
Ad Hoc Networks 172 (2025) 103803

A
1

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

Reliability and bandwidth aware routing in SDN-based fog computing for IoT
applications
Parisa Valizadeh 1, Mohammad Hossein Yaghmaee ∗, Yasser Sedaghat
Computer Engineering Department, Ferdowsi University of Mashhad (FUM), Mashhad, Iran

A R T I C L E I N F O

Keywords:
SDN
Bandwidth
Reliability
IoT applications
Fog computing

A B S T R A C T

Software-Defined Networking (SDN) and fog computing are pivotal in supporting computationally intensive
tasks within Internet of Things (IoT) applications, enhancing efficiency and reliability. However, many IoT
applications are constrained by communication paths prone to link failures, necessitating robust fault tolerance
techniques to ensure reliable traffic flow. In particular, real-time IoT applications demand stringent reliability
and bandwidth requirements (constraints), which are challenging to meet simultaneously. Although previous
research has investigated SDN-based routing to improve reliability, developing a routing algorithm that
satisfies both reliability and bandwidth constraints remains an NP-hard problem. In this paper, we propose
two novel routing algorithms: Reliability Aware Bandwidth constrained Routing (RABR) and Reliability and
Bandwidth Constrained Routing (RBCR), specifically designed for SDN-enabled environments. Our approach
prioritizes service reliability while meeting strict reliability and bandwidth criteria. The proposed solution
integrates several phases, including reliability aware and bandwidth constrained path routing and flow
duplication through parallel/hybrid and sequential routing methods. Furthermore, we introduce a greedy
heuristic algorithm, implemented by the SDN controller with an efficient time complexity. Simulation results
demonstrate that our algorithm surpasses state-of-the-art approaches in critical metrics such as reliability,
reliability-bandwidth success rate, and Runtime. As such, our solution emerges as a robust choice for
SDN-enabled IoT environments.
1. Introduction

The Internet of Things (IoT) has witnessed rapid growth, with
billions of interconnected devices generating massive amounts of data.
This surge in network traffic has led to congestion and decreased
Quality of Service (QoS), particularly for real-time IoT applications
that demand high reliability and low latency [1]. To mitigate these
issues, fog computing has emerged as a powerful complement to IoT,
offering enhanced computational capabilities, reduced latency, and
more effective traffic management [2,3]. Real-time applications such as
tactile internet and autonomous vehicles further demand ultra-reliable
and low-latency communication [4], placing even greater strain on
traditional network infrastructures, which often struggle with high
latency and congestion.

Software-Defined Networking (SDN) architectures present a promis-
ing solution for managing these performance demands in highly dy-
namic environments [5]. However, one critical issue persists: the re-
silience of SDN-based networks to link failures, which occur more
frequently than router or switch failures and significantly degrade
performance [6]. In large-scale networks, link failures lead to frequent

∗ Corresponding author.
E-mail addresses: valizadeh@mail.um.ac.ir (P. Valizadeh), hyaghmae@um.ac.ir (M.H. Yaghmaee), y_sedaghat@um.ac.ir (Y. Sedaghat).

disruptions in IoT data flows, impacting the reliability of applications
that require consistent and timely data transmission [7].

IoT devices generate massive amounts of data traffic, leading to
severe network congestion, which can amplify the risk of failures. This
growing problem has the potential to paralyze overall network activity.
Moreover, Networks operating in harsh or resource-constrained condi-
tions are particularly susceptible to frequent faults due to factors such
as limited fault-tolerance mechanisms, high traffic loads, and physical
infrastructure limitations in large-scale networks. Studies have reported
that, in certain scenarios, links may fail as frequently as every thirty
minutes [8,9], severely impacting the quality of supported services.

Hence, a fast recovery fault tolerance technique is essential for
rerouting affected traffic flows swiftly and maintaining high reliability
in real-time applications [10]. Current recovery approaches, such as
reactive and proactive schemes, are either too slow or impractical
for large-scale deployments [6]. Reactive methods involve recalcu-
lating paths post-failure, leading to delays, while proactive methods,
though faster, are costly in terms of switch storage and computational
power [11,12].
vailable online 25 February 2025
570-8705/© 2025 Elsevier B.V. All rights are reserved, including those for text and

https://doi.org/10.1016/j.adhoc.2025.103803
Received 1 October 2024; Received in revised form 4 February 2025; Accepted 17
data mining, AI training, and similar technologies.

February 2025

https://www.elsevier.com/locate/adhoc
https://www.elsevier.com/locate/adhoc
mailto:valizadeh@mail.um.ac.ir
mailto:hyaghmae@um.ac.ir
mailto:y_sedaghat@um.ac.ir
https://doi.org/10.1016/j.adhoc.2025.103803
https://doi.org/10.1016/j.adhoc.2025.103803
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2025.103803&domain=pdf

Ad Hoc Networks 172 (2025) 103803P. Valizadeh et al.

m

i
m

f
p
c
i
i

t

B
R
m
e
i
c
w

i

s
A
r
m
o
t
I

l
w
t
w

c
s
p
w

t

m
m
t
c
f
a
a

b
w

t

a

u

Existing SDN-based fog computing traffic engineering solutions
prioritize QoS parameters like delay and throughput but overlook link
reliability, despite its necessity for applications requiring ≥99.999%
(‘‘five-nines’’) reliability, such as telemedicine and autonomous vehi-
cles [13–15]. Current approaches falter in congested or failure-prone
networks [16,17]. Reliability needs vary by application criticality,
user expectations, and SLAs: mission-critical systems (e.g., healthcare)
demand five-nines reliability, while non-critical applications toler-
ate 95%–99%. These thresholds align with standards like IEC 62304
(medical devices) [18], FAA regulations (aviation), and ITU-T recom-

endations, which balance technical feasibility and industry needs. For
instance, the U.S. Department of Energy enforces 99.99% reliability for
smart grid AMI networks [19].

In addition, existing methods [16,17,20], which concentrate exclu-
sively on link reliability metrics, may fall short in scenarios where
ndividual flows demand exceptionally high reliability. Such constraints
ay not be met by a single path, even if it is considered the most

reliable. Consequently, these approaches frequently fail to meet the
comprehensive reliability requirement of real-time IoT applications in
SDN-based fog computing environments.

Flow duplication is an effective way to increase the reliability of
low, however, it has a few challenges. For example, finding suitable
ath sets to duplicate flow through them is challenging due to the
alculation of the reliability of hybrid path sets with shared and it is
nadequately addressed in prior research which is going to be addressed
n this paper.

Considering bandwidth constraints alongside reliability is essential
for IoT applications, as it addresses both resource limitations and the
ime-sensitive nature of these systems.

To address these critical gaps, we propose the Reliability and
andwidth Constrained Routing (RBCR) algorithm and its extension,
eliability-Aware Bandwidth Constrained Routing (RABR). RBCR si-
ultaneously considers both reliability and bandwidth constraints by

mploying parallel, hybrid, and sequential routing methods, thereby
mproving flow reliability and maintaining uninterrupted service for
ritical IoT applications. In contrast, RABR prioritizes reliable routing
hile meeting strict bandwidth constraints.

Although energy efficiency and time constraints are not explic-
tly addressed in this work, the proposed algorithms inherently con-

tribute to both aspects through reliable path selection and efficient
flow management. By prioritizing reliability, the approach minimizes
link failures and retransmissions, reducing energy overhead and en-
uring continuous data flow even in unreliable network conditions.
dditionally, efficient bandwidth management guarantees sufficient
esources for IoT traffic, further lowering energy consumption and
itigating delays caused by congestion or insufficient capacity. These

ptimizations collectively enhance network performance, reduce end-
o-end latency, and support the timing requirements of time-sensitive
oT applications.

RBCR algorithm proactively distributes network flows along the
most reliable paths, utilizing flow duplication to further enhance re-
iability in real-time (time-sensitive) IoT environments. Additionally,
e introduce the Sum of Disjoint Products (SDP) method, a novel

echnique for precisely calculating reliability across hybrid path sets,
hich is a feature of RBCR.

The SDP technique is a robust and efficient approach for calculat-
ing system reliability, overcoming the limitations of traditional meth-
ods such as state enumeration, graph transformation, the Inclusion-
Exclusion (I-E) principle, the decomposition method and binary de-
cision diagrams [21]. SDP offers superior numerical stability and ac-
uracy, making it particularly well-suited for medium to large-scale
ystems. By preventing overcounting and effectively managing overlap-
ing paths and dependencies, SDP ensures precise reliability evaluation
hile maintaining computational efficiency.

Both RBCR and RABR are tailored for real-time IoT environments,
such as smart cities and healthcare, where high reliability and low la-
ency are critical. By mitigating link failure effects, our approach meets
2

w

the stringent constraints of these applications, providing a comprehen-
sive solution for maintaining network resilience and performance.

While both algorithms aim to optimize reliability and bandwidth,
they differ significantly in their approach, computational complex-
ity, and practical applicability. RABR selects the single most reliable
path that meets the bandwidth constraints for a given flow. Its low
computational complexity makes it well-suited for environments with
moderate reliability requirements and limited computational resources,
as it evaluates individual paths without considering path combinations
or duplication. In contrast, RBCR employs a more advanced strategy
that integrates both parallel/hybrid and sequential routing methods.
By utilizing the SDP method, it calculates the combined reliability of

ultiple paths, ensuring stringent reliability and bandwidth require-
ents are met even in the presence of failures or congestion. However,

his enhanced fault tolerance comes at the cost of higher computational
omplexity compared to RABR. Given its robustness, RBCR is designed
or mission-critical IoT applications such as healthcare, smart grids, and
utonomous systems, where reliability is paramount and failure is not
n option.

To the best of our knowledge, this is the first work to address
oth reliability and bandwidth constraints in real-time IoT applications
ithin SDN-based fog computing environments.

The key contributions of this paper are as follows:

• Two routing algorithms are proposed: (1) RBCS, which considers
reliability and bandwidth constraints simultaneously, and (2)
RABR, which is a reliability-aware bandwidth constraint.

• Integrating parallel/hybrid and sequential routing methods en-
hances flow reliability and ensures continuous service for real-
time IoT applications.

• Novel application of the Sum of Disjoint Product (SDP) method
for precise reliability calculations in hybrid path sets with shared
links.

• Development of a time-efficient heuristic for path identification
for the proposed algorithms that significantly reduce the time
complexity.

• Comprehensive performance evaluation demonstrating the supe-
rior ability of the proposed algorithms to meet the stringent
reliability and bandwidth constraints of real-time IoT applica-
tions.

The remainder of the paper is organized as follows: Section 2
reviews existing literature, distinguishing our work from previous re-
search to highlight the novelty of our contributions. Section 3 presents
he network model and precisely defines the problem we aim to ad-

dress. The proposed RBCR and RABR algorithms are presented in
Section 4. The experimental results and simulations are illustrated in
Section 5. Finally, we conclude the paper by summarizing our findings
nd discussing potential avenues for future research in Section 6.

2. Related works

Network performance is often compromised by node and link fail-
res. While various recovery methods have been proposed for link

failures in SDN, the issue remains particularly challenging in SDN-
based fog computing for IoT applications [22]. A key challenge in
traffic engineering is effectively responding to underlying link or node
failures.

