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1 Introduction and summary

When quantum field theories (QFT) are considered on a curved space-time, new phenomena
may appear with respect to their Minkowski counterparts. Since curvature is a relevant
operator, its effect is more significant in the IR regime of the field theory. Given that
many interesting 4-dimensional QFTs are strongly coupled in the IR, one often needs non-
perturbative methods to understand how curvature affects these theories.

The holographic gauge/gravity duality [1-3] provides a tool for such a non-perturbative
analysis, at least in the limit of strong coupling and large N for the field theory. In these
cases, the existence of a weakly-coupled gravity dual allows one to translate computations
of observables in the strong-coupling regime to classical gravity /string theory calculations
in a higher dimensional, asymptotically anti-de Sitter (AdS) space-time, whose (conformal)
boundary has the same geometry as the space-time on which the QFT is defined.

The extra (holographic) dimension serves as an effective renormalization group (RG)
scale in the dual QFT. This geometrizes the notion of RG flow. In essence, RG flows can
be understood as bulk evolution in the holographic dimension [4-23].

In the context of the gauge/gravity duality, there is no conceptual or technical problem
in considering holographic duals of QFTs on a curved space-time My, as long as one considers
gravity duals with the appropriate asymptotic geometry. Along these lines, a systematic
analysis of holographic QFTs defined on curved space-times has been carried out by some
of the authors in a series of recent papers [24-33], which analyze the features of various
types of gravity theories admitting curved holographic RG flow solutions: these are dual to
QFTs which are defined on a d-dimensional constant-curvature space-time, that start at a



UV fixed point, and have a non-trivial low to the IR due to a deformation by a relevant
operator. The gravity dual theory may be approximated by a d + 1-dimensional Einstein
gravity coupled to a single scalar field. The latter may be thought of as representing the
running relevant coupling of the dual QFT.

On a constant curvature space-time, the physics of such a theory is determined by the
interplay between two scales:

e The curvature scalar of the UV QFT RWUY);
e The mass parameter Ay which characterizes the relevant coupling.

More precisely, the physics depends on their dimensionless ratio,

RWUV)

R=——.
Ay

(1.1)

The details then differ depending on the specific features of the QFT, which, when
defined on flat space, may be e.g. a non-perturbative RG flow between two conformal fixed
points as in [24, 25, 28], or a confining theory as in [30, 32, 33].! Also, different signs of the
curvature produce vastly different effects in the IR, giving rise to completely different physics
for the QFT defined on d-dimensional de Sitter as opposed to Anti-de Sitter space-time.

In all the aforementioned papers on curved holographic RG flows, the focus was on
the background solution, and the main goal was to classify the different types of geometries
that solving the gravity dual equations, and establishing the phase diagram as a function
of the dimensionless parameter R defined in (1.1). This resulted in a rich phase structure
and various types of curvature-driven phase transitions both for theories with an IR fixed
point [24, 28] and for those which in flat space have an IR mass gap [30, 32, 33]. Some early
examples of similar phase transitions were also found in [34, 35]

In this work, we shall study a first aspect of the dynamics of such theories, namely the
spectra of propagating excitations. More precisely, we study linear perturbations around
the vacua of curved holographic RG flows. The motivation is two-fold:

1. To address the dynamical stability of the background solutions found in previous works;

2. To understand the spectral properties of the dual QFTs when placed on a curved
background.

The first point is important to establish the consistency of the curved RG flows solutions
constituting the phase diagram, i.e., whether these solutions can be taken as credible ground
states of the holographic theory at finite curvature.

Concerning the second point, by the gauge gravity duality, the spectrum of normalizable
(i.e., finite boundary energy) perturbations around a classical gravity solution provides the
spectrum of gauge-invariant single-particle-like excitations in the dual field theory above the
ground state. In the large-N limit, because the gravity dual is weakly coupled, the spectrum

! Although in these references, bottom up models were discussed in various dimensions, there have been
several top-down holographic theories studied on sheres, [63, 64].



takes the form (schematically) of a tower of modes ¢, satisfying a free d-dimensional wave
equation on My,

Oapa(z") = mapa(zh), (1.2)

2
a

with interactions suppressed by inverse powers of N. The set of mass eigenvalues m? is
obtained by solving an appropriate spectral problem in the holographic direction. The
spectrum may be continuous or discrete,? gapped or ungapped, depending crucially on the
IR of the geometry (i.e. the interior region far away from the asymptotic AdS441 boundary.)

Here we take M, to be a maximally symmetric manifold, i.e., dS4y or AdS,; in the
Lorentzian signature, or the corresponding Euclidean manifolds, the d-dimensional sphere
and Euclidean AdS (or hyperbolic space).

