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 a b s t r a c t

This paper introduces the Gravitational Least Squares Twin Support Vector Machine for Class 
Imbalance Learning (GLSTSVM-CIL), a novel binary classification method designed to address 
critical limitations in existing approaches for imbalanced large-scale datasets. Traditional meth-
ods like Fuzzy TSVM and KNN-based weighting fail to simultaneously capture both global posi-
tional relationships and local density characteristics of data points. Our proposed gravitational 
weighting function innovatively models data samples as masses influenced by their distance from 
class centroids and neighborhood density, effectively prioritizing representative points while sup-
pressing outliers. The optimization framework uniquely incorporates angular constraints between 
hyperplanes to enhance structural risk control and generalization capability. For scalability, we 
reformulate the solution into a linear system solvable via conjugate gradient methods, avoiding 
computationally expensive matrix inversions. Comprehensive evaluations on 92 datasets (includ-
ing synthetic, noisy, medical, text, and large-scale NDC benchmarks) demonstrate GLSTSVM-
CIL’s superior performance, particularly in minority-class recognition where it achieves average 
F1-Score improvements over baseline methods. The model maintains robust Accuracy under high 
noise (20%) and extreme class imbalance (ratio 20:1) while ables to process datasets up to 50,000 
samples.

1.  Introduction

In binary classification problems-where data are labeled as belonging to either a positive or negative class-Support Vector Machine 
(SVM) has proven to be a powerful and well-established method [1]. SVM has been successfully applied in various domains including 
disease diagnosis, text classification, speech and facial recognition, bankruptcy prediction, intrusion detection, and sentiment analysis 
[2]. Despite its success, SVM faces several limitations: its training involves solving a large quadratic optimization problem, which 
becomes computationally expensive for high-dimensional data; and the assumption of a single optimal separating hyperplane can be 
overly rigid for many real-world datasets.

To address these concerns, Twin Support Vector Machine (TSVM) was introduced by Jayadeva et al. [3], which reformulates 
the SVM optimization into two smaller Quadratic Programming Problems (QPPs), each favoring the respective class. TSVM offers 
better efficiency and improved classification Accuracy in many applications. Building upon this, Least Squares TSVM (LSTSVM) 
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$m$


$x_i$


$y_i$


$x_i$


$A=\{x_i |(x_i,y_i )\in D,y_i=+1\}$


$B=\{x_i |(x_i,y_i )\in D,y_i=-1\}$


$A\cup B = D$


$A\cap B = \emptyset $


$b_1, b_2\in \mathbb {R}$


$w_1, w_2\in \mathbb {R}^n$


\begin {equation}\label {eq-lsatwsvm-1} \underset {w_1,b_1}{min} \frac {c_1}{2}(\|w_1\|^2+b^2_1)+\frac {1}{2}(Aw_1^T+eb_1)^2+\frac {c_3}{2}\|Bw_1^T+eb_1+e\|^2.\end {equation}


$w_1$


$b_1$


\begin {equation}u_1=-c_3\left (c_1I_{n+1}+H^TH+c_3G^TG\right )^{-1}G^Te, \label {Xeqn2-4}\end {equation}


$H=[A\ e]$


$G=[B\ e]$


$I_{n+1}$


$w_1$


$b_1$


\begin {equation}\label {ls-atwsvm-2} \underset {w_2,b_2}{min}\frac {c_5}{2}(\|w_2\|^2+b^2_2)+c_2\|Bw_2^T+eb_2+e\|^2+c_4(w_1w_2^T+b_1b_2).\end {equation}


$w_2$


$b_2$


\begin {equation}u_2=-\frac {c_4}{2c_2}\left (G^TG+\frac {c_5}{2c_2}I_{n+1}\right )^{-1}\left [\begin {matrix}w_1\\b_1\\\end {matrix}\right ]. \label {Xeqn4-6}\end {equation}


\begin {equation}class(x)=\underset {i=1,2}{argmin}\frac {|w_ix^T+b_i|}{\|w_i\|^2}. \label {Xeqn5-7}\end {equation}


\begin {equation}IR=\frac {\text {number of data points in B}}{\text {number of data points in A}}=\frac {N(B)}{N(A)}. \label {ir-defination}\end {equation}


\begin {equation}W=\frac {1}{1+IR}+\left (\frac {IR}{1+IR}\right )\left (\frac {e^{c_0(\frac {d_1(x)-d_2(x)}{d}-\frac {d_2}{R_2})}-e^{-2c_0}}{e^{c_0}-e^{-2c_0}}\right ), \label {Xeqn7-9}\end {equation}


$d_1(x)$


$d_2(x)$


$x$


$d$


$R_2$


$c_0$


\begin {equation}K(x,y)=\phi ^T(x)\phi (y). \label {defination-kernel-function}\end {equation}


\begin {gather}min \frac {c_3}{2}(\| w_1\|^2+b^2_1)+\frac {1}{2}\eta ^T_1\eta _1+\frac {c_1}{2}(S_2\xi _2)^T(S_2\xi _2)\notag \\ S.t.\ \ \phi (A)w_1^T+eb_1=\eta _1,\notag \\ -(\phi (B)w_1^T+eb_1)+\xi _2=e,\end {gather}


\begin {gather}min\frac {c_4}{2}(\| w_2\|^2+b^2_2)+\frac {1}{2}\eta ^T_2\eta _2+\frac {c_2}{2}(S_1\xi _1)^T(S_1\xi _1)\notag \\ S.t.\ \ \phi (B)w_2^T+eb_2=\eta _2,\notag \\ -(\phi (A)w_2^T+eb_2)+\xi _1=e.\end {gather}


$S_1$


$S_2$


$\xi _i$


$m_1$


$m_2$


$r$


\begin {equation}F = G \frac {m_1 \times m_2}{r^2}, \label {newton-force}\end {equation}


$G$


$m_1$


$m_2$


$r$


$p_1$


$p_2$


$p_3$


$F(x)$


$x$


$\epsilon >0$


$N_x$


$x$


$N_{\bar {x}}$


$\bar {x}$


$p$


$\frac {1}{2}$


$F(x)$


$G$


$x$


$\bar {x}$


$r$


$x$


$\bar {x}$


$\bar {x}$


$x = \bar {x}$


$\delta >0$


$IR\times N(A) = N(B)$


$G$


$g>0$


$g=1$


$r$


\begin {gather}F(x)=G\times \frac {N_{\bar {x}}\times \ N_x}{(\delta +r)^p}. \label {eq-gravity-function}\end {gather}


$r$


$r_{\max }$


$0 \leq r \leq r_{\max }$


$r \approx 0$


$N_x \approx N_{\bar { x}}$


$F\left (x\right ) \approx G\times N_x^2$


$r_{\max }$


$g=1$


$N_x=1$


$F\left (x\right ) \approx G\times N_{\bar {x}}$


$\text {IR}$


$g = 1$


\begin {gather}G = \begin {cases} g \times IR, & \text {if } x \in A \\ \\ g, & \text {if } x \in B. \end {cases} \label {gravity-defination}\end {gather}


$G$


$G=g \times IR \approx 1$


$G=g=1$


$N_{\bar {x}}\le F(x)\le N_{\bar {x}}^2$


\begin {gather}\label {eq-dataset-defination} D=\{(x_i,y_i)| x_i \in \mathbb {R}^n, y_i \in \{1,-1\}, i=1,\ldots ,m\},\end {gather}


$D$


$m$


$n$


$A\in \mathbb {R}^{m_1\times n}$


$m_1$


$B\in \mathbb {R}^{m_2\times n}$


$m_2$


\begin {gather}\min \frac {c_1}{2}(||w_1||^2+b_1^2)+\frac {c_2}{2}(S_1\eta _1)^T(S_1\eta _1)+\frac {c_3}{2}(S_2\xi _1)^T(S_2\xi _1)\notag \\ S.t.\ \ Aw_1+b_1e=\eta _1,\notag \\ -(Bw_1+b_1e)+\xi _1=e. \label {problem-1-linear-lsgwoalstsvm-cil}\end {gather}


\begin {gather}\min \frac {c_1}{2}(||w_2||^2+b_2^2)+\frac {c_2}{2}(S_2\eta _2)^T(S_2\eta _2)\notag \\+\frac {c_3}{2}(S_1\xi _2)^T(S_1\xi _2) +\frac {1}{2}\gamma ^2 \notag \\ Bw_2+b_2e=\eta _2,\notag \\ (Aw_2+b_2e)+\xi _2=e,\notag \\ w_1^Tw_2+b_1b_2=\gamma . \label {problem-2-linear-lsgwoalstsvm-cil}\end {gather}


$w_1,w_2\in R^n$


$b_1,b_2\in R$


$w_1$


$b_1$


$c_1,c_2$


$c_3$


$c_1$


$\eta _1 \in R^{m_1}$


$\eta _2 \in R^{m_2}$


$S_1$


$S_2$


$\xi _1 \in \mathbb {R} ^{m_2}$


$\xi _2 \in R^{m_1}$


$S_1 \in R^{m_1 \times m_1}$


$F(x_i) = S_1 (i,i)$


$x_i \in A$


$S_2 \in R^{m_2 \times m_2}$


$c_2$


$c_3$


$\frac {1}{2}\gamma ^2$


$c_1>0$


$c_2,c_3>0$


$e$


\begin {align}L_1&=\frac {c_1}{2}(||w_1||^2+b_1^2)+\frac {c_2}{2}(S_1\eta _1)^T(S_1\eta _1)\notag \\ &\quad +\frac {c_3}{2}(S_2\xi _1)^T(S_2\xi _1)+\alpha _1^T(\eta _1-Aw_1-b_1e)\notag \\ &\quad +\alpha _2^T(\xi _1-Bw_1-b_1e-e),\end {align}


$\alpha _1$


$\alpha _2$


$L_1$


\begin {gather}\frac {\partial L_1}{\partial w_1}=c_1w_1-A^T\alpha _1-B^T\alpha _2=0,\\ \frac {\partial L_1}{\partial b_1}=c_1b_1-e^T\alpha _1-e^T\alpha _2=0,\\ \Longrightarrow \left [\begin {matrix}w_1\\b_1\\\end {matrix}\right ]=\frac {1}{c_1}\left [\begin {matrix}A^T&B^T\\e^T&e^T\\\end {matrix}\right ]\left [\begin {matrix}\alpha _1\\\alpha _2\\\end {matrix}\right ]. \label {solution-w1-b1-linear-lsgwoalstsvm-cil}\end {gather}


\begin {gather}\frac {\partial L_1}{\partial \eta _1}=c_2S_1^2\eta _1+\alpha _1=0\Longrightarrow \eta _1=\frac {-1}{c_2}S_1^{-2}\alpha _1,\\ \frac {\partial L_1}{\partial \xi _1}=c_3S_2^2\xi _1+\alpha _2=0\Longrightarrow \xi _1=\frac {-1}{c_3}S_2^{-2}\alpha _2,\\ \frac {\partial L_1}{\partial \alpha _1}=\eta _1-Aw_1-eb_1=0\notag \\ \Longrightarrow \frac {1}{c_2}S_1^{-2}\alpha _1+\begin {bmatrix}A & e \end {bmatrix} \begin {bmatrix}w_1\\b_1\end {bmatrix}=0.\\ \frac {\partial L_1}{\partial \alpha _2}=\xi _1-Bw_1-eb_1-e=0\notag \\ \Longrightarrow \frac {1}{c_3}S_2^{-2}\alpha _2+\begin {bmatrix}B & e \end {bmatrix}\begin {bmatrix}w_1\\b_1\end {bmatrix}=-e.\end {gather}


$c_1$


\begin {equation}\left (\left [\begin {matrix}AA^T+\frac {c_1}{c_2}S_1^{-2}&AB^T\\BA^T&BB^T+\frac {c_1}{c_3}S_2^{-2}\\\end {matrix}\right ]+E\right )\left [\begin {matrix}\alpha _1\\\alpha _2\\\end {matrix}\right ]=-c_1\left [\begin {matrix}\mathbf {0}\\\mathbf {1}\\\end {matrix}\right ], \label {solution-alpha12-linear-lsgwoalstsvm-cil}\end {equation}


$\mathbf {0}$


$\alpha _1$


$\mathbf {1}$


$\alpha _2$


\begin {align}L_2&=\frac {c_1}{2}(\|w_2\|^2+b_2^2)+\frac {c_2}{2}(S_2\eta _2)^T(S_2\eta _2)+\frac {c_3}{2}(S_1\xi _2)^T(S_1\xi _2)\notag \\ &\quad +\frac {1}{2}\gamma ^2+\beta _1^T\left (\eta _2-Bw_2-eb_2\right )+\beta _2^T\left (e-Aw_2-eb_2-\xi _2\right )\notag \\ &\quad +\beta _3(\gamma -w_1^Tw_2-b_1b_2),\end {align}


$\beta _1,\beta _2$


$\beta _3$


\begin {gather}\frac {\partial L_2}{\partial w_2}=c_1w_2-B^T\beta _1-A^T\beta _2-\beta _3w_1=0,\\ \frac {\partial L_2}{\partial b_2}=c_1b_2-e^T\beta _1-e^T\beta _2-\beta _3b_1=0\end {gather}


\begin {gather}\frac {\partial L_2}{\partial \eta _2}=c_2S_2^2\eta _2+\beta _1=0\Longrightarrow \eta _2=\frac {-1}{c_2}S_2^{-2}\beta _1,\\ \frac {\partial L_2}{\partial \xi _2}=c_3S_1^2\xi _2-\beta _2=0\ \Longrightarrow \ \xi _2=\frac {1}{c_3}S_1^{-2}\beta _2,\\ \frac {\partial L_2}{\partial \gamma }=\gamma +\beta _3=0\ \Longrightarrow \gamma =-\beta _3,\\ \frac {\partial L_2}{\partial \beta _1}=\eta _2-Bw_2-b_2e=0\notag \\ \Longrightarrow \frac {-1}{c_2}S_2^{-2}\beta _1+\begin {bmatrix}B & e\end {bmatrix}\begin {bmatrix}w_2 \\ b_2\end {bmatrix}=0.\\ \frac {\partial L_2}{\partial \beta _2}=e-\xi _2-Aw_2-b_2e=0\notag \\ \Longrightarrow \frac {-1}{c_3}S_1^{-2}\beta _2+\begin {bmatrix}A & e\end {bmatrix}\begin {bmatrix}w_2 \\ b_2\end {bmatrix}=-e.\\ \frac {\partial L_2}{\partial \beta _3}=\gamma -w_1^Tw_2-b_1b_2=0\notag \\ \Longrightarrow \gamma -\begin {bmatrix}w_1 & b_1\end {bmatrix}\begin {bmatrix}w_2 \\ b_2\end {bmatrix}=0.\end {gather}


\begin {gather}\Longrightarrow \left [\begin {matrix}w_2\\b_2\\\end {matrix}\right ]=\frac {1}{c_1}\left [\begin {matrix}B^T&A^T&w_1\\e^T&e^T&b_1\\\end {matrix}\right ]\left [\begin {matrix}\beta _1\\\beta _2\\\beta _3\\\end {matrix}\right ]. \label {solution-w2-b2-linear-lsgwoalstsvm-cil}\end {gather}


\begin {gather}\frac {1}{c_2}S_2^{-2}\beta _1+\frac {1}{c_1}\begin {bmatrix}BB^T+ E_1 & BA^T+E_2 & Bw_1 + b_1e\end {bmatrix}\beta =0,\\ \frac {1}{c_3}S_1^{-2}\beta _2+\frac {1}{c_1}\begin {bmatrix}AB^T+ E_2^T & AA^T+E_3 & Aw_1 + b_1e\end {bmatrix}\beta =e,\\ \beta _3+\frac {1}{c_1}\begin {bmatrix}Bw_1+ b_1e^T & Aw_1+b_1e^T & w_1^Tw_1 +b_1^2\end {bmatrix}\beta =0,\end {gather}


$\beta =[\beta _1\ \ \beta _2\ \ \beta _3]^T$


$-c_1$


$\mathbf {0}$


$e$


$E_i$


\begin {gather}Q\beta =c_1\left [\begin {matrix}\mathbf {0} & e & 0\end {matrix}\right ]^T. \label {solution-beta123-linear-lsgwoalstsvm-cil}\end {gather}


$w_1,w_2,b_1,b_2$


$x$


\begin {equation}f_i\left (x\right )=w_i^Tx+b_i. \label {Xeqn11-41}\end {equation}


\begin {equation}class\left (x\right )=\left \{\begin {matrix}Positive& \left |f_1\left (x\right )\right |<|f_2\left (x\right )|\\\\Negative&Otherwise.\\\end {matrix}\right . \label {Xeqn12-42}\end {equation}


$\vec {N_1}$


$\vec {N_2}$


$\theta $


$\vec {w_1}$


$\vec {w_2}$


$\eta _1$


$\eta _2$


\begin {gather}min\ \frac {c_1}{2}(\|w_1\|^2+b^2_1)+\frac {c_2}{2}(S_1\eta _1)^T(S_1\eta _1)+\frac {c_3}{2}(S_2\xi _1)^T(S_1\xi _1)\notag \\ S.t.\ \ \phi (A)w_1+b_1e=\eta _1,\notag \\ \ \ \ \ \ -(\phi (B)w_1+b_1e)+\xi _1 = e, \label {problem-1-nonlinear-lsgwoalstsvm-cil}\end {gather}


\begin {gather}\min \frac {c_1}{2}(\|w_2\|^2+b_2^2)+\frac {c_2}{2}(S_2\eta _2)^T(S_2\eta _2)+\frac {c_3}{2}(S_1\xi _2)^T(S_1\xi _2)+\frac {1}{2}\gamma ^2\notag \\ S.t\ \ \phi (B)w_2+eb_2=\eta _2,\notag \\ \ \ \ \ \ \phi (A)w_2+eb_2+\xi _1=e,\notag \\ \ \ \ \ \ \ w_1^Tw_2+b_1b_2=\gamma , \label {problem-2-nonlinear-lsgwoalstsvm-cil}\end {gather}


$\phi \left (.\right )$


$(\|w_i\|^2 + b_i^2)$


$\|\eta _i\|^2$


$(S_j\xi _j)^T(S_j\xi _j)$


$S_1$


$S_2$


$S_1$


$S_2$


$\eta _i$


$\xi _i$


$\frac {1}{2}\gamma ^2$


$w_1^T w_2 + b_1 b_2 = \gamma $


\begin {align}L_1&=\frac {c_1}{2}(||w_1||^2+b_1^2)+\frac {c_2}{2}(S_1\eta _1)^T(S_1\eta _1)+\frac {c_3}{2}(S_2\xi _1)^T(S_2\xi _1)\notag \\ &\quad +\alpha _1^T(\eta _1-\phi (A)w_1-b_1e)+\alpha _2^T(\xi _1-\phi (B)w_1-b_1e-e).\end {align}


$\frac {\partial L_1}{\partial w_1}=0$


$\frac {\partial L_1}{\partial b_1}=0$


\begin {equation}\left [\begin {matrix}w_1\\b_1\\\end {matrix}\right ]=\frac {1}{c_1}\left [\begin {matrix}\phi ^T(A)&\phi ^T(B)\\e^T&e^T\\\end {matrix}\right ]\left [\begin {matrix}\alpha _1\\\alpha _2\\\end {matrix}\right ]. \label {solution-w1-b1-nonlinear-lsgwoalstsvm-cil}\end {equation}


$\eta _1,\xi _1,\alpha _1$


$\alpha _2$


\begin {equation}\hspace *{-0.5cm} \left (\left [\begin {matrix}K(A,A^T)+\frac {c_1}{c_2}S_1^{-2} & K(A,B^T)\\K(B,A^T) & K(B,B^T)+\frac {c_1}{c_3}S_2^{-2}\\\end {matrix}\right ] + E\right )\left [\begin {matrix}\alpha _1\\\alpha _2\\\end {matrix}\right ]=-c_1\left [\begin {matrix}\mathbf {0}\\\mathbf {1}\\\end {matrix}\right ]. \label {solution-alpha12-nonlinear-lsgwoalstsvm-cil}\end {equation}


\begin {align}\hspace *{-0.5cm} L_2&=\frac {c_1}{2}(\|w_2\|^2+b_2^2)+\frac {c_2}{2}(S_2\eta _2)^T(S_2\eta _2)+\frac {c_3}{2}(S_1\xi _2)^T(S_1\xi _2)\nonumber \\ \hspace *{-0.5cm} &\quad +\frac {1}{2}\gamma ^2+\beta _1^T\left (\eta _2-\phi (B)w_2^T-eb_2\right )+\beta _2^T\left (e-\phi (A)w_2^T-eb_2-\xi _2\right )\nonumber \\ &\quad +\beta _3(\gamma -w_1w_2^T-b_1b_2).\end {align}