Recovery methods generally fall into two categories: reactive and
proactive approaches. Reactive approaches involve the controller in-
stalling backup paths for affected flows upon detecting a failure. For
instance, Wang et al. [23] developed a two-stage SDN algorithm for
rapid link failure recovery, meeting QoS standards but potentially
incurring delays due to controller intervention. Conversely, proactive
approaches deploy backup paths in advance to preempt link failures.
Yang et al. [24] proposed a proactive approach for hybrid SDN net-

orks, utilizing pre-configured IP tunnels to swiftly redirect traffic and

Ad Hoc Networks 172 (2025) 103803P. Valizadeh et al.

f
e

u

b
c
t
p

p
l

p
p
b

m
E
m
f

f
i
n

Table 1
Comparison of existing literature and our proposed approach.

Study SDN Reliability Bandwidth Reliability Handling Flow FC
constraint constraint link failures duplication

[7,22–25] Yes Recovery-based methods No No Post-failure No No
[26] Yes High-risk links No No Post-failure No No
[27] Yes Multipath No No Post-failure No No
[28] Yes Link reliability-based backup paths No No Post-failure No No
[29] Yes No No No Congestion-focused No Yes
[30,31] Yes No No No Delay-focused No Yes
[17,20] Yes Link reliability prediction (k-NN) Yes No Proactive fault tolerance No Yes
[16] Yes Max-Min path reliability Yes No Proactive fault tolerance No Yes
[32] No Product of link reliabilities Yes No Proactive fault tolerance No No
Our work Yes Product + SDP Yes Yes Proactive fault tolerance Yes (P/H + Seq) Yes
s

m

b
w

g
a
(
i
e
t
a
g

r
c
t
o
l
w

coordinate multiple backup paths. Similarly, P4Resilience, designed
or SDN with P4 switches, employs packet header encapsulation to
fficiently store backup path information and prevent loops during

multi-link failures [7].
With the proliferation of IoT applications, there is an increased

demand for reliable communication solutions that meet diverse con-
straints. Thorat et al. [25] addressed IoT network reliability in SDN by
sing VLAN-enabled flow labeling to aggregate flow rules, conserving

switch memory in large-scale deployments. Similarly, in [22], an SDN-
ased system is proposed to maintain QoS during link failures in smart
ity networks by rerouting traffic through alternative paths. However,
hey did not consider the link failure state when computing alternative
aths for disrupted flows.

Seddiqi et al. [26] proposed an SDN link failure management ap-
roach that preemptively deploys backup paths by identifying high-risk
inks. Another method, MPResiSDN [27], introduces a multipath rout-

ing scheme to ensure uninterrupted data transmission even during
ath failures. However, these approaches do not incorporate proactive
arallel/hybrid or sequential flow duplication, nor do they consider
oth reliability and bandwidth constraints—key goals of this paper (see

Table 1).
In IoT networks, link failures can severely degrade service perfor-

ance, particularly for applications that generate high traffic volumes.
stablishing reliable paths with low failure probabilities is crucial to
anaging such traffic efficiently. Raza et al. [28] proposed a method

or calculating link reliability and installing minimal flow rules for
backup paths based on the reliability of the primary path. Although this
method improves network reliability by using multiple backup paths,
it does not simultaneously consider both reliability and bandwidth, a
gap that our paper addresses.

Most existing methods focus on rerouting affected flows post-failure
without considering link reliability during initial path selection. For
real-time IoT applications that require highly reliable communication,
network operators must prioritize both reliability and bandwidth—an
issue this paper directly tackles.

Recent studies have investigated the integration of SDN and fog
computing to enhance performance in real-time IoT applications. In
[29], a routing protocol is proposed to optimize data transmission
in IoT networks by leveraging mobile edge computing. This protocol
focuses on improving energy efficiency while mitigating network con-
gestion in IoT environments. Similarly, [30,31]introduce the Fog Node
Placement Problem (FNPP), which seeks to minimize latency between
hosts and fog nodes. However, these approaches do not incorporate
reliability or bandwidth constraints in their routing strategies, limit-
ing their effectiveness in ensuring stable and high-performance data
transmission. In [17,20], methods using the k-nearest neighbor algo-
rithm were proposed to predict link reliability in SDN-enabled IoT-fog
architectures. However, due to the dynamic nature of IoT applications,
requent link failures can still degrade network reliability. Address-
ng this issue requires adaptive solutions that respond to fluctuating
etwork conditions, which is a core focus of our proposed work.

In [16], a reliable flow distribution method for SDN-enabled fog
computing in smart cities was introduced, focusing on maximizing the
3

minimum link reliability across all links. However, approaches that rely
olely on the minimum link reliability, as seen in [16,17,20], often

lack the precision needed in more complex networks. Alternatively,
calculating path reliability as the product of individual link reliabilities,
as suggested in [32], can yield more accurate reliability measures, par-
ticularly in diverse network topologies. This serial reliability approach,
employed in our work, offers a more adaptable and comprehensive
measure for dynamic environments.

A common limitation across most of these studies [16,17,20] is
their failure to account for the specific reliability constraint of real-
time IoT applications. Selecting paths based solely on link reliability

etrics may fall short in scenarios where exceptionally high reliability
is required for individual flows—constraints that may not be met by a
single path, even if it is the most reliable. Our paper addresses this gap
y considering both reliability and bandwidth in real-time IoT scenarios
ithin SDN-based fog computing environments.

Moreover, calculating the reliability of hybrid path sets with shared
links presents a significant challenge that has been inadequately ad-
dressed in previous research. To address this, we employ the Sum
of Disjoint Product (SDP) method, which allows for more accurate
reliability calculations in hybrid path sets—an additional contribution
of this paper.

Our work further introduces a novel methodology that integrates
parallel/hybrid and sequential routing with flow duplication, signif-
icantly improving network resilience. Therefore, we propose two al-
orithms: Reliability and Bandwidth-Constrained Routing (RBCR) and
n extension of it, Reliability-Aware Bandwidth-Constrained Routing
RABR). These algorithms are designed to meet the stringent reliabil-
ty and bandwidth constraints of real-time IoT applications, ensuring
ffective performance under diverse network conditions. By proac-
ively addressing potential network disruptions and optimizing resource
llocation, our approach provides a robust foundation for the next
eneration of IoT services in fog computing environments.

3. Network model and problem statement

In an IoT fog network, the fog servers continuously receive traffic
from IoT end nodes. The SDN controller is responsible for choosing a
reliable path set for a certain flow while considering the reliability and
bandwidth constraint. Let 𝐹 = {𝑓1, 𝑓2, 𝑓3,… , 𝑓𝑛} represent the set of
flows used in the network. Each IoT flow 𝑓𝑖 ∈ 𝐹 is represented by a
triple (𝜃𝑖, 𝜂𝑖, 𝛽𝑖), where 𝜃𝑖 denotes the IoT device acting as the source of
a specific flow, 𝜂𝑖 denotes the fog server acting as the destination of the
flow, and 𝛽𝑖 > 0 represents the bandwidth constraint of the flow.

To facilitate the routing of these flows, the network topology is
epresented as a directed graph 𝐺 = (𝑆 , 𝐿), where 𝑆 represents the
ollection of all SDN-based switches and fog servers and 𝐿 represents
he collection of links connecting them. Each link 𝑒 ∈ 𝐿 has a capacity
f 𝜁 (𝑒) > 0 bytes/sec and a reliability value of 𝑅𝑒(𝑡) at time period 𝑡. The
ink reliability 𝑅𝑒 is calculated for each link that is defined in Eq. (1),
here 𝜆 is the failure rate of the link.
𝑅𝑒(𝑡) = exp(−𝜆𝑡) (1)

Ad Hoc Networks 172 (2025) 103803P. Valizadeh et al.
The failure rate 𝜆 represents the probability that the link will fail
over a specific time period. It is defined in Eq. (2) where LNF𝑒 is the
total number of link failures over the observation time period 𝑇 .

𝜆 =
LNF𝑒
𝑇

(2)

The SDN controller generates a list of paths for each flow 𝑓𝑖 ∈ 𝐹
defined in Eq. (3). At each time 𝑡, the reliability of each path 𝑅𝑝 in the
network is defined in Eq. (4).

𝐴𝑓𝑖 = {𝑝1𝑓𝑖 , 𝑝
2
𝑓𝑖
,… , 𝑝𝑛𝑓𝑖} (3)

𝑅𝑝(𝑡) =
∏

𝑒∈𝑝
𝑅𝑒(𝑡) (4)

The reliability constraint of network service 𝑓𝑖 is indicated between
a range of zero to one (i.e., 𝛤𝑓𝑖 ∈ [0, 1]). This reliability constraint (𝛤)
represents the minimum acceptable level of reliability for the network
service 𝑓𝑖.

3.1. Problem statement of the proposed algorithms

In this subsection, we present the problem statement of the proposed
algorithm, which considers both reliability and bandwidth constraints.
For each flow (𝑓𝑖), we select a forwarding path set from all available
paths (𝐴𝑓𝑖) between the source–destination pair, taking into account
the reliability (𝛤𝑓𝑖) and bandwidth (𝛽𝑖) constraints of the flow 𝑓𝑖.

We use path set reliability to evaluate the selected path set for each
flow, ensuring it meets or exceeds a user-defined reliability constraint.
Additionally, we also consider bandwidth constraints to guarantee that
the paths can support the required flow capacity without causing
network bottlenecks. The optimization problem is defined in Eqs. (5)–
(9). Our objective, defined in Eq. (5), is to maximize the reliability
value of flow 𝑓𝑖, subject to the constraints defined in Eqs. (6)–(9). The
RABR algorithm focuses solely on bandwidth constraints (i.e., removing
the reliability constraint in Eq. (7)).

Maximize 𝑅𝑓𝑖 (𝑡), ∀𝑓𝑖 ∈ 𝐹 (5)

Subject to: 𝜁 (𝑒) ≥ 0, ∀𝑒 ∈ 𝐿 (6)

𝑅𝑓𝑖 (𝑡) = 𝑌
⎛

⎜

⎜

⎝

∑

𝑝∈𝐴𝑓𝑖

𝑋𝑓𝑖 .𝑅𝑝

⎞

⎟

⎟

⎠

≥ 𝛤𝑓𝑖 , ∀𝑓𝑖 ∈ 𝐹 (7)

∑

𝑓𝑖∈𝐹
𝛿𝑓𝑖 (𝑒)𝛽𝑖 ≤ 𝜁 (𝑒), ∀𝑒 ∈ 𝐿 (8)

𝛿𝑓𝑖 (𝑒), 𝑋𝑓𝑖 ∈ {0, 1}, ∀𝑒 ∈ 𝐿,∀𝑝 ∈ 𝐴𝑓𝑖 ,∀𝑓𝑖 ∈ 𝐹 (9)

Eq. (6) ensures that the residual capacity of link 𝑒 is non-negative.
Eq. (7) guarantees that the flow reliability meets or exceeds the reli-
ability threshold, as 𝑌 defines reliability based on the selected path
set 𝑋𝑓𝑖 .𝑅𝑝 and its corresponding reliability. Eq. (8) ensures that the
aggregate bandwidth used by all flows sharing a link does not exceed
the link’s capacity. Finally, Eq. (9) defines binary variables: 𝛿𝑓𝑖 (𝑒),
which indicates whether link 𝑒 is selected to route flow 𝑓𝑖, and 𝑋𝑓𝑖 ,
determining if path 𝑝 is chosen for flow 𝑓𝑖.

