-2-one (1.0 mmol), and 4-chlorobenzaldehyde (1.0 mmol), 10 mol% 
catalysts in solvent (5 mL).
bIsolated yield.

TABLE 2    |    Optimization of the catalyst concentration of 4aa.

Entry
p-TSA 
(mol%) Solvent Time (h) Yield (%)b

1 5 EtOH 5 70

2 10 EtOH 3 91

3 15 EtOH 3 80

4 20 EtOH 3 74

Note: The importance of key parameters is highlighted bold: p-toluenesulfonic 
acid is noted for its exceptional performance.
aReaction conditions: 4-hydroxybenzo[h]quinolin-2(1H)-one (1.0 mmol), 
4-amino-2H-chromen-2-one (1.0 mmol), and 4-chlorobenzaldehyde (1.0 mmol), 
mol% p-TSA in solvent (5 mL).
bIsolated yield.
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TABLE 3    |    Substrate scope of optimized reaction for the synthesis of novel trisubstituted methanesa.

Entry Product Time (h) Yield (%)b mp (°C)

1HNMR (δ, ppm) 1CNMR (δ, ppm)

H (CSP
3) CSP

3 C  O

4a 3 91 244–246 6.21 35.5 166.0, 162.1

4b 2.5 89 254–256 6.30 36.4 166.1, 165.9

4c 3 85 277–280 6.34 36.5 166.1, 165.9

4d 3.5 90 276–277 6.20 35.1 166.1, 165.9

4e 3 87 270–272 6.14 35.1 165.9, 166.1

4f 4 86 255–256 6.16 32.1 165.7, 162.1

(Continues)

 19435193, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jhet.70069 by U

niversidad N
acional A

utonom
a, W

iley O
nline L

ibrary on [12/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



5

δ = 12.33, 11.87, and 8.45 ppm, corresponding to OH, NH, and 
NH2 groups. Fourteen characteristic protons on the aromatic 
rings appeared as four doublet signals at δ = 8.96 (J = 6.9 Hz), 
8.22 (J = 9.5 Hz), 7.34 (J = 8.6 Hz), 7.19 (J = 8.7 Hz) ppm, a dou-
blet of doublet signal at δ = 7.99 (J = 15.4, 9.3 Hz) ppm, and two 
multiple signals at δ = 7.70–7.47 ppm. Finally, the methine 
group proton appeared as a singlet signal at δ = 6.21 ppm. 
Moreover, the 13CNMR spectrum of 4a confirmed 27 distinct 
resonances, consistent with the suggested structure. The 
peaks at δ = 166 and δ = 162.1 ppm indicated the presence of 
two carbonyl groups in the proposed structure. According to 
the mass spectra of 4a, molecular ion peaks appeared with the 
appropriate m/z values.

The conceptual mechanism for synthesizing heteroaryl-
trisubstituted methanes is presented in Scheme 2. Based on the 
reported literature [48], we presumed that p-TSA plays an im-
perative role in this protocol. It may increase the electrophilic 
character of the carbonyl carbon of aldehydes (3) and facilitate 
the nucleophilic attack of the carbanion of 4-hydroxybenzo[h]
quinolin-2(1H)-one (1) to form the α,β-unsaturated intermediate 
(I) via the Knoevenagel condensation reaction with the loss of 
water. 4-amino-2H-chromen-2-one (2) may then undergo nucle-
ophilic attack on the intermediate (I) to form intermediate (II) 
via a Michael addition, and p-TSA may increase the electrophilic-
ity of the intermediate (I). Next, tautomerization of (II) gave the 
desired TRSM (4).

Entry Product Time (h) Yield (%)b mp (°C)

1HNMR (δ, ppm) 1CNMR (δ, ppm)

H (CSP
3) CSP

3 C  O

4g 3 90 285–286 6.24 35.9 166.1, 166

4h 3.5 91 285–286 6.27 34.9 166.0, 165.9

4i 4 84 255–256 6.31 35.5 165.3, 165.4

4j 3 87 266–267 6.44 36.2 166.1, 162.3

4k 3 91 266–267 6.08 35.0 164.1, 165.7

4l 2 92 210–212 6.31 36.1 166.1, 166.0

aReaction with 4-hydroxybenzo[h]quinolin-2(1H)-one (1.0 mmol), 4-amino-2H-chromen-2-one (1.0 mmol), aldehydes (1 mmol), with 10 mol% of p-TSA in 5 mL EtOH at 
reflux.
bIsolated yield.