The spectrum of propagating modes of holographic QFTs on a constant curvature

manifold My, can be interesting for several reasons and in different contexts:

o When M, has constant positive curvature, we have two maximally symmetric examples:
the sphere S¢ when the signature is Euclidean and de Sitter (dSy) space, when the
signature is Minkowski-like. The case of dS,; is especially interesting, due to its
implications for cosmology, and the fact that massless theories on dS; have perturbation
theories that break down. Although some methods were proposed to deal with this
issue, [38-40], the problem is still considered open.

Recently, some two-dimensional solvable theories on dSy were considered, for which
this apparent problem is resolved by directly calculating the non perturbative answer
that resumes the secular terms of perturbation theory, [41]. An interesting feature of
spectra on dS, is that unitary representations of the associated O(1, d) symmetry group
can appear with distinct properties: continuous representations, complementary series
representations, as well as discrete series representations. It is not yet clear which of
these representations play a role in interacting QFTs on dSg.

e When a QFT is defined on a constant negative curvature manifold, we have two
maximally symmetric cases. Euclidean AdS, EAdS,; in Euclidean signature and AdS; in
Minkowski-like signature. So far, we know holographic realizations of such theories only
when the holographic QFT is confining in flat space, [30]. We have so far no examples
of the spectra of strongly-coupled QFTs on AdS; beyond the somewhat trivial case of
near-free theories.

e In holography, the ansatz that describes QFTs on a constant negative curvature manifold,
describes also, generically QFT interfaces in flat space, [28-30, 42-52], if the slice man-
ifold is non-compact with a boundary (like AdS;). When the slice manifold is compact
(like a ¢ > 1 Riemann surface or higher-dimensional Schottky manifolds, then the solu-
tion is a wormhole, [28, 53]. In such a case, the spectrum of propagating modes describes
both the modes of the different sides of the interface as well as the interface modes.

2This is the case for example in holographic QCD-like theories, where the discrete tower of particles can be
thought of as weakly-interacting glueballs [36, 37].



e For generic holographic theories that are confining in flat space, various phases at
finite curvature (with different geometrical properties), and first or higher-order phase
transitions between them, were recently found in [32, 33]. Calculating the spectrum
gives an extra handle to qualitatively distinguish the different phases, for which, as
discussed in [32], it is hard to identify a well-defined order parameter. Understanding
the spectrum can also help to better understand the corresponding continuous phase
transitions (e.g., scaling behavior may be associated with light modes).

1.1 Summary of results

The framework we work on is a holographic theory whose gravity side consists of 5-dimensional
Einstein gravity coupled to a scalar field ®. Our goal will be to study the linear perturbations
of this system around curved holographic RG flow solutions of the type described in [24, 28,
30, 32], whose background metric and scalar field take the form

ds* = du® + eQA(”)CWd:U“d:U” , O =P(u), v =1...4. (1.3)

Here u is the holographic coordinate, the coordinates x* parameterize the constant-u slices,
and the slice metric ,, is a u-independent, constant-curvature 4-dimensional metric on the
constant-u slices, whose Ricci tensor is given by:

REEI,) = KCuv K= i? ) (1.4)
and we denote by « the radius of the corresponding manifold Sy, dS4, AdSs or EAdS,

(depending on the curvature sign and the metric signature).
The main goals we achieve in this work are:

1. To isolate the decoupled physical degrees of freedom describing linearized perturbations
around curved holographic RG flows;

2. To write the corresponding linearized equation in the form of a spectral problem giving
the mass eigenvalues m?;

3. To understand the universal features of the mass spectra as a function of the boundary
curvature and the type of IR geometry;

4. Finally, we numerically obtain the full spectrum, for positive and negative curvature,
for a simple theory admitting (in flat space) holographic RG flows which connect two
fixed points.

The analysis follows the same lines which, for flat slice metric (,,, are well established in
holography and whose details can be found, e.g., in [37] for 4-dimensional theories. Here,
we generalize that analysis to non-zero curvature slices.

It is worth noting that the problem we study here is related by a Wick-rotation to
the problem of cosmological perturbations around a Friedman-Robertson-Walker (FRW)
space-time with arbitrary constant spatial curvature. There, the holographic coordinate w is
replaced by time. This problem is conceptually similar; however, an important difference



is that, in the cosmological setting, the transverse manifold is Euclidean. This leads to a
different (compared to our case) treatment of the zero-modes, which appear in the tensorial
decomposition of perturbations, and to which we dedicate a careful treatment. Also, boundary
conditions in the u-direction are treated differently from the initial data for cosmological
perturbations. The dynamics of cosmological perturbation at non-zero spatial curvature can
be found in [54], and it was recently revisited in [55].

In the rest of this introduction, we briefly summarize our results.