Table 2 shows some of the frequently used notations in this paper.

4. Proposed algorithms

In this section, we elaborate on the proposed RBCR and RABR
algorithms. First, we formulate the flow reliability constraint as an
input constraint for the algorithm. Next, we incorporate bandwidth
constraints to account for both reliability and bandwidth constraints
simultaneously. To further reduce the time complexity of the proposed
algorithm, we propose a greedy heuristic approach that allows the
algorithm to operate in polynomial time. Fig. 1 illustrates the proposed
4

Fig. 1. The proposed system architecture.

Table 2
Frequently used notations.

Symbol Description

𝑓𝑖 Flow in the network
𝐴𝑓𝑖 Set of paths for flow 𝑓𝑖
𝛽𝑖 Bandwidth constraint of flow 𝑓𝑖
𝛤𝑓 Reliability constraint of flow 𝑓𝑖
𝜁 (𝑒) Bandwidth capacity of link e
𝐿𝑁 𝐹𝑒 Number of link failure
𝑅𝑒(𝑡) Reliability of a link
𝑅𝑝(𝑡) Reliability of a path
𝑅𝑝

𝑓𝑖
(𝑡) Reliability in parallel flow duplication

𝑅𝐻
𝑓𝑖
(𝑡) Reliability in hybrid flow duplication

𝑅𝑆
𝑓𝑖
(𝑡) Reliability in sequential flow duplication

𝑁𝑓 The number of sequential duplicated flows

system architecture based on SDN. In this architecture, IoT applica-
tion requests are transmitted to the SDN controller through an SDN
switch infrastructure. The RBCR and RABR modules, along with other
controller modules, are responsible for determining the optimal path
set that satisfies the users’ constraints. Once the optimal path set is
identified, it is applied to the SDN switches to route the traffic to its
destination, which in this study is a fog server.

First, we address the challenges of ensuring reliable flow trans-
mission through the network while meeting the specified reliability
constraints. The proposed RBCR algorithm consists of three phases
to achieve this: (1) reliability aware and bandwidth-constrained path
routing (RABR algorithm), (2) duplication methods using parallel or
hybrid routing, and (3) sequential routing with flow duplication. In
the following subsections, we will discuss each phase of the proposed
algorithm in detail. Fig. 2 provides an overview of the algorithm.

4.1. Phase 1: Reliability aware and bandwidth constrained path routing

In this phase, the proposed algorithm involves the selection of the
optimal path for each flow, considering the reliability of each link in the
network. When the controller receives a request from the data plane to
calculate a reliable path set for each flow 𝑓𝑖, it computes the reliability
of candidate path sets 𝐶𝑓𝑖 from the source device 𝜃𝑖 to the fog server
𝜂𝑖 in a time 𝑡, using Eq. (4). Subsequently, the controller selects the
most reliable path for the specific flow, as defined in Eq. (10). Later, in
Section 4.5, we propose a pathfinder algorithm that returns the k-most
reliable path sets that satisfy the bandwidth requirement to calculate
candidate paths. The reason is to reduce the time complexity of the
proposed algorithm.

𝑅𝑓 (𝑡) = max
(

𝑅𝑝(𝑡)
)

(10)

𝑖 𝑝∈𝐶𝑓𝑖

Ad Hoc Networks 172 (2025) 103803P. Valizadeh et al.
Fig. 2. Illustration of the proposed algorithm.
To ensure that the reliability constraint of flow 𝑓𝑖 is met, it is essen-
tial that the reliability value of the optimal path is sufficient to meet
the specified reliability constraint (i.e., 𝑅𝑓𝑖 (𝑡) ≥ 𝛤𝑓𝑖). Otherwise, the
proposed duplication methods presented in the following are adopted.

4.2. Phase 2: Parallel/hybrid routing with flow duplication

It is possible that the initially selected most reliable path for flow
𝑓𝑖 does not meet the strict reliability constraint. In such cases, a set
of additional paths is selected to duplicate the flow, aiming to fulfill
the reliability constraint. To select parallel or hybrid paths for flow
𝑓𝑖, the algorithm first sorts all candidate paths in descending order
of their reliability values, excluding the most reliable path (selected
in phase 1). Starting with the path of lowest reliability, each path is
incrementally checked to the parallel or hybrid path set. This approach
helps to distribute network traffic across multiple paths, reducing the
likelihood of overloading the more reliable ones.

For each path, the algorithm recalculates the combined reliability
of the path set, including the most reliable path from phase 1. If the
reliability of the path set meets the required threshold, that path is
chosen for duplicating the flow. If not, the algorithm proceeds to the
next path in the sorted list.

If none of the paths meet the reliability constraint during the initial
round of selection, indicating that the stricter reliability criterion is
not met, the algorithm adds the second most reliable path from the
list to the path set. If the reliability constraint is still not satisfied, the
algorithm proceeds to add a third path, and so forth. This iterative
process continues until a path set is found that meets the reliability
constraint or until the maximum number of rounds — equal to the
number of candidate paths between the source and destination — is
reached. It is important to note that this phase is only applicable if
there is more than one path from the source to the destination.
5

4.2.1. Proposed parallel/hybrid path set reliability calculation
Once the parallel/hybrid path set has been identified, the controller

duplicates the flow on the selected path set. Therefore, we consider two
cases to determine the reliability of the parallel/hybrid paths. In the
first case, the proposed method uses parallel routing, where all paths
in the path set are link-disjoint. We create a set of 𝛶 paths from all
candidate paths between the source–destination pair 𝛶 (𝑓𝑖) ⊆ 𝐶𝑓𝑖 , 𝛶 ≠ ∅
for each flow 𝑓𝑖. The reliability of the specific flow 𝑓𝑖 in parallel flow
duplication routing in the link-disjoint scenario is denoted as 𝑅𝑃

𝑓𝑖
(𝑡) and

is defined in Eq. (11).

𝑅𝑃
𝑓𝑖
(𝑡) = 1 −

∏

𝑝∈𝛶
(1 − 𝑅𝑝(𝑡)) (11)

For paths sharing links or nodes, dependencies arise, making Eq.
(11) inaccurate. To address this, we propose using the SDP method,
which accounts for overlapping links and ensures accurate reliability
calculations in networks with shared links [33].

The second scenario involves hybrid routing, where some paths
share one or more links. In this case, the reliability of the paths in
the set is affected by the reliability of the shared links, making the
calculation more complex. Failures in the shared links can impact the
reliability of multiple paths in the set, increasing the probability of
network failure. For this reason, the I-E principle, the SDP method and
the decomposition method are some of the current precise approaches
for addressing connection reliability. Because of its straightforward
premise and ease of computation, the SDP technique has been widely
employed among them to calculate system resiliency, especially in
network reliability analysis in real-world networks where the number
of paths 𝛶 is restricted [34].

The I-E Principle is a key technique in probability and reliability
theory, used to calculate the probability of system success by account-
ing for overlapping probabilities. While effective for simple systems,
it is not practical for complex networks due to the need to calculate

Ad Hoc Networks 172 (2025) 103803P. Valizadeh et al.
Fig. 3. Network topology with the link-shared scenario (known as hybrid routing).

(2𝛶 − 1) terms for 𝛶 paths. In contrast, SDP requires only 𝛶 terms,
making it more efficient for complex systems. Consequently, SDP is
often preferred for accurately calculating reliability in intricate network
configurations [35].

The SDP method expresses path set reliability as a sum of mutually
exclusive events. SDP is defined in Eq. (12), where 𝑝𝑖 denotes the
complement (failure) of path 𝑝𝑖, i.e., path 𝑝𝑖 fails.
𝑅𝐻
𝑓𝑖
(𝑡) = 𝑅𝑝1 (𝑡) + 𝑅(𝑝2∩𝑝1)(𝑡) + 𝑅(𝑝3∩𝑝2∩𝑝1)(𝑡) +⋯

+𝑅(𝑝𝛶 ∩𝑝𝛶 −1∩…∩𝑝1)(𝑡)
(12)

To illustrate the application of the SDP method, we present an
example to demonstrate the path set’s reliability, in which certain paths
can contain at least one shared link. Suppose for a flow 𝑓 = (𝐴 → 𝐸),
the links (𝐴, 𝐷) and (𝐵 , 𝐸) are shared links in two paths 𝑝1 and 𝑝2, as
shown in Fig. 3.

In the following, we illustrate the steps of calculation of reliability
of 𝑝1 and 𝑝2 with shared links.

Step 1: Calculate 𝑅(𝑝1)
For path 𝑝1, which traverses 𝐴 → 𝐷 → 𝐶 → 𝐵 → 𝐸, the reliability

is given by:

𝑅(𝑝1) = 𝑅𝐴𝐷 ⋅ 𝑅𝐷 𝐶 ⋅ 𝑅𝐶 𝐵 ⋅ 𝑅𝐵 𝐸
Substituting the values:

𝑅(𝑝1) = 0.95 × 0.90 × 0.92 × 0.98 = 0.7688

Step 2: Calculate 𝑅(𝑝2 ∩ 𝑝1)
For path 𝑝2, which shares some links with 𝑝1 and traverses 𝐴 → 𝐷 →

𝐵 → 𝐸, considering the failure of 𝑝1, the reliability is:
𝑅(𝑝2 ∩ 𝑝1) = 𝑅𝐴𝐷 ⋅ 𝑅𝐷 𝐵 ⋅ 𝑅𝐵 𝐸 ⋅ (1 − 𝑅𝐷 𝐶 ⋅ 𝑅𝐶 𝐵)
Substituting the values:

𝑅(𝑝2 ∩ 𝑝1) = 0.95 × 0.88 × 0.98 × (1 − 0.90 × 0.92) = 0.1441

Step 3: Calculate total reliability 𝑅𝐻
𝑓 (𝑡)

Combining paths 𝑝1 and 𝑝2, the total reliability is:
𝑅𝐻
𝑓 (𝑡) = 𝑅(𝑝1) + 𝑅(𝑝2 ∩ 𝑝1)

Substituting the values:

𝑅𝐻
𝑓 (𝑡) = 0.7688 + 0.1441 = 0.9129

Thus, the total reliability of the flow 𝑓 is 0.9129, indicating a 91.29%
probability of successful operation. The effects of link failures on time-
critical flows can be minimized by optimizing the reliability of the paths
and shared links.

Now, we provide proof that the parallel path increases the overall
reliability of the flows.
6

Table 3
Time complexity comparison for 𝛶 paths and 𝑚 links. Theoretical worst-case vs. best-
case.

Method Worst-case Best-case

SDP 𝑂(2𝛶 ⋅ 𝑚) 𝑂(𝛶 ⋅ (𝑚 − 𝑠))
I-E 𝑂(2𝛶 ⋅ 𝑚) 𝑂(2𝛶 ⋅ 𝑚)
Decomposition 𝑂(2𝑚) 𝑂(2𝑚)

Lemma 1. Increasing the number of parallel paths enhances network
reliability.