$\frac {\partial L_2}{\partial w_2}=0$


$\frac {\partial L_2}{\partial b_2}=0$


\begin {align}\left [\begin {matrix}w_2\\b_2\\\end {matrix}\right ]=\frac {1}{c_1}\left [\begin {matrix}\phi ^T(B) & \phi ^T(A) & w_1\\e^T&e^T&b_1\\\end {matrix}\right ]\left [\begin {matrix}\beta _1\\\beta _2\\\beta _3\\\end {matrix}\right ]. \label {solution-w2-b2-nonlinear-lsgwoalstsvm-cil}\end {align}


$\eta _2,\xi _2,\gamma ,\beta _1, \beta _2$


$\beta _3$


\begin {gather}Q\beta =c_1\left [\begin {matrix}\mathbf {0} & e & 0 \end {matrix}\right ]^T. \label {solution-beta123-nonlinear-lsgwoalstsvm-cil}\end {gather}


$\beta _1,\beta _2$


$\beta _3$


$\phi (.)$


$[w_1\ \ b_1]^T$


$\left [\begin {matrix}\phi \left (B\right )&e\\\end {matrix}\right ]$


\begin {equation}\left [\begin {matrix}\phi (B) & e\end {matrix}\right ]\left [\begin {matrix}w_1\\b_1\end {matrix}\right ]=\frac {1}{c_1}\left [\begin {matrix}K(B,A^T)+E & K(B,B^T)+E\end {matrix}\right ]\alpha . \label {trick-1}\end {equation}


\begin {align}&\left [\begin {matrix}\phi (A) & e\end {matrix}\right ]\left [\begin {matrix}w_1\\b_1\end {matrix}\right ]=\frac {1}{c_1}\left [\begin {matrix}K(A,A^T)+E & K(A,B^T)+E\end {matrix}\right ]\alpha . \label {trick-2}\\ \hspace *{-0.2cm} &\left [\begin {matrix}w_1^T & b_1\end {matrix}\right ]\left [\begin {matrix}w_1\\b_1\end {matrix}\right ]=\frac {1}{c_1^2}\alpha ^T\begin {pmatrix} \begin {bmatrix}K(A,A^T) & K(A,B^T) \\ K(B,A^T) & K(B,B^T)\end {bmatrix}+E\end {pmatrix}\alpha . \label {trick-3}\end {align}


$\alpha =[\alpha _1^T \ \ \alpha _2^T]^T$


\begin {gather}f_1(x)=w_1^T\phi (x) + b_1 \Longrightarrow \notag \\ f_1(x) = \frac {1}{c_1}\begin {bmatrix}K(x,A^T)+e\ ,& K(x,B^T)+e\end {bmatrix}\alpha . \label {nonlinear-f1}\end {gather}


\begin {gather}f_2(x)=w_2^T\phi (x) + b_2 \Longrightarrow \notag \\ f_2(x) = \frac {1}{c_1}\begin {bmatrix}K(x,B^T)+e, & K(x,A^T)+e, & w_1^T\phi (x)+b_1\end {bmatrix}\beta .\end {gather}


$f_2$


$f_1$


\begin {gather}\small f_2(x) = \frac {1}{c_1}\begin {bmatrix}K(x,B^T)+e & K(x,A^T)+e & f_1(x)\end {bmatrix}\beta . \label {nonlinear-f2}\end {gather}


$x$


\begin {equation}class\left (x\right )=\left \{\begin {matrix}Positive& \left |f_1\left (x\right )\right |<|f_2\left (x\right )|,\\\\Negative&Otherwise.\\\end {matrix}\right . \label {Xeqn18-60}\end {equation}


$Q$


$Q$


$m_1$


$O(m_1)$


$\frac {m_1 \times (m_1-1)}{2}$


$O(m_1^2)$


$O(m_1)$


$O(m_1^2)$


$O(m_1^2) + O(m_2^2)$


$Qx = c$


$Ax=b$


$O(m_0 \sqrt {\kappa })$


$m_0$


$A$


$Q$


$\kappa $


$\kappa = \frac {\left | \text {largest eigenvalue} \right |}{\left | \text {smallest eigenvalue} \right |}$


$A$


$Q$


$Q$


$m \times m$


$(m+1) \times (m+1)$


$\kappa _1$


$m_0$


$O(m^2)$


$Q$


$O(m_0 \sqrt {\kappa _1})$
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was proposed by Kumar and Gopal [4], converting the QPPs into two linear equations, making the method faster and simpler by 
eliminating the need for external optimization tools.

Further improvements have been made to the TSVM framework. LS-ATWSVM incorporates angular optimization between hyper-
planes and has demonstrated superior performance in both Accuracy and training time [5]. However, these models often treat all 
data points equally, ignoring the fact that not all samples contribute equally to classification boundaries.

In the mentioned methods, all the data play the same rule in determining the hyperplanes. But in the real world, this is not always 
true. To take advantage of this fact, weighting methods were presented in the field of support vector machines. In Fuzzy Twin Support 
Vector Machine (FTSVM), a membership function is used to weight the data, which produces membership values in the (0,1). This 
function is defined based on the distance from the center of the class. Using this approach, different weights are given to the points, 
which results in less influence from outliers and noise [6]. However, FTSVM does not incorporate local data density. To integrate 
neighborhood information, [7] proposed KNN-LSTSVM, which leverages k-nearest neighbor density to assign weights and capture 
local structure.

Despite these advancements, many methods still struggle when applied to imbalanced data-a common scenario where one class 
significantly outnumbers the other. This imbalance can cause the learned decision boundary to skew towards the majority class, 
leading to poor classification of the minority class, which is often the class of higher interest (e.g., in medical diagnosis such as COVID-
19 detection). Recent studies have proposed advanced hybrid methods to mitigate these issues. One such approach combines SVM with 
an improved Simulated Annealing (SA) algorithm [8]. This technique first applies data preprocessing to balance class distributions 
through synthetic sample generation, followed by data reduction to eliminate redundancy. The improved SA algorithm optimizes the 
penalty parameter in SVM, enhancing classification performance. Experimental validation showed that this approach outperforms 
conventional SVM implementations and effectively combats majority-class error. Another innovative strategy is the Adaptive SV-
Borderline SMOTE-SVM Algorithm, which enhances minority-class representation by strategically generating synthetic samples [9]. 
Instead of applying synthetic sample generation broadly, this method selects support vectors (SVs) as borderline sampleskey points 
influencing the decision boundary. Using adaptive sample generation in kernel space, it ensures that the new instances align optimally 
with the classifier’s structure. This integration of Borderline-SMOTE with SVM improves minority-class learning, reduces bias toward 
majority classes, and strengthens overall model generalization.

To further advance imbalanced data classification, we propose a new model, Gravitational Least Squares Twin Support Vector Machine 
for Class Imbalance Learning (GLSTSVM-CIL), inspired by physical gravitational theory and recent TSVM variants such as LSFLSTSVM-
CIL [10] and LS-ATWSVM [5]. This method combines the influence of both distance and density through a gravity-inspired weight 
function and includes several improvements:

1. Each data point is treated as a “mass” influenced by its surrounding neighborhood and its distance from the class center, capturing 
both local density and global position.

2. The gravitational weight function reflects the force of attraction toward the class center, analogously balancing distance and local 
accumulation.

3. An additional angular optimization term improves structural risk control, enhancing generalization.
4. The weighting mechanism is applied to both majority and minority classes, improving balanced detection performance.
5. The model avoids matrix inversion by using numerically efficient solvers, improving scalability.

The rest of this paper is organized as follows: Section 2 surveys related works. Section 3 introduces Proposed Method in detail. 
Section 4 analyzes the Solution method, Computational complexity and Convergence of the solution method, Section 5 presents ex-
perimental evaluations, including statistical analysis. And Section 6 presents real-world applications in text and medical classification.

2.  Related works

Learning from imbalanced datasets is a major challenge in many real-world applications such as fraud detection, medical diagnosis, 
and text classification. Traditional classifiers often bias towards the majority class, leading to poor performance on the minority class. 
Many efforts have been made to tackle this issue, such as cost-sensitive learning [11], data-level resampling techniques, ensemble-
based methods [12], and margin-based classifiers including SVM variants. Twin Support Vector Machines (TSVM) introduced by 
Khemchandani and Jayadeva [3] became a notable alternative to classical SVM by learning two non-parallel hyperplanes, one for 
each class. Various extensions have been proposed to improve TSVM performance under imbalanced settings. To improve robustness 
against noisy data, fuzzy extensions such as FLSTSVM [13] and its kernelized versions have been developed.

More recently, Richhariya and Singh [14] proposed the RFLSTSVM-CIL, which incorporates class-specific fuzzy membership and 
imbalance-aware regularization. Ganaie and Hu [15] reviewed modern ensemble and hybrid methods for imbalanced learning, em-
phasizing the need for structure-aware and scalable classifiers.

Suppose the dataset D with 𝑚 samples is defined as follow: 

𝐷 = {(𝑥𝑖, 𝑦𝑖)|𝑥𝑖 ∈ ℝ𝑛, 𝑦𝑖 ∈ {1,−1}, 𝑖 = 1,… , 𝑚}, (1)

which every 𝑥𝑖 refers a sample and 𝑦𝑖 is label of 𝑥𝑖. Also, the subset 𝐴 = {𝑥𝑖|(𝑥𝑖, 𝑦𝑖) ∈ 𝐷, 𝑦𝑖 = +1} as positive class samples and 
𝐵 = {𝑥𝑖|(𝑥𝑖, 𝑦𝑖) ∈ 𝐷, 𝑦𝑖 = −1} to be considered as a subset of the negative class samples (In this paper, without losing the generality 
of the problem, the smaller class is considered as the positive samples) such that 𝐴 ∪ 𝐵 = 𝐷 and 𝐴 ∩ 𝐵 = ∅. The goal is to find two 
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hyperplanes as follows: 
⎧

⎪

⎨

⎪

⎩

𝑤𝑇
1 𝑥 + 𝑏1 = 0,

𝑤𝑇
2 𝑥 + 𝑏2 = 0

(2)

where 𝑏1, 𝑏2 ∈ ℝ and 𝑤1, 𝑤2 ∈ ℝ𝑛 are the parameters of hyperplanes.

2.1.  Angle based least squares TSVM(LS-ATWSVM)

Angle-based TSVMs, focus on maximizing the angular separation between hyperplanes to increase discriminative power. LS-
ATWSVMis based on weightless TSVM concept, whose main goal is to maximize the angle between two hyperplanes [5]. The first 
LS-ATWSVM problem with the modifications made on the LSTSVM model was written as follows:

𝑚𝑖𝑛
𝑤1 ,𝑏1

𝑐1
2
(‖𝑤1‖

2 + 𝑏21) +
1
2
(𝐴𝑤𝑇

1 + 𝑒𝑏1)2 +
𝑐3
2
‖𝐵𝑤𝑇

1 + 𝑒𝑏1 + 𝑒‖2. (3)

After setting the gradient of Eq. (3) with respect to 𝑤1 and 𝑏1 equal to zero, it is solved as follows:
𝑢1 = −𝑐3

(

𝑐1𝐼𝑛+1 +𝐻𝑇𝐻 + 𝑐3𝐺
𝑇𝐺

)−1𝐺𝑇 𝑒, (4)

where 𝐻 = [𝐴 𝑒] and 𝐺 = [𝐵 𝑒] are the augmented matrices of A and B. The 𝐼𝑛+1 matrix is added to avoid encountering singulare 
matrices. After solving 𝑤1 and 𝑏1, these values are used as norm vector of hyperplane to maximize the angle in the second problem. 
The second problem is as follows:

𝑚𝑖𝑛
𝑤2 ,𝑏2

𝑐5
2
(‖𝑤2‖

2 + 𝑏22) + 𝑐2‖𝐵𝑤
𝑇
2 + 𝑒𝑏2 + 𝑒‖2 + 𝑐4(𝑤1𝑤

𝑇
2 + 𝑏1𝑏2). (5)

Setting the gradient of Eq. (5) with respect to 𝑤2 and 𝑏2 equal to zero, is solved as follows:

𝑢2 = −
𝑐4
2𝑐2

(

𝐺𝑇𝐺 +
𝑐5
2𝑐2

𝐼𝑛+1

)−1[𝑤1
𝑏1

]

. (6)

The class of the new sample x is specified according to the following pattern:

𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑖=1,2

|𝑤𝑖𝑥𝑇 + 𝑏𝑖|
‖𝑤𝑖‖

2
. (7)

2.2.  Large scale fuzzy LSTSVM for class imbalance learning

Nonlinear version of LSFLSTSVM-CIL is described here, First, based on [14,16,17], the class imbalance ratio is defined as
follows:

𝐼𝑅 =
number of data points in B
number of data points in A =

𝑁(𝐵)
𝑁(𝐴)

. (8)

Then the following membership function is used:

𝑊 = 1
1 + 𝐼𝑅

+
( 𝐼𝑅
1 + 𝐼𝑅

)
⎛

⎜

⎜

⎝

𝑒
𝑐0(

𝑑1(𝑥)−𝑑2(𝑥)
𝑑 − 𝑑2

𝑅2
)
− 𝑒−2𝑐0

𝑒𝑐0 − 𝑒−2𝑐0

⎞

⎟

⎟

⎠

, (9)

where 𝑑1(𝑥) and 𝑑2(𝑥) are the Euclidean distance of the 𝑥 from the center of the positive class and the negative class, respectively. 
𝑑 is the Euclidean distance between the center of two classes. 𝑅2 is the maximum distance of negative samples from its center and 
𝑐0 is a parameter for exponential scaling. To deal with non-linear data, kernel functions are used, Kernel functions are functions that 
transfer data to a higher space using dot Product, which usually makes it possible to separate points linearly [18]. These functions 
are generally defined as follows:

𝐾(𝑥, 𝑦) = 𝜙𝑇 (𝑥)𝜙(𝑦). (10)

Optimization problem of the LS-FLSTSVM-CIL is constructed by adding a term to the objective function of RFLSTSVM-CIL [14] as 
follows:

𝑚𝑖𝑛
𝑐3
2
(‖𝑤1‖

2 + 𝑏21) +
1
2
𝜂𝑇1 𝜂1 +

𝑐1
2
(𝑆2𝜉2)𝑇 (𝑆2𝜉2)

𝑆.𝑡. 𝜙(𝐴)𝑤𝑇
1 + 𝑒𝑏1 = 𝜂1,

−(𝜙(𝐵)𝑤𝑇
1 + 𝑒𝑏1) + 𝜉2 = 𝑒, (11)

and

𝑚𝑖𝑛
𝑐4
2
(‖𝑤2‖

2 + 𝑏22) +
1
2
𝜂𝑇2 𝜂2 +

𝑐2
2
(𝑆1𝜉1)𝑇 (𝑆1𝜉1)
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𝑆.𝑡. 𝜙(𝐵)𝑤𝑇
2 + 𝑒𝑏2 = 𝜂2,

−(𝜙(𝐴)𝑤𝑇
2 + 𝑒𝑏2) + 𝜉1 = 𝑒. (12)

The first term in the objective functions implements the principle of structural risk. The second term is the sum of the squares 
of the distance between the points of each class of the corresponding hyperplane and brings the hyperplane closer to the points of 
the same class. The third term also penalizes samples based on their distance from the center of the class through fuzzy membership 
weights 𝑆1 and 𝑆2. The constraint corresponding to the second term of the objective function is to minimize the distance of the points 
of each class from its hyperplane, and the second constraint ensures that the points of the other class are at a distance of one unit from 
the hyperplane. The confusion of this interval is given by the 𝜉𝑖, which is penalized in the objective function using fuzzy membership 
weights.

3.  Proposed method: GLSTSVM-CIL

In this section, Proposed Method titled “Gravitational Least Squares Twin Support Vector Machine for Class Imbalance Learning”, 
which is abbreviated as “GLSTSVM-CIL”, is described.

3.1.  Weight function

As discussed earlier, both the distance of data points from the class center and the local density around them play critical roles in 
estimating the importance or representativeness of the samples. A data point that is either centrally located or surrounded by many 
neighboring points is intuitively more significant than isolated or distant ones. The combination of these two factors-density and 
distance-motivated us to design a novel weighting function that is inspired by the structure of Newtonian1 gravitational force. This 
gravitational perspective is a metaphorical and heuristic tool, similar to how gravitational principles have been adapted in various 
data-driven contexts such as swarm intelligence and clustering [19,20].

The gravitational force between two masses 𝑚1 and 𝑚2 separated by a distance 𝑟 in physics is given by [21]:

𝐹 = 𝐺
𝑚1 × 𝑚2

𝑟2
, (13)

where 𝐺 is the universal gravitational constant. Inspired by this formulation, we define a data-driven weight function for each sample 
based on a combination of its distance from the class center and its local density, which we interpret as a proxy for “mass”.

In this analogy, within each class 𝑚1 represents the “mass” of the class center, 𝑚2 is the “mass” of a sample point, computed based 
on its local density (detailed in Section 3.1.1) and 𝑟 is the distance between the sample and the class center in the feature space.
This metaphor helps justify why denser and more central points should receive larger weights, while outliers-those that are far from 
the center and lie in sparse regionsshould contribute less. Fig. 1 illustrates this idea:

- Point 𝑝1 is far from the class center but lies in a dense region, hence receives a moderate weight.
- Point 𝑝2 is near the class center but lies in a sparse region, also justifying a reasonable weight.
- Point 𝑝3 is both sparse and distant from the center, likely to be an outlier and thus should be assigned a low weight.

3.1.1.  Constructing the weight function
In the following, 𝐹 (𝑥) calculates the weight of an instance 𝑥 in a class. For this purpose, first, at a fixed radius 𝜖 > 0, the number 

of points, 𝑁𝑥 in the neighborhood of a 𝑥 is determined by its “mass”. Thus, 𝑁𝑥̄ is the mass of 𝑥̄, the center of the class. Empirically 𝑝
is set to 12  [22]. In 𝐹 (𝑥), we call the parameter 𝐺 the value of gravity between 𝑥 and 𝑥̄. 

𝐹 (𝑥) = 𝐺 ×
𝑁𝑥̄ × 𝑁𝑥
(𝛿 + 𝑟)𝑝

. (14)

As mentioned in relation Eq. (13), 𝑟 is the Euclidean distance between 𝑥 and 𝑥̄ and that value is zero for 𝑥̄, If 𝑥 = 𝑥̄, the 𝛿 > 0 is 
used to prevent the denominator from becoming zero. To overcome class imbalance, we first assume that the smaller class is as 
important as the larger class. From relation Eq. (8) it follows that 𝐼𝑅 ×𝑁(𝐴) = 𝑁(𝐵). Using this fact in the weight calculation, It can 
partially overcome the class imbalance similar to the virtual data generation in A. For further scaling, Here unlike Newton’s universal 
gravitation, the value of 𝐺 is not constant, its value is different in each class and, on the other hand, it depends on a hyperparameter 
𝑔 > 0. We define it as follows: 

𝐺 =

⎧

⎪

⎨

⎪

⎩

𝑔 × 𝐼𝑅, if 𝑥 ∈ 𝐴

𝑔, if 𝑥 ∈ 𝐵.

(15)

By default, 𝑔 = 1 is considered.

1 Isaac Newton (1643-1727): Discoverer of the universal gravitation.
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Fig. 1. Intuitive model inspired by gravitational force for weighting data points.

3.1.2.  Properties of the weight function
1) A small value of 𝑟 means that the point is very close to the center and should have a higher weight, and theoretically, Eq. (14) 

would meet this expectation and produce a larger weight. Similarly, points further from the center correspond to a large value of 
𝑟 and produce larger weights. If we call the distance of the farthest point from the center 𝑟max then 0 ≤ 𝑟 ≤ 𝑟max.