TABLE 3    |    (Continued)
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3   |   Conclusion

This study presents a novel multicomponent synthetic strategy 
for preparing bioactive heteroaryl-substituted methane deriva-
tives using p-TSA as an eco-friendly and biodegradable catalyst. 
This approach offers several advantages, including broad func-
tional group tolerance, mild reaction conditions, and high prod-
uct yields, all achieved without the need for chromatographic 
purification. The presence of   NH2,   OH, CO, and free groups 
in these products can be used as coordination ligands in metal 
complexation studies as well as in heterocycle chemistry for 
further functionalization. It is anticipated that the synthetic ac-
cessibility of these novel TRSM derivatives will facilitate a com-
prehensive investigation of their pharmacological properties 
and therapeutic potential.

4   |   Experimental

4.1   |   General

All solvents and reagents were obtained from Merck (Germany) 
and Sigma-Aldrich (Buchs, Switzerland) and employed as re-
ceived without additional purification. Melting points were 
determined in open capillaries using an Electrothermal 9100 
melting point apparatus. FT-IR spectra were recorded on a 
Nicolet Avatar 370 instrument using KBr pellets. Proton and 
carbon-13 NMR spectra were acquired on a Bruker Avance 
DRX-300 spectrometer operating at 300.13 MHz for 1H and 
75.47 MHz for 13C, with DMSO-d6 as the solvent; chemical 
shifts are reported in parts per million (ppm). Mass spec-
trometry was performed on a Varian Mat CH-7 spectrometer 

at an ionization energy of 70 eV. Elemental compositions (C, 
H, N) were determined using a Thermo Finnegan Flash EA 
analyzer.

4.2   |   General Procedure for the Synthesis 
of 4-Hydroxybenzo[h]quinolin-2(1H)-one 1

A mixture of 1-naphthylamine (10 mmol) and diethyl 
malonate (5 mmol) was heated with polyphosphoric acid (five 
to six times by weight of 1-naphthylamine) at 150°C for 6 h. 
Afterward, the mixture was allowed to cool, and the flask 
containing the solidified gum was filled with water. The pro-
cedure was followed by standing in the refrigerator for 24 h. 
After this period, the resulting precipitated solid was filtered 
out, washed extensively with water, and then allowed to dry 
in the air. The crude product was dissolved in a 0.1 M sodium 
hydroxide solution (10 mL), and any undissolved material was 
removed by filtration. The resulting filtrate was then neu-
tralized using a 10% v/v hydrochloric acid solution, forming 
a precipitate. This residue was subsequently recrystallized 
from dimethylformamide (DMF) to give 4-hydroxybenzo[h]
quinolin-2(1H)-one 1 [33].

4.3   |   General Procedure for the Synthesis 
of Compounds 4a–l

A mixture of 4-hydroxybenzo[h]quinolin-2(1H)-one (1 mmol), 
4-amino-2H-chromen-2-one (1 mmol), and an aromatic al-
dehyde (1 mmol) was dissolved in ethanol (5 mL) in a 25 mL 
round-bottom flask. To this solution, p-toluenesulfonic acid 

SCHEME 2    |    Proposed reaction mechanism for the synthesis of novel heteroaryl-trisubstituted methane derivatives
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(p-TSA, 10 mol%) was added as a catalyst. The reaction mix-
ture was refluxed under stirring for 4 h, and the progress was 
monitored by thin-layer chromatography (TLC) using a hex-
ane–ethyl acetate (4:6) system as the eluent. Upon comple-
tion, the mixture was allowed to cool to room temperature. 
The resulting precipitate was filtered using a Büchner funnel, 
washed thoroughly with ethanol, and dried. The crude prod-
uct was further purified by recrystallization from an ethanol/
DMF mixture, affording the desired compounds in good to ex-
cellent yields (84%–92%).