Proof. one with 𝑗 parallel paths and another with 𝑗 + 1 parallel paths.
Let 𝑅𝑗 and 𝑅𝑗+1 denote the reliability of these networks, respectively.
Define 𝑃 ′

𝑗+1 as the probability that the (𝑗 + 1)th path is functional.

The reliability of a network with 𝑗 parallel paths is given Eq. (11).
So for a network with 𝑗+ 1 parallel paths, the reliability 𝑅𝑗+1 is defined
in Eq. (13).

𝑅𝑗+1 = 1 −
𝑗+1
∏

𝑖=1
(1 − 𝑅𝑖) (13)

We can separate the (𝑗 + 1)th path from the product:

𝑅𝑗+1 = 1 −
𝑗

∏

𝑖=1
(1 − 𝑅𝑖)(1 − 𝑃 ′

𝑗+1)

The difference in reliability between 𝑅𝑗+1 and 𝑅𝑗 is:

𝑅𝑗+1 − 𝑅𝑗 =
𝑗

∏

𝑖=1
(1 − 𝑅𝑖)

[

𝑃 ′
𝑗+1

]

Thus, the final expression for the difference in reliability is defined
in Eq. (14) which validating the additional reliability introduced by a
new parallel path.

𝑅𝑗+1 − 𝑅𝑗 = (1 − 𝑅1)(1 − 𝑅2) … (1 − 𝑅𝑗)𝑃 ′
𝑗+1 (14)

Since 0 < 𝑃 ′
𝑗+1 < 1, 𝑅𝑗+1 > 𝑅𝑗 . Thus, increasing the number of

parallel paths improves network reliability. Using multiple paths and
duplication methods boosts network resilience, reduces packet loss, and
minimizes serialization delays. However, if the strict reliability con-
straints are still not met by the parallel duplication method, sequential
routing with packet duplication can be employed to further enhance
the overall reliability of the network.

4.2.2. Time complexity comparison of reliability calculation methods
The SDP method is often recognized as superior than the I-E princi-

ple and the Decomposition method for reliability analysis in real-world
networks. The subject of this paper discusses the theoretical and practi-
cal benefits of SDP, focusing on its efficiency and scalability in modern
network designs such as SDNs. Table 3 compares the time complexity
of 𝛶 pathways and 𝑚 links relevant to paths under both worst-case and
best-case scenarios.

For 𝛶 paths sharing 𝑠 links, SDP’s complexity reduces to 𝑂(𝛶 ⋅(𝑚−𝑠)),
demonstrating polynomial scaling with respect to 𝛶 . This contrasts with
I-E, which remains 𝑂(2𝛶 ⋅ 𝑚) regardless of shared links [36].

Furthermore, in extremely dense and large-scale networks, the com-
putational overhead of the SDP method can become a bottleneck. To
mitigate this, we propose complementary strategies like Hierarchical
SDP in which by modularizing the network into 𝑧 clusters (e.g., subnet-
works or administrative domains) [37], we reduce the complexity from
𝑂(𝑚+𝑧 log𝑚). This approach exploits locality in fog/SDN architectures,
where clusters operate semi-independently, and reliability calculations
are parallelized across clusters.

To ensure computational efficiency while maintaining accuracy, we
incorporate the following optimization techniques:

Ad Hoc Networks 172 (2025) 103803P. Valizadeh et al.

p
c

s
t
u

t
p

T

t

E

s

a
m

t
t
t

K
d

e
a
W
p

a

t
(
t

• Pruning Techniques: Filter out infeasible or unreliable paths early
in the process, reducing unnecessary computations.

• Iterative Hybrid Path Selection: Evaluate paths in descending
order of reliability, terminating the selection process as soon as
the required reliability threshold is met.

These strategies enable our approach to balance accuracy with com-
utational feasibility, making it well-suited for dynamic and resource-
onstrained networking environments.

4.3. Phase 3: Sequential routing with flow duplication

Sequential routing transmits flow along a single path at a time,
which is effective for simple topologies with a limited number of paths.
While this method does not offer the fault tolerance of parallel routing,
it can still be beneficial for maintaining performance. In sequential
routing, flows are duplicated and sent through the same path, prefer-
ably the one with the highest bandwidth. This approach enhances
reliability by ensuring packets are not lost.

To implement sequential routing, an SDN switch sends an initial
flow along with 𝑁𝑓 duplicate flows to increase the probability of
uccessful delivery. Ideally, all duplicate flows should reach the destina-
ion. If all flows fail, the probability of this occurring can be calculated
sing Eq. (15).

𝐹𝑆
𝑓𝑖
(𝑡) = (1 − 𝑅𝑝(𝑡))

𝑁𝑓 (15)

Assuming failures occur independently of each other and the flows,
he probability of at least one flow’s successful delivery can be com-
uted in Eq. (16).

𝑅𝑆
𝑓𝑖
(𝑡) = 1 − (1 − 𝑅𝑝(𝑡))

𝑁𝑓 (16)

Lemma 2. Sequential routing can enhance reliability and meet the relia-
bility constraint when 𝑅parallel/hybrid < 𝛤 .

Proof. Consider sending 𝑁𝑓 duplicate flow over a single path 𝑅𝑝(𝑡).
he reliability of this duplication can be expressed in Eq. (17).

𝑅serial = 1 − (1 − 𝑅𝑝(𝑡))
𝑁𝑓 (17)

To ensure that the reliability constraint of the flow is satisfied, we need
o have 𝑅serial ≥ 𝛤𝑓𝑖 .

To achieve this, we can select an appropriate value of 𝑁𝑓 such that
q. (18), which can be rewritten as Eq. (19).

(1 − 𝑅𝑝(𝑡))
𝑁𝑓 ≤ (1 − 𝛤𝑓𝑖) (18)

𝑅𝑝(𝑡)
𝑁𝑓 ≥ 𝛤𝑓𝑖 (19)

Therefore, we can calculate the minimum value of 𝑁𝑓 required to
atisfy the reliability constraint in Eq. (20).

𝑁𝑓 =
⌈

log𝛤𝑓𝑖∕log𝑅𝑝(𝑡)
⌉

(20)

4.4. Heuristic algorithm

In this section, we present our proposed heuristic algorithms to
ddress the aforementioned NP-hard problem by determining the opti-
al reliable path set for flow 𝑓𝑖, which satisfies the objective function

in Eq. (5) and adheres to the constraints in Eqs. (6)–(9). To achieve
his, we introduce a time-efficient heuristic algorithm (Algorithm 1)
hat efficiently computes a reliable routing path set while ensuring
hat both the reliability and bandwidth constraints of the flows are
7

Algorithm 1: Reliability and Bandwidth Constrained Routing
(RBCR)

Input: 𝑓𝑖: flow, 𝛤𝑓𝑖 : reliability constraint, 𝛽𝑖: bandwidth
constraint, 𝐾: max candidate paths , 𝜃𝑖: source, 𝜂𝑖:
destination

Output: Reliable path set
1 𝐶𝑓𝑖 ← KMRPB(𝜃𝑖,𝜂𝑖,𝑘,𝛽𝑖)
2 if |𝐶𝑓𝑖 | == 0 then
3 return ∅
4 end
5 𝑝𝑚𝑓𝑖 ← 𝐶𝑓𝑖 [0] // Phase 1
6 if 𝑅𝑝𝑚𝑓𝑖

≥ 𝛤𝑓𝑖 then
7 return 𝑝𝑚𝑓𝑖
8 end
9 𝑃 𝐶𝑓𝑖 ← 𝐶𝑓𝑖 ⧵ {𝑝

𝑚
𝑓𝑖
} // Phase 2

10 𝑃 𝐻 𝑃 ← {𝑝𝑚𝑓𝑖} // PHP:Parallel/hybrid path set
11 for 𝑟 ← 1 to 𝑘 − 1 do
12 foreach 𝑝𝜇𝑓𝑖 ∈ PC𝑓𝑖 , in reverse order do
13 if (𝑃 𝐻 𝑃 ∪ {𝑝𝜇𝑓𝑖}) ≥ 𝛤𝑓𝑖 then
14 return 𝑃 𝐻 𝑃 ∪ {𝑝𝜇𝑓𝑖}
15 end
16 end
17 𝑃 𝐻 𝑃 ← 𝑃 𝐻 𝑃 ∪ {𝑃 𝐶𝑓𝑖 [𝑘 − 𝑟]}
18 𝑃 𝐶𝑓𝑖 ← 𝑃 𝐶𝑓𝑖 ⧵ {𝑃 𝐶𝑓𝑖 [𝑘 − 𝑟]}
19 end
20 𝑝𝑓𝑖 ← Get the highest bandwidth // Phase 3
21 𝑁𝑓 ←

⌈

log𝛤𝑓𝑖∕log𝑅𝑝𝑓𝑖

⌉

, Eq. (20)
22 if (𝑝𝑓𝑖)

𝑁𝑓 ≥ 𝛤𝑓𝑖 then
23 return (𝑝𝑓𝑖)

𝑁𝑓

24 end

met. The RBCR is a greedy heuristic that utilizes the K-Most Reliable
Paths with Bandwidth Constraints (KMRPB) algorithm (Algorithm 2).

BRPB returns the 𝑘-most reliable paths between the source and the
estination. Pathfinder algorithms typically use the BFS algorithm to

find all available paths between the source and the destination. How-
ver, we limit our search space to only paths that meet our objectives
nd constraints, which significantly reduces computational complexity.
ithout this optimization, considering all possible paths would result in

rohibitive time complexity, as the problem would scale exponentially.

The RBCR algorithm builds on the strategies outlined in Lemmas 1
and 2 to ensure the required reliability threshold is met. Upon receiving
flow 𝑓𝑖 as input, the algorithm first computes 𝐶𝑓𝑖 using the KMRPB
algorithm, which identifies the top 𝐾 most reliable paths that meet the
bandwidth constraints for each flow 𝑓𝑖 ∈ 𝐹 . The KMRPB algorithm
optimizes for both reliability and bandwidth, returning the set of 𝑘
paths that best satisfy these criteria, thereby reducing computational
complexity by limiting the search space to only the most viable paths.
𝐶𝑓𝑖 is sorted in descending order of reliability.

If no path satisfies the bandwidth constraint, the algorithm returns
n empty set (Line 3), signaling that no feasible solution exists and

prompting a reassessment of network parameters.
The algorithm proceeds by selecting the most reliable path from 𝐶𝑓𝑖

that satisfies both the reliability and bandwidth constraints (Line 5). If
his path meets the constraints, it is returned as the reliable path set
Lines 5–8). If not, the algorithm moves to Phase 2, where it attempts
o enhance reliability by constructing a set of parallel/hybrid paths,

as outlined in Lemma 1 (Section 4.2). Notably, the RABR algorithm

Ad Hoc Networks 172 (2025) 103803P. Valizadeh et al.

𝐶
d
p
t
a

t
p

b
p
c
u

(
a
(
e

c
t
t
d

i
T

w
t

e

encompasses these lines (5–8), while this and the subsequent phases
specifically pertain to the RBCR algorithm.