2) If a point has a lot of accumulation around it and is close to the center of the class, it has a very high weight.
3) If a point has very little accumulation around it and is far from the center of the class, it has a very low weight.
4) If a point has a lot of accumulation and is far from the center, it has more gravity compared to the quiet points in this distance
5) Points with low density but close to the center have average weight, which is also logically acceptable because the points close to 

the center, even though they are lonely points, are probably members of the class.
6) Noisy data are data that have few neighboring points and are far from the center.
7) The highest and lowest value of weight may occur for points of both classes, but in ideal conditions, the highest value occurs for 

samples very close to the center, This happens when 𝑟 ≈ 0 and 𝑁𝑥 ≈ 𝑁𝑥̄, therefore 𝐹 (𝑥) ≈ 𝐺 ×𝑁2
𝑥 . The lowest value also occurs 

for the farthest points from the center with a distance of 𝑟max, which are isolated points in a specified radius. By setting 𝑔 = 1 if 
𝑁𝑥 = 1, in ideal conditions it is equal to 𝐹 (𝑥) ≈ 𝐺 ×𝑁𝑥̄. So we have:

𝐺 × 𝑁𝑥̄ ≤ 𝐹 (𝑥) ≤ 𝐺 × 𝑁2
𝑥̄ .

If the dataset is balanced according to Eq. (8), IR is approximately equal to 1 and since 𝑔 = 1 is assumed from Eq. (15) the value 
of 𝐺 for the small class is 𝐺 = 𝑔 × 𝐼𝑅 ≈ 1 and for the large class is 𝐺 = 𝑔 = 1. So we can write 𝑁𝑥̄ ≤ 𝐹 (𝑥) ≤ 𝑁2

𝑥̄ . It is emphasized 
that this relationship can be valid for ideal conditions. 

3.1.3.  Algorithm for calculating the weight of samples
Suppose C is the data of positive or negative class (subset of A or B in the defination Eq. (1)) and G is given by Eq. (15), we 

calculate the gravity weights of the points using the Algorithm 1. 

3.2.  Linear GLSTSVM-CIL

Assume that 𝐷 is the dataset Eq. (1) defined in Section 2 containing 𝑚 samples with 𝑛 features, 𝐴 ∈ ℝ𝑚1×𝑛 positive class matrix 
consisting of 𝑚1 training samples and 𝐵 ∈ ℝ𝑚2×𝑛 is the negative class matrix consisting of 𝑚2 training samples, the first optimization 
problem is defined as follows:

min
𝑐1
2
(||𝑤1||

2 + 𝑏21) +
𝑐2
2
(𝑆1𝜂1)𝑇 (𝑆1𝜂1) +

𝑐3
2
(𝑆2𝜉1)𝑇 (𝑆2𝜉1)

𝑆.𝑡. 𝐴𝑤1 + 𝑏1𝑒 = 𝜂1,
−(𝐵𝑤1 + 𝑏1𝑒) + 𝜉1 = 𝑒. (16)

and second problem as follows:

min
𝑐1
2
(||𝑤2||

2 + 𝑏22) +
𝑐2
2
(𝑆2𝜂2)𝑇 (𝑆2𝜂2)

+
𝑐3
2
(𝑆1𝜉2)𝑇 (𝑆1𝜉2) +

1
2
𝛾2
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Algorithm 1 : Compute weights of the samples in matrix 𝐶𝑛×𝑛.
INPUTE: Matrix 𝐶𝑛×𝑛, parameter 𝐺
OUTPUT: Diagonal matrix 𝑆
1: Initalize 𝑁𝑐 = 1
2: Initalize 𝑆 as identity matrix 𝑛 × 𝑛
3: Compute center of C as 𝑥̄
4: Compute 𝐷 as vector of distance from 𝑥̄
5: For 𝑖 ≤ 𝑛
6: 𝑥𝑖 ∶= 𝐶[𝑖]
7:  if 𝐷𝑖 < 𝜖 then 𝑁𝑐 ∶= 𝑁𝑐 + 1
8:  For j:= i to n
9: 𝑥𝑗 ∶= 𝐶[𝑗]
10:  If ‖𝑥𝑖 − 𝑥𝑗‖ < 𝜖 then
11: 𝑆(𝑖, 𝑖) ∶= 𝑆(𝑖, 𝑖) + 1
12: 𝑆(𝑗, 𝑗) ∶= 𝑆(𝑗, 𝑗) + 1
13: 𝑑 ∶= (𝛿 +𝐷(𝑖))

1
2

14: 𝑆(𝑖, 𝑖) ∶= 𝑆(𝑖,𝑖)
𝑑

15: 𝑆 ∶= 𝐺 ×𝑁𝑐 × 𝑆
16: Return 𝑆 as weight matrix of the samples in C.

𝐵𝑤2 + 𝑏2𝑒 = 𝜂2,

(𝐴𝑤2 + 𝑏2𝑒) + 𝜉2 = 𝑒,

𝑤𝑇
1 𝑤2 + 𝑏1𝑏2 = 𝛾. (17)

where 𝑤1, 𝑤2 ∈ 𝑅𝑛 and 𝑏1, 𝑏2 ∈ 𝑅 are bias values, also 𝑤1 and 𝑏1 are solved in Eq. (16). In Section 3.1, it was said that each point of 
the small class must have an equivalent value to the points of the larger class, To implement this concept we consider the parameters 
that play the same role in both problems to be equal. In other words, we penalize both hyperplanes equally (this does not include 
the weight function because the weight function assigns a special weight to each point separately). Therefore, in this problem, only 
three parameters 𝑐1, 𝑐2 and 𝑐3 are used. The first term maximizes the hypothesized margins of SVM. In both objective functions, the 
parameter 𝑐1 weights both problems equally. According to the first constraint, the second term minimizes the sum of squared distances 
of the points from each hyperplane. 𝜂1 ∈ 𝑅𝑚1  and 𝜂2 ∈ 𝑅𝑚2  are the error vectors of the points, which are penalized by the matrices 
𝑆1 and 𝑆2. The second constraint in each case, in cooperation with the third term, keeps the points of each class at a distance of one 
unit from the hyperplane of the other class. Any difference in this distance, with the vectors 𝜉1 ∈ ℝ𝑚2  and 𝜉2 ∈ 𝑅𝑚1  are given. The 
diagonal matrix 𝑆1 ∈ 𝑅𝑚1×𝑚1  is the values of Gravity function of the smaller class so that 𝐹 (𝑥𝑖) = 𝑆1(𝑖, 𝑖) and 𝑥𝑖 ∈ 𝐴. Similarly, the 
diagonal matrix 𝑆2 ∈ 𝑅𝑚2×𝑚2  also shows the values of Gravity function of the larger class. The second and third terms in both objective 
functions are penaltized by 𝑐2 and 𝑐3, respectively. The term 12 𝛾2 in the objective function of the second problem optimizes the angle 
of the hyperplanes. This term, together with the first term, increases the structural risk control of the system. 𝑐1 > 0 is structural risk 
parameter and 𝑐2, 𝑐3 > 0 are error parameters. The vectors 𝑒, in each position are vectors of 1 and dimensions proportional to that 
position. To solve problem Eq. (16), we first form its Lagrangian function:

𝐿1 =
𝑐1
2
(||𝑤1||

2 + 𝑏21) +
𝑐2
2
(𝑆1𝜂1)𝑇 (𝑆1𝜂1)

+
𝑐3
2
(𝑆2𝜉1)𝑇 (𝑆2𝜉1) + 𝛼𝑇1 (𝜂1 − 𝐴𝑤1 − 𝑏1𝑒)

+ 𝛼𝑇2 (𝜉1 − 𝐵𝑤1 − 𝑏1𝑒 − 𝑒), (18)

where 𝛼1 and 𝛼2 are vectors of Lagrangian coefficients. By deriving from 𝐿1 and setting it to zero, the following relationships are 
obtained:

𝜕𝐿1
𝜕𝑤1

= 𝑐1𝑤1 − 𝐴𝑇 𝛼1 − 𝐵𝑇 𝛼2 = 0, (19)

𝜕𝐿1
𝜕𝑏1

= 𝑐1𝑏1 − 𝑒𝑇 𝛼1 − 𝑒𝑇 𝛼2 = 0, (20)

⟹

[

𝑤1
𝑏1

]

= 1
𝑐1

[

𝐴𝑇 𝐵𝑇

𝑒𝑇 𝑒𝑇

][

𝛼1
𝛼2

]

. (21)

𝜕𝐿1
𝜕𝜂1

= 𝑐2𝑆
2
1𝜂1 + 𝛼1 = 0 ⟹ 𝜂1 =

−1
𝑐2

𝑆−2
1 𝛼1, (22)

𝜕𝐿1
𝜕𝜉1

= 𝑐3𝑆
2
2 𝜉1 + 𝛼2 = 0 ⟹ 𝜉1 =

−1
𝑐3

𝑆−2
2 𝛼2, (23)
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𝜕𝐿1
𝜕𝛼1

= 𝜂1 − 𝐴𝑤1 − 𝑒𝑏1 = 0

⟹
1
𝑐2

𝑆−2
1 𝛼1 +

[

𝐴 𝑒
]

[

𝑤1
𝑏1

]

= 0. (24)

𝜕𝐿1
𝜕𝛼2

= 𝜉1 − 𝐵𝑤1 − 𝑒𝑏1 − 𝑒 = 0

⟹
1
𝑐3

𝑆−2
2 𝛼2 +

[

𝐵 𝑒
]

[

𝑤1
𝑏1

]

= −𝑒. (25)

By combining the above relations and multiplying both sides of the equations in 𝑐1 and rewriting in matrix form, we have:
([

𝐴𝐴𝑇 + 𝑐1
𝑐2
𝑆−2
1 𝐴𝐵𝑇

𝐵𝐴𝑇 𝐵𝐵𝑇 + 𝑐1
𝑐3
𝑆−2
2

]

+ 𝐸

)

[

𝛼1
𝛼2

]

= −𝑐1

[

𝟎
𝟏

]

, (26)

where 𝟎 is a zero vector, dimension of 𝛼1 and 𝟏 is a vector of ones that is dimension of 𝛼2. After solving the Eq. (26), the parameters 
of the model are obtained through Eq. (21).

Now, to solve the second problem, similar to the previous one, we write its Lagrangian function. According to Eq. (17) we have:

𝐿2 =
𝑐1
2
(‖𝑤2‖

2 + 𝑏22) +
𝑐2
2
(𝑆2𝜂2)𝑇 (𝑆2𝜂2) +

𝑐3
2
(𝑆1𝜉2)𝑇 (𝑆1𝜉2)

+ 1
2
𝛾2 + 𝛽𝑇1

(

𝜂2 − 𝐵𝑤2 − 𝑒𝑏2
)

+ 𝛽𝑇2
(

𝑒 − 𝐴𝑤2 − 𝑒𝑏2 − 𝜉2
)

+ 𝛽3(𝛾 −𝑤𝑇
1 𝑤2 − 𝑏1𝑏2), (27)

where 𝛽1, 𝛽2 are vectors and 𝛽3 are scalar, all Lagrangian coefficients. By deriving and setting the derivatives to zero, we have:
𝜕𝐿2
𝜕𝑤2

= 𝑐1𝑤2 − 𝐵𝑇 𝛽1 − 𝐴𝑇 𝛽2 − 𝛽3𝑤1 = 0, (28)

𝜕𝐿2
𝜕𝑏2

= 𝑐1𝑏2 − 𝑒𝑇 𝛽1 − 𝑒𝑇 𝛽2 − 𝛽3𝑏1 = 0 (29)

⟹

[

𝑤2
𝑏2

]

= 1
𝑐1

[

𝐵𝑇 𝐴𝑇 𝑤1
𝑒𝑇 𝑒𝑇 𝑏1

]

⎡

⎢

⎢

⎣

𝛽1
𝛽2
𝛽3

⎤

⎥

⎥

⎦

. (30)

𝜕𝐿2
𝜕𝜂2

= 𝑐2𝑆
2
2𝜂2 + 𝛽1 = 0 ⟹ 𝜂2 =

−1
𝑐2

𝑆−2
2 𝛽1, (31)

𝜕𝐿2
𝜕𝜉2

= 𝑐3𝑆
2
1 𝜉2 − 𝛽2 = 0 ⟹ 𝜉2 =

1
𝑐3

𝑆−2
1 𝛽2, (32)

𝜕𝐿2
𝜕𝛾

= 𝛾 + 𝛽3 = 0 ⟹ 𝛾 = −𝛽3, (33)

𝜕𝐿2
𝜕𝛽1

= 𝜂2 − 𝐵𝑤2 − 𝑏2𝑒 = 0

⟹
−1
𝑐2

𝑆−2
2 𝛽1 +

[

𝐵 𝑒
]

[

𝑤2
𝑏2

]

= 0. (34)

𝜕𝐿2
𝜕𝛽2

= 𝑒 − 𝜉2 − 𝐴𝑤2 − 𝑏2𝑒 = 0

⟹
−1
𝑐3

𝑆−2
1 𝛽2 +

[

𝐴 𝑒
]

[

𝑤2
𝑏2

]

= −𝑒. (35)

𝜕𝐿2
𝜕𝛽3

= 𝛾 −𝑤𝑇
1 𝑤2 − 𝑏1𝑏2 = 0

⟹ 𝛾 −
[

𝑤1 𝑏1
]

[

𝑤2
𝑏2

]

= 0. (36)

Using Eq. (30) we have:
1
𝑐2

𝑆−2
2 𝛽1 +

1
𝑐1

[

𝐵𝐵𝑇 + 𝐸1 𝐵𝐴𝑇 + 𝐸2 𝐵𝑤1 + 𝑏1𝑒
]

𝛽 = 0, (37)

1
𝑐3

𝑆−2
1 𝛽2 +

1
𝑐1

[

𝐴𝐵𝑇 + 𝐸𝑇
2 𝐴𝐴𝑇 + 𝐸3 𝐴𝑤1 + 𝑏1𝑒

]

𝛽 = 𝑒, (38)

𝛽3 +
1
𝑐1

[

𝐵𝑤1 + 𝑏1𝑒𝑇 𝐴𝑤1 + 𝑏1𝑒𝑇 𝑤𝑇
1 𝑤1 + 𝑏21

]

𝛽 = 0, (39)
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where 𝛽 = [𝛽1 𝛽2 𝛽3]𝑇 . By combining the above three relations and multiplying both sides of the equations in −𝑐1 and rewriting in 
matrix form, we have:

𝑄𝛽 = 𝑐1
[

𝟎 𝑒 0
]𝑇 . (40)

where 

𝑄 =

⎡

⎢

⎢

⎢

⎣

𝐵𝐵𝑇 + 𝑐1
𝑐2
𝑆−2
2 + 𝐸1 𝐵𝐴𝑇 + 𝐸2 𝐵𝑤1 + 𝑏1𝑒

𝐴𝐵𝑇 + 𝐸𝑇
2 𝐴𝐴𝑇 + 𝑐1

𝑐3
𝑆−2
1 + 𝐸3 𝐴𝑤1 + 𝑏1𝑒

𝑤1𝐵𝑇 + 𝑏1𝑒𝑇 𝑤1𝐴𝑇 + 𝑏1𝑒𝑇 𝑤𝑇
1𝑤1 + 𝑏21

⎤

⎥

⎥

⎥

⎦

and 𝟎 is zero vector, 𝑒 are vectors of Ones and 𝐸𝑖 are matrices of Ones, all is used with suitable dimensions. by solving the system 
Eq. (40) the Lagrangian coefficients are obtained, which are put in the relation Eq. (30) can also obtain the second hyperplane. Having 
𝑤1, 𝑤2, 𝑏1, 𝑏2 the class of the new instance can be predicted as follows:
Decision function: for each input 𝑥, the decision function is implemented as:

𝑓𝑖(𝑥) = 𝑤𝑇
𝑖 𝑥 + 𝑏𝑖. (41)

Thus class of each x is determined by:

𝑐𝑙𝑎𝑠𝑠(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 |

|

𝑓1(𝑥)|| < |𝑓2(𝑥)|

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(42)

The angle between hyperplanes: In linear model, the angle between two hyperplanes can be calculated. Let 𝑁1 and 𝑁2 be 
the norm vectors of hyperplanes and 𝜃 be the angle between two hyperplanes. This angle can be obtained by calculating the angle 
between norm vectors. Here vectors are 𝑤1 and 𝑤2, so: 

cos(𝜃) =
𝑤1.𝑤2

||𝑤1||||𝑤2||
. (43)

The sum of squared distances: Also, by using 𝜂1 and 𝜂2, we can calculate the sum of squared distances of the points from each 
hyperplane. Using the first constraint of Eqs. (16) and (17) the sum of squared distances can be defined as follows: 

𝑆𝑆𝐷 =
√

𝜂𝑇1 𝜂1 + 𝜂𝑇2 𝜂2. (44)

This value shows the sum of squared distances of all points obtained from both hyperplanes, first term is sum of squared distances of 
point of first hiperplane and second term is about to second hyperplane.

3.3.  Nonlinear GLSTSVM-CIL

When the data are linearly inseparable, the classifiers based on SVM and later versions use kernel functions, the first nonlinear 
problem of GLSTSVM-CIL is written as follows:

𝑚𝑖𝑛
𝑐1
2
(‖𝑤1‖

2 + 𝑏21) +
𝑐2
2
(𝑆1𝜂1)𝑇 (𝑆1𝜂1) +

𝑐3
2
(𝑆2𝜉1)𝑇 (𝑆1𝜉1)

𝑆.𝑡. 𝜙(𝐴)𝑤1 + 𝑏1𝑒 = 𝜂1,

−(𝜙(𝐵)𝑤1 + 𝑏1𝑒) + 𝜉1 = 𝑒, (45)

and second nonlinear problem is written as:

min
𝑐1
2
(‖𝑤2‖

2 + 𝑏22) +
𝑐2
2
(𝑆2𝜂2)𝑇 (𝑆2𝜂2) +

𝑐3
2
(𝑆1𝜉2)𝑇 (𝑆1𝜉2) +

1
2
𝛾2

𝑆.𝑡 𝜙(𝐵)𝑤2 + 𝑒𝑏2 = 𝜂2,

𝜙(𝐴)𝑤2 + 𝑒𝑏2 + 𝜉1 = 𝑒,

𝑤𝑇
1 𝑤2 + 𝑏1𝑏2 = 𝛾, (46)

which 𝜙(.) was defined in Eq. (10).
The two optimization problems-LS-FLSTSVM-CIL and GLSTSVM-CIL-exhibit important mathematical differences that reflect their 

underlying design philosophies and optimization strategies. the LS-FLSTSVM-CIL model introduces three main components in its 
objective function: (i) a regularization term (‖𝑤𝑖‖

2 + 𝑏2𝑖 ) to control model complexity and enforce structural risk minimization, (ii) 
a squared fitting error ‖𝜂𝑖‖2 to reduce the distance between intra-class samples and the corresponding hyperplane, and (iii) a fuzzy-
weighted penalty term (𝑆𝑗𝜉𝑗 )𝑇 (𝑆𝑗𝜉𝑗 ) that 𝑆1 is identity matrix and 𝑆2 is diagonal matrix containing the fuzzy membership values at 
the diagonal places [10,14].
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In contrast, the GLSTSVM-CIL formulation applies weight matrices 𝑆1 and 𝑆2 to both intra-class fitting errors 𝜂𝑖 and inter-class 
slack variables 𝜉𝑖, these weights are not fuzzy in nature and is computed using gravity function Eq. (14). In addition, GLSTSVM-CIL 
introduces a term 12 𝛾2 in the objective function and a constraint 𝑤𝑇

1 𝑤2 + 𝑏1𝑏2 = 𝛾 in the second optimization problem, which enforces 
a geometric relationship between the two hyperplanes. This constraint aims to increase the overall separation and complementarity 
of the hyperplanes, potentially improving the generalization performance.