4.4   |   3-((4-Amino-2-Oxo-2H-Chromen-3-yl)
(4-Chlorophenyl)methyl)-4-Hydroxybenzo[h]
quinolin-2(1H)-one (4a)

White powder; (0.45 g, 91%) mp: 244°C–246°C. IR (KBr) 
(υmax/cm−1): 3473 (OH), 3403, 3333 (NH2), 3137 (NH), 3068, 
1634 (C  O), 1592 (C  O); 1H NMR (300.13 MHz, DMSO-d6): 
δ (ppm) 12.33 (1H, s, OH), 11.87 (1H, s, NH), 8.96 (1H, d, 
3J = 6.9 Hz, ArH), 8.45 (2H, s, NH2), 8.22 (1H, d, 3J = 9.5 Hz, 
ArH), 7.99 (2H, dd, 3J = 15.4, 9.3 Hz, ArH), 7.70 (4H, m, ArH), 
7.47 (2H, m, ArH), 7.34 (2H, d, 3J = 8.6 Hz, ArH), 7.19 (2H, 
d, 3J = 8.7 Hz, ArH), 6.21 (1H, s, CH); 13C NMR (75.46 MHz, 
DMSO-d6): δ (ppm) 166, 162.1, 156.4, 152.3, 138, 135.1, 134.5, 
133.1, 130.8, 128.9, 128.8, 128.6, 127.1, 124.9, 123.9, 123, 122.8, 
121.9, 120.5, 117.6, 115, 112.1, 109.6, 96.8, 35.5; MS (m/z, %): 
495 (M+, 10), 494 (25), 334 (52), 160 (100), 132 (82). Anal. Calcd 
for C29H19ClN2O4: C, 70.38; H, 3.87; N, 5.66%. Found: C, 70.23; 
H, 3.71; N, 5.57%.

4.5   |   4-((4-Amino-2-Oxo-2H-Chromen-3-yl)
(4-Hydroxy-2-Oxo-1,2-Dihydrobenzo[h]quinolin-3-
yl)methyl)benzonitrile (4b)

White powder; (0.43 g, 89%) mp: 254°C–256°C. IR (KBr) 
(υmax/cm−1): 3464 (OH), 3399, 3379 (NH2), 3164 (NH), 3068, 
2234 (CN), 1639 (C  O), 1613 (C  O); 1H NMR (300.13 MHz, 
DMSO-d6): δ (ppm) 12.34 (1H, s, OH), 11.83 (1H, s, NH), 
8.96 (1H, d, 3J = 9.8 Hz, ArH), 8.47 (2H, s, NH2), 8.22 (1H, d, 
3J = 9.6 Hz, ArH), 7.99 (2H, dd, 3J = 12.3, 9.2 Hz, ArH), 7.77 
(1H, s, ArH), 7.74 (2H, s, ArH), 7.72–7.66 (3H, m, ArH), 7.47 
(2H, t, 3J = 8.6 Hz, ArH), 7.40 (2H, d, J = 8.4 Hz, ArH), 6.30 
(1H, s, CH); 13C NMR (75.46 MHz, DMSO-d6): δ (ppm) 166.1, 
165.9, 162.2, 156.5, 152.4, 145.4, 135.2, 134.6, 133.2, 132.6, 
128.9, 128.6, 128.1, 127.1, 124.9, 123.9, 123.1, 122.9, 122, 120.5, 
119.5, 117.6, 115, 112, 109.3, 109.1, 96.3, 36.4; MS (m/z, %): 485 
(M+, 11), 325 (12), 275 (90), 160 (92), 102 (20). Anal. Calcd for 
C30H19N3O4: C, 74.22; H, 3.94; N, 8.66%. Found: C, 73.46; H, 
3.71; N, 7.89%.

4.6   |   3-((4-Amino-2-Oxo-2H-Chromen-3-yl)
(4-Nitrophenyl)methyl)-4-Hydroxybenzo[h]
quinolin-2(1H)-one (4c)

White powder; (0.43 g, 85%) mp: 277°C–280°C. IR (KBr) (υmax/
cm−1): 3425 (OH), 3374, 3333 (NH2), 3138 (NH), 3068, 1687 
(C  O), 1639 (C  O); 1H NMR (300.13 MHz, DMSO-d6): δ (ppm) 
12.36 (1H, s, OH), 11.84 (1H, s, NH), 8.96 (1H, d, 3J = 9.6 Hz, 