In Phase 2, RBCR iteratively explores the candidate paths from
𝑓𝑖 . It calculates the overall reliability of each path set for parallel
uplication, beginning with the least reliable path from the set of
arallel candidate paths (PC) (Line 9). If the combined reliability meets
he required threshold, the path is chosen for flow duplication and
dded to the Parallel/Hybrid Paths (PHP) set (Line 14). Otherwise,

the next path is evaluated. If no path satisfies the reliability constraint
(Lines 12–15), the algorithm adds the most reliable path from PC (Line
17) and removes it from the set (Line 18). This process continues until
he reliability threshold is met or all paths have been evaluated. This
hase is only applicable when multiple paths exist between the source

and destination.
If parallel routing fails to meet the reliability threshold in Phase

2, the algorithm adapts by moving to sequential routing with packet
duplication, as outlined in Lemma 2 (Lines 20–24) in Phase 3.

To optimize network performance, the algorithm selects the highest
andwidth path (Line 20), ensuring that the most capable paths are
rioritized. It then calculates the required number of sequential dupli-
ate packets (𝑁𝑓) using Eq. (20) (Line 21) to further optimize resource
sage. Ultimately, the algorithm identifies and returns the path that

satisfies both the bandwidth and reliability constraints, providing an
optimal solution for reliable data flow through calculated duplication
strategies.

4.5. K-most reliable paths with bandwidth constraints algorithm

We propose the K-Most Reliable Paths with Bandwidth Constraints
KMRPB) Algorithm, inspired by Yen’s K-Shortest Path Algorithm. This
lgorithm computes the 𝐾 most reliable paths between a source node
IoT device) 𝜃𝑖 and destination node (Fog server) 𝜂𝑖 in a network while
nsuring each path meets a specified bandwidth constraint 𝛽𝑖.

The KMRPB algorithm (Algorithm 2) operates as follows:

1. Initialize an empty set 𝐴 for storing the 𝐾 most reliable paths
and a priority queue 𝐵 for managing candidate paths (Line 1).

2. Compute the initial most reliable path satisfying the bandwidth
constraint using a modified Dijkstra’s algorithm (Lines 2–6).

3. While |𝐴| < 𝐾 and 𝐵 is not empty, iteratively generate candidate
paths (Line 8):

(a) Extract the most reliable path 𝑆𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 from 𝐵 (Line 9).
(b) For each node 𝑠𝑑 𝑒𝑣 in 𝑆𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 (except the destination),

create a deviation (Line 10):

i. Remove links (edges) of the root path 𝑅𝑟𝑜𝑜𝑡 from
the graph. (Line 13)

ii. Find a new most reliable path 𝑆𝑑 𝑒𝑣 from 𝑠𝑑 𝑒𝑣 to 𝜂𝑖
destination (Line 14).

iii. If 𝑆𝑑 𝑒𝑣 exists, combine it with 𝑅𝑟𝑜𝑜𝑡 to form 𝑆𝑡𝑜𝑡𝑎𝑙
(Line 15).

iv. If 𝑆𝑡𝑜𝑡𝑎𝑙 meets the bandwidth constraint and is not
in 𝐴, add it to 𝐵 and potentially to 𝐴 (Lines 17–22).

4. Return the set 𝐴 of 𝐾 most reliable paths (line 26).

The algorithm efficiently narrows the solution space by focusing only
on paths that are feasible under the given bandwidth and reliability
onstraints. This approach is particularly valuable in network applica-
ions where both reliability and bandwidth constraints are critical fac-
ors in path selection, offering network operators flexibility in routing
ecisions and enhancing overall network performance and resilience.
8

Algorithm 2: KMRPB Algorithm
Input: 𝐺 = (𝑆 , 𝐿), 𝜃𝑖: source, 𝜂𝑖: destination, 𝐾, 𝛽𝑖:bandwidth

constraint
Output: Set of 𝐾 most reliable paths from 𝜃𝑖 to 𝜂𝑖 with

bandwidth ≥ 𝛽𝑖
1 𝐴 ← ∅; 𝐵 ← PriorityQueue() ;
2 𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ← MostReliablePath(𝐺, 𝜃𝑖, 𝜂𝑖, 𝛽𝑖) ;
3 if 𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙 exists then
4 𝐴 ← 𝐴 ∪ {𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙};
5 𝐵.push(𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙);
6 end
7 𝐺𝑜𝑟𝑖𝑔 𝑖𝑛𝑎𝑙 ← 𝐺;
8 while |𝐴| < 𝐾 and not 𝐵.isEmpty() do
9 𝑆𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝐵.pop() ;
10 for 𝑠𝑑 𝑒𝑣 ∈ 𝑆𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 except 𝜂𝑖: destination do
11 𝑅𝑟𝑜𝑜𝑡 ← SubPath(𝑆𝑐 𝑢𝑟𝑟𝑒𝑛𝑡, 𝜃𝑖,𝑠𝑑 𝑒𝑣) ;
12 𝐺 ← 𝐺𝑜𝑟𝑖𝑔 𝑖𝑛𝑎𝑙 ;
13 RemoveLinks(𝐺, 𝑅𝑟𝑜𝑜𝑡) ;
14 𝑆𝑑 𝑒𝑣 ← MostReliablePath(𝐺, 𝑠𝑑 𝑒𝑣, 𝜂𝑖, 𝛽𝑖) ;
15 if 𝑆𝑑 𝑒𝑣 exists then
16 𝑆𝑡𝑜𝑡𝑎𝑙 ← 𝑅𝑟𝑜𝑜𝑡 + 𝑆𝑑 𝑒𝑣;
17 if PathBandwidth(𝑆𝑡𝑜𝑡𝑎𝑙) ≥ 𝛽𝑖 and 𝑆𝑡𝑜𝑡𝑎𝑙 ∉ 𝐴 then
18 𝐵.push(𝑆𝑡𝑜𝑡𝑎𝑙);
19 if |𝐴| < 𝐾 then
20 𝐴 ← 𝐴 ∪ {𝑆𝑡𝑜𝑡𝑎𝑙};
21 end
22 end
23 end
24 end
25 end
26 return 𝐴

4.6. Time complexity analysis of the algorithms

The RBCR algorithm utilizes the KMRPB algorithm as a subrou-
tine. To analyze the combined time complexity, we will examine each
algorithm individually.

The time complexity of KMRPB which is based on Yen’s algorithm
is 𝑂(𝐾|𝑆|(|𝐿|+ |𝑆| log |𝑆|+𝐾|𝑆|)) where 𝐾 is the number of paths, |𝑆|
s the number of nodes, and |𝐿| is the number of links in the graph.
he main complexity of RABR is the KMRPB complexity.

The RBCR algorithm consists of three phases. The initial pathfinding
hich is dominated by the KMRPB has the same time complexity. Then,

he time complexity of the Path Combination phase is as follows:

• The nested loops iterate up to 𝐾 times each, resulting in a
complexity of 𝑂(𝐾2).

• For link-disjoint paths, path combination and reliability checking
are assumed to have a time complexity of 𝑂(1).

• For non-link-disjoint paths (where paths share links), path com-
bination and reliability checking have a time complexity of 𝑂(𝛶 ⋅
(𝑚 − 𝑠)).

Flow duplication performs a constant number of operations 𝑂(1).
The overall time complexity of RBCR is dominated by the KMRPB

call in the first phase. The subsequent phases add relatively minor
computational overhead. Therefore, the combined time complexity is
xpressed as follows:

1. For link-disjoint paths:

𝑂(𝐾|𝑆|(|𝐿| + |𝑆| log |𝑆| +𝐾|𝑆|)) + 𝑂(𝑘2)

2. For non-link-disjoint paths:

𝑂(𝐾|𝑆|(|𝐿| + |𝑆| log |𝑆| +𝐾|𝑆|)) + 𝑂(𝑘2 ⋅ 𝛶 ⋅ (𝑚 − 𝑠))

Ad Hoc Networks 172 (2025) 103803P. Valizadeh et al.

b
t
i

i
w
m
p

t
p
F
t
m
l
n
m
g
a

m

d

t
w
7
m
w
t
t

≥
s

R
g

S

r

t

r

Here, the first term corresponds to Phase 1, which is dominated
y the KMRPB algorithm. The second term reflects the complexity of
he Path Combination phase, where the computation becomes more
ntensive when paths share common links.

It is important to note that, the RBCR algorithm may terminate early
if a suitable path or combination of paths is found, potentially reducing
the actual runtime. The value of 𝐾 in RBCR is typically small and fixed,
which can be considered a constant factor in practice. The KMRPB
algorithm is called only once, regardless of the subsequent phases in
RBCR.

In practice, the efficiency of this combined approach depends heav-
ly on the network topology, the reliability constraints, and the band-
idth constraints. While the worst-case complexity appears high, for
any real-world networks with well-behaved structures, the actual
erformance may be significantly better.

Space complexity remains 𝑂(𝐾|𝑆|), primarily for storing the 𝐾
paths returned by KMRPB.

5. Performance evaluation

We used Mininet, a network emulator, and the Floodlight SDN
controller to evaluate the proposed algorithm’s performance [38]. To
simulate flow requests in the network, we utilized the Distributed
Internet Traffic Generator (D-ITG) and Iperf tool [39]. To ensure that
he traffic generated was representative of real-world traffic patterns,
ackets were generated using a uniform distribution method. The Open-
low 1.3.1 protocol was employed in OpenFlow switches to direct
raffic flows, establish several paths, and manage bandwidth via its
eter function. We calculate the reliability of each path set based on

ong-term measurements of the operational and failure times of each
etwork link. These reliability values are regularly updated with the
ost recent measurements to ensure accuracy. This dynamic approach

uarantees the practical reliability and effectiveness of the proposed
lgorithm.

5.1. Setup and evaluation metrics

The simulation experiments were designed to evaluate the perfor-
ance of the proposed algorithm under various network conditions,

such as various reliability and bandwidth constraints, network connec-
tivity, and fault rate. We conducted the tests on a Windows 11 PC
equipped with an Intel Core i7 3630 processor and 8 GB of RAM.

5.1.1. Real-network evaluation
To rigorously evaluate the proposed algorithms, we employed a

real network topology consisting of 38 switches and various network
connectivity (150 to 740 links) and similar flow generators like these
studies [17,20]. This topology was simulated to represent a hybrid
SDN-based Fog Computing (FC) environment, incorporating 50 IoT
evices, 5 fog servers, and a cloud server. Additionally, we randomly

select various numbers of source and destination pairs (ranging from 50
o 200) within the network. For each IoT flow, the bandwidth demand
as generated randomly from various ranges [1–25, 25–50, 50–75,
5–100] Mbps to simulate diverse traffic loads [16]. Each flow is trans-
itted from a different IoT device to a different fog server. In addition,
e have considered different failure rates from [0.0001, 0.005] based on

he [40,41]. The capacity of each link in the topology was standardized
o 100–200 Mbps to reflect realistic network conditions [16,17,20]. Fog

servers are randomly selected in random and distant positions from
each other.

Reliability requirements vary across applications, ranging from
99.999% for mission-critical systems to below 99% for non-critical
ystems [19,42]. These standards form the basis of our evaluation.

We conduct a comparative analysis of the proposed RBCR and
ABR algorithms and RAFDA, a state-of-the-art Reliability aware al-
orithm [16] under comparable network conditions.