To solve GLSTSVM-CIL by forming the Lagrangian function of Eq. (45) we have:

𝐿1 =
𝑐1
2
(||𝑤1||

2 + 𝑏21) +
𝑐2
2
(𝑆1𝜂1)𝑇 (𝑆1𝜂1) +

𝑐3
2
(𝑆2𝜉1)𝑇 (𝑆2𝜉1)

+ 𝛼𝑇1 (𝜂1 − 𝜙(𝐴)𝑤1 − 𝑏1𝑒) + 𝛼𝑇2 (𝜉1 − 𝜙(𝐵)𝑤1 − 𝑏1𝑒 − 𝑒). (47)

By calculating the 𝜕𝐿1
𝜕𝑤1

= 0 and 𝜕𝐿1
𝜕𝑏1

= 0 we obtain:
[

𝑤1
𝑏1

]

= 1
𝑐1

[

𝜙𝑇 (𝐴) 𝜙𝑇 (𝐵)
𝑒𝑇 𝑒𝑇

][

𝛼1
𝛼2

]

. (48)

By calculating the partial derivatives of 𝜂1, 𝜉1, 𝛼1 and 𝛼2 and setting them equal to zero, by following a process similar to the linear 
case, the following equation can be reached:

([

𝐾(𝐴,𝐴𝑇 ) + 𝑐1
𝑐2
𝑆−2
1 𝐾(𝐴,𝐵𝑇 )

𝐾(𝐵,𝐴𝑇 ) 𝐾(𝐵,𝐵𝑇 ) + 𝑐1
𝑐3
𝑆−2
2

]

+ 𝐸

)

[

𝛼1
𝛼2

]

= −𝑐1

[

𝟎
𝟏

]

. (49)

And the Lagrangian function of the second nonlinear problem is written as follows:

𝐿2 =
𝑐1
2
(‖𝑤2‖

2 + 𝑏22) +
𝑐2
2
(𝑆2𝜂2)𝑇 (𝑆2𝜂2) +

𝑐3
2
(𝑆1𝜉2)𝑇 (𝑆1𝜉2)

+ 1
2
𝛾2 + 𝛽𝑇1

(

𝜂2 − 𝜙(𝐵)𝑤𝑇
2 − 𝑒𝑏2

)

+ 𝛽𝑇2
(

𝑒 − 𝜙(𝐴)𝑤𝑇
2 − 𝑒𝑏2 − 𝜉2

)

+ 𝛽3(𝛾 −𝑤1𝑤
𝑇
2 − 𝑏1𝑏2). (50)

By calculating the 𝜕𝐿2
𝜕𝑤2

= 0 and 𝜕𝐿2
𝜕𝑏2

= 0 we obtain: 

[

𝑤2
𝑏2

]

= 1
𝑐1

[

𝜙𝑇 (𝐵) 𝜙𝑇 (𝐴) 𝑤1
𝑒𝑇 𝑒𝑇 𝑏1

]

⎡

⎢

⎢

⎣

𝛽1
𝛽2
𝛽3

⎤

⎥

⎥

⎦

. (51)

By calculating the partial derivatives of 𝜂2, 𝜉2, 𝛾, 𝛽1, 𝛽2 and 𝛽3 and setting them equal to zero, the following equation can be reached: 

𝑄𝛽 = 𝑐1
[

𝟎 𝑒 0
]𝑇 . (52)

where:

𝑄 =

⎡

⎢

⎢

⎢

⎣

𝐾(𝐵,𝐵𝑇 ) + 𝑐1
𝑐2
𝑆−2
2 + 𝐸1 𝐾(𝐵,𝐴𝑇 ) + 𝐸2 𝜙(𝐵)𝑤1 + 𝑏1𝑒

𝐾(𝐴,𝐵𝑇 ) + 𝐸𝑇
2 𝐾(𝐴,𝐴𝑇 ) + 𝑐1

𝑐3
𝑆−2
1 + 𝐸3 𝜙(𝐴)𝑤1 + 𝑏1𝑒

𝑤𝑇
1 𝜙

𝑇 (𝐵) + 𝑏1𝑒𝑇 𝑤𝑇
1 𝜙

𝑇 (𝐴) + 𝑏1𝑒𝑇 𝑤𝑇
1 𝑤1 + 𝑏21

⎤

⎥

⎥

⎥

⎦

By solving the problem Eq. (52), 𝛽1, 𝛽2 and 𝛽3 are obtained as before, which are put in the relation Eq. (51) the second hyperplane 
can be obtained. Considering that the function 𝜙(.) is unknown in the last column, we first note that the vector [𝑤1 𝑏1]𝑇  is available 
through Eq. (48), so we use the following trick to get column 3. First it should be noted that 

𝜙(𝐵)𝑤1 + 𝑒𝑏1 =
[

𝜙(𝐵) 𝑒
]

[

𝑤1
𝑏1

]

. (53)

Now we take help from Eq. (48) and by multiplying Eq. (48) by [𝜙(𝐵) 𝑒
] we reach the following useful relation:

[

𝜙(𝐵) 𝑒
]

[

𝑤1
𝑏1

]

= 1
𝑐1

[

𝐾(𝐵,𝐴𝑇 ) + 𝐸 𝐾(𝐵,𝐵𝑇 ) + 𝐸
]

𝛼. (54)

It can be repeated for other elements of this column:

[

𝜙(𝐴) 𝑒
]

[

𝑤1
𝑏1

]

= 1
𝑐1

[

𝐾(𝐴,𝐴𝑇 ) + 𝐸 𝐾(𝐴,𝐵𝑇 ) + 𝐸
]

𝛼. (55)

[

𝑤𝑇
1 𝑏1

]

[

𝑤1
𝑏1

]

= 1
𝑐21
𝛼𝑇

([

𝐾(𝐴,𝐴𝑇 ) 𝐾(𝐴,𝐵𝑇 )
𝐾(𝐵,𝐴𝑇 ) 𝐾(𝐵,𝐵𝑇 )

]

+ 𝐸
)

𝛼. (56)

where 𝛼 = [𝛼𝑇
1 𝛼𝑇

2 ]
𝑇 . using Eqs. (54), (55) and (56), the third column of the Q is obtained, for the third row, it is enough 

to put the transpose of the third column.
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Decision function: decision function of first hyperplane for nonlinear case is defined as:

𝑓1(𝑥) = 𝑤𝑇
1 𝜙(𝑥) + 𝑏1 ⟹

𝑓1(𝑥) =
1
𝑐1

[

𝐾(𝑥,𝐴𝑇 ) + 𝑒 , 𝐾(𝑥, 𝐵𝑇 ) + 𝑒
]

𝛼. (57)

And for second hyperplane we have:

𝑓2(𝑥) = 𝑤𝑇
2 𝜙(𝑥) + 𝑏2 ⟹

𝑓2(𝑥) =
1
𝑐1

[

𝐾(𝑥, 𝐵𝑇 ) + 𝑒, 𝐾(𝑥,𝐴𝑇 ) + 𝑒, 𝑤𝑇
1 𝜙(𝑥) + 𝑏1

]

𝛽. (58)

The last element of function 𝑓2 is equal to 𝑓1, so we have: 

𝑓2(𝑥) =
1
𝑐1

[

𝐾(𝑥, 𝐵𝑇 ) + 𝑒 𝐾(𝑥,𝐴𝑇 ) + 𝑒 𝑓1(𝑥)
]

𝛽. (59)

From Eqs. (57) and (59), label of new instance 𝑥 in detected by:

𝑐𝑙𝑎𝑠𝑠(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 |

|

𝑓1(𝑥)|| < |𝑓2(𝑥)|,

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(60)

4.  Solution method

The final matrices in both linear and non-linear problems are symmetric matrices. As discussed in the methodology 
section, the stable and efficient convergence of the Conjugate Gradient(CG) method requires the matrix 𝑄 to be positive 
definite. A detailed proof of the positive definiteness of matrix 𝑄 is provided in Appendix A that supports fundamental 
for guaranteeing the convergence and numerical stability of the Conjugate Gradient method used in our framework. 
Thus the solution to Eqs. (26), (40), (49) and (52) determines the global optimal solution [23] and instead of solving a 
QPP, we just need to solve a linear system Ax=b. In order to Proposed Method works with large-scale data, we use a 
numerical method. Among the many methods that exist in this field, conjugate gradient methods are more suitable. This 
method is used to solve Ax=b systems where A is symmetric and positive definite [24,25] and are faster than steepest 
descent methods [26]. The ability to solve with large-scale matrices, low memory usage and suitable speed are among 
the reasons that motivated us to choose this method, an implementation of this algorithm is given in Algorithm 2. 

Algorithm 2 :Conjugate gradient method to solve 𝐴𝑥 = 𝑏.
INPUTE: Matrix 𝐴, vector 𝑏, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 and 𝑡𝑜𝑙𝑜𝑟𝑎𝑛𝑐𝑒 > 0
OUTPUT: Solution of 𝑥
1: Initialize 𝑥0 = 0⃗, 𝑟0 ∶= 𝑏 − 𝐴𝑥0, 𝑝0 ∶= 𝑟0
2: For 𝑖 ≤ max _𝑖𝑡𝑒𝑟

3:  Compute the step size, 𝛼 =
𝑟𝑇𝑘 𝑟𝑘
𝑝𝑇𝑘𝑄𝑝𝑘

4:  Update the solution, 𝑥𝑘+1 ∶= 𝑥𝑘 + 𝛼𝑝𝑘
5:  If ‖𝑥𝑘+1 − 𝑥𝑘‖ < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 terminate by 𝑥𝑘+1 as optimal solution
6:  Update the residual, 𝑟𝑘+1 ∶= 𝑟𝑘 − 𝛼𝑄𝑝𝑘
7:  Update the search direction 𝑝𝑘+1 ∶= 𝑟𝑘+1 +

‖𝑟𝑘+1‖
‖𝑟𝑘‖

𝑝𝑘
8: Return 𝑥𝑘+1 as optimal solution.

4.1.  Computational complexity

In Algorithm 1, for computing the gravity function matrix, a loop with 𝑚1 iterations is used for the smaller class, 
which has a computational complexity of 𝑂(𝑚1). Within this loop, the neighborhood of points with the class center is 
controlled. The inner loop runs 𝑚1×(𝑚1−1)

2
 times to count the number of neighborhoods for each point. This part has a 

complexity of 𝑂(𝑚2
1). The code then calculates the weight of each sample, which has a complexity of 𝑂(𝑚1). In total, 

considering the mentioned parts, the computational complexity of the gravity function is 𝑂(𝑚2
1). Similar results are 

obtained when considering the gravity matrix computations for the negative class. Therefore, the overall complexity 
is 𝑂(𝑚2

1) + 𝑂(𝑚2
2).
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Additionally, two systems in the form of 𝑄𝑥 = 𝑐 (represented as 𝐴𝑥 = 𝑏 in general CG literature) are solved using the 
Conjugate Gradient (CG) algorithm. Generally, this algorithm has a complexity of 𝑂(𝑚0

√

𝜅), where 𝑚0 is the number 
of non-zero elements in the matrix 𝐴 (here, 𝑄) and 𝜅 is its condition number, given by 𝜅 =

|

|

largest eigenvalue|
|

|

|

smallest eigenvalue|
|

 [27,28].
Considering the Eqs. (1) and (26), (40), (49), and (52), the matrix 𝐴 corresponds to the matrix 𝑄 in these equations. 

In the first system, the matrix 𝑄 is of size 𝑚 × 𝑚, and in the second system, it is of size (𝑚 + 1) × (𝑚 + 1). Therefore, if we 
consider the condition number of the first problem as 𝜅1 and the number of non-zero elements as 𝑚0 (which is 𝑂(𝑚2)
for a dense matrix like 𝑄), the overall complexity of the first problem’s solution by CG would be 𝑂(𝑚0

√

𝜅1). Combined 
with the gravity function calculation, its total complexity becomes 𝑂(𝑚0

√

𝜅1) + 𝑂(𝑚2
1).

From another perspective, focusing on the iterative process outlined in Algorithm 2, the CG algorithm takes the 
matrix 𝑄 (with dimensions 𝑚 × 𝑚 or (𝑚 + 1) × (𝑚 + 1)) as input, along with a maximum number of iterations, max_iter. 
In each iteration, the dominant operation is a matrix-vector multiplication. Given the size of matrix 𝑄, these computa-
tions in the first system are of order 𝑂(𝑚2). Scalar-vector computations and conditional statements are of order 𝑂(𝑚). 
Therefore, if the loop iterates max_iter times, the complexity of CG is 𝑂(max_iter × 𝑚2). This must be added to the 
complexity of the weight function. Thus, the complexity of the first system is 𝑂(max_iter × 𝑚2) + 𝑂(𝑚2

1). By repeating a 
similar reasoning for the second problem, the complexity 𝑂(max_iter × (𝑚 + 1)2) + 𝑂(𝑚2

2) is obtained.

4.2.  CG convergence for equation (52)

The effectiveness and practical convergence of the Conjugate Gradient (CG) method for solving Eq. (52) are pro-
foundly influenced by the properties of the matrix 𝑄. For CG to guarantee convergence and numerical stability, 𝑄
must be symmetric and positive definite (SPD) [27,28]. As established in Appendix A: Proof of Positive Definiteness 
for Matrix 𝑄, our matrix 𝑄 indeed satisfies these crucial requirements. The specific structure of 𝑄 significantly impacts 
CG’s convergence rate:

• Guaranteed Convergence and Uniqueness: Since 𝑄 is proven to be positive definite, the quadratic objective func-
tion associated with 𝑄𝑥 = 𝑏 (𝑓 (𝑥) = 1

2
𝑥𝑇𝑄𝑥 − 𝑥𝑇 𝑏) is strictly convex. This strict convexity ensures a unique global 

minimum for the function, which corresponds precisely to the unique solution of 𝑄𝑥 = 𝑏 [29]. CG’s fundamental 
mechanism minimizes this objective function, ensuring convergence to this unique solution.

• Enhanced Rate of Convergence from 𝑄’s Structure: While CG theoretically converges in a finite number of steps 
(𝑁 iterations, where 𝑁 is 𝑄’s dimension), the practical speed of convergence depends heavily on the condition 
number (𝜅(𝑄)) of the matrix. A lower 𝜅(𝑄) leads to faster convergence. Our matrix 𝑄 benefits from specific terms 
that accelerate CG’s performance:
– Kernel Matrix Properties: The 𝐾(𝑋, 𝑌 ) blocks are inherently positive semidefinite [30], forming the structural 
basis of the system.

– Built-in Regularization from 𝑆𝑖: The terms 
𝑐1
𝑐2
𝑆−2
2  and 𝑐1

𝑐3
𝑆−2
1  are critical. As detailed in Appendix A, these are 

strictly positive diagonal matrices. Their direct addition to the diagonal of the kernel blocks acts as a powerful 
Tikhonov regularization [31]. This regularization is vital because it:
∗ Improves the Condition Number: By adding positive values to the diagonal, these terms increase 𝑄’s smallest 
eigenvalue, thereby reducing its condition number (𝜅(𝑄)). A lower 𝜅(𝑄) directly translates to a significantly 
faster convergence rate for CG. This is especially beneficial if the original kernel matrices or the combined 
system would otherwise be ill-conditioned.

∗ Enhances Numerical Stability: Regularization makes the system 𝑄𝑥 = 𝑐 more robust to numerical errors during 
the iterative process.

– Positive Contribution from 𝑤1 and 𝑏1: The final diagonal term, 𝑤𝑇
1𝑤1 + 𝑏21, is strictly positive, further contribut-

ing to 𝑄’s overall positive definiteness across all dimensions.
In essence, the careful design of matrix 𝑄, particularly its inherent SPD property strengthened by explicit regularization 
terms from 𝑆𝑖, ensures that the Conjugate Gradient method for solving Eq. (52) will converge not only reliably to a 
unique solution but also with an improved and robust rate, which is paramount for practical computational efficiency.

5.  Experimental results

In this section, the performance of Proposed Method has been evaluated in comparison with FTSVM [6], LSTSVM 
[4], LS-ATWSVM [5], SVM-Based SA-Method [8] and LSFLSTSVM-CIL [10] . First, using two-dimensional synthetic 
data, the position of hyperplanes and the performance of the method against changes in the imbalance ratio are 
evaluated. KEEL repositoy was used to evaluate the performance on imbalance and noisy datasets [32]. The data 
available in UCI [33] and Kaggle2 repositories were used to evaluate medical applications. Text data from UCI, Kaggle 

2 https://www.kaggle.com
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Table 1 
Parameter settings.
 Method  Parameters  Options
 Proposed Method 𝑐1 , 𝑐2 , 𝑐3 , 𝜇, 𝑔 𝑐𝑖 , 𝜇 ∈ {10𝑗 , 𝑗 = −5,… , 5}, 𝑔 ∈ { 𝑗

10
, 𝑗 = 1,… , 9} ∪ {1,… , 10}

 LSFLSTSVM-CIL 𝑐0 , 𝑐1 = 𝑐2 , 𝑐3 = 𝑐4 , 𝜇 𝑐0 ∈ {0.5, 1, 1.5, 2, 2.5}, 𝑐1 , 𝑐2 , 𝑐3 , 𝑐4 , 𝜇 ∈ {10𝑗 , 𝑗 = −5,… , 5}
 LS-ATWSVM 𝑐1 , 𝑐2 , 𝑐3 , 𝑐4 = 1 − 𝑐2 , 𝑐5 = 𝑐1 , 𝜇 𝑐1 , 𝑐3 ∈ (0, 1], 𝑐2 ∈ (0, 1), 𝜇 ∈ {10𝑗 , 𝑗 = −5,… , 5}
 FTSVM 𝑐1 = 𝑐2 , 𝜇 𝑐1 , 𝑐2 , 𝜇 ∈ {10𝑗 , 𝑗 = −5,… , 5}
 LSFTSVM 𝑐1 = 𝑐2 , 𝜇 𝑐1 , 𝑐2 , 𝜇 ∈ {10𝑗 , 𝑗 = −5,… , 5}

Table 2 
System specifications.
    Processor  11th Gen Intel(R) Core(TM) i5-1135G7  
  @ 2.40GHz 2.42GHz  
  Installed RAM  8.00 GB (7.70 GB usable)  
  System type  64-bit operating system, x64-based processor 
  Edition  Windows 11 Pro  
  Version  23h2  
  OS build  22631.3447  

Table 3 
System specifications for NDC datasets.
    Processor  Intel(R) Core(TM) i7-4960X CPU  
  @ 3.60GHz 3.60GHz @ 2.40GHz 2.42GHz  
  Installed RAM  64.00 GB  
  System type  64-bit operating system, x64-based processor 
  Edition  Windows 10 Pro  

and TDT2 dataset [34] have been used to evaluate models in text data classification. NDC data [35] was used to evaluate 
the performance against large-scale data. Gaussian kernel 𝐾(𝑋, 𝑌 ) = 𝑒𝜇‖𝑋 − 𝑌 ‖2, linear kernel 𝐾(𝑋, 𝑌 ) = 𝑋𝑇 𝑌  were 
used to transform the data into kernel space. Also, sigmoid kernel 𝐾(𝑋, 𝑌 ) = tanh

(

𝛾𝑋𝑇 𝑌
)

 was used in text data. In all 
evaluations, the k-folds method with k=5 was used to select the best parameters. For a fair comparison, all equivalent 
parameters were selected according to [5,10]. The tolorance value for solving LSFLSTSVM-CIL and Proposed Method 
is fixed to 10−5 and the number of repetitions were fixed to 102. Table 1 shows the parameter setting pattern and 
their range completely. The parameter 𝑔 ∈ {1,… , 10} in the proposed model scales the weight values 𝑗-times larger or 
𝑗
10
-times smaller when 𝑔 ∈ { 𝑗

10
, 𝑗 = 1,… , 9}.

Also In each case, the data is randomly divided into training and testing parts with a ratio of 70-30, and the 
parameters are obtained through Grid-Search and cross-validation methods [36], and to run the experiments, Python 
3.12.2 in the Visual Studio code 1.92.0 environment is used. All evaluations except NDC data was done on the personal 
laptop with the specifications in Table 2. Also, to evaluate NDC data, a computer with specifications in Table 3 was 
used in the computer laboratory of the Faculty of Mathematical Sciences of Ferdowsi University of Mashhad. Scipy 
1.14.0 library has been used to solve Proposed Method with the conjugate gradient algorithm.
The following evaluation criteria is used to evaluate the performance of the methods:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

, (61)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (62)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, (63)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑜𝑖𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

, (64)

𝐺 − 𝑚𝑒𝑎𝑛 =
√

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙. (65)

TP, TN, FP, FN respectively are: True Positive, True Negative, False Positive, False Negative. In all evaluations, the 
smaller class was considered equivalent to the positive class.
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Fig. 2. Position of hyperplanes in LS-ATWSVM, LSFLSTSVM-CIL, GLSTSVM-CIL.