ArH), 8.50 (2H, s, NH2), 8.23 (1H, d, 3J = 8.1 Hz, ArH), 8.14 (2H, 
d, 3J = 8.9 Hz, ArH), 7.98 (2H, t, 3J = 9.0 Hz, ArH), 7.69 (4H, t, 
3J = 9.2 Hz, ArH), 7.48 (4H, t, 3J = 8.5 Hz, ArH), 6.34 (1H, s, CH); 
13C NMR (75.46 MHz, DMSO-d6): δ (ppm) 166.1, 165.9, 162.2, 
156.5, 152.4, 147.7, 146.2, 135.3, 134.6, 133.2, 128.9, 128.7, 128.3, 
127.1, 124.9, 124, 123.9, 123.1, 122.9, 122, 120.5, 117.6, 115, 112.1, 
109.4, 96.3, 36.5; MS (m/z, %): 505 (M+, 5), 345 (70), 295 (85), 210 
(92), 160 (95). Anal. Calcd for C29H19N3O6: C, 68.91; H, 3.79; N, 
8.31%. Found: C, 68.49; H, 3.41; N, 7.92%.

4.7   |   3-((4-Amino-2-Oxo-2H-Chromen-3-yl)
(4-Methoxyphenyl)methyl)-4-Hydroxybenzo[h]
quinolin-2(1H)-one (4d)

White powder; (0.44 g, 90%) mp: 276°C–277°C. IR (KBr) (υmax/
cm−1): 3482 (OH), 3374, 3325 (NH2), 3139 (NH), 3051, 1646 
(C  O), 1612 (C  O); 1H NMR (300.13 MHz, DMSO-d6): δ (ppm) 
12.28 (1H, s, OH), 11.90 (1H, s, NH), 8.96 (1H, d, 3J = 9.8 Hz, 
ArH), 8.42 (2H, s, NH2), 8.21 (1H, d, 3J = 8.2 Hz, ArH), 7.97 (2H, 
d, 3J = 9.0 Hz, ArH), 7.68 (4H, t, 3J = 7.0 Hz, ArH), 7.52–7.39 (2H, 
m, ArH), 7.07 (2H, d, 3J = 8.8 Hz, ArH), 6.85 (2H, d, 3J = 8.8 Hz, 
ArH), 6.20 (1H, s, CH), 3.73 (3H, s, CH3); 

13C NMR (75.46 MHz, 
DMSO-d6): δ (ppm) 166.1, 165.9, 162, 157.8, 156.2, 152.3, 135, 
134.5, 132.9, 130.4, 128.9, 128.5, 127.8, 127, 124.8, 123.9, 123, 
122.8, 122, 120.5, 117.5, 115, 114.1, 112.1, 110.1, 97.4, 55.4, 35.1; 
MS (m/z, %): 491 (M+, 10), 330 (80), 280 (40), 209 (95), 160 (95), 
132 (98). Anal. Calcd for C30H22N2O5: C, 73.46; H, 4.52; N, 5.71%. 
Found: C, 73.22; H, 3.98; N, 5.36%.

4.8   |   3-((4-Amino-2-Oxo-2H-Chromen-3-yl)
(4-Hydroxyphenyl)methyl)-4-Hydroxybenzo[h]
quinolin-2(1H)-one (4e)

White powder; (0.42 g, 87%) mp: 270°C–272°C. IR (KBr) (υmax/
cm−1): 3644 (OH), 3372, 3355 (NH2), 3147 (NH), 3060, 1633 
(C  O), 1612 (C  O); 1H NMR (300.13 MHz, DMSO-d6): δ (ppm) 
12.24 (1H, s, OH), 11.87 (1H, s, NH), 9.20 (1H, s, OH) 8.95 (1H, 
d, 3J = 8.9 Hz, ArH), 8.37 (2H, s, NH2), 8.20 (1H, d, 3J = 8.0 Hz, 
ArH), 7.99 (2H, dd, 3J = 17.2, 8.3 Hz, ArH), 7.75–7.66 (4H, m, 
ArH), 7.47 (2H, t, 3J = 9.2 Hz, ArH), 6.95 (2H, d, 3J = 8.4 Hz, 
ArH), 6.69 (2H, d, 3J = 8.6 Hz, ArH), 6.14 (1H, s, CH); 13C NMR 
(75.46 MHz, DMSO-d6): δ (ppm) 166.1, 165.9, 162, 146.1, 155.8, 
152.3, 134.9, 134.5, 133, 129, 128.6, 127.7, 127.1, 124.8, 123.8, 123, 
122.8, 121.9, 120.5, 117.5, 115.6, 115, 112.1, 110.2, 97.6, 35.1; MS 
(m/z, %): 315 (M+, 161) (5), 260 (62), 209 (65), 161 (60), 132 (32). 
Anal. Calcd for C29H20N2O5: C, 73.10; H, 4.23; N, 5.88%. Found: 
C, 73.08; H, 4.23; N, 5.87%.