The following are the metrics evaluated under these experiments.
9

a

5.1.2. Reliability and bandwidth success rate of the flows
One of the metrics to evaluate the performance of flows is the

uccess Rate (SR), which considers both reliability and bandwidth
constraints. We define a flow as satisfying the reliability constraint if
its reliability surpasses a given threshold 𝛤 (e.g., 𝛤 = 0.99, correspond-
ing to 99% reliability). Additionally, a flow satisfies the bandwidth
constraint if the available bandwidth of its path meets or exceeds
the flow’s requested bandwidth. The Success Rate (SR) is defined as
the proportion of flows that meet both the reliability and bandwidth
constraints relative to the total number of flows (𝑁flows) in the network.
This is expressed mathematically in Eq. (1):

𝑆 𝑅 = 1
𝑁flows

𝑁flows
∑

𝑖=1
I(𝑅𝑓𝑖 ≥ 𝛤) ⋅ I(𝜁 ≥ 𝛽𝑖) (21)

where I(⋅) is the indicator function, equaling 1 when the condition
is true and 0 otherwise. This formulation provides a comprehensive
measure of network performance, accounting for both the reliability
and bandwidth constraints of each flow.

5.1.3. Average reliability
The average reliability of all flows is computed by taking the mean

eliability across all network flows, as shown in Eq. (22). In this equa-
tion, the reliability for each flow is calculated using the corresponding
reliability equations.

Average Reliability = 1
𝑁flows

𝑁flows
∑

𝑖=1
𝑅𝑓𝑖 (22)

5.1.4. Flow duplication rate
We define Flow Duplication Rate (FDR) as the ratio of additional

data transmitted to ensure reliability to the total data transmitted, as
shown in Eq. (23). In this equation, 𝐷extra represents the additional data
transmitted for reliability (e.g., redundant packets), while 𝐷total is the
otal amount of data transmitted, including this extra data.

𝐹 𝐷 𝑅 =
𝐷extra
𝐷total

(23)

By evaluating the proposed algorithm with these metrics, we can assess
its effectiveness in enhancing the reliability and resiliency of SDN-
based fog computing for IoT applications, as well as overall network
performance.

5.2. Results and discussion

This section presents the results of different experiments under
various conditions. To assess the performance of the proposed algo-
ithm, we compared it against the previously mentioned algorithms

using several performance metrics, including the success rate, average
reliability, and flow duplication rate. To ensure the robustness of our
results, each parameter was computed by averaging the outcomes from
20 independent experiments for each iteration.

Furthermore, studies were conducted using various configurations.
For the baseline parameters, we used a reliability constraint of 0.999,
network connectivity of 0.5, and a bandwidth constraint range of
[1–25].

5.2.1. Algorithms runtime of the evaluated algorithms
In this section, we conducted experiments to evaluate the running

time of the proposed algorithms in comparison to the state-of-the-art,
to showcase their efficiency. Fig. 4 illustrates the running times of our
proposed algorithm, with various extensions, alongside the state-of-the-
art, in a network with 0.5 link connectivity, 38 nodes, and 100 flow
transmissions. A key contribution of this work is the development of a
runtime-efficient routing algorithm integrated into the proposed RBCR
pproach.

Ad Hoc Networks 172 (2025) 103803P. Valizadeh et al.

n
b

i
m
t
t

f
K
t
c
i
R
r
t
k
o
b
p
i
i

Fig. 4. Algorithms running time comparison.

Based on the figure, our proposed algorithm outperforms the RAFDA
algorithm in terms of running time (fast runtime). We also integrated
our routing algorithm KRMPB with the RAFDA algorithm to demon-
strate its effectiveness in reducing the time complexity of the algo-
rithms.

RAFDA’s routing algorithm identifies all possible paths and filters
them based on reliability and bandwidth constraints, but this increases
its computational complexity, especially in highly connected or large
etworks. Calculating all possible paths between source and destination
efore selecting the top k paths can lead to spending time on paths that

will later be discarded due to failing bandwidth constraints and low
reliability, adding to its overall runtime. As a result, RAFDA’s running
time increases exponentially as the network size grows.

The proposed routing algorithm KMRPB, based on Yen’s algorithm,
dentifies the most reliable and bandwidth-satisfying paths, making it
ore time-efficient. Unlike RAFDA, RBCR and RABR focus on paths

hat satisfy key constraints early in the process and prune invalid paths
o save computation time.

The algorithms RAFDA with our routing and RABR show better
runtime performance. RBCR includes duplication methods for reliabil-
ity, while RABR selects the most reliable paths from the top k paths.
The RAFDA algorithm has the slowest running time, mainly due to its
non-optimized routing algorithm.

5.2.2. Reliability and bandwidth success rate of the flows
In this section, we evaluate the reliability and bandwidth success

rates of the flows (SR) under various configurations, including reliabil-
ity constraints (𝛤𝑓𝑖), network connectivity, and bandwidth constraints
of the flows.

Fig. 5 illustrates the SR performance of the algorithms under dif-
erent reliability constraints with Network Connectivity of 0.5 with
-Path: 5, bandwidth: 1–25. The results indicate that RBCR achieves

he highest SR due to its duplication methods that fulfill reliability
onstraints. RABR attains a higher SR compared to RAFDA because
t selects the most reliable and bandwidth-satisfied paths. Conversely,
AFDA initially selects all possible paths and then filters the k-most
eliable paths. Among these k paths, it subsequently selects the path
hat satisfies the bandwidth constraints. Consequently, none of these
-most reliable paths may meet the bandwidth constraints. In contrast,
ur proposed RBCR simultaneously identifies the k-most reliable and
andwidth-satisfying paths. Additionally, RAFDA’s strategy of selecting
aths based on the maximum of the minimum link reliability may result
n paths being rejected more frequently when the reliability constraint
s stringent, leading to a lower SR.

Fig. 6 shows that RBCR consistently achieves the highest SR across
varying levels of network connectivity. As connectivity increases, the
number of paths between the source and destination also increases,
providing potential solutions for flow duplications to meet the relia-
bility constraints of the flows. Consequently, RBCR achieved 100% SR
10
Fig. 5. Success rate in different reliability constraints of the flows.

Fig. 6. Success rate in different network connectivity.

Fig. 7. Success rate in different bandwidth range constraint of the flows.

satisfaction in network connectivity of (≥0.6). RABR achieves a mod-
erate SR, positioned between RAFDA and RBCR. RAFDA exhibits the
lowest SR due to the aforementioned reasons. As network connectivity
increases, the SR of all algorithms improves because the likelihood of
finding more bandwidth-reliable paths increases.

Fig. 7 demonstrates the RSF with Network Connectivity of 0.5 with
K-Path:5 in different bandwidths. That RBCR leads the highest SR
across various flow bandwidth constraints. However, as the bandwidth

Ad Hoc Networks 172 (2025) 103803P. Valizadeh et al.
Fig. 8. Average reliability in different reliability constraints of the flows with Network
Connectivity of 0.5.

Fig. 9. Average reliability in different network connectivity of the flows.

Fig. 10. FDR of the evaluated algorithms in different network fault rates.

constraints increase, the SR of RBCR declines. This is because lower
link capacities limit the ability to perform sufficient flow duplication,
whether in parallel or sequential forms. Additionally, both RABR and
RAFDA exhibit a slight decrease in SR as the bandwidth constraints of
the flows increase.
11
5.2.3. Reliability of the evaluated algorithms
In this part, we evaluate the average reliability of the algorithms

in different configurations. Fig. 8 shows the average reliability of
the algorithms in different reliability constraints. All the compared
algorithms achieve higher average reliability. However, RBCR leads
to the most average reliability because of the duplication method.
RBCR consistently excels in terms of average reliability across various
reliability constraints due to its ability to duplicate paths. Utilizing
multiple routes ensures that flows achieve the reliability constraint.
RABR delivers moderate average reliability. It selects the most reliable
paths from the top k paths without path duplication, which limits its
performance compared to RBCR. However, it generally outperforms
RAFDA. When reliability constraints are lower, RABR performs well,
as it can choose highly reliable paths from available options without
needing duplication, achieving average reliability close to that of RBCR.

RAFDA generally exhibits the lowest average reliability among the
evaluated algorithms. It employs a max–min reliability approach, se-
lecting paths based on the minimum link reliability. Overall, RAFDA
and RABR do not show significant differences in average reliability,
as neither incorporates methods to satisfy reliability constraints, al-
though they are reliability-aware. This often results in fewer flows
meeting higher reliability constraints, particularly in the absence of
path duplication in scenarios with lower reliability constraints.

Fig. 9 illustrates the average reliability of the algorithms across
different levels of network connectivity. As network connectivity in-
creases, the RBCR algorithm demonstrates superior average reliability
compared to both RAFDA and RABR. All the compared algorithms
exhibit improved performance with increased network connectivity
(i.e., a higher number of possible paths). The highest reliability for
RBCR is largely attributable to its ability to leverage proposed du-
plication methods (sequential or parallel/hybrid) to satisfy reliability
constraints, whereas RAFDA and RABR are limited to selecting a single
path, thereby limiting their ability to enhance reliability.

5.2.4. The flow duplication rate (FDR) of the evaluated algorithms
Fig. 10 highlights that the FDR of RBCR is higher than that of

other algorithms, owing to its use of parallel, hybrid, or sequential
duplication methods. By transmitting multiple copies of data across dif-
ferent paths to ensure reliability constraints of IoT applications, RBCR
increases the FDR compared to RABR and RAFDA, both of which rely on
a single path and thus exhibit lower FDR. These results emphasize the
trade-off between reliability and efficiency. While RBCR achieves the
highest reliability, it incurs a higher FDR, whereas RAFDA and RABR
offer lower FDR at the expense of reduced reliability.

The FDR of RBCR is higher, particularly in scenarios where the
network experienced higher faults (i.e., 𝜆 ≥ 0.001). It is because the
algorithm had to increase the number of duplications to ensure the
flows continued to meet the reliability constraints as demonstrated in
Section 5.2.2.

The increased FDR in RAFDA and RABR is due to their dependence
on re-transmitting flows when delivery to the destination fails due
to network issues. In contrast, the higher FDR in RBCR is a result
of duplication, not re-transmission. Re-transmission leads to delays
and deadline violations, which can be very detrimental and costly for
real-time IoT applications.

5.2.5. Overall comparison
Table 4 presents a comprehensive comparison of the RBCR, RABR,

and RAFDA algorithms across several critical performance metrics.
Runtime Efficiency: RABR demonstrates the fastest run-time at 0.026 s,
followed by RBCR at 0.092 s. RAFDA lags significantly behind with a
runtime of 5.01 s. This substantial difference in execution speed could
be critical in real-time applications where rapid decision-making is
essential.

In terms of Success Rates: RBCR consistently outperforms both
RABR and RAFDA across all success rate metrics, where for Success

Ad Hoc Networks 172 (2025) 103803P. Valizadeh et al.

s

R
a
R
R

c

(
q
e

o
s
(
s
f

a
t
a
c
e

Table 4
Overall comparison of the algorithms.

Metrics/Algs RBCR RABR RAFDA

Runtime 0.092 s 0.026 s 5.01 s
SR-NC 97.25% 53.75% 49%
SR-RC 88% 46.75% 41.25%
SR-BC 80% 51% 39.25%
R-RC 99.933% 99.803% 99.797%
R-NC 99.886% 98.308% 98.307%

Rate under different Network Connectivity (SR-NC), RBCR achieves
a remarkable 97.25% success rate, nearly doubling RABR (53.75%)
and RAFDA (49%). With various Reliability Constraints (SR-RC), RBCR
maintains a high 88% success rate, while RABR and RAFDA drop to
46.75% and 41.25%, respectively. Under Bandwidth Constraints (SR-
BC), RBCR still leads at 80%, with RABR following at 51% and RAFDA
at 39.25%.