Table 4 
Numerical results related to the Fig. 2.
    Methods  SSD  Angle  Accuracy  F1  
  Proposed Method  8.55  40.41  100  100  
  LSFLSTSVM-CIL  19.23  18.82  98.80  98.04 
  LS-ATWSVM  17.87  23.68  97.59  96.15 

5.1.  Experimental results on synthetic data

5.1.1.  Hyperplanes
One of the important points in the methods developed on the basis of TSVM is how the hyperplanes are placed in 

relation to the instances of each class. The hyperplanes obtained from Proposed Method, LS-ATWSVM and LSFLSTSVM-
CIL in the Fig. 2 and the numerical results related to this figure, in the Table 4 is shown. In this study, a synthetic dataset 
with normal distribution is used, structural risk parameters are equal to 1 in all three methods and other parameters 
are obtained using Grid-Search.
In the Fig. 2, the hyperplanes of Proposed Method and LSFLSTSVM-CIL in the larger class are close to each other, 

and LS-ATWSVM has a significant deviation from these two is placed. The reason for this observation can be that the 
first two methods give weight to large class points, while LS-ATWSVM does not have a weight function. On the other 
hand, LSFLSTSVM-CIL does not generate weights for the smaller class to avoid slowing down the algorithm speed, so 
its hyperplane is expected to be similar to LS-ATWSVM on the smaller class side, as shown in Fig. 2 It can be seen that 
their hyperplane is very close to each other in this area.
Proposed Method emphasizes the importance of smaller class points and in its optimization problem, weight is also 
assigned to these points. On the other hand, like LS-ATWSVM, by using a term to optimize the angle, it also improves 
structural risk control. It seems that this action has made its hyperplane to have a better position on the side of the 
smaller class and is closer to the class points than the other two methods. According to the Table 4, it can be seen 
that the sum of squared distances(SSD) of the points in this method is less than the others, which confirms that the 
hyperplane is close to the class points.

5.1.2.  Noisy data with imbalance rate
In order to further investigate the effect of class imbalance ratio on the performance of the methods, the three 

models were tested on binary classification synthetic data. For this purpose, first, 20 normally distributed datasets were 
created using the sklearn library tools, in which the imbalance ratio was changed from 1 to 20. Each dataset contained 
350 samples, and the number of minority class samples decreased with increasing imbalance ratio. Then, to simulate 
noisy conditions, Gaussian noise with mean 𝜇 = 0 and standard deviation 𝜎 = 1 was added to each dataset. The code 
and datasets used in these experiments are publicly available at: https://github.com/abdhmohammadi/GLSTSVM-CIL.
Fig. 3 illustrates the results. The top-left figure shows the Accuracy, the top-right shows F1-Score, the bottom-left 

shows G-Mean, and the bottom-right represents the average of the three metrics across all imbalance ratios.
Overall, Proposed Method achieved superior or comparable performance in most cases. The integration of strengths 

from both LS-ATWSVM and LSFLSTSVM-CIL contributes to its robustness, especially in terms of average performance.
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Fig. 3. Noisy data with imbalance rate evaluation in LS-ATWSVM, LSFLSTSVM-CIL, GLSTSVM-CIL.

However, in certain imbalance ratios, particularly when the minority class is extremely underrepresented (e.g., 
imbalance rates > 15), Proposed Method shows relatively lower F1-Score and G-Mean. This can be attributed to two 
factors: (i) the extreme scarcity of positive samples causes insufficient support vectors in the minority class, and (ii) 
although our model uses dual-weighting, its objective function still leans slightly toward maximizing overall margin, 
which may favor the majority class. These issues are common in margin-based classifiers under severe imbalance, and 
future enhancements may include adaptive resampling or hybrid loss functions to mitigate this.
The comparison also shows that the weighting strategy in LSFLSTSVM-CIL is more effective than LS-ATWSVM in 

highly imbalanced scenarios, and our dual weighting in both objective and constraints has further improved the balance 
between sensitivity and specificity.

5.2.  Experiments on class imbalance data

To evaluate the performance of Proposed Method in class inbalance data, 26 datasets were selected from the 
KEEL repository and were compared with FTSVM [6], LSTSVM [4], LS-ATWSVM [5], SVM-Based SA-Method [8] and 
LSFLSTSVM-CIL [10] using two criteria, Accuracy and F1-Score. First, the parameters were selected using the 5-Folds 
and GridSearch for the highest Accuracy and the corresponding F1-Score. For calculating the weight of all points in the 
Gravity function, the search radius to find number of neighboring points was considered as 𝑟 = 0.1. Then the data was 
randomly divided into training and test with a ratio of 70-30. Table 10 shows the details of this comparison (In this 
table and the following tables, the underlined numbers in each row indicate the highest score in that row). the table 
shows Proposed Method has obtained a better average with distance 0.63 from LSFLSTSVM-CIL and 0.58 from SVM-
Based SA-Method, the average score difference in the F1-Score shows a better values, so that Proposed Method has 
performed with distance 1.1345 approximately better than both methods. The comparison of the average ranks shows 
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Fig. 4. Effect of parameter 𝑔 on yeast-2_vs_4 and ecoli-0-3 4-6_vs_5.

FTSVM, LSTSVM and LS-ATSVM have obtained lower ranks in both criteria. Comparing the number of wins and losses 
confirms this situation well. Proposed Method with 9 wins and LSFLSTSVM-CIL and SVM-Based SA-method with 5 wins 
have obtained the first and second place, respectively. But this situation in F1-Score is 12, 2 and 5 respectively in favor 
of Proposed Method. In F1-Score, the  SVM-Based SA-Method outperformed LSFLSTSVM-CIL by 5 wins. The comparison 
between Accuracy and F1-Score shows that the performance of Proposed Method in F1-Score was much better than 
the others, and this indicates that the research objective, which is to achieve a better diagnosis of the smaller class, has 
been well achieved. Fig. 9 shows the overall execution time of the algorithms using Table 10. GLSTSVM-CIL calculates 
weight values for all points in the dataset, which imposes a lot of calculation time. This situation also occurs in FTSVM. 
In this respect, tow algorithms perform similarly. However, Proposed Method performed better than FTSVM in 20 out 
of 26 datasets. In this respect, it did not performe better than other methods.
In the Fig. 4, the changes of the parameter 𝑔 on the datasets yeast-2_vs_4 and ecoli-0-3 4-6_vs_5 is shown. as 

expected, the effect of this parameter is different according characteristics of the datasets. In ecoli-0-3-4-6_vs_5, it 
goes almost smoothly and reaches the appropriate Accuracy at values higher than 1, but in yeast- 2_vs_4 is observed 
in a vacillatory form and results in better Accuracy in values less than 1. Next, in the Fig. 5, mutual changes of two 
parameters 𝑐2 and 𝑐3 on these datasets is visible.

5.3.  Experiments on noisy data

Classification of noisy data is one of the important challenges in machine learning. In this section, in order to check 
the performance of Proposed Method in noisy data, the Table 11 contains 30 datasets with noise of 10%, 15% and 20%. 
The datasets are available in KEEL repository. The results show very little difference in the performance of the methods, 
FTSVM and LSTSVM are in the second ranks with a small distance. Considering the closeness of the ranks, attention to 
detail seems useful. Proposed Method has a weak performance in the pima-20an and pima-20cn in F1-Score. And it 
shows average performance in Accuracy. In the classification of heart-20cn, although it is in the second place, it has 
a big difference with the first place. But in heart-10an and heart-10cn it has won the first rank with a great margin. 
This difference is even better in F1-Score. Also, in pima-15cn, by obtaining 𝐹1 = 0.6580, it has a good distance from 
others. The results of Table 11 are also interesting in the number of wins and losses, in the number of wins, the highest 
points are obtained by Proposed Method and LSFLSTSVM-CIL. belongs, in this regard, the Table 12 has been prepared 
according to the results of the Table 11. In this table, it can be seen that Proposed Method has optained second rank 
of losses, but its winning percentage is significantly better than other methods, so that in 26.67% cases in terms of 
Accuracy it has won and has had the highest F1-Score in 40% cases. As a result of this discussion, it can be said that 
Proposed Method has performed better than other methods with a very small difference in the average and rank and 
also according to the amount of wins and losses.

5.4.  Experiments on NDC data

To evaluate Proposed Method’s performance on large datasets, the NDC (Normal Distributed Clusters) dataset [37] 
was utilized. Experiments were conducted on a machine with specifications detailed in Table 3 at the computer labo-
ratory of the Faculty of Mathematical Sciences, Ferdowsi University of Mashhad.
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Fig. 5. Effect of parameters 𝑐2 and 𝑐3 on yeast-2_vs_4 and ecoli-0-3 4-6_vs_5.

Fig. 6. Comparison of train time in LS-ATWSVM, LSFTSVM-CIL, FTSVM, LSTSVM and Proposed Method on NDC datasets.

Table 14 summarizes the experimental results. The hyperparameters of all methods were tuned to achieve 100% 
Accuracy and F1-Score. The RBF kernel was used for all models. The reported running time for each method consists 
of two components: weight matrix computation time and model training time. LSTSVM and LS-ATWSVM, which do not 
use a weight matrix, have zero weight computation time. 
FTSVM, LSTSVM, and LS-ATWSVM were unable to classify datasets exceeding 30K samples. For the 30K dataset, 

Proposed Method’s total time (including weight calculation and training) was approximately 42.64min, which is less 
than the time required by FTSVM, LSTSVM, and LS-ATWSVM. While slightly more time-consuming than LSFTSVM-
CIL, it’s crucial to note that Proposed Method calculates weights for all samples, whereas LSFTSVM-CIL only processes 
negative class samples. Furthermore, Except for the weight calculation time, the training time of Proposed Method 
is superior to LSFTSVM-CIL in 5 of 7 datasets and is almost equal for the 10K. The observed longer training time 
for 20K could be cautiously attributed to an uncontrolled event by the operating system or hardware. The proposed 
model successfully classifies datasets up to 50K in size. Excluding weight calculation time, Proposed Method generally 
exhibits lower training times compared to other methods, with the 20K dataset being an exception. This highlights the 
model’s scalability and robustness in handling large-scale data.
Fig. 7 compares the weight calculation time and training time for Proposed Method. The most time is consumed 

during the “weight matrix calculation”. This process involves distance calculations and updates for all samples, which 
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Fig. 7. Comparison of weight time and train time of Proposed Method on NDC datasets.

leads to an increase in computational cost related to the size of the dataset. Fig. 6 also provides a comparative view of 
the “training time” in different models. Despite the higher computational time imposed by calculating the weight of 
the entire sample, in terms of “training time”, Proposed Method can be said to be no different from “LSFLSTSVM-CIL” 
- We performed the weight calculations here with global search, future works could explore reducing this overhead 
using more advanced search methods, approximation strategies, or parallel processing.

5.5.  Statistical analysis

Here we presented two statistical analysis to support Tables 10 and 11: Friedman test and Nemenyi Post Hoc, Each 
of which is explained below.

5.5.1.  Friedman test
In this section, we provide a short statistical analysis for both Accuracy and F1-Score criteria. One of the tests used in 

this field is the Friedman test. The Friedman test is a non-parametric test that is used to compare and rank the average 
scores of different groups. The null hypothesis in this test is based on the equality of the means, and the rejection of 
the null hypothesis means that at least two groups are significant difference together [38]. Considering 𝐾 algorithms 
to be compared, which are scored by 𝑁 datasets. If 𝑅̄𝑗 is the average score of 𝑗th algorithm, Friedman’s statistic 
using 𝜒2 distribution with (𝐾 − 1) degrees of freedom, is defined as 𝜒2

𝐹 = 12𝑁
𝐾(𝐾+1)

(

∑𝐾
𝑗=1 𝑅̄𝑗

2 − 𝐾(𝐾+1)2

4

)

. It is proven that 
this statistic works unfavorably conservative [39]. Therefore, based on this distribution, the statistic 𝐹𝐹  is made as 
𝐹𝐹 = (𝑁−1)𝜒2

𝐹
𝑁(𝐾−1)−𝜒2

𝐹
 which has 𝐾 − 1 and (𝐾 − 1)(𝑁 − 1) degrees of freedom.

Table 10: According to Table 10 and considering 𝐾 = 6 and 𝑁 = 26 in order to analyze the Accuracy, the values of 
𝜒2
𝐹 ≈ 17.2802 and 𝐹𝐹 ≈ 3.8326 are obtained. On the other hand, 𝐹𝐹  has the distribution 𝐹  with the degree of freedom 

(5, 125). The Friedman test results demonstrate statistically significant differences among methods at all conventional 
significance levels, as the test statistic exceeds critical values for 𝛼 = 0.01 (3.1671), 𝛼 = 0.05 (2.2868), and 𝛼 = 0.10
(1.8939). This provides strong evidence to reject the null hypothesis that all algorithms have identical effects, confirm-
ing that at least one method differs significantly from the others in the ranked outcomes across datasets. The findings 
indicate observed variations are not attributable to random chance.
Table 11: Regarding the Accuracy values reported in Table 11, the Friedman test yields 𝜒2

𝐹 = 8.0851 and 𝐹𝐹 = 2.0951. 
Given that 30 datasets were used, the degrees of freedom are (4, 116). The critical values of the 𝐹 -distribution 𝐹 (4, 116)
at significance levels 𝛼 = 0.01, 0.05, and 0.10 are 3.4852, 2.4499, and 1.9940, respectively. Since the observed 𝐹𝐹  is 
greater than the critical value at 𝛼 = 0.10, but less than the thresholds for 𝛼 = 0.05 and 𝛼 = 0.01, the null hypothesis is 
rejected only at the 10% significance level. This implies that with 90% confidence, there is a statistically significant 
difference in the performance ranks of the methods in terms of Accuracy. However, the evidence is not strong enough 
to support rejection at the more stringent 5% or 1% levels, suggesting that while differences exist, they are not highly 
pronounced.

5.5.2.  Nemenyi Post-Hoc test
Addition to Friedman test, has been employed the Nemenyi post-hoc analysis [40,41] for rigorous comparison. This 

non-parametric approach is recommended for classifier comparisons. it is used when all methods are compared to each 

Applied Mathematics and Computation 510 (2026) 129705 

17 



A. Mohammadi, J.A. Nasiri and S. Effati

Table 5 
Critical Distances (CD) for different 𝛼 devels.
𝛼 𝑞𝛼,5 𝑞𝛼,6 CD(Noisy) CD(Imbalance)

0.05 2.728 2.850 1.196 1.376
0.10 2.459 2.589 1.078 1.251

Table 6 
Nemenyi Post-Hoc pairwise comparison for Imbalance datasets (Accuracy).
Comparison Rank Difference 𝛼 = 0.05 𝛼 = 0.10

Proposed vs. LS-ATWSVM 1.635 ✓ ✓

Proposed vs. FTSVM 1.404 ✓ ✓

Proposed vs. LSFLSTSVM-CIL 0.635 – –
Proposed vs. LSTSVM 1.635 ✓ ✓

Proposed vs. SVM-Based SA-Method 0.577 – –

Table 7 
Nemenyi Post-Hoc pairwise comparison for Imbalance datasets (F1-Score).
Comparison Rank Difference 𝛼 = 0.05 𝛼 = 0.10

Proposed vs. LS-ATWSVM 2.250 ✓ ✓

Proposed vs. FTSVM 1.866 ✓ ✓

Proposed vs. LSFLSTSVM-CIL 1.135 – –
Proposed vs. LSTSVM 2.058 ✓ ✓

Proposed vs. SVM-Based SA-Method 1.116 – –

Table 8 
Nemenyi Post-Hoc pairwise comparison for Noisy datasets (Accuracy).
Comparison Rank Difference 𝛼 = 0.05 𝛼 = 0.10

Proposed vs. LS-ATWSVM 0.799 – –
Proposed vs. FTSVM 0.883 – –
Proposed vs. LSFLSTSVM-CIL 0.850 – –
Proposed vs. LSTSVM 0.483 – –

other. Post-hoc analysis uses the Nemenyi test with Critical Difference (CD):

CD = 𝑞𝛼

√

𝑘(𝑘 + 1)
6𝑁

(66)

Considering Table 5 in [40] for 𝑞𝛼, and Tables 10 and 11 with 𝑘 = 5, 6 methods, critical distances where calculated 
at 𝛼 = 0.05 and 0.10. Table 5 shows these values, where 𝑞𝛼,6 is q-values for Imbalanced datasets in Table 10 and 𝑞𝛼,5 is 
for Noisy datasets in Table 11. pairwise differences in mean ranks between methods were calculated in Tables 6–9. 
Classifiers with Rank Differenceerences exceeding CD are significantly different.
Table 10: Proposed Method achieved the highest overall ranking (Accuracy: 2.519 and F1-Score:2.096), According 

to the observations in Tables 6 and 7, the proposed method has a significant difference with FTSVM, LSTSVM and 
LS-ATWSVM. In Table 6, there is no significant difference between the proposed method and SVM-Based SA-Method 
and LSFLSTSVM-CIL. It seems that all three methods have similar performance in terms of overall accuracy. Table 7 
shows the CD value against SVM-Based SA-Method and LSFLSTSVM-CIL very close to the critical region. This can 
be interpreted as a signal of the superiority of the proposed method over these two methods. Although the overall 
accuracy between these methods is very low (approximately 0.6), this value reaches more than 1.1 in determining the 
F1-Score. The distance of this value from the critical region is only 0.2 which indicates the superiority of the proposed 
method.
Table 11: Pairwise comparisons between the classifiers using average ranks of Noisy datasets for Accuracy and F1-

Score are shown in Tables 8 and 9. In Table 8, there is no significant difference between the methods in determining 
the overall accuracy. All methods perform almost the same. The accuracy loss in LSFTSVM-CIL, FTSVM and LS-ATSVM 
is greater than that of LSTSVM. The results of Table 9 show that LS-ATWSVM has shown more weakness than the other 
methods compared to the proposed method. No significant difference can be observed in relation to other methods.
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Table 9 
Nemenyi Post-Hoc pairwise comparison for Noisy datasets (F1-Score).
Comparison Rank Difference 𝛼 = 0.05 𝛼 = 0.10

Proposed vs. LS-ATWSVM 1.076 – –
Proposed vs. FTSVM 0.483 – –
Proposed vs. LSFLSTSVM-CIL 0.300 – –
Proposed vs. LSTSVM 0.216 – –

Fig. 8. Comparison of total execution time (weighting time + training time) on medical datasets(Table 15).

Fig. 9. Comparison of total execution time on imbalance datasets (Table 10).
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6.  Applications of proposed method

In this section, we present the result of applying Proposed Method to two practical case studies: medical data 
classification and text data classification.

6.1.  Medicine and health data

The Table 15 shows the details of the results in different fields of medical data including 10 datasets from the 
UCI repository, which include Cancer diseases, Diabetes, Heart diseases, Parkinson’s and etc. The search radius of 
neighborhood points in the weight function for all datasets fixed to 𝑟 = 0.1. The evaluations were done non-linearly 
with the Gaussian kernel function. According to the table in the dataset of Darwin and Cervical cancer behavior risk, 
all methods have obtained the same results. The biggest difference in F1-Score between Proposed Method and the 
previous ranking is observed in the “Breast cancer coimbra” equal to 15.68%. The comparison of the average results 
shows that Proposed Method has a distance of approximately 2% from FTSVM in the Accuracy and with a difference 
of approximately 3% of LSFLSTSVM-CIL has taken the first place in F1-Score. The ranking criteria and the number of 
wins and losses also show its superiority over other methods. It has obtained the best results in the Accuracy criterion 
with 4 wins and in the F1 criterion with 5 wins and no losses. FTSVM and LSFLSTSVM-CIL rank second in the Accuracy 
and F1-Score, respectively. Proposed Method did not get the weakest score in the classification of any of the datasets. 
Like the previous tables, this table also shows a better performance in obtaining F1-Score.
In Fig. 8, we have made a brief comparison based on the execution time of the models using the Table 15. The results 

are not far from the expected, in fact, a similar pattern is observed to the results in Table 10. In this case, Proposed 
Method also is better than FTSVM in 7 of 10 cases. LSFLSTSVM-CIL performs weight calculations only on negative 
class, and the LSTSVM and LS-ATWSVM do not have a weight function. However, Proposed Method was better than 
LSFLSTSVM-CIL in 4 of 10 cases. Although the result of time is not good, it shows that Proposed Method has good 
potential for improvement through weight function optimization, which can be considered in future work.

6.2.  Text classification

In Table 13, six text datasets including spam messages, sentiments analysis of social network users, analysis of 
news and sports articles have been reviewed. All sets except the “Sports articles for objectivity analysis” have been 
transformed into vectors by the TF-IDF method [42]. The sigmoid kernel function has been used to train the models. 
Also, the neighborhood radius for the Gravity function(defined in Eq. (14)) in these datasets is variable, which is given 
in the list of parameters. It can be seen that in the “Spam text message” dataset, the best result is obtained with the 
Accuracy of 100%. In the classification of “Twitter messages”, it has the same score as LS FLSTSVM-CIL, but in the 
same dataset, it has performed better than all methods in terms of F1-Score. Although LSFLSTSCM-CIL is equal to 
Proposed Method in terms of Accuracy, it shows a lower value in F1-Score. The distance of F1-Score is very significant 
in the “Redit Comments” and “Twitter messages”. In these datasets, it has obtained the best result with a difference of 
approximately 10%. The overall results of this table in the average and rank show that Proposed Method performed 
better compared to other methods, especially the results of F1 clearly show its ability to detect the smaller group. 
Similar to the results of Table 10, it has performed better than FTSVM and LSFLSTSVM-CIL in the Accuracy with 
2.45% and F1-Score with 7.81%.