Gauge invariant degrees of freedom. As in the case of flat slicing, the set of all metric
and scalar field fluctuations around the background (1.3) is subject to gauge transformations
consisting of 5-dimensional diffeomorphisms. These, together with the constraints from
FEinstein’s equations, remove all but the following propagating degrees of freedom, which
are conveniently parameterized in terms of their tensorial properties with respect to the
4-dimensional slice:

1. A gauge-invariant scalar mode \(u,x"), which can be taken as a combination of the
metric trace and the perturbation of ®;

2. A gauge-invariant symmetric tensor mode thT (u, z#), which is transverse and traceless
with respect to the slice metric:

VERLD = ¢M R =0, (1.5)

where V# is the covariant derivative of the slice metric (,,. These modes are the bulk
gravitons.

This decomposition is universal, i.e., independent of the scalar field potential. It only
depends on the two-derivative nature of the Einstein-Dilaton action. In these theories, there
are no dynamical vector perturbations.

What is described above is the same gauge-invariant field content of the perturbations
around flat-sliced solutions, or around an FRW space-time in a theory with a single scalar
field or a single fluid.

Spectral equations. By combining various components of Einstein’s equation, we obtained
decoupled linearized equations for the gauge-invariant scalar and tensor modes. These take
the form of linear second-order partial differential equations, which can be separated in a
standard way by setting:

TT _ M), TT —
by (u,z) = h(u)h/(“,) (M), AMu, 2#) = Mu) Y, () , (1.6)
where h,gﬂl,d)’TT(x“) and Y, (z#) satisfy the spin-2 and spin-0 massive field equation on My

with metric (. :
2
(v”vu - m2) Y =0, (wvu -3k M2) hIDIT =9, (1.7)

where £ is the slice curvature, defined in (1.4) and we remind the reader that we work at d = 4.
The reader will recognize that the tensor modes in (1.7) satisfy the spin-2 Pauli-Fierz equation
around a constant curvature background, with M being the Pauli-Fierz mass parameter.



The coefficient functions h(u) and \(u) satisfy M and m-dependent ordinary differential
equations, which after a change of variables and coordinates can be put in a Schrédinger form:

“agz VW) | Yey) = M70y(y), g TV e =0, (13)

1pg,s are related to h and A by an appropriate re-scaling, and y is the bulk conformal coordinate,
related to u by the warp factor A(u) of the metric (1.3):

dy = e 24 gy, (1.9)

The effective Schrodinger potentials Vy(y) and Vi(y; m) depend only on the functions (and
their derivatives) specifying the background solution (1.3), i.e., A(y) and ®(y).

The graviton Schrodinger potential takes a particularly simple form, which is in fact
the same as for flat slicing [37]:

2 2
V=(5) -G BO=540). (110
i.e., it depends only on the metric scale factor A(y) and not on the dilaton.®> The mass
parameter M? enters as the energy in the graviton Schroédinger equation.

The scalar potential V(y;m) is more involved. Its analytic expression is not particularly
illuminating, and we will present some universal features in the next paragraph. It contains the
mass parameter m explicitly, and the corresponding equation takes the form of a zero-energy
Schrédinger equation.

Comparing equations (1.7) and (1.8), we observe that the set of eigenvalues of the
one-dimensional Schrédinger spectral problems gives the mass spectra of four-dimensional
spin-0 and spin-2 particle excitations of the holographic theory. In maximally symmetric
space-times, these are classified by representations of the corresponding (pseudo)-rotation
groups: solving the Schrédinger equations tells us which representations appear, and also
whether the corresponding masses satisfy the appropriate stability bounds (which generalize
the flat-slice bounds m? > 0, M? > 0).

While the details of the actual spectra depend on the specific form of the bulk solution, a
great deal of information can be obtained by looking at the asymptotic form of the Schrédinger
potentials, which, as it turns out, is rather universal. Below we order the discussion according
to the sign of the curvature.

Zero modes. Before gauge fixing, the perturbations can be divided into tensors (h,,),
vectors (hyy), and scalars (hy,,d®) with respect to the transverse manifold coordinate
transformations. These modes appeared coupled to each other in Einstein’s equation, and
the standard way to obtain decoupled equations is to further split them into longitudinal and
transverse with respect to the slice covariant derivative. This decomposition is well defined,
except when the modes correspond to special eigenvalues (zero-modes) of the slice-Laplacian
V2 = VH#V . These special values are:

3Notice, however, that A(y), due to the curvature of the slice, is very different from the flat-slicing scale
factor.



o Scalar zero modes: V2 =0, —%H

e Vector zero modes: V2 = —x

where V2 and V2 are the scalar and vector covariant Laplacians of .