4.9   |   3-((4-Amino-2-Oxo-2H-Chromen-3-yl)
(2,4-Dimethoxyphenyl)methyl)-4-Hydroxybenzo[h]
quinolin-2(1H)-one (4f)

White powder; (0.45 g, 86%) mp: 255°C–256°C. IR (KBr) (υmax/
cm−1): 3415 (OH), 3363, 3211 (NH2), 3137 (NH), 3043, 1629 
(C  O), 1614 (C  O); 1H NMR (300.13 MHz, DMSO-d6): δ (ppm) 
12.23 (1H, s, OH), 11.68 (1H, s, NH), 8.94 (1H, d, 3J = 8.7 Hz, 
ArH), 8.16 (1H, d, 3J = 8.2 Hz, ArH), 8.00 (4H, d, 3J = 9.7 Hz, NH2, 
ArH), 7.73–7.61 (4H, m, ArH), 7.44 (2H, d, 3J = 8.7 Hz, ArH), 
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7.07(1H, d, 3J = 8.5 Hz, ArH), 6.57–6.44 (2H, m, ArH), 6.16 (1H, 
s, CH), 3.75 (3H, s, CH3), 3.55 (3H, s, CH3); 

13C NMR (75.46 MHz, 
DMSO-d6): δ (ppm) 165.7, 162.1, 159.5, 158.7, 154.2, 152.1, 134.8, 
134.4, 132.5, 128.9, 128.5, 127, 124.6, 123.7, 123, 122.7, 121.9, 
120.5, 119.4, 117.4, 115.1, 112, 110.2, 104.5, 99.3, 98.6, 56.1, 55.5, 
32.1; MS (m/z, %): 521 (M+, 10), 358 (7), 310 (75), 274 (100), 209 
(50), 160 (92), 132 (87). Anal. Calcd for C31H24N2O6: C, 71.53; H, 
4.65; N, 5.38%. Found: C, 70.72; H, 4.18; N, 5.06%.

4.10   |   3-((4-Amino-2-Oxo-2H-Chromen-3-
yl)(Phenyl)methyl)-4-Hydroxybenzo[h]
quinolin-2(1H)-one (4g)

White powder; (0.41 g, 90%) mp: 285°C–286°C. IR (KBr) (υmax/
cm−1): 3463 (OH), 3329 (NH2), 3138 (NH), 3051, 1647 (C  O), 1613 
(C  O); 1H NMR (300.13 MHz, DMSO-d6): δ (ppm) 12.30 (1H, s, 
OH), 11.88 (1H, s, NH), 8.96 (1H, d, 3J = 9.8 Hz, ArH), 8.42 (2H, 
s, NH2), 8.22 (1H, d, 3J = 8.2 Hz, ArH), 8.03 (1H, d, 3J = 8.0 Hz, 
ArH), 7.97 (1H, t, 3J = 8.9 Hz, ArH), 7.76–7.67 (4H, m, ArH), 7.49 
(2H, d, 3J = 7.2 Hz, ArH), 7.29 (2H, d, 3J = 7.6 Hz, ArH), 7.24–7.16 
(3H, m, ArH) 6.24 (1H, s, CH); 13C NMR (75.46 MHz, DMSO-d6): 
δ (ppm) 166.1, 166, 162.1, 156.3, 152.3, 138.8, 135.1, 134.5, 133.1, 
129, 128.8, 128.6, 127.1, 126.8, 126.2, 124.9, 123.9, 123, 122.8, 
122, 120.5, 117.6, 115, 112.1, 109.8, 97.2, 35.9; MS (m/z, %): 460 
(M+, 48), 296 (100), 245 (20), 210 (18), 160 (35). Anal. Calcd for 
C29H20N2O4: C, 75.64; H, 4.38; N, 6.08%. Found: C, 75.19; H, 3.98; 
N, 5.63%.