These results suggest that RBCR is significantly more effective at
atisfying various network constraints compared to its counterparts.

In terms of reliability, all three algorithms perform well, but RBCR
maintains a slight edge. For example, under Reliability Constraints (R-

C), RBCR achieves 99.933% reliability, higher than RABR (99.803%)
nd RAFDA (99.797%). Under different Network Connectivity (R-NC),
BCR again leads with 99.886% reliability, compared to RABR and
AFDA, both around 98.3%.

While the differences in reliability are small, they could be signifi-
ant in large-scale networks or critical applications where even minor

improvements in reliability are valuable. Overall, RBCR demonstrates
superior performance in success rates and reliability across all sce-
narios. RAFDA, while competitive in reliability, struggles with success
rates and runtime efficiency. These results suggest that RBCR offers the
best performance in networks with real-time IoT applications where
high success rates and reliability are very important.

6. Conclusions and future works

This paper presents two algorithms: RBCR and RABR. RBCR is
tailored for real-time applications with stringent reliability constraints,
where violating time requirements incurs significant costs. In con-
trast, RABR is more suitable for time-sensitive applications, where
slight delays are tolerable. Both algorithms are designed specifically
for Software-Defined Networks (SDNs) in Fog Computing environments
and effectively address the dual challenges of meeting reliability and
bandwidth constraints for IoT applications. The RBCR algorithm op-
erates in three phases: (1) reliability and bandwidth-constrained path
selection, (2) flow duplication through parallel/hybrid routing, and
3) sequential routing with flow duplication to meet reliability re-
uirements. A greedy pathfinder is also introduced to enhance time
fficiency while maintaining high performance.

Simulation results demonstrate that RBCR outperforms the state-
f-the-art RAFDA algorithm in terms of reliability, success rate (flows
atisfying reliability and bandwidth constraints), and time efficiency
run-time). RBCR achieves success rates up to twice those of existing
olutions, coupled with highly efficient execution times, making it ideal
or applications requiring optimized reliability and bandwidth.

While flow duplication significantly enhances network reliability,
its inherent redundancy introduces trade-offs with bandwidth efficiency
particularly in dense network environments. Emerging dynamic mitiga-
tion approaches like Adaptive Flow Duplication could optimize this bal-
nce even under high-traffic conditions. Future work should integrate
emporal constraints for time-sensitive IoT domains (e.g., industrial
utomation) and expand evaluations to energy/delay metrics. Ma-
hine learning-enhanced coordination could further refine reliability-
fficiency balances.
12
CRediT authorship contribution statement

Parisa Valizadeh: Writing – review & editing, Writing – origi-
nal draft, Software, Methodology. Mohammad Hossein Yaghmaee:
Supervision. Yasser Sedaghat: Validation, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] J. Jiang, Z. Li, Y. Tian, N. Al-Nabhan, A review of techniques and methods for
IoT applications in collaborative cloud-fog environment, in: D. Wanchun (Ed.),
Secur. Commun. Netw. 2020 (2020) 8849181, http://dx.doi.org/10.1155/2020/
8849181.

[2] A. Taghinezhad-Niar, J. Taheri, Security , reliability , cost , and energy-aware
scheduling of real-time workflows in compute-continuum environments, IEEE
Trans. Cloud Comput. 12 (3) (2024) 954–965, http://dx.doi.org/10.1109/TCC.
2024.3426282.

[3] Y. Asghari Alaie, M. Hosseini Shirvani, A.M. Rahmani, A hybrid bi-objective
scheduling algorithm for execution of scientific workflows on cloud platforms
with execution time and reliability approach, J. Supercomput. 79 (2) (2023)
1451–1503.

[4] K. Liu, W. Quan, N. Cheng, W. Wu, Z. Xu, L. Guo, D. Gao, H. Zhang, Reliable
PPO-based concurrent multipath transfer for time-sensitive applications, IEEE
Trans. Veh. Technol. 72 (10) (2023) 13575–13590, http://dx.doi.org/10.1109/
TVT.2023.3277712.

[5] L. Csikor, M. Szalay, G. Rétvári, G. Pongrácz, D.P. Pezaros, L. Toka, Transition to
SDN is HARMLESS: Hybrid architecture for migrating legacy ethernet switches
to SDN, IEEE/ACM Trans. Netw. 28 (1) (2020) 275–288, http://dx.doi.org/10.
1109/TNET.2019.2958762.

[6] N. Khan, R. bin Salleh, A. Koubaa, Z. Khan, M.K. Khan, I. Ali, Data plane failure
and its recovery techniques in SDN: A systematic literature review, J. King Saud
Univ. - Comput. Inf. Sci. 35 (3) (2023) 176–201, http://dx.doi.org/10.1016/j.
jksuci.2023.02.001.

[7] Z. Li, Y. Hu, J. Wu, J. Lu, P4resilience: Scalable resilience for multi-failure
recovery in SDN with programmable data plane, Comput. Netw. 208 (2022)
108896, http://dx.doi.org/10.1016/j.comnet.2022.108896.

[8] F. Tang, I. Haque, ReMon: A resilient flow monitoring framework, in: 2019
Network Traffic Measurement and Analysis Conference, TMA, 2019, pp. 137–144,
http://dx.doi.org/10.23919/TMA.2019.8784521.

[9] M. Ibrar, L. Wang, G.-M. Muntean, A. Akbar, N. Shah, K.R. Malik, PrePass-
Flow: A machine learning based technique to minimize ACL policy violation
due to links failure in hybrid SDN, Comput. Netw. 184 (2021) 107706, http:
//dx.doi.org/10.1016/j.comnet.2020.107706.

[10] P. Valizadeh, A. Taghinezhad-Niar, A fault tolerant multi-controller framework
for SDN DDoS attacks detection, Int. J. Web Res. 5 (1) (2022) 1–7, http:
//dx.doi.org/10.22133/ijwr.2022.345927.1119.

[11] R. Mohammadi, S. Akleylek, A. Ghaffari, A. Shirmarz, Automatic delay-sensitive
applications quality of service improvement with deep flows discrimination
in software defined networks, Clust. Comput. 26 (1) (2023) 437–459, http:
//dx.doi.org/10.1007/s10586-022-03729-6.

[12] D. Tang, Z. Zheng, K. Li, C. Yin, W. Liang, J. Zhang, FTOP: An efficient flow
table overflow preventing system for switches in SDN, IEEE Trans. Netw. Sci.
Eng. (2023) 1–13, http://dx.doi.org/10.1109/TNSE.2023.3297650.

[13] A.J. Kadhim, S.A.H. Seno, J.I. Naser, J. Hajipour, DMPFS: Delay-efficient multi-
casting based on parked vehicles, fog computing and SDN in vehicular networks,
Veh. Commun. 36 (2022) 100488, http://dx.doi.org/10.1016/j.vehcom.2022.
100488.

[14] G. Ding, J. Yuan, G. Yu, Y. Jiang, Two-timescale resource management for
ultrareliable and low-latency vehicular communications, IEEE Trans. Commun.
70 (5) (2022) 3282–3294, http://dx.doi.org/10.1109/TCOMM.2022.3162366.

[15] M. Hosseini Shirvani, Y. Ramzanpoor, Multi-objective QoS-aware optimization
for deployment of IoT applications on cloud and fog computing infrastructure,
Neural Comput. Appl. 35 (26) (2023) 19581–19626.

[16] M. Ibrar, L. Wang, N. Shah, O. Rottenstreich, G.-M. Muntean, A. Akbar,
Reliability-aware flow distribution algorithm in SDN-enabled fog computing for
smart cities, IEEE Trans. Veh. Technol. 72 (1) (2023) 573–588, http://dx.doi.
org/10.1109/TVT.2022.3202195.

http://dx.doi.org/10.1155/2020/8849181
http://dx.doi.org/10.1155/2020/8849181
http://dx.doi.org/10.1155/2020/8849181
http://dx.doi.org/10.1109/TCC.2024.3426282
http://dx.doi.org/10.1109/TCC.2024.3426282
http://dx.doi.org/10.1109/TCC.2024.3426282
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb3
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb3
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb3
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb3
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb3
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb3
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb3
http://dx.doi.org/10.1109/TVT.2023.3277712
http://dx.doi.org/10.1109/TVT.2023.3277712
http://dx.doi.org/10.1109/TVT.2023.3277712
http://dx.doi.org/10.1109/TNET.2019.2958762
http://dx.doi.org/10.1109/TNET.2019.2958762
http://dx.doi.org/10.1109/TNET.2019.2958762
http://dx.doi.org/10.1016/j.jksuci.2023.02.001
http://dx.doi.org/10.1016/j.jksuci.2023.02.001
http://dx.doi.org/10.1016/j.jksuci.2023.02.001
http://dx.doi.org/10.1016/j.comnet.2022.108896
http://dx.doi.org/10.23919/TMA.2019.8784521
http://dx.doi.org/10.1016/j.comnet.2020.107706
http://dx.doi.org/10.1016/j.comnet.2020.107706
http://dx.doi.org/10.1016/j.comnet.2020.107706
http://dx.doi.org/10.22133/ijwr.2022.345927.1119
http://dx.doi.org/10.22133/ijwr.2022.345927.1119
http://dx.doi.org/10.22133/ijwr.2022.345927.1119
http://dx.doi.org/10.1007/s10586-022-03729-6
http://dx.doi.org/10.1007/s10586-022-03729-6
http://dx.doi.org/10.1007/s10586-022-03729-6
http://dx.doi.org/10.1109/TNSE.2023.3297650
http://dx.doi.org/10.1016/j.vehcom.2022.100488
http://dx.doi.org/10.1016/j.vehcom.2022.100488
http://dx.doi.org/10.1016/j.vehcom.2022.100488
http://dx.doi.org/10.1109/TCOMM.2022.3162366
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb15
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb15
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb15
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb15
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb15
http://dx.doi.org/10.1109/TVT.2022.3202195
http://dx.doi.org/10.1109/TVT.2022.3202195
http://dx.doi.org/10.1109/TVT.2022.3202195

Ad Hoc Networks 172 (2025) 103803P. Valizadeh et al.
[17] M. Ibrar, L. Wang, G.-M. Muntean, J. Chen, N. Shah, A. Akbar, IHSF: An
intelligent solution for improved performance of reliable and time-sensitive flows
in hybrid SDN-based FC IoT systems, IEEE Internet Things J. 8 (5) (2021)
3130–3142, http://dx.doi.org/10.1109/JIOT.2020.3024560.

[18] A.-C. Hauschild, R. Martin, S.C. Holst, J. Wienbeck, D. Heider, Guideline for
software life cycle in health informatics, Iscience 25 (12) (2022).

[19] S. Xu, Y. Qian, R.Q. Hu, On reliability of smart Grid Neighborhood Area
networks, IEEE Access 3 (2015) 2352–2365, http://dx.doi.org/10.1109/ACCESS.
2015.2502250.