In the presence of these zero-modes, the standard transverse/longitudinal decomposition is
ill-defined, and one needs to proceed in a different way. To this, we decompose the fluctuations
into appropriate bases of eigen-functions of tensor, vector, and scalar Laplacians, and then we
derive the radial equations without having to decompose in longitudinal and transverse modes.
This method actually gives an alternative derivation of the decoupled equations not only for
the zero-modes but for any eigenvalue of the Laplacian, and it is presented in appendix D. In
the main text, however, we present the derivation using the standard approach.

It is worth noting that the scalar zero-mode corresponding to the eigenvalue —%n

decouples, since its coefficient in the quadratic action vanishes.?

Positive curvature spectra. For positive curvature, holographically acceptable background
solutions always have one UV boundary (where the metric (1.3) is asymptotically AdSs) and
a single IR endpoint where the scale factor shrinks to zero size and either ®(y) asymptotes a
finite value ®¢, or ®(y) — 400 [24, 32]. The latter case can occur in holographic theories
which exhibit confinement in flat space [32].

For solutions which extend to ®(y) — o0, the Schrédinger potentials are not very
different, qualitatively, from the ones obtained for flat slicing, which have discrete (and
gapped) spectra.

More interesting are solutions (called type III in [32]) which are characterized by a
regular endpoint ug near which:

ds? ~ du® + (u — ug)*(udatds”,  ®(u) ~ Py + O ((u - u0)2) , (1.11)

and which have no analog flat-sliced solutions. These are the only regular solutions when
the flat-space holographic RG flow connects to conformal fixed points [24], and this is the
case we focus on in this paper. The coordinate value ug corresponds to a regular endpoint
in the Euclidean signature, where the whole space shrinks to zero size. This becomes a
horizon in Lorentzian signature, [56].

For these solutions, the Schrodinger potential takes the universal form of an infinite
barrier in the UV (which is y — 0 in conformal coordinates),

15 K

where K is a constant depending on the dimension of the operator dual to ®, and which
can be positive or negative.’
In the IR, the potentials asymptote to universal constants at the endpoint ug (which

corresponds to y — oo in conformal coordinates):

9 9
Vy(y) — Tol’ Vi(y;m) — ok m?,  y— +o0, (1.13)

4This should extend to all non-linear orders, although we do not investigate this question here.

5If K < 0, the barrier is actually an infinite well, but it is still repulsive.
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Figure 1. Sketch of the Schrodinger potential for spin-2 modes on de Sitter slicing with radius a.
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Figure 2. Sketch of the Schrédinger potential for spin-0 modes on de Sitter slicing with radius «,
for different masses m2. The Schrédinger equation for scalar modes is to be solved for zero-energy

eigenvalue.

where « is the curvature radius of the slice metric defined in (1.4). The qualitative form
of the potential for positive curvature slicing is sketched in figure 1 for tensor modes and
figure 2 for scalar modes.

Equation (1.13) implies that, for both scalars and tensors, the mass spectrum has a
continuous component starting® at (9/4)a~2, above which there exist plane-wave-normalizable
solutions. This value is strictly above the Higuchi bound 2a~2 [57] for gravitons on de Sitter

(below which massive spin-2 modes are unstable).

Negative curvature spectra. For negative curvature, one can again find acceptable
solutions with one UV boundary and ®(y) — +oo [30]. This occurs only for holographic
confining theories. On the other hand, for theories which admit flat holographic RG flows
between two conformal fixed points, the situation at negative curvature is very different:
now there can be no IR endpoints, but instead there are two UV boundaries as © — +oo,

5Recall that for scalars the Schrodinger equation is to be solved with zero energy.
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Figure 3. Sketch of the Schrodinger potential for spin-2 modes on Anti-de Sitter slicing with radius «.

where the scalar field ® reaches one of the allowed conformal fixed points ¢4 (extrema
of the bulk potential):

ds® ~ du® + ei%guydm“dxl’ , d— Dy, u — £oo. (1.14)

In particular, there are no type-11I (regular IR endpoint) solutions for negative curvature.

In the conformal coordinate, the graviton and scalar Schrédinger potentials both take
the form of a “particle in a box”, with bounded conformal coordinate y € (0,y0) and two
universal UV-type asymptotics near the extrema:

1 1
Vs,g(y) ~ 723 y—>0, V;,g(y) ~ ( y_>y0> (115)

y y =)’
where the coefficients of the leading asymptotics are 15/4 for spin-2 and depend on the
dimensions of the operator dual to ® for spin-0. The schematic form of the potential is
illustrated in figure 3 for spin-2, while for spin-0, there are some features in the middle which
depend on the model, see section 7 for a concrete example. Clearly, in this case, the spectrum
is purely discrete. One can check stability in concrete examples by searching for eigenvalues
that violate the appropriate bounds (M? > 0 for spin-2 and the BF bound on AdS, for spin-0).