7.  Discussion of results

The experimental findings highlight both the strengths and limitations of the proposed GLSTSVM-CIL method. The 
gravitational weighting mechanism significantly enhanced minority-class recognition, reflected in F1-Score improve-
ments across a wide range of imbalance scenarios. By combining imbalance-ratio scaling and local instance density 
into a dynamic weighting scheme, GLSTSVM-CIL effectively reduced bias toward the majority class. This advantage 
was particularly notable at high imbalance ratios, where traditional models typically degrade.
In noisy environments evaluated on 30 benchmark datasets with 10, 15 and 20% of noise. GLSTSVM-CIL in F1-

Score has won almost 40% of cases (12 wins out of 29 in Table 11). This robustness appears to stem from the inherent 
properties of its gravitational function, which naturally suppresses the influence of isolated or noisy instances due to 
their low density and large centroidal distance.
Geometric insights further confirmed the model’s efficacy. Visualization of decision boundaries (Fig. 2) revealed 

that angular optimization led to improved class separation with hyperplane angle of 40.41◦ compared to 18.82–23.68◦
in baseline methods. Moreover, the Sum of Squared Distance (SSD) was significantly reduced (8.55 vs. >17.87), sug-
gesting better alignment with complex class distributions.
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Table 10 
Experiments on class imbalance data.

dataset
FTSVM  Accuracy, 
F1,Time (𝑐1 = 𝑐2 , 𝜇)

LSTSVM Accuracy, 
F1,Time (𝑐1 = 𝑐2 , 𝜇)

LS-ATWSVM 
Accuracy, F1,Time 
(𝑐1 = 𝑐5 , 𝑐2 , 𝑐3 , 𝜇)

LSFLSTSVM-CIL 
Accuracy, F1,Time 
(𝑐0, 𝑐1 = 𝑐2, 𝑐3 = 𝑐4, 𝜇)

SVM-Based 
SA-Method 
Accuracy, F1,Time 
(𝑐, 𝜇)

Proposed Method 
Accuracy, F1,Time 
(𝑐1 , 𝑐2 , 𝑐3 , 𝜇, 𝑔)

abalone9-18 0.9636, 0.6923, 0.4009
(10, 1)

0.9455, 0.4545, 0.1211
(103 .1)

0.9545, 0.5000, 0.1646
(1, 0.1, 0.1, 1)

0.9545, 0.4444, 0.0444
(0.5, 10−5 , 10−5 , 10−5)

0.9631, 0.6300, 0.0346
(103 , 1)

𝟎.𝟗𝟕𝟕𝟑, 𝟎.𝟕𝟖𝟐𝟔, 𝟎.𝟑𝟖𝟏𝟕
(10, 10−4 , 105 , 10−3 , 0.1)

clev-0_vs_4 0.8846, 0.5000, 0.0957
(103 , 10−4)

0.8846, 0.5000, 0.0344
(102 , 10−4)

0.4231, 0.2105, 0.0563
(1, 10−5 , 10−5 , 1)

0.9038, 0.4444, 0.0056
(1.5, 10, 10−4 , 10−4)

0.8845, 0.9373, 0.01658
(105 , 10−3)

0.8462, 0.4286, 0.0359
(1, 0.1, 103 , 10−4 , 1)

ecoli-0-1_vs_5 0.9583, 0.7273, 0.1208
(10−2 , 10−3)

0.9583, 0.7273, 0.0319
(0.1, 10−3)

0.9583, 0.7273, 0.0500
(1, 0.1, 0.1, 1)

0.9583, 0.7273, 0066
(2, 1, 1, 1)

0.9833, 0.8762, 0.0177
(105 , 10−3)

0.9861, 0.9333, 0.0615
(10, 10−4 , 10, 10−3 , 2)

ecoli-0-1-3-7_vs_2-6 1, 1, 0.1537
(10−3 , 10−3)

1, 1, 0.0609
(0.1, 10−3)

1, 1, 0.0778
(1, 0.1, 0.1, 1)

1, 1, 0.0077
(0.5, 105 , 105 , 105)

0.9929, 0.7333, 0.0181
(103 , 10−4)

1, 1, 0.0925
(10−5 , 10−5 , 105 , 10−3 , 0.3)

ecoli-0-1-4-6_vs_5 0.9762, 0.9000, 0.1576
(1, 10−4)

0.9643, 0.8421, 0.431
(1, 10−4)

0.9762, 0.9091, 0.0750
(1, 0.1, 0.1, 1)

0.9524, 0.7778, 0.0075
(1.5, 104 , 105 , 105)

0.9821, 0.8444, 0.0189
(105 , 10−3)

0.9881, 0.9524, 0.0.0869
(10, 0.1, 104 , 10−3 , 4)

ecoli-0-1-4-7_vs_2-3-
5-6

0.9604, 0.7500, 0.1535
(1, 10−4)

0.9703, 0.8000, 0.0524
(0.1, 10−3)

0.9703, 0.8000, 0.0982
(1, 0.1, 0.1, 1)

0.9802, 0.8750, 0.0109
(1, 1, 10−2 , 10−2)

0.9761, 0.8351, 0.0217
(10, 10−4)

0.9505, 0.6667, 0.0.1190
(1, 0.1, 104 , 10−3 , 0.8)

ecoli-0-1-4-7_vs_5-6 0.9700, 0.5714, 0.2059
(1, 10−4)

0.9600, 0.5000, 0.0629
(1, 10−4)

0.9700, 0.5714, 0.0961
(1, 0.1, 0.1, 1)

0.9700, 0.5714, 0.0097
(2.5, 104 , 10−2 , 10−2)

0.9608, 0.9786, 0.0215
(105 , 10−5)

0.9800, 0.6667, 0.1161
(102 , 1, 105 , 10−3 , 1)

ecoli-0-3-4-6_vs_5 0.9677, 0.8333, 0.1085
(10−2 , 10−3)

0.9677, 0.8333, 0.0345
(1, 10−3)

0.9839, 0.9231, 0.0582
(1, 0.1, 0.1, 1)

1, 1, 0.0058
(2.5, 105 , 104 , 104)

0.9751, 0.8540, 0.0176
(102 , 10−3)

1, 1, 0.0453
(10, 10−2 , 102 , 10−3 , 10)

ecoli-0-3-4-7_vs_5-6 0.9487, 0.8182, 0.1591
(1, 10−4)

0.9103, 0.6316, 0.0476
(0.1, 10−3)

0.9359, 0.8000, 0.0746
(1, 0.1, 0.1, 1)

0.9615, 0.8696, 0.0083
(0.5, 10, 10−2 , 10−2)

0.9768, 0.8667, 0.01923
(102 , 10−5)

0.9615, 0.8696, 0.0689
(102 , 1, 105 , 10−3 , 5)

ecoli-0-4-6_vs_5 0.9672, 0.8000, 0992
(10−2 , 10−3)

0.9836, 0.9091, 0.0313
(0.1, 10−4)

0.9836, 0.9091, 0.4949
(1, 0.1, 0.1, 1)

0.9836, 0.9091, 0.0059
(1.5, 104 , 105 , 105)

0.9755, 08540, 0.0171
(10, 10−4)

1, 1, 0.0461
(10, 105 , 1, 10−3 , 0.5)

ecoli-0-6-7_vs_3-5 0.9104, 0.6667, 1194
(1, 10−4)

0.9403, 0.7143, 0.0285
(1, 10−4)

0.9254, 0.7059, 0.0660
(1, 0.1, 0.1, 1)

0.9552, 0.8000, 0.0064
(2, 105 , 0.1, 0.1)

0.9416, 0.9687, 0.0173
(10, 10−5)

0.9254, 0.7059, 0.0525
(10, 0.1, 103 , 10−3 , 3)

ecoli-0-6-7_vs_5 0.9697, 0.8571, 0.1156
(1, 10−4)

0.9697, 0.8333, 0.0812
(1, 10−4)

0.9394, 0.7500, 0.7273
(1, 0.1, 0.1, 1)

0.9848, 0.9231, 0.0065
(1.5, 10, 0.1, 0.1)

0.9773, 0.8548, 0.0173
(10, 10−4)

0.9697, 0.8571, 0.0539
(10, 0.1, 105 , 10−3 , 2)

glass2 0.8615, 0.1818, 0.1504
(10−2 , 10)

0.8769, 0.3333, 0.0805
(0.1, 10)

0.8615, 0.3077, 0.7185
(1, 10−2 , 10−2 , 1)

0.7846, 0.2222, 0.0077
(0.5, 10−3 , 10−5 , 10−5)

0.9157, 0.3000, 0.0190
(10, 10)

0.8308, 0.4211, 0.0513
(10, 10−4 , 0.1, 0.1, 1)

ionosphere 0.9434, 0.9118, 0.1643
(0.1, 0.1)

0.9434, 0.9118, 0.0373
(0.1, 0.1)

0.934, 0.8955, 0.1005
(1, 0.1, 0.1, 1)

0.9434, 0.9118, 0.0116
(0.5, 1, 10−2 , 10−2)

0.9787, 0.8548, 0.0248
(10, 0.1)

0.9528, 0.9275, 0.0894
(1, 10−2 , 1, 0.1, 10)

led7digit-
02456789_vs_1

0.9624, 0.8276, 0.2019
(1, 0.1)

0.9774, 0.8800, 0.0805
(1, 0.1)

0.9624, 0.7826, 0.1151
(1, 0.1, 0.1, 1)

0.9699, 0.8571, 0.0179
(2, 10, 0.1, 0.1)

0.9684, 0.8140, 0.0203
(102 , 0.1)

0.9850, 0.9231, 0.2017
(102 , 10−5 , 1, 10−2 , 2)

new-thyroid1 1, 1, 0.1424
(0.1, 10−2)

1, 1, 0.0373
(1, 10−2)

0.9846, 0.9565, 0.0471
(1, 0.1, 0.1, 1)

1, 1, 0.0076
(0.5, 10, 10−3 , 10−3)

0.9953, 0.9867, 0.0174
(102 , 10−3)

1, 1, 0.0462
(0.1, 102 , 10−4 , 10−2 , 10)

shuttle-6_vs_2-3 0.9855, 0.8889, 0.1320
(10−4 , 10−5)

0.9855, 0.9091, 0.0452
(1, 10−5)

1, 1, 0.0722
(1, 10−2 , 10−2 , 1)

1, 1, 0.0043
(0.5, 10−5 , 10−5 , 10−5)

1, 1, 0.0169
(1, 10−5)

1, 1, 0.0604
(10−3 , 10−5 , 10−5 , 10−5 , 10)

wisconsin 0.9659, 0.9536, 0.3141
(103 , 10−5)

0.9610, 0.9467, 0.1618
(104 , 10−4)

0.9561, 0.9396, 0.1636
(1, 10−4 , 10−4 , 1)

0.9415, 0.9268, 0.0371
(2.5, 10−5 , 10, 10)

0.9692, 0.9561, 0.0401
(102 , 10−3)

0.9756, 0.9673, 0.3162
(103 , 10−3 , 105 , 0.1, 3)

yeast-0-2-5-6_vs_3-
7-8-9

0.9139, 0.5667, 6030
(10, 1)

0.9205, 0.5714, 0.1901
(1, 10)

0.9172, 0.5455, 0.2261
(1, 0.1, 0.1, 1)

0.9205, 0.6250, 0.0912
(0.5, 10, 1, 1)

0.9333, 0.5693, 0.1036
(10, 10)

0.9172, 0.6575, 0.5182
(0.1, 10−5 , 105 , 10−4 , 3)

yeast-0-2-5-7-
9_vs_3-6-8

0.9636, 0.8254, 0.5702
(0.1, 10)

0.9603, 0.8000, 0.1904
(0.1, 10)

0.9503, 0.7170, 0.2321
(1, 0.1, 0.1, 1)

0.9669, 0.8333, 0.0899
(1, 10, 0.1, 0.1)

0.9382, 0.9657, 0.0615
(105 , 10)

0.9570, 0.7797, 0.5664
(105 , 102 , 10, 10, 8)

yeast-0-3-5-9_vs_7-8 0.8553, 0.2667, 0.2403
(102 , 10−5)

0.8487, 0.2069, 0.0811
(1, 0.1)

0.8487, 0.1481, 0.1192
(1, 10−2 , 10−2 , 1)

0.8553, 0.2143, 0.0248
(0.5, 102 , 10, 10)

0.9170, 0.3312, 0.0597
(1, 1)

0.8618, 0.3226, 0.2518
(1, 104 , 10−4 , 1, 4)

yeast-0-5-6-7-9_vs_4 0.8994, 0.4667, 0.2353
(1, 1)

0.8868, 0.3571, 0.0617
(1, 1)

0.9182, 0.6486, 0.1120
(1, 0.1, 0.1, 1)

0.8553, 0.2581, 0.0282
(2, 10, 10−5 , 10−5)

0.9129, 0.5016, 0.0328
(102 , 10)

0.9057, 0.5455, 0.2893
(0.1, 10−3 , 1, 102 , 0.2)

yeast-2_vs_4 0.9548, 0.7407, 0.2589
(0.1, 10)

0.9548, 0.7200, 0.0983
(10, 10)

0.9613, 0.7500, 0.1051
(1, 0.1, 0.1, 1)

0.9613, 0.7692, 0.0248
(1, 103 , 102 , 102)

0.9611, 0.7925, 0.0254
(104 , 0.1)

0.9742, 0.8462, 0.2752
(102 , 10−3 , 104 , 10−2 , 0.2)

zoo-3 0.9677, 0.6667, 0.0269
(1, 0.1)

0.9677, 0.6667, 0.0013
(0.1, 0.1)

0.9355, 0.5000, 0.0016
(1, 0.1, 10−3 , 1)

0.9677, 0.6667, 0.0046
(2, 10−5 , 0.1, 0.1)

0.9610, 0.5333, 0.0141
(105 , 10−3)

0.9677, 0.6667, 0.0131
(105 , 105 , 105 , 0.1, 10)

pima 0.7619, 0.6452, 0.3379
(1, 10−5)

0.7273, 0.5772, 0.1641
(0.1, 10−5)

0.7489, 0.6234, 0.1624
(1, 10−2 , 10−3 , 1)

0.7489, 0.6848, 0.0445
(1, 105 , 105 , 105)

0.7396, 0.5903, 0.1619
(102 , 10−4)

0.7532, 0.6851, 0.4148
(104 , 10−4 , 1, 10−5 , 0.6)

haberman 0.6957, 0.3000, 0.1571
(1, 10−4)

0.6739, 0.1667, 0.0525
(10−3 , 10−4)

0.7174, 0.3158, 0.0669
(1, 10−4 , 0.1, 1)

0.6957, 0.3636, 0.0108
(0.5, 1, 10−2 , 10−2)

0.6992, 0.3777, 0.0916
(104 , 102)

0.7391, 0.5385, 0.1230
(1, 10−4 , 1, 10−5 , 0.3)

average (0.9311, 0.7061) (0.9284, 0.6843) (0.9122, 0.6899) (0.9314, 0.7183) (0.9058, 0.7503) (0.9386, 0.7747)

Rank (3.9231, 3.9615) (4.1538, 4.1538) (4.1538, 4.3462) (3.1538, 3.2308) (3.0962, 3.2115) (2.5192, 2.0962)

Accu-
racy(Win,Tie,Loss)

(1, 16, 3) (0, 14, 5) (1, 15, 5) (5, 16, 4) (5, 1, 2) (10, 9, 1)

F1(Win,Tie,Loss) (0, 9, 4) (0, 9, 5) (1, 7, 8) (2, 10, 4) (5, 1, 2) (12, 8, 1)
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Table 11 
Experiments on noisy data.
dataset FTSVM 

Accuracy, F1 
(𝑐1 = 𝑐2 , 𝜇)

LSTSVM 
Accuracy, F1 
(𝑐1 = 𝑐2 , 𝜇)

LS-ATWSVM 
Accuracy, F1 
(𝑐1 = 𝑐5 , 𝑐2 , 𝑐3 , 𝜇)

LSFLSTSVM-CIL 
Accuracy, F1 
(𝑐0, 𝑐1 = 𝑐2, 𝑐3 = 𝑐4, 𝜇)

Proposed Method 
Accuracy, F1 
(𝑐1 , 𝑐2 , 𝑒𝑟𝑐3 , 𝜇, 𝑔)

heart-10an 0.6790, 0.5667
(1, 10−5)

0.6543, 0.5172
(10−4 , 10−5)

0.6049, 0.3846
(1, 10−3 , 10−5 , 1)

0.6543, 0.5172
(2, 102 , 1, 10−5)

0.7284, 0.7027
(1, 103 , 105 , 10−5 , 1)

heart-10cn 0.7284, 0.7800
(105 , 10−5)

0.7037, 0.7000
(10−4 , 10−5)

0.6420, 0.6234
(1, 10−3 , 10−2 , 1)

0.6914, 0.7059
(0.5, 1, 0.1, 10−5)

0.7901, 0.8283
(10−3 , 10, 10, 10−5 , 1)

heart-15an 0.8025, 0.8095
(105 , 10−5)

0.5432, 0.3934
(10−4 , 10−5)

0.5926, 0.5714
(1, 10−3 , 10−3 , 1)

0.6420, 0.6420
(0.5, 0.1, 10−3 , 10−3)

0.7778, 0.8000
(0.1, 102 , 103 , 10−5 , 1)

heart-15cn 0.6667, 0.6747
(10, 10−4)

0.6296, 0.5833
(102 , 10−4)

0.6049, 0.5789
(1, 10−3 , 10−3 , 1)

0.7284, 0.7381
(2.5, 1, 0.1, 10−5)

0.6914, 0.6479
(10−3 , 10, 102 , 10−5 , 1)

heart-20an 0.6667, 0.6197
(102 , 10−5)

0.6543, 0.5000
(10−4 , 10−5)

0.6173, 0.5079
(1, 10−3 , 10−3 , 1)

0.6543, 0.5882
(1, 1, 10−2 , 10−5)

0.6914, 0.6835
(0.1, 102 , 104 , 10−5 , 1)

heart-20cn 0.6049, 0.6444
(1, 10−4)

0.5802, 0.6304
(1, 10−4)

0.4568, 0.3889
(1, 10−2 , 10−2 , 1)

0.7160, 0.8067
(2, 1, 0.1, 10−5)

0.6667, 0.7097
(10−2 , 102 , 102 , 10−5 , 1)

iono-10an 0.8868, 0.8667
(0.1, 0.1)

0.8962, 0.8791
(1, 0.1)

0.8962, 0.8736
(1, 0.1, 0.1, 1)

0.8868, 0.8537
(2, 103 , 10, 0.1)

0.8396, 0.8000
(10−3 , 10−3 , 0.1, 0.1, 1)

iono-10cn 0.8679, 0.8511
(1, 10−2)

0.8868, 0.8750
(1, 0.1)

0.8774, 0.8632
(1, 0.1, 0.1, 1)

0.8868, 0.8776
(2.5, 105 , 103 , 0.1)

0.8868, 0.8846
(10−4 , 10−5 , 10−3 , 0.1, 1)

iono-15an 0.8491, 0.7714
(0.1, 0.1)

0.8868, 0.8378
(1, 0.1)

0.8962, 0.8406
(1, 0.1, 0.1, 1)

0.8962, 0.8493
(1, 0.1, 10−2 , 0.1)

0.8396, 0.7385
(0.1, 0.1, 10, 0.1, 1)

iono-15cn 0.8962, 0.8791
(1, 10−2)

0.8679, 0.8478
(1, 0.1)

0.8679, 0.8409
(1, 0.1, 0.1, 1)

0.9151, 0.9053
(2.5, 105 , 103 , 0.1)

0.8962, 0.8866
(0.1, 0.1, 0.1, 0.1, 1)

iono-20an 0.8396, 0.7606
(0.1, 0.1)

0.8679, 0.8056
(1, 0.1)

0.8491, 0.7838
(1, 0.1, 0.1, 1)

0.8679, 0.8056
(0.5, 0.1, 10−2 , 0.1)

0.8585, 0.7458
(0.1, 0.1, 105 , 0.1, 1)

iono-20cn 0.783, 0.6933
(1, 10−2)

0.8113, 0.7561
(1, 0.1)

0.8208, 0.7654
(1, 0.1, 0.1, 1)

0.8491, 0.8095
(1.5, 105 , 103 , 0.1)