4.11   |   3-((4-Amino-2-Oxo-2H-Chromen-3-yl)
(3-Bromophenyl)methyl)-4-Hydroxybenzo[h]
quinolin-2(1H)-one (4h)

White powder; (0.49 g, 91%) mp: 285°C–286°C. IR (KBr) (υmax/
cm−1): 3458 (OH), 3342 (NH2), 3148 (NH), 3072, 1638 (C  O), 
1614 (C  O); 1H NMR (300.13 MHz, DMSO-d6): δ (ppm) 12.33 
(1H, s, OH), 11.87 (1H, s, NH), 8.96 (1H, d, 3J = 9.8 Hz, ArH), 
8.46 (2H, s, NH2), 8.21 (1H, d, 3J = 8.2 Hz, ArH), 7.97 (2H, 
d, 3J = 8.8 Hz, ArH), 7.73–7.64 (4H, m, ArH), 7.51–7.37 (3H, 
m, ArH), 7.34–7.17 (3H, m, ArH), 6.27 (1H, s, CH); 13C NMR 
(75.46 MHz, DMSO-d6): δ (ppm) 166, 165.9, 162.1, 156.4, 152.3, 
142, 135.2, 134.5, 133.1, 130.9, 129.5, 129.2, 128.9, 128.6, 127.1, 
126.1, 124.9, 123.9, 123.1, 122.9, 122.2, 122, 120.5, 117.6, 115, 
112, 109.4, 96.56, 34.9; MS (m/z, %): 539 (M+, 5), 380 (75), 324 
(90), 295 (72), 209 (28), 160 (98). Anal. Calcd for C29H19BrN2O4: 
C, 64.58; H, 3.55; N, 5.19%. Found: C, 64.08; H, 3.43; N, 4.92%.

4.12   |   3-((4-Amino-2-Oxo-2H-Chromen-3-yl)
(2-Chlorophenyl)methyl)-4-Hydroxybenzo[h]
quinolin-2(1H)-one (4i)

White powder; (0.42 g, 84%) mp: 255°C–256°C. IR (KBr) (υmax/
cm−1): 3603 (OH), 3390, 3358 (NH2), 3160 (NH), 3061, 1679 
(C  O), 1630 (C  O); 1H NMR (300.13 MHz, DMSO-d6): δ (ppm) 
12.33 (1H, s, OH), 11.60 (1H, s, NH), 8.94 (1H, s, ArH), 8.22–7.95 
(5H, m, ArH, NH2), 7.77, 7.61 (4H, m, ArH), 7.50–7.36 (4H, 
m, ArH), 7.36–7.21 (2H, m, ArH), 6.31 (1H, s, CH); 13C NMR 
(75.46 MHz, DMSO-d6): δ (ppm) 165.4, 165.3, 162.4, 155.1, 152.3, 
137.4, 135.1, 134.5, 133, 132.9, 130.4, 129.6, 128.9, 128.6, 128.5, 

127.4, 127.1, 124.8, 123.8, 123, 122.9, 121.9, 120.4, 117.5, 114.9, 
111.8, 109.4, 97, 35.5; MS (m/z, %): 494 (M+, 6), 295 (70), 278 (25), 
160 (35), 132 (22). Anal. Calcd for C29H19ClN2O4: C, 70.38; H, 
3.87; N, 5.66%. Found: C, 70.34; H, 3.88; N, 5.66%.

4.13   |   3-((4-Amino-2-Oxo-2H-Chromen-3-yl)
(Naphthalen-2-yl)methyl)-4-Hydroxybenzo[h]
quinolin-2(1H)-one (4j)