Explicit results and full spectra. We use the general formalism developed so far to
obtain the full spectra in two situations:

o Exact AdS. As a warm-up, we recover analytically the spectrum of gravitons on exact
AdSs with constant dilaton. In this case, there are no propagating scalar modes in the
metric, and only the spin-2 survives. In addition there is the standard spin-0 dilaton
fluctuation, which is decoupled from the metric obeys the Klein-Gordon equation on
AdSs. The spin-2 Schrodinger potential Vj, has a simple analytic form from which one
can obtain the spectra analytically: for dSy slices, this is a continuum starting at the
Higuchi bound; for AdSy slices, we obtain analytically a tower of discrete eigenvalues
which reproduces the known result of [58].

,10,



¢« Holographic RG flow. We perform a full numerical analysis for the case of a
polynomial bulk potential with two maxima (thus supporting two possible UV fixed
points of the dual QFT). This potential was used in [28] to study holographic RG-flows
on negative-curvature space-times. We obtain numerically the background solutions for
positive and negative curvature, from which we derive the corresponding spin-0 and
spin-2 Schrodinger potentials. We solve the Schrodinger equations numerically and
obtain the spectrum, showing that there are no normalizable eigenstates which violate
the stability bound of the curved slice manifold. In the case of positive curvature, we
find no states in the discrete spectrum.

1.2 Discussion and open problems

The results in this work give the general equations which can be used to compute the mass
spectra of spin-2 and spin-0 fluctuations around any given holographic Einstein-Dilaton
background with constant curvature slices. Moreover, we established certain generic, model-
independent features:

« For positive curvature, the continuous spectrum starts at m? = 9/4a~2 for both spin-0
and spin-2.

o For negative curvature, the spectrum is discrete.

The first point implies that for positive curvature all states in the continuous spectrum are in
the spin-0 and spin-2 principal series representations of the de Sitter group.” These are the
“heavy” fields, with m? > (9/4)H?, where H = a~! is the dS; Hubble constant.

These representations are stable; hence, our results prove in full generality that no
instabilities can appear in the continuous part of the spectrum.

Beyond these statements, some interesting questions remain open about what the general
features of the spectra are in various situations:

1. What are the general features of the spectra for positive curvature, and in particular,
can other representations of the de Sitter group appear? Can there be eigenvalues in
the complementary series, i.e. scalars with to 0 < m? < 9/4a~2 and massive gravitons
with 2a72 < m? < 9/4a72? These would still be stable perturbations, but by our
general result, can only occur as discrete eigenvalues.

Finally, are there pathological models which feature discrete representations in the
exceptional (discrete) series (spin-0 with m? = —j(j + 3) with j integer, and spin-2
with M? = 0,2)? The presence of such modes would lead to a perturbative instability,
except for the case of a massless spin-2.

We note that, for 2-derivative Einstein-dilaton theories on flat slices, one can prove that
the spectrum is non-negative in general, as long as the scalar field satisfies the null-energy
condition and under certain mild assumptions on the dilaton potential.® Therefore,
these putative instabilities, if they arise, would be specific for the curved-space theory.

"See appendix I for a review of dS4 unitary representations.
8The potential growth as ® — oo must satisfy a computability bound [12-14, 22].

— 11 —



2. The questions above are particularly interesting in the case of confining holographic
theories in general [32] and specifically Improved Holographic QCD [33] in the case of
positive curvature. These theories may exhibit phase transitions at finite curvature,
so one may learn something interesting about the transition by looking at spectra in
different phases.

3. Similar questions may be asked for negative curvature, with the additional nuance
that here one may have background solutions with two UV boundaries, like the one
considered in this paper (holographic interfaces) but also with a single boundary, in the
case where the dual theory is confining (on flat space) [30]. What kind of spectra can
arise in both cases?

The results of [65] (see also [66, 67]) are relevant in this case. It was shown that
for a generic Einstein-dilaton theory like the one used in this paper, and AdS-sliced
solutions dual to interfaces, there is a positive energy theorem, associated to a Witten-
Nester-like density constructed explicitly in [65]. This implies that regular solutions are
perturbatively and non-perturbatively stable. On the other hand, it was shown that
such a theorem does not exist for dS-sliced solutions.

4. A specific question that arises for the two-boundary case, i.e., holographic interfaces, is
how to compute spectra associated to interface operators in the holographic theories.
What is the right holographic setup for the calculation, and what kind of spectra can
arise?

5. Finally, given the fluctuation equations we derived here, one can compute not only
spectra but also holographic correlation functions on curved space-times. These require
only changing the UV boundary condition in the fluctuation (from normalizable to
non-normalizable) and contain a great deal of information beyond the spectra.