[20] A. Akbar, M. Ibrar, M.A. Jan, A.K. Bashir, L. Wang, SDN-enabled adaptive
and reliable communication in IoT-fog environment using machine learning and
multiobjective optimization, IEEE Internet Things J. 8 (5) (2021) 3057–3065,
http://dx.doi.org/10.1109/JIOT.2020.3038768.

[21] N. Wang, T.-z. Tian, J.-t. He, C.-z. Zhang, J. Yang, Transmission reliability
evaluation of wireless sensor networks considering channel capacity randomness
and energy consumption failure, Reliab. Eng. Syst. Saf. 242 (2024) 109769.

[22] R. AlZoman, M.J.F. Alenazi, Exploiting SDN to improve QoS of smart city
networks against link failures, in: 2020 Seventh International Conference on
Software Defined Systems, SDS, 2020, pp. 100–106, http://dx.doi.org/10.1109/
SDS49854.2020.9143878.

[23] L. Wang, L. Yao, Z. Xu, G. Wu, M.S. Obaidat, CFR: A cooperative link failure
recovery scheme in software-defined networks, Int. J. Commun. Syst. 31 (10)
(2018) e3560, http://dx.doi.org/10.1002/dac.3560.

[24] Z. Yang, K.L. Yeung, SDN candidate selection in hybrid IP/SDN networks for
single link failure protection, IEEE/ACM Trans. Netw. 28 (1) (2020) 312–321,
http://dx.doi.org/10.1109/TNET.2019.2959588.

[25] P. Thorat, S. Singh, A. Bhat, V. Lakshmi Narasimhan, G. Jain, SDN-enabled IoT:
Ensuring reliability in IoT networks through software defined networks, in: M.A.
Matin (Ed.), Towards Cognitive IoT Networks, Springer International Publishing,
Cham, 2020, pp. 33–53.

[26] H. Seddiqi, S. Babaie, A new protection-based approach for link failure man-
agement of software-defined networks, IEEE Trans. Netw. Sci. Eng. 8 (4) (2021)
3303–3312, http://dx.doi.org/10.1109/TNSE.2021.3110315.

[27] J. Vidyakant, A. Ghazali, B. Appasani, C. Ravariu, P.A. Srinivasulu, Reliability
analysis of smart grid networks incorporating hardware failures and packet loss,
Rev. Roum. Sci. Tech. - Ser. Electrotech. Énergétique 65 (2020) 245–252.

[28] S.M. Raza, S. Ahvar, R. Amin, M. Hussain, Reliability aware multiple path
installation in software-defined networking, Electronics 10 (22) (2021) 2820.

[29] M.L. Foko Sindjoung, M. Velempini, V. Kengne Tchendji, ARPMEC: an adaptive
mobile edge computing-based routing protocol for IoT networks, Clust. Comput.
27 (7) (2024) 9435–9450, http://dx.doi.org/10.1007/s10586-024-04450-2.

[30] J.L. Herrera, J. Galán-Jiménez, L. Foschini, P. Bellavista, J. Berrocal, J.M.
Murillo, QoS-aware fog node placement for intensive IoT applications in SDN-Fog
scenarios, IEEE Internet Things J. 9 (15) (2022) 13725–13739, http://dx.doi.org/
10.1109/JIOT.2022.3143948.

[31] J.L. Herrera, J. Galán-Jiménez, P. Bellavista, L. Foschini, J. Garcia-Alonso,
J.M. Murillo, J. Berrocal, Optimal deployment of fog nodes, microservices
and SDN controllers in time-sensitive IoT scenarios, in: 2021 IEEE Global
Communications Conference, GLOBECOM, 2021, pp. 1–6, http://dx.doi.org/10.
1109/GLOBECOM46510.2021.9685995.

[32] B. Fan, H. Tan, Y. Li, Critical link identification algorithm for power commu-
nication networks in SDN architecture, Int. J. Crit. Infrastruct. Prot. 40 (2023)
100584.

[33] M.A. Mahmood, W.K. Seah, I. Welch, Reliability in wireless sensor networks: A
survey and challenges ahead, Comput. Netw. 79 (2015) 166–187.

[34] X.-Z. Xu, Y.-F. Niu, C. He, A minimal path-based method for computing multistate
network reliability, Complexity 2020 (1) (2020) 8060794.

[35] A. Dâmaso, N. Rosa, P. Maciel, Reliability of wireless sensor networks, Sensors
14 (9) (2014) 15760–15785.

[36] W.-C. Yeh, An improved sum-of-disjoint-products technique for symbolic multi-
state flow network reliability, IEEE Trans. Reliab. 64 (4) (2015) 1185–1193,
http://dx.doi.org/10.1109/TR.2015.2452573.
13
[37] L. Xing, A. Shrestha, QoS reliability of hierarchical clustered wireless sensor net-
works, in: 2006 IEEE International Performance Computing and Communications
Conference, 2006, pp. 6 pp.–646, http://dx.doi.org/10.1109/.2006.1629464.

[38] B. Lantz, B. Heller, N. McKeown, A network in a laptop: Rapid prototyping for
software-defined networks, in: Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks, 2010, p. 19, http://dx.doi.org/10.1145/1868447.
1868466.

[39] A. Botta, A. Dainotti, A. Pescapé, A tool for the generation of realistic network
workload for emerging networking scenarios, Comput. Netw. 56 (15) (2012)
3531–3547, http://dx.doi.org/10.1016/j.comnet.2012.02.019.

[40] X. Yang, H. Xu, J. Liu, C. Qian, X. Fan, H. Huang, H. Wang, Achieving high
reliability and throughput in software defined networks, Comput. Netw. 197
(2021) 108271.

[41] F. Zhang, Y. Chen, H. Lu, Y. Huang, Network-aware reliability modeling and
optimization for microservice placement, 2024, arXiv preprint arXiv:2405.18001.

[42] J. Park, S. Samarakoon, H. Shiri, M.K. Abdel-Aziz, T. Nishio, A. Elgabli, M.
Bennis, Extreme ultra-reliable and low-latency communication, Nat. Electron. 5
(3) (2022) 133–141.

Parisa Valizadeh received her B.Sc. and M.Sc. degrees in
Computer Engineering from the University of Tabriz, Tabriz,
Iran in 2016 and 2019, respectively. Her research interests
include Software-Defined Networking, Internet of Things,
Network Management, and Quality of Services. She is now
a Ph.D. candidate at the Ferdowsi University of Mashhad,
Mashhad, Iran.

Mohammad Hossein Yaghmaee received his B.S. degree
from Sharif University of Technology, Tehran, Iran in 1993,
and M.S. and Ph.D degrees in communication engineering
from Tehran Polytechnic (Amirkabir) University of Technol-
ogy in 1995 and 2000, respectively. He is a full professor at
the Computer Engineering Department, Ferdowsi University
of Mashhad (FUM). His research interests are in Smart Grid
Communication, Internet of Things (IoT), Software Defined
Networking (SDN) and Network Function Virtualization
(NFV). November 1998 to July1999, he was with Network
Technology Group (NTG), C&C Media research labs., NEC
corporation, Tokyo, Japan, as a visiting research scholar.
From September 2007 to August 2008, he was with the Lane
Department of Computer Science and Electrical Engineering,
West Virginia University, Morgantown, USA as the visiting
associate professor. Currently, he is with the Electrical and
Computer Engineering (ECE) department of the University
of Toronto (UoT) as the visiting professor.

Yasser Sedaghat received the M.Sc. and Ph.D. degrees in
Computer Engineering from Sharif University of Technology,
Tehran, Iran, in 2006 and 2011, respectively. He is an
Associate Professor with the Department of Computer Engi-
neering, Ferdowsi University of Mashhad (FUM), Mashhad,
Iran. He has established and has been one of the chairs
of the Dependable Distributed Embedded Systems (DDEmS)
Laboratory, FUM, since 2012. His current research interests
include Dependable Embedded Systems and Networks, Re-
liable Software Design, Embedded Operating Systems, and
FPGAbased Designs.

http://dx.doi.org/10.1109/JIOT.2020.3024560
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb18
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb18
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb18
http://dx.doi.org/10.1109/ACCESS.2015.2502250
http://dx.doi.org/10.1109/ACCESS.2015.2502250
http://dx.doi.org/10.1109/ACCESS.2015.2502250
http://dx.doi.org/10.1109/JIOT.2020.3038768
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb21
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb21
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb21
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb21
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb21
http://dx.doi.org/10.1109/SDS49854.2020.9143878
http://dx.doi.org/10.1109/SDS49854.2020.9143878
http://dx.doi.org/10.1109/SDS49854.2020.9143878
http://dx.doi.org/10.1002/dac.3560
http://dx.doi.org/10.1109/TNET.2019.2959588
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb25
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb25
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb25
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb25
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb25
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb25
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb25
http://dx.doi.org/10.1109/TNSE.2021.3110315
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb27
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb27
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb27
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb27
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb27
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb28
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb28
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb28
http://dx.doi.org/10.1007/s10586-024-04450-2
http://dx.doi.org/10.1109/JIOT.2022.3143948
http://dx.doi.org/10.1109/JIOT.2022.3143948
http://dx.doi.org/10.1109/JIOT.2022.3143948
http://dx.doi.org/10.1109/GLOBECOM46510.2021.9685995
http://dx.doi.org/10.1109/GLOBECOM46510.2021.9685995
http://dx.doi.org/10.1109/GLOBECOM46510.2021.9685995
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb32
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb32
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb32
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb32
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb32
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb33
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb33
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb33
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb34
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb34
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb34
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb35
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb35
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb35
http://dx.doi.org/10.1109/TR.2015.2452573
http://dx.doi.org/10.1109/.2006.1629464
http://dx.doi.org/10.1145/1868447.1868466
http://dx.doi.org/10.1145/1868447.1868466
http://dx.doi.org/10.1145/1868447.1868466
http://dx.doi.org/10.1016/j.comnet.2012.02.019
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb40
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb40
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb40
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb40
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb40
http://arxiv.org/abs/2405.18001
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb42
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb42
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb42
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb42
http://refhub.elsevier.com/S1570-8705(25)00051-4/sb42

	Reliability and bandwidth aware routing in SDN-based fog computing for IoT applications
	Introduction
	Related works
	Network Model and Problem Statement
	Problem Statement of the Proposed Algorithms

	Proposed Algorithms
	Phase 1: Reliability Aware and Bandwidth constrained path Routing
	Phase 2: Parallel/Hybrid Routing with Flow Duplication
	Proposed parallel/hybrid path set reliability calculation
	Time Complexity Comparison of Reliability Calculation Methods

	Phase 3: Sequential routing with flow duplication
	Heuristic Algorithm
	K-Most Reliable Paths with Bandwidth Constraints Algorithm
	Time complexity analysis of the algorithms

	Performance Evaluation
	Setup and evaluation metrics
	Real-network evaluation
	Reliability and Bandwidth Success Rate of the flows
	Average reliability
	Flow duplication Rate

	Results and Discussion
	Algorithms runtime of the evaluated algorithms
	Reliability and bandwidth success rate of the flows
	Reliability of the evaluated algorithms
	The flow duplication rate (FDR) of the evaluated algorithms
	Overall comparison

	Conclusions and future works
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