0.8208, 0.7711
(10−3 , 10−3 , 10−3 , 0.1, 1)

sonar-10an 0.7937, 0.7547
(10−2 , 1)

0.8413, 0.7826
(0.1, 1)

0.7619, 0.6939
(1, 0.1, 0.1, 1)

0.7937, 0.7797
(2, 10, 1, 1)

0.8413, 0.8000
(10, 0.1, 102 , 1, 1)

sonar-10cn 0.7778, 0.7812
(0.1, 1)

0.8095, 0.8182
(1, 1)

0.7937, 0.7937
(1, 0.1, 0.1, 1)

0.8254, 0.8406
(2, 0.1, 10−2 , 1)

0.8254, 0.8451
(1, 105 , 102 , 0.1, 1)

sonar-15an 0.8413, 0.8148
(1, 1)

0.8571, 0.8302
(1, 1)

0.7778, 0.6957
(1, 0.1, 0.1, 1)

0.8254, 0.7843
(0.5, 10−4 , 10−5 , 1)

0.7937, 0.7547
(10, 0.1, 103 , 1, 1)

sonar-15cn 0.7778, 0.7742
(10, 1)

0.8413, 0.8438
(1, 1)

0.7619, 0.7273
(1, 0.1, 0.1, 1)

0.7778, 0.7812
(1, 10−4 , 10−5 , 1)

0.8413, 0.8485
(0.1, 1, 1, 0.1, 1)

sonar-20an 0.619, 0.625
(0.1, 1)

0.619, 0.6364
(1, 1)

0.6349, 0.549
(1, 0.1, 0.1, 1)

0.6825, 0.7143
(2, 10, 1, 1)

0.6032, 0.6269
(10, 0.1, 102 , 1, 1)

sonar-20cn 0.8254, 0.8000
(0.1, 1)

0.8254, 0.8000
(1, 1)

0.8254, 0.7925
(1, 0.1, 0.1, 1)

0.8254, 0.8070
(0.5, 103 , 10−2 , 1)

0.8571, 0.8421
(103 , 103 , 105 , 1, 1)

pima-10an 0.6883, 0.5263
(0.1, 10−4)

0.7013, 0.4964
(1, 10−5)

0.7273, 0.4615
(1, 10−2 , 10−2 , 1)

0.5152, 0.3563
(0.5, 104 , 1, 10−5)

0.7100, 0.4071
(1, 1, 1, 10−5 , 0.3)

pima-10cn 0.7100, 0.5939
(1, 10−5)

0.7056, 0.5952
(0.1, 10−5)

0.7013, 0.5175
(1, 10−2 , 10−2 , 1)

0.5584, 0.5405
(2.5, 1, 0.1, 10−5)

0.7143, 0.5600
(1, 10−3 , 0.1, 10−5 , 0.3)

pima-15an 0.6494, 0.3721
(1, 10−5)

0.6623, 0.3810
(1, 10−5)

0.6797, 0.3729
(1, 10−3 , 10−3 , 1)

0.6061, 0.3636
(1, 102 , 1, 10−3)

0.6580, 0.3248
(105 , 104 , 104 , 10−5 , 1)

pima-15cn 0.6840, 0.5876
(1, 10−5)

0.6883, 0.5909
(1, 10−5)

0.6537, 0.4937
(1, 10−2 , 10−2 , 1)

0.5974, 0.4804
(0.5, 0.1, 105 , 10−4)

0.6580, 0.6580
(0.1, 10−3 , 10−2 , 10−5 , 0.5)

pima-20an 0.6883, 0.4545
(1, 10−5)

0.671, 0.4154
(10.0, 10−5)

0.6970, 0.4167
(1, 10−4 , 10−4 , 1)

0.6277, 0.5426
(0.5, 0.1, 105 , 10−4)

0.6970, 0.3137
(10−2 , 10−5 , 10−5 , 10−5 , 0.8)

pima-20cn 0.6970, 0.5882
(1, 10−5)

0.7100, 0.6298
(1, 10−5)

0.6364, 0.4474
(1, 10−3 , 10−3 , 1)

0.6623, 0.6355
(0.5, 0.1, 105 , 10−4)

0.6407, 0.4029
(10−4 , 10−5 , 10−4 , 10−5 , 0.1)

wdbc-10an 0.8187, 0.7634
(1, 10−4)

0.8421, 0.8000
(1, 10−4)

0.8480, 0.7937
(1, 10−2 , 10−2 , 1)

0.6550, 0.6704
(0.5, 0.1, 105 , 10−4)

0.8596, 0.8033
(0.1, 0.1, 0.1, 10−5 , 0.8)

wdbc-10cn 0.8772, 0.8571
(1, 10−5)

0.8947, 0.8816
(1, 10−4)

0.8947, 0.8767
(1, 0.1, 0.1, 1)

0.7193, 0.7474
(0.5, 0.1, 105 , 10−4)

0.8655, 0.8456
(0.1, 1, 0.1, 10−5 , 0.8)

wdbc-15an 0.8655, 0.7965
(0.1, 10−5)

0.8596, 0.7857
(0.1, 10−5)

0.8947, 0.8421
(1, 0.1, 0.1, 1)

0.8889, 0.8348
(0.5, 102 , 10.0, 10−5)

0.8772, 0.8073
(0.1, 0.1, 10−2 , 10−5 , 0.6)

wdbc-15cn 0.8596, 0.8286
(1, 10−4)

0.8596, 0.8235
(1, 10−5)

0.8304, 0.7852
(1, 0.1, 0.1, 1)

0.4561, 0.6265
(2, 104 , 103 , 10−5)

0.8655, 0.8414
(0.1, 0.1, 1, 10−5 , 0.2)

wdbc-20an 0.7719, 0.6723
(10−2 , 10−5)

0.8070, 0.7402
(1, 10−5)

0.8246, 0.7541
(1, 0.1, 0.1, 1)

0.7661, 0.5918
(0.5, 105 , 102 , 10−5)

0.7953, 0.6789
(1, 10, 102 , 10−5 , 0.1)

wdbc-20cn 0.8129, 0.7808
(1, 10−4)

0.8129, 0.7681
(1, 10−4)

0.8187, 0.7669
(1, 0.1, 0.1, 1)

0.8129, 0.7538
(1.5, 105 , 103 , 10−4)

0.8480, 0.8143
(1, 10−5 , 10−3 , 10−5 , 0.1)

Average (0.7676, 0.7096) (0.7664, 0.6982) (0.7496, 0.6601) (0.7328, 0.6983) (0.7813, 0.7124)

Rank (3.250, 3.050) (2.850, 2.783) (3.1667, 3.733) (3.217, 2.867) (2.367, 2.567)

Accu-
racy(Win,Tie,Loss)

(1, 8, 4) (3, 13, 2) (4, 7, 9) (5, 11, 9) (8, 7, 3)

F1(Win,Tie,Loss) (2, 1, 3) (5, 3, 3) (2, 0, 11) (8, 2, 7) (12, 0, 6)
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Table 12 
Win-Loss percentage in the Table 11.
Method Accuracy wines(%) Accuracy loss(%) F1 wines(%) F1 loss(%)
FTSVM 3.33% 13.33% 6.67% 10%
LSTSVM 10% 6.67% 16.67% 10%
LS-ATWSVM 13.33% 30% 6.67% 36.67%
LSFLSTSVM-CIL 16.67% 30% 26.67% 23.33%
Proposed Method 26.67% 10% 40% 20%

Table 13 
Experiments on Text data.

Dataset
FTSVM Accuracy, 
F1 (𝑐1 = 𝑐2 , 𝜇)

LSTSVM Accuracy, 
F1 (𝑐1 = 𝑐2 , 𝜇)

LS-ATWSVM 
Accuracy, F1 
(𝑐1 = 𝑐5 , 𝑐2 , 𝑐3 , 𝜇)

LSFLSTSVM-CIL 
Accuracy, F1 
(𝑐1 = 𝑐2 , 𝑐3 = 𝑐4 , 𝜇, 𝑐0)

Proposed Method 
Accuracy, F1 
(𝑐1 , 𝑐2 , 𝑐3 , 𝜇, 𝑔, 𝑟)

Spam text message 0.9500, 0.7692
(10−2 , 1)

0.9333, 0.6667
(0.1, 10)

0.9500, 0.7692
(1, 0.1, 0.1, 1)

0.9667, 0.8571
(10−5 , 10−5 , 10−5 , 1, 1)

1, 1
(10−5 , 10−5 , 10−5 , 10−3 , 10, 0.9)

Twitter messages 0.6500, 0.4324
(102 , 10−5)

0.6667, 0.3333
(10, 10)

0.6167, 0.1481
(1, 1, 1, 1)

0.7333, 0.5556
(10−5 , 10, 104 , 2.5)

0.7667, 0.6500
(10−5 , 10−5 , 102 , 102 , 5, 1)

Sports articles for 
objectivity analysis

0.8067, 0.7364 (1, 10) 0.8067, 0.7041
(10−4 , 10−5)

0.7200, 0.6818
(1, 0.1, 0.1, 1)

0.7433, 0.5838
(0.1, 0.1, 0.1, 0.5)

0.7867, 0.6596
(10, 0.1, 10−2 , 10−5 , 0.4, 0.1)

Reddit comments 0.7333, 0.4667
(10, 10−5)

0.7667, 0.5625
(0.1, 10)

0.7167, 0.3704
(1, 0.1, 0.1, 1)

0.7333, 0.6190
(102 , 10−3 , 1, 2.5)

0.8000, 0.7273
(10−5 , 10−2 , 0.1, 10, 10, 0.1)

TDT2 0.9970, 0.9973
(10−5 , 10)

0.9985, 0.9987
(10−5 , 10−3)

0.9732, 0.9755
(0.1, 0.1, 0.1, 0.1)

0.9062, 0.9086
(10−5 , 10−5 , 10−5 , 2)

0.9658, 0.9687
(10−5 , 10−5 , 10−5 , 10−5 , 0.7, 0.1)

CNAE-1 0.9969, 0.987 (102 , 1) 0.9969, 0.9870
(0.1, 0.1)

0.9969, 0.987
(1, 10−2 , 10−2 , 1)

1, 1
(10−5 , 10−5 , 10−5 , 0.5)

0.9969, 0.9873
(10−5 , 10−5 , 10−5 , 10−3 , 4, 0.2)

Average (0.8557, 0.7315) (0.8615, 0.7087) (0.8289, 0.6553) (0.8471, 0.7540) (0.8860, 0.8321)

Rank (3.0000, 2.9167) (2.6667, 3.1667) (4.1667, 3.9167) (2.9167, 2.8333) (2.2500, 2.1667)

Accu-
racy(Win,Tie,Loss)

(0, 4, 0) (1, 2, 1) (0, 2, 3) (1, 1, 1) (3, 1, 0)

F1(Win,Tie,Loss) (1, 2, 0) (1, 1, 1) (0, 2, 2) (1, 0, 2) (3, 0, 0)

Table 14 
Experiments on NDC datasets*

Dataset size(train, test)
Accuracy 
for all 
models

FTSVM 
(𝑐1 , 𝑐2 , 𝜇)
(weight, train)

LSTSVM 
(𝑐1 , 𝑐2 , 𝜇)
(train)

LS-ATWSVM 
(𝑐1 = 𝑐3 = 𝑐5 , 𝑐2 , 𝜇)
(train)

LSFTSVM-CIL 
(𝑐1 = 𝑐2 , 𝑐3 = 𝑐4 , 𝑐0, 𝜇)
(weight, train)

Proposed-method 
(𝑐1 , 𝑐2 , 𝑐3 , 𝑔, 𝜇)
(weight, train)

 1K (1000, 10) 100% (1, 1, 10−5)
(0.018, 1.056)

(1, 1, 10−5)
(0.223)

(1, 0.5, 10−4)
(0.255)

(10−3 , 10−5 , 0.5, 10−3)
(0.061, 0.377)

(1, 1, 1, 1, 10−4)
(0.992, 0.138)

 5K (5000, 50) 100% (1, 1, 10−5)
(0.222, 104.615)

(1, 1, 10−5)
(40.298)

(1, 0.5, 10−4)
(28.519)

(10−3 , 10−5 , 0.5, 10−3)
(1.806, 10.401)

(1, 1, 1, 1, 10−4)
(25.064, 6.179)

 10K (10000, 
100)

100% (1, 1, 10−5)
(0.766, 803.835)

(1, 1, 10−5)
(259.786)

(1, 0.5, 10−4)
(172.300)

(10−3 , 10−5 , 0.5, 10−3)
(7.767, 38.204)

(1, 1, 1, 1, 10−4)
(208.101, 41.110)

 20K (20000, 
200)

100% (1, 1, 10−5)
(2.627, 6366.038)

(1, 1, 10−5)
(1471.069)

(1, 0.5, 10−4)
(1016.996)

(10−3 , 10−5 , 0.5, 10−3)
(31.259, 164.874)

(1, 1, 1, 1, 10−4)
(376.230, 457.162)

 30K (30000, 
300)

100% (1, 1, 10−5)
(5.503, 21892.943)

(1, 1, 10−5)
(4318.070)

(1, 0.5, 10−4)
(3161.030)

(10−3 , 10−5 , 0.5, 10−3)
(27.379, 315.161)

(1, 1, 1, 1, 10−4)
(2292.098, 266.550)

 40K (40000, 
400)

100% * * * (10−3 , 10−5 , 0.5, 10−3)
(46.943, 561.312)

(1, 1, 1, 1, 10−4)
(4081.265, 302.358)

 50K (50000, 
500)

100% * * * (10−3 , 10−5 , 0.5, 10−3)
(75.743, 933.802)

(1, 1, 1, 1, 10−4)
(6500.009, 542.674)

*The algorithm execution has failed due to lack of memory.

In terms of scalability, the use of conjugate gradient methods allowed GLSTSVM-CIL to handle large datasets (tested 
up to size of 50,000 instances). However, the calculation of the gravity weights appeared to be a bottleneck, showing 
a time complexity with respect to the number of samples. The experimental results (Fig. 7) showed that a large part of 
the runtime is spent on calculating the weights. It seems that to overcome this limitation, optimization strategies are 
needed to search for the number of neighborhood points.
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Table 15 
Medicine and health data
 Dataset FTSVM 

Accuracy, F1 
(𝑐1 = 𝑐2 , 𝜇)
time

LSTSVM 
Accuracy, F1 
(𝑐1 = 𝑐2 , 𝜇)
time

LS-ATWSVM 
Accuracy, F1 
(𝑐1 = 𝑐5 , 𝑐2 , 𝑐3 , 𝜇)
time

LSFLSTSVM-CIL 
Accuracy, F1 
(𝑐0 , 𝑐1 = 𝑐2 , 𝑐3 = 𝑐4 , 𝜇)
time

Proposed Method 
Accuracy, F1 
(𝑐1 , 𝑐2 , 𝑐3 , 𝜇, 𝑔)
time

 Lung cancer 0.9462, 0.5455
(0.1, 0.1)
0.0936

0.9462, 0.5455
(0.1, 0.1)
0.0481

0.957, 0.6000
(0.1, 0.1, 0.1, 0.1)
0.0290

0.9785, 0.8333
(1, 0.1, 10−3 , 10−3)
0.0180

0.9892, 0.9231
(10−2 , 10−5 , 1, 10−3 , 5)
0.0620

 Cervical cancer behavior risk 1, 1
(10−2 , 10−2)
0.0291

1, 1 (1, 10−2)
0.0291

1, 1 (1, 0.1, 0.1, 1)
0.1094

1, 1
(0.5, 10−5 , 10−5 , 10−5)
0.0461

1, 1
(10−5 , 10−5 , 10−2 , 10−3 , 0.8)
0.0191

 Darwin 0.5283, 0.6914
(10−5 , 10)
0.0204

0.5283, 0.6914
(10−5 , 102)
0.0048

0.5283, 0.6914
(10−5 , 10−4 , 10−5 , 10−5)
0.0098

0.5283, 0.6914
(0.1, 10−5 , 10−5 , 10−5)
0.0040

0.5283, 0.6914
(1, 103 , 105 , 1, 5)
0.0081

 Breast cancer coimbra 0.6571, 0.6250
(1, 10−5)
0.0191

0.6000, 0.5333
(1, 10−4)
0.0046

0.5714, 0.2105
(0.1, 0.1, 0.1, 0.1)
0.0217

0.7429, 0.6667
(0.5, 105 , 102 , 102)
0.0021

0.8286, 0.8235
(10−4 , 10−5 , 105 , 10−5 , 10)
0.0042

 Diabetic retinopathy debrecen 0.7312, 0.7304
(10, 10−4)
0.4494

0.7225, 0.6863
(102 , 10−4)
0.1618

0.6879, 0.6447
(1, 10−5 , 10−5 , 1)
0.1544

0.6676, 0.7074
(1.5, 103 , 10, 10)
0.2975

0.7052, 0.6600
(10−2 , 10−5 , 1, 10−5 , 0.2)
0.4048

 Heart failure clinical records 0.6333, 0.2667
(10−2 , 10−4)
0.0809

0.6444, 0.2727
(0.1, 10−4)
0.0285

0.6111, 0.1026
(0.1, 0.1, 0.1, 0.1)
0.0455

0.6444, 0.2727
(0.1, 10−4 , 10−3 , 10−3)
0.0431

0.6333, 0.2979
(1, 0.1, 1, 10−4 , 3)
0.0573

 Maternal Health Risk(High) 0.9180, 0.8344
(102 , 10−2)
0.3846

0.9180, 0.8299
(102 , 10−2)
0.1221

0.9148, 0.8169
(1, 10−2 , 10−2 , 1)
0.1454

0.8984, 0.7634
(0.5, 105 , 104 , 104)
0.4590

0.9246, 0.8369
(1062, 104 , 1, 0.1, 10)
0.4526

 Raisin 0.7148, 0.6638
(10−5 , 10−5)
0.2364

0.6704, 0.586
(1, 10−5)
0.4074

0.6407, 0.5126
(1, 0.1, 0.1, 1) 0.2903

0.6963, 0.6372
(0.2, 10−3 , 10−3 , 10−3)
0.5662

0.7481, 0.7280
(10−3 , 10−5 , 10−4 , 10−5 , 0.4)
0.6452

 Maternal Health Risk(Low) 0.8361, 0.7664
(10, 1) 0.3671

0.8098, 0.7212
(0.1, 10)
0.1747

0.8066, 𝑢𝑛𝑑𝑒𝑟𝑙𝑖𝑛𝑒0.7704
(1, 0.1, 0.1, 1) 0.1260

0.7475, 0.7004
(0.5, 10−5 , 10−2 , 10−2)
0.4420

0.8164, 0.7053
(10−2 , 10−4 , 10−3 , 10, 8)
0.3804

 Parkinsons 0.8644, 0.6364
(0.1, 10−2)
0.0691

0.8644, 0.6364
(1, 10−2)
0.0245

0.8475, 0.6087
(1, 0.1, 0.1, 1) 0.0299

0.8644, 0.7333
(2, 10−5 , 104 , 104)
0.0550

0.8644, 0.6364
(10−3 , 105 , 10−4 , 10−2 , 0.9)
0.0470

 Average (0.7830, 0.6760) (0.7704, 0.6503) (0.7565, 0.5958) (0.7768, 0.7006) (0.8038, 0.7302)

 Rank (2.60, 2.75) (3.00, 3.30) (4.10, 3.90) (3.20, 2.85) (2.10, 2.20)

 Accuracy(Win,Tie,Loss) (2, 6, 0) (0, 6, 0) (0, 2, 4) (0, 4, 3) (4, 4, 0)

 F1(Win,Tie,Loss) (1, 4, 0) (0, 5, 0) (1, 2, 5) (1, 3, 2) (5, 3, 0)

8.  Conclusions

GLSTSVM-CIL introduces a physically inspired approach to class-imbalance learning by incorporating Newtonian 
Gravitational principles into the support vector machine framework. Its gravitational weighting function is desgined 
to combine the distance from center and local density. binary-class weighting scaled by imbalance ratio, angular con-
straints to improve structural risk minimization, and a reformulated quadratic objective solved via conjugate gradients.
Experimental evaluations on synthetic, class imbalance, medical, text, and large-scale datasets demonstrated that 

GLSTSVM-CIL consistently improves minority-class recognition, The main limitation observed in this method is the 
increase in the time required to calculate the weights, which we used to obtain by global search of points. In this 
respect, it works similarly to methods such as FTSVM [6], KNN-STSVM [43] and KNN-LSTSVM [7]. One way to im-
prove performance is to use more optimal methods for finding neighborhoods, which require special machine learning 
techniques.
On the other hand, calculation of weights is independent of the solution of its optimization problem. Therefore, 

there is also the potential for parallel processing to improve its performance in terms of time. To address the current 
challenges, the use of parallel processing techniques, GPU acceleration, and more efficient search methods can be use-
ful. Future work will explore efficient approximations for calculating gravitational weight, incorporate deep learning 
techniques, develop automatic hyperparameter tuning techniques.