This work is organized as follows. In section 2, we display our setup and give a short review
of curved holographic RG flows. Section 3 presents the linearized Finstein’s equations, the
decomposition of the fluctuations into scalar, vector, and tensor modes; we identify the
propagating degrees of freedom and, for these, we write decoupled second-order equations.
We identify special values of the four-dimensional Laplacian eigenvalues (zero-modes) which
have to be treated separately (which we do in appendix D). In section 4, we separate variables
and decompose the perturbation equations into a one-dimensional Schréodinger equation and
four-dimensional mode equations. In section 5, we investigate the normalizability conditions
and give the conditions for mode stability. In section 6, we show, as a first example, how
to apply the formalism to recover the exact spectrum of the perturbation of exact five-
dimensional Anti-de Sitter in the absence of a bulk dilaton. In section 7 and 8, we fully
solve the spectral problem numerically for a concrete example of a polynomial bulk potential
admitting two UV fixed points for negative slice curvature and regular IR to UV for positive
slice curvature. Several technical details (including a detailed treatment of the zero modes)
can be found in the appendix.
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2 Holographic RG flows on constant curvature manifolds

We begin with the 5-dimensional Einstein-dilaton theory with the action®

1
S =5 [ @2 vV=G(R - 0,00"® - V(2)), (2.1)
2kE
where G 4p is the metric and ® is a scalar field. This is a sector of the gravitational description
of the holographic theory that contains the metric, dual to the energy-momentum tensor of
the holographic QFT, and a scalar dual to a relevant scalar operator of the holographic QFT.

The equations of motion stemming from this action are

1
R~ 5GABR(G) —7) =0, (2.2)
d
—5V (@) + 20V Ve = 0. (2.3)
Here the energy-momentum tensor is defined as
Q@ _ 1 dSMmatter
TAB = = /=G GAB - (2.4)

We are interested in boundary field theories defined on curved maximally symmetric 4-
dimensional space-times, therefore we consider the following ansatz for the background metric
and the scalar field

ds* = Gapde?da® = du® + AW, drlda
P (u,z) = Po(u),

in which u is the holographic dimension and (,, is a metric describing a 4-dimensional
maximally symmetric space-time on constant u slices. The Greek indices raised and lowered
with this metric. As a consequence of the maximal symmetry of the 4-dimensional slices,
we have:

R©

RMVPU = 12 (Cupcua - C;wCVp) ) RMV = R;(fu) = HC/W? R(O =4k, (2-7>

where  is a constant and relates to the dS/AdS length scale « as

3
=+—. 2.8
Rt (23)

In the rest of this paper, we shall restrict ourselves to d = 4, although similar results hold
for other values.
In most of the paper we use a conformal holographic coordinate y, related to u by:

du = eAWdy (2.9)
so the background metric (2.5) becomes

ds? = *4W) (dy2 + C,wdx“dx'j) . (2.10)

In this paper we use the convention in [37] for the scalar field kinetic term.
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The equations of motion for the scale factor and the scalar field in these coordinates are

6A”(y) — 5@ y) + GOV (o) — JRO =0, (211)

1 1 1
BA"(y) + 34" (y) + S92 () + 5> WV () - TR =0, (2.12)
20( (y) + 64" (y) @) (y) — > VgV (D) =0, (2.13)

where prime denotes derivative with respect to y.

2.1 Near-boundary expansion

We assume that V(®() has at least one maximum, where it can be expanded as
12
2

where £ is a length parameter which determines the size of AdSs solution at this fixed point

V(@) = — 5 —m} (@ — B)* + O (@F) (2.14)

and m3, > 0. The expansions of A(u) and ®g(u) near the maximum of the potential as
(u — 400) is, in domain-wall coordinates [24]:

Afw) = A% 7 = LREGYA TG 0 (FA-l) (2.15)
Do (u) = G- FA-u/l 4 @Aﬂﬁg#me;mu/z + 0O <e¢(2+A,)u/e) , (2.16)

where A_,R,@_ and C are integration constants, satisfying the relation
ROe24- = RpYA- (2.17)

In the equations above we have defined:

1 P — . 4
and we assume:
0<A_<2, 2< AL <4, (2.19)

The curvature RUY of the boundary UV theory is found by the Fefferman-Graham expansion
of the metric

ds? = du® + =7 (dséFT + - ) (2.20)
= du? + 7 [62’4* (agd:vo‘dacﬁ] + subleading , (2.21)

which leads to
RUV = R¢e=24- (2.22)

We can obtain a similar expansion in conformal coordinates (2.10). Using (2.9) and the
expansion of A(u) near the AdS boundary (2.15), one finds

utc 1 utc 2A_ (u+c)
y ~ le T4 m€3R(C)63( 7 +0 (e 7 ) . (2.23)
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The AdS boundary is reached as u — —oo, corresponding to y — 0. The expansion of the
scale factor and the scalar field is obtained by solving equations (2.11-2.13) asymptotically
near y = 0:

e (MY B a1 a0,
Aly) = ~log (z) 6(1+2A_) 7Y 2y
L A% (2A% — 11A_ —18)
432 (A —1)(2A_ + 1)(2A_ +3)
- %CMA_@‘YA@/ +0 (12+,5°) (2.24)
AL /A 1 (A —=T)A_