White powder; (0.44 g, 87%) mp: 266°C–267°C. IR (KBr) (υmax/
cm−1): 3470 (OH), 3333 (NH2), 3179 (NH), 3056, 1647 (C  O), 
1613 (C  O); 1H NMR (300.13 MHz, DMSO-d6): δ (ppm) 12.37 
(1H, s, OH), 11.88 (1H, s, NH), 9.05–8.95 (1H, m, ArH), 8.47 (2H, 
s, NH2), 8.26 (1H, d, 3J = 8.1 Hz, ArH), 8.01 (2H, d, 3J = 8.9 Hz, 
ArH), 7.88–7.73 (4H, m, ArH), 7.69 (4H, d, 3J = 13 Hz, ArH), 
7.44 (5H, ddd, 3J = 21.2, 16, 9.2 Hz, ArH), 6.44 (1H, s, CH); 13C 
NMR (75.46 MHz, DMSO-d6): δ (ppm) 166.1, 162.3, 156.4, 152.4, 
136.7, 135.2, 134.5, 133.6, 133.1, 132, 128.9, 128.6, 128.3, 128.1, 
127.7, 127.1, 126.4, 126, 125.8, 124.9, 124.6, 123.9, 123.1, 122.8, 
122, 120.6, 117.6, 115.1, 112.2, 109.9, 97.2, 36.2; MS (m/z, %): 511 
(M+, 10), 348 (92), 294 (98), 209 (90), 160 (92). Anal. Calcd for 
C33H22N2O4: C, 77.63; H, 4.34; N, 5.49%. Found: C, 77.41; H, 4.30; 
N, 5.31%.

4.14   |   3-((4-Amino-2-Oxo-2H-Chromen-3-yl)
(Thiophen-2-yl)methyl)-4-Hydroxybenzo[h]
quinolin-2(1H)-one (4k)

White powder; (0.45 g, 91%) mp: 266°C–267°C. IR (KBr) (υmax/
cm−1): 3650 (OH), 3456, 3346 (NH2), 3138 (NH), 3068, 1643 
(C  O), 1613 (C  O); 1H NMR (300.13 MHz, DMSO-d6): δ (ppm) 
8.12 (2H, d, 3J = 8.1 Hz, ArH), 7.98 (4H, s, OH, NH2), 7.75–7.64 
(3H, m, ArH), 7.52–7.32 (6H, m, ArH), 6.90 (1H, dd, 3J = 5.3, 
3.5 Hz, ArH), 6.72 (1H, d, 3J = 3.5 Hz, ArH), 6.08 (1H, s, CH); 13C 
NMR (75.46 MHz, DMSO-d6): δ (ppm) 165.7, 164.1, 155.5, 154.3, 
152.5, 152.3, 144.2, 143.9, 134.8, 134.3, 133.3, 133, 128.6, 126.8, 
124.5, 124.4, 124.3, 123.8, 123.4, 117.3, 114.9, 110.1, 95.5, 35; MS 
(m/z, %): 467 (M+, 10), 413 (52), 302 (98), 250 (51), 209 (43), 160 
(43). Anal. Calcd for C27H18N2O4S: C, 69.52; H, 3.89; N, 6.01%. 
Found: C, 69.50; H, 3.85; N, 6.00%.

4.15   |   3-((4-Amino-2-Oxo-2H-Chromen-3-
yl)(4-(Trifluoromethyl)phenyl)methyl)-4-
Hydroxybenzo[h]quinolin-2(1H)-one (4l)

White powder; (0.46 g, 92%) mp: 210°C–212°C. IR (KBr) 
(υmax/cm−1): 3477 (OH), 3432, 3387 (NH2), 3141 (NH), 3068, 
1633 (C  O), 1613 (C  O), 1119 (C-F); 1H NMR (300.13 MHz, 
DMSO-d6): δ (ppm) 12.33 (1H, s, OH), 11.85 (1H, s, NH), 
8.99–8.93 (1H, m, ArH), 8.47 (2H, s, NH2), 8.22 (1H, d, 3J = 8 Hz, 
ArH), 8.04–7.95 (2H, m, ArH), 7.74–7.63 (6H, m, ArH), 7.49 (2H, 
dd, 3J = 8.1, 3.0 Hz, ArH), 7.41 (2H, d, 3J = 8.1 Hz, ArH), 6.31 (1H, 
s, CH); 13C NMR (75.46 MHz, DMSO-d6): δ (ppm) 166.1, 166, 
162.2, 156.5, 152.4, 144.2, 135.2, 134.5, 133.1, 128.9, 128.6, 127.7, 
127.8 (q, 2JCF = 31.6 Hz, C-CF3), 127.1, 125.6 (q, 3JCF = 3.7 Hz, CH-
C-CF3), 124.8, 124.9 (q, 1JCF = 271.6 Hz, CF3) 123.9, 123, 122.8, 
122, 120.6, 117.6, 115, 112.2, 109.4, 96.6, 36.1; MS (m/z, %): 527 
(M+, 56), 363 (74), 310 (100), 282 (77), 233 (63), 159 (76).
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