Data availability

Data will be made available on request.
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Appendix A.  Positive definiteness for Matrix 𝑸

This appendix provides a detailed justification for the positive definiteness of the matrix 𝑄 used in our optimization 
framework, which is crucial for the stable and efficient application of the Conjugate Gradient (CG) method. A symmetric 
positive definite (SPD) matrix is a prerequisite for the convergence guarantees and numerical stability of CG and related 
iterative solvers [27,28]. The matrix 𝑄 is defined as:

𝑄 =

⎡

⎢

⎢

⎢

⎣

𝐾(𝐵,𝐵) + 𝑐1
𝑐2
𝑆−2
2 + 𝐸1 𝐾(𝐵,𝐴) + 𝐸2 𝜙(𝐵)𝑤1 + 𝑏1𝑒𝑛𝐵

𝐾(𝐴,𝐵) + 𝐸𝑇
2 𝐾(𝐴,𝐴) + 𝑐1

𝑐3
𝑆−2
1 + 𝐸3 𝜙(𝐴)𝑤1 + 𝑏1𝑒𝑛𝐴

𝑤𝑇
1 𝜙(𝐵)

𝑇 + 𝑏1𝑒𝑇𝑛𝐵 𝑤𝑇
1 𝜙(𝐴)

𝑇 + 𝑏1𝑒𝑇𝑛𝐴 𝑤𝑇
1𝑤1 + 𝑏21

⎤

⎥

⎥

⎥

⎦

where:
• 𝐴 and 𝐵 represent sets of data points, with 𝑛𝐴 and 𝑛𝐵 points, respectively.
• 𝐾(𝑋, 𝑌 ) = Φ(𝑋)Φ(𝑌 )𝑇  (or Φ(𝑋)𝑇Φ(𝑌 ) depending on Φ convention) is a kernel matrix (𝑛𝑋 × 𝑛𝑌 ) derived from a valid 
kernel function. Valid kernel functions, by definition, generate positive semidefinite (PSD) Gram matrices [30].

• 𝑤1 is a real vector and 𝑏1 is a real scalar, defining a hyperplane.
• 𝑒𝑛𝑋  is an 𝑛𝑋 × 1 vector of ones.
• 𝐸𝑖 are matrices of ones, with dimensions consistent with their respective blocks (𝐸1 is 𝑛𝐵 × 𝑛𝐵, 𝐸2 is 𝑛𝐵 × 𝑛𝐴, 𝐸3 is 
𝑛𝐴 × 𝑛𝐴).

• 𝑆𝑖 are diagonal matrices with strictly positive diagonal entries, ensuring 𝑆−2
𝑖  are also diagonal with strictly positive 

entries.
• 𝑐𝑖 are positive real numbers.

Symmetry of 𝑄

The matrix 𝑄 is inherently symmetric. This can be verified by inspection, as 𝐾(𝑋, 𝑌 ) = 𝐾(𝑌 ,𝑋) for symmetric 
kernels and the off-diagonal blocks are transposes of each other, ensuring 𝑄𝑖𝑗 = 𝑄𝑗𝑖.

Proof of Positive Definiteness

A symmetric matrix is positive definite if and only if its quadratic form 𝑥𝑇𝑄𝑥 is strictly positive for all non-zero 

vectors 𝑥. Let 𝑥 =
⎛

⎜

⎜

⎝

𝑥𝐵
𝑥𝐴
𝛼

⎞

⎟

⎟

⎠

, where 𝑥𝐵 ∈ ℝ𝑛𝐵 , 𝑥𝐴 ∈ ℝ𝑛𝐴 , and 𝛼 ∈ ℝ. The quadratic form is given by:

𝑥𝑇𝑄𝑥 = 𝑥𝑇
𝐵

(

𝐾(𝐵,𝐵) +
𝑐1
𝑐2
𝑆−2
2 + 𝐸1

)

𝑥𝐵 (A.1)

+ 𝑥𝑇
𝐴

(

𝐾(𝐴,𝐴) +
𝑐1
𝑐3
𝑆−2
1 + 𝐸3

)

𝑥𝐴

+ 𝛼2(𝑤𝑇
1𝑤1 + 𝑏21) + 2𝑥𝑇

𝐵(𝐾(𝐵,𝐴) + 𝐸2)𝑥𝐴

+ 2𝛼𝑥𝑇
𝐵(𝜙(𝐵)𝑤1 + 𝑏1𝑒𝑛𝐵 ) + 2𝛼𝑥𝑇

𝐴(𝜙(𝐴)𝑤1 + 𝑏1𝑒𝑛𝐴 )

We establish the strict positivity of 𝑥𝑇𝑄𝑥 by analyzing the contribution of each term:
1. Kernel-related terms: The components involving 𝐾(⋅, ⋅) (i.e., 𝑥𝑇

𝐵𝐾(𝐵,𝐵)𝑥𝐵 + 𝑥𝑇
𝐴𝐾(𝐴,𝐴)𝑥𝐴 + 2𝑥𝑇

𝐵𝐾(𝐵,𝐴)𝑥𝐴) form 
a quadratic form based on a Gram matrix. Such forms are always non-negative, meaning they contribute a positive 
semidefinite (PSD) component to 𝑥𝑇𝑄𝑥.
2. Regularization terms from 𝑆𝑖: These are the most critical elements for guaranteeing positive definiteness.

• The term 𝑥𝑇
𝐵

(

𝑐1
𝑐2
𝑆−2
2

)

𝑥𝐵 is strictly positive for any non-zero 𝑥𝐵. This is because 𝑐1, 𝑐2 are positive scalars and 𝑆−2
2  is 

a diagonal matrix with strictly positive entries (as 𝑆2 is defined as a positive diagonal matrix).
• Similarly, 𝑥𝑇

𝐴

(

𝑐1
𝑐3
𝑆−2
1

)

𝑥𝐴 is strictly positive for any non-zero 𝑥𝐴.

The addition of a symmetric positive definite matrix (even a diagonal one, like 𝑐1
𝑐2
𝑆−2
2 ) to a symmetric positive semidef-

inite matrix (like 𝐾(𝐵,𝐵)) results in a symmetric positive definite matrix [28]. These terms effectively act as a strong 
form of Tikhonov regularization [31], ensuring that the upper-left blocks of 𝑄 are well-conditioned and strictly positive 
definite.
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3. Terms from 𝐸𝑖 (matrices of ones): These matrices (𝐸1, 𝐸3 being matrices of all ones) contribute positive semidef-
inite parts to the quadratic form. For instance, 𝑥𝑇

𝐵𝐸1𝑥𝐵 = (𝑒𝑇𝑛𝐵𝑥𝐵)2 ≥ 0. The combined 𝐸𝑖 terms can be expressed as 
(𝑒𝑇𝑛𝐵𝑥𝐵 + 𝑒𝑇𝑛𝐴𝑥𝐴)2 ≥ 0, which also contributes a PSD component.
4. Last diagonal term (𝑤1, 𝑏1): The term 𝑤𝑇

1𝑤1 + 𝑏21 represents the squared Euclidean norm of the hyperplane’s 
parameters. Since 𝑤1 and 𝑏1 define a functional hyperplane, they cannot both be zero. Therefore, 𝑤𝑇

1𝑤1 + 𝑏21 > 0.

Conclusion on Strict Positivity for Any Non-Zero 𝑥

For any non-zero vector 𝑥 =
⎛

⎜

⎜

⎝

𝑥𝐵
𝑥𝐴
𝛼

⎞

⎟

⎟

⎠

:

• If 𝑥𝐵 ≠ 𝟎 or 𝑥𝐴 ≠ 𝟎: The strictly positive contributions from 𝑥𝑇
𝐵

(

𝑐1
𝑐2
𝑆−2
2

)

𝑥𝐵 and 𝑥𝑇
𝐴

(

𝑐1
𝑐3
𝑆−2
1

)

𝑥𝐴 (which are guaranteed 
to be positive for non-zero 𝑥𝐵 or 𝑥𝐴 respectively) ensure that the overall quadratic form 𝑥𝑇𝑄𝑥 is strictly greater 
than zero. These dominant positive diagonal contributions overcome any potentially non-positive terms from other 
components.

• If 𝑥𝐵 = 𝟎 and 𝑥𝐴 = 𝟎: Since 𝑥 is non-zero, 𝛼 must be non-zero. In this case, the quadratic form simplifies to 𝑥𝑇𝑄𝑥 =
𝛼2(𝑤𝑇

1𝑤1 + 𝑏21). As 𝑤𝑇
1𝑤1 + 𝑏21 > 0, it follows that 𝛼2(𝑤𝑇

1𝑤1 + 𝑏21) > 0.
Since 𝑥𝑇𝑄𝑥 > 0 for all non-zero vectors 𝑥, the matrix 𝑄 is definitively positive definite. 

References

[1] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (1995) 273–297. 
[2] T. Divya, A. Sonali, Twin support vector machine: a review from 2007 to 2014, Egypt. Inf. J. 16 (2015) 55–69. 
[3]  Jayadeva, R. Khemchandani, C. Suresh, Twin support vector machines for pattern classification, IEEE Trans. Pattern Anal. Mach. Intell. 29 (2007) 905–910. 
[4] M. Arun Kumar, M. Gopal, Least squares twin support vector machines for pattern classification, Expert Syst. Appl. 36 (2009) 7535–7543. 
[5] R. Khemchandani, P. Saigal, S. Chandra, Angle-based twin support vector machine, Ann. Oper. Res. 269 (2018) 387–417. 
[6] K. Li, H. Ma, A fuzzy twin support vector machine algorithm, Int. J. Appl. Innov. Eng. Manag. 2 (3) (2013) 459–465. 
[7] A. Mir, J.A. Nasiri, KNN-based least squares twin support vector machine for pattern classification, Springer Science+Business Media, LLC, part of Springer 

Nature 2018 (2018). 
[8] I. Hussein, S.A. Anwar, M.I. Ahmad, Imbalanced data classification using SVM based on improved simulated annealing featuring synthetic data generation and 

reduction, Comput. Mater. Continua 75 (1) (2023) 547–564. https://doi.org/10.32604/cmc.2023.036025
[9] J. Guo, H. Wu, X. Chen, W. Lin, Adaptive SV-borderline SMOTE-SVM algorithm for imbalanced data classification, Appl. Soft Comput. (2023). https://doi.org/

10.1016/j.asoc.2023.110986
[10] M.A. Ganaie, M. Tanveer, C.-T. Lin, Large-scale fuzzy least squares twin SVMs for class imbalance learning, IEEE Trans. Fuzzy Syst. 30 (2022) 4815–4827. 
[11] C. Elkan, The foundations of cost-sensitive learning, in: Proceedings of the 17th International Joint Conference on Artificial intelligence (IJCAI),  17, 2001, pp. 

973–978. 
[12] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic minority over-sampling technique, J. Artif. Intell. Res. 16 (2002) 321–357.
[13] J. Tang, et al., A Fast and Robust TSVM for Pattern Classification, arXiv preprint arXiv:1711.05406 (2019).
[14] B. Richhariya, M. Tanveer, A robust fuzzy least squares twin support vector machine for class imbalance learning, Appl. Soft Comput. 71 (2018) 418–432. 
[15] M.A. Ganaie, M. Hu, Ensemble learning for imbalanced classification: a review, Artif. Intell. Rev. 54 (6) (2021) 4549–4591. 
[16] J.M. Keller, D.J. Hunt, Incorporating fuzzy membership functions into the perceptron algorithm, IEEE Trans. Pattern Anal. Mach. Intell. 6 (1985) 693–699. 
[17] M.A. Ganaie, M. Tanveer, Fuzzy least squares projection twin support vector machines for class imbalance learning, Appl. Soft Comput. 113 (2021) 107933. 
[18] B. Avrim, H. John, K. Ravindran, Foundations of Data Science, 2018. 
[19] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a gravitational search algorithm, Inf. Sci. 179 (13) (2009) 2232–2248. 
[20] M. Platt, R. Barr, A gravity-inspired clustering algorithm, Pattern Recognit. Lett. 131 (2020) 283–289. 
[21] D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics, A John Wiley & Sons, Inc., Publication, 2021. 
[22] A. Mohammadi, J.A. Nasiri, S. Effati, Prediction of chronic diseases with unbalanced data by gravitational support vector machine, in: The 5th National Informatics 

Conference of Iran, 2024, pp. 47–52. 
[23] M.S. Bazaraa, C.M. Shetty, D.S. Hanif, Nonlinear Programming, Theory and Algorithms, A John Wiley & Sons, Inc., Publication, 2006. 
[24] F.M. Martin, A scaled conjugate gradient algorithm for fast supervised learning, Neural Netw. 6 (1993) 525–533. 
[25] S. Gottlieb, F.F. Paul, Modified conjugate gradient method for the solution of Ax = b, J. Sci. Comput. 13 (2) (1998) 173–183. 
[26] J.C. Allwright, Conjugate gradient versus steepest descent, J. Optim. Theory Appl. 20 (1) (1976) 129–134. 
[27] J.R. Shewchuk, An Introduction to the Conjugate Gradient Method without the Agonizing Pain (1994). https://www.cs.cmu.edu/~jrs/jrs.html.
[28] G.H. Golub, C.F. Van Loan, Matrix Computations, JHU Press, Baltimore, MD, 4 edition, Baltimore, MD, 2013. 
[29] J. Nocedal, S.J. Wright, Numerical Optimization, Springer, New York, NY, 2 edition, New York, NY, 2006. 
[30] B. Schölkopf, K. Tsuda, J.-P. Vert, Kernel Methods in Computational Biology, MIT Press, Cambridge, MA, Cambridge, MA, 2004. 
[31] A.N. Tikhonov, Solution of incorrectly formulated problems and the regularization method, Dokl. Akad. Nauk SSSR 151 (1963) 501–504. 
[32]  Alcalà-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. Garcia, L. Sanchez, F. Herrera, KEEL data-mining software tool: data set repository, integration of algorithms 

and experimental analysis framework, J. Multiple-Valued Log. Soft Comput. 17 (2011) 255–287. 
[33] D. Dua, C. Graff, UCI Machine Learning Repository, 2017, (http://archive.ics.uci.edu/ml).
[34] D. Cai, "Text Datasets." Zhejiang University, n.d, 2024, (http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html).
[35] C. Sammut, G.I. Webb, TF-IDF, Encyclopedia of Machine Learning, 2010, (https://doi.org/10.1007/978-0-387-30164-8_832).
[36] J. VanderPlas, Python Data Science Handbook: Essential Tools for Working with Data, O’Reilly Media, Inc., 2016. 
[37] D.R. Musicant, Normally Distributed Clustered Datasets, 1998. www.cs.wisc.edu/dmi/svm/ndc/.
[38] M. Friedman, A comparison of alternative tests of significance for the problem of m rankings, Ann. Math. Stat. 11 (1) (1940) 86–92. 
[39] R.L. Iman, J.M. Davenport, Approximations of the critical region of the Friedman statistic, Commun. Stat. Theory Methods 9 (6) (1980) 571–595. 
[40] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res. 7 (2006) 1–30. 
[41] S. García, F. Herrera, A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability, Soft Comput. 

13 (10) (2009) 959–977. 
[42] G. Salton, C. Buckley, Term-weighting approaches in automatic text retrieval, Inf. Process. Manage. 24 (5) (1988) 513–523. 
[43] X. Pan, Y. Luo, Y. Xu, K-nearest neighbor based structural twin support vector machine, Knowl. Based Syst. 89 (2015) 148–158. https://www.sciencedirect.com/

science/article/pii/S0950705115003135. https://doi.org/10.1016/j.knosys.2015.07.002

Applied Mathematics and Computation 510 (2026) 129705 

26 

http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0001
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0002
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0003
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0004
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0005
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0006
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0007
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0007
https://doi.org/10.32604/cmc.2023.036025
https://doi.org/10.32604/cmc.2023.036025
https://doi.org/10.1016/j.asoc.2023.110986
https://doi.org/10.1016/j.asoc.2023.110986
https://doi.org/10.1016/j.asoc.2023.110986
https://doi.org/10.1016/j.asoc.2023.110986
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0010
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0011
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0011
http://arxiv.org/abs/arXiv:1711.05406
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0013
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0014
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0015
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0016
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0017
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0018
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0019
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0020
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0021
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0021
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0022
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0023
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0024
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0025
https://www.cs.cmu.edu/~jrs/jrs.html
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0026
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0027
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0028
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0029
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0030
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0030
http://archive.ics.uci.edu/ml
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
https://doi.org/10.1007/978-0-387-30164-8_832
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0031
www.cs.wisc.edu/dmi/svm/ndc/
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0032
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0033
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0034
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0035
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0035
http://refhub.elsevier.com/S0096-3003(25)00431-X/sbref0036
https://www.sciencedirect.com/science/article/pii/S0950705115003135
https://www.sciencedirect.com/science/article/pii/S0950705115003135
https://doi.org/10.1016/j.knosys.2015.07.002
https://doi.org/10.1016/j.knosys.2015.07.002


A. Mohammadi, J.A. Nasiri and S. Effati

Abdullah Mohammadi is a high school mathematics teacher. In 2022, he began studying machine learning and received his M.Sc. in Data 
Science from Ferdowsi University of Mashhad in September 2024. Recently, under the supervision of Dr. Sohrab Effati and Dr. Jalal A. 
Nasiri, he defended his thesis with an excellent grade by presenting a new method in twin support vector machines. His current research 
focuses on machine learning algorithms for imbalanced data analysis, natural language processing, large language models, and neural 
network-based learning. He has a particular interest in studying machines’ ability to learn cognitively.

Dr. Jalal A. Nasiri is an Assistant Professor at the Department of Computer Science at Ferdowsi University of Mashhad, Iran. 
From 2016 to 2021, he was Assistant Professor of computational linguistics of Iranian research institute technology for Information Sci-
ence and Technology (IranDoc). Jalal A. Nasiri obtained his PhD. and M.Sc. in computer engineering from Tarbiat Modares Univer-
sity and Ferdowsi University of Mashhad, Iran, in 2015, and 2009, respectively. His main research interest focuses on Machine Leaning 
and Natural language Processing (NLP).

Dr. Sohrab Effati received his B.Sc. degree in Applied Mathematics from Birjand University, Birjand, Iran, in 1992, his M.Sc. degree in 
Applied Mathematics from Kharazmi University, Tehran, Iran, in 1995, and his Ph.D. degree in Control Systems from Ferdowsi University 
of Mashhad, Mashhad, Iran, in 2000. He began his academic career at Hakim Sabzevari University in 2000 and joined Ferdowsi University 
of Mashhad in 2008, where he has been a Full Professor in the Department of Applied Mathematics since 2016. His research interests 
include control theory, optimization, ordinary and partial differential equations, and artificial intelligence, with particular emphasis on 
their applications in optimization, control problems, and modeling in medical sciences.

Applied Mathematics and Computation 510 (2026) 129705 

27 


	Gravitational least squares twin support vector machine based on optimal angle for class imbalance learning 
	1 Introduction
	2 Related works
	2.1 Angle based least squares TSVM(LS-ATWSVM)
	2.2 Large scale fuzzy LSTSVM for class imbalance learning

	3 Proposed method: GLSTSVM-CIL
	3.1 Weight function
	3.1.1 Constructing the weight function
	3.1.2 Properties of the weight function
	3.1.3 Algorithm for calculating the weight of samples

	3.2 Linear GLSTSVM-CIL
	3.3 Nonlinear GLSTSVM-CIL

	4 Solution method
	4.1 Computational complexity
	4.2 CG convergence for equation (52)

	5 Experimental results
	5.1 Experimental results on synthetic data
	5.1.1 Hyperplanes
	5.1.2 Noisy data with imbalance rate

	5.2 Experiments on class imbalance data
	5.3 Experiments on noisy data
	5.4 Experiments on NDC data
	5.5 Statistical analysis
	5.5.1 Friedman test
	5.5.2 Nemenyi Post-Hoc test


	6 Applications of proposed method
	6.1 Medicine and health data
	6.2 Text classification

	7 Discussion of results
	8 Conclusions
	A Positive definiteness for Matrix Q