Do(y) = -y +Cp° Yo+ — mﬁ}%@@,y%ﬂ*

30~ | 0 (y2+A+’y4+A7> ’ (2.25)

R(g)@% IRISSE:

A_(A_+2) ,

Tha —nea 1Y

where ¢_ and C are constants of integration (for simplicity we have considered 1 < A_ < 2).
These expansions match those in (2.15) and (2.16) if we relate the respective integration
constants by:

c=—ALt, p_.=¢ A c=C. (2.26)

2.2 IR expansion

Away from the UV fixed point, the holographic RG flows solutions can have different form,
depending on the behavior of the potential and the sign of the slice curvature k.

For k > 0, we can either have a regular endpoint at finite ¢g, [24], or (if the potential has
exponential large-¢ asymptotics) solutions that run to ¢ — £o0 in a “controlled” way [32, 33].

For k < 0 we may still have asymptotic solutions with ¢ — £oo [30] but no regular
end-points. In contrast, the flow may have a turning point (corresponding to a field value
¢p) and reach a second asymptotic boundary [24, 28, 30].

In this work we will mostly discuss the perturbations around solutions with either regular
IR end-points (k > 0) or turning points (x < 0).

For k > 0, an IR end-point is a point where at a finite value of the v coordinate, say
u = ug, the scalar field ®¢(u) reaches a finite value, and the scalar factor eA(®) shrinks
to zero size [24]. This is a regular end-of-space in the Euclidean theory and a coordinate
horizon in the Lorentzian signature.

Suppose the IR end-point is located at ®o(ug) = o and the potential at this point

is expanded as (Po(u) — ¢p)

V =V + Vi (0 — @o(u)) + Va (90 — @o(u)® + -+, (2.27)
where Vj, V1 and V5 are constants. The expansions of the scalar field and scale factor near
the IR end-point, are given by (u — ug)

Vi 2 4
Do(u) = o — 20 (u—up)" 4+ O (u—up)”, (2.28)
— %
A(u) = log (u au0> - 7—; (u—up)* + O (u—ug)?*, (2.29)
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where we have used
R© == >0. (2.30)

Using the relation (2.9) and the expansion of A(u) in (2.29) we find

U — UQ Vo

Y=« <log Z + Tia (u—ug)>+ O ((u — u0)3)> , (2.31)

where ¢ is a constant of integration with dimension of length. Inversely
_ ¥ 3L
u—wug = cea +0O(e’a). (2.32)

From the above relations between the two coordinates, we observe that in the y-coordinate,
the IR end-point is reached as y — —oo. If we solve the equations of motion (2.11)—(2.13)
near the end of space, we obtain the following expansions

v
Do (y) = po — 20;2 ¢2(aota1y) +0 (e4a1y) , (2.33)
1
Ay) = ap + a1y — 4822 e2laotary) 4 0 (e4a1y) , (2.34)
1

where ag and a; are two new constants of integration. Knowing the dependence of u in terms
of y near the IR end-point, given in (2.32), on one hand and the expansions of A(u) and
®p(u) in (2.28) and (2.29), we can read the IR end-point expansions in the y coordinate

Vi 2y dy

Do(y) = wo — 50 € ° —|—(9(ea) , (2.35)
1, & 1 & dy
A(y):ilog?—i-ay—zgvoea +O(eo‘> ) (236>
which coincides with the equations (2.33) and (2.34) if we set

1 - a

ag=—, ¢=ae’. (2.37)
a

From (2.36) we observe that near the IR end-point, that is when y — —oo, the geometry
is given by

2 ., C & 2 2
ds* ~ e (dy? + ds3s, ) - (2.38)

3 The fluctuation equations

We now go to the main topic of the paper and consider perturbations around the solution (2.5)
and (2.6).

First, in this section, we derive the equations for the linear fluctuations around the
background solution. The perturbed metric g4p, in terms of the background metric gg)l)g

and its fluctuations hp is:

ds® = a*(y) [g%)g + hAB(y,x“)} dz’dx? (3.1)

,16,



where 91(21)9 is given in (2.10) and a(y) related to A(y) in (2.10) through

a(y) = AW (3.2)

A=

By decomposing the coordinates as x y,x"), a generic perturbation of the metric around

the background can be parameterized as
hyy =29, huy = Ay, P - (3.3)
We parametrize the scalar field fluctuation as:

= Qo(y) + x(y,2"). (3.4)

There are two ways to obtain linearized field equations. We can take the equations of
motion (2.2) and (2.3), and then linearize these equations up to the first order in fluctuations.
Alternatively, it is possible to expand the Lagrangian up to the second order of the field
fluctuations and then obtain the field equations by variation of this Lagrangian. These
methods are equivalent if one is interested in the equations of motion, but having the full
quadratic action offers some advantages if one is interested in boundary term, normalizability,
evaluating solutions on-shell, etc, which is frequently the case in holography. For this reason,
below we present both approaches (leaving the details in appropriate sections in the appendix).

We start by the first method. The components of the linearized Einstein equations are
(see appendix B for the details of calculations)

/
(uv) ho, + 3%% 4V, VPl =2V (b, + VYo + 2V, V.0
-3/( 3 / " a / o
~207* (Y, A)) + G [ — W' =3l =V, VPR VOV hy,
a/ / a// CL/ ? 3 3F/ !
—2V, VP + 6—¢ + 6( + 2() )qﬁ — 2 (a <I>0X>
a a a
2073 (a3v A7)’ h) + 2kh, =
+2a (a V, ) — kCuw(2¢ + h) + 2khy, =0, (3.5)
/
(ny) V, VYA, = V', +V, [—62(15 +2®,x + h' — V”Ay] + KA, =0, (3.6)
a a’ a 2 a
() ViVt VIV Ry =37 H 6(a + 2(@) )¢ +6V"4,

/
+40)x — 2073 (a3Bx) + k(26 —h) =0,  (3.7)

where h = h#, and everywhere in this paper V, is the covariant derivative with respect to

gfg). The linearized field equation for the scalar field ® originates from the equation (2.3):

! 1 2 ! 1
X"+ V, iy + 3%;( — §a2a%;vx -= <a3<I>6qz5> + ®h + 5<I>()h’ —d(VFA,=0. (3.8)
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We now present the quadratic action for the perturbations. Under suitable assumptions
for boundary terms (see details in appendix B.2), we find that it is given by:

1 1 1
5(2) _ W/d%dy M{a?) [ng)r{ _ Zh;/u’/h/lw -+ Z(h/)2
5

1 1
- ZFWJW — 0uxO"x — X* — §a2(9§>v X2 + 2040 x

+ Qo x 4 40X + 20 A D x — ) (VVhyu, — 8#@}

— (aPA) (Vb = V7 hy) — (a*) (24,006 + 209/ + o)

1 1
+a’k(¢* + A AP — dh — &l = 12112)}, (3.9)
where F,, = V,A, - V,A,, and
1 1 1 1
ng)ﬁl = —Zvﬂhpgvuhmf + ivuhpuvyhpu _ Qvuhvphpu + Zv#hvuh’ (3‘10)

is the quadratic part of the four dimensional Einstein-Hilbert Lagrangian. One can check
that the equations of motion (3.5)—(3.8) can be obtained by variation of (3.9) with respect
to huu, Ay, ¢ and x.

3.1 Decomposition of fluctuations

It is convenient to introduce a decomposition of the vector and tensor fields in transverse and
longitudinal components, which will end up satisfying decoupled equations:

A=V, W+ Al (3.11)
hyw = 20t + 2V (, V) E+ 2V, V5 + bl (3.12)
with
VHAL =0, (3.13)
vevl=o, (3.14)
VR =hlT =0, (3.15)

where W, E and 1 are new scalar fluctuations together with the old scalars ¢ and x.

As we will show below, the decomposition (3.11) and (3.12) are well defined, except in
the presence of certain special eigenvalues of the slice Laplacian on scalars and vectors. These
special values must be carefully treated separately, which we do in appendix D.

1. Decomposition of A,:
Taking the divergence of (3.11) and use (3.13) we obtain the relation:
V., VEW =VHA, . (3.16)

The solution of this equation exists, and is unique, up to the presence of zero eigenmodes
of the scalar Laplacian operator.!’ Barring such zero eigenmodes, then W can be found
by inverting the slice Laplacian and one can read A;-f in terms of A, from (3.11).

197f the right hand side of the equation contains zero eigenmodes, then a solution for W does not exist.
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2. Decomposition of the tensor h,,:
Similarly, there are obstructions to decomposing the tensor as in (3.12). Taking the
trace of that equation we find:

W', =h =8y +2V,V'E. (3.17)

From the above equation, it can be seen that just like the W field, to obtain E we
should consider the case in which the field E is not the zero mode of the Laplacian
operator.

By taking a divergence from (3.12) we also find that
VPhy = 2V, + 2V, VIV, E + (V,V* + &) V] (3.18)
where we have used the following identity

VIV, VL = (V. VF + r) V] (3.19)

Substituting ¢ from (3.17) into (3.18) we have

1 4
Vi = 1V = 59 (V7 4 G JE+ (V97 4 ) V] (3.20)

Again in the equation (3.18), we should consider the zero and non-zero modes of
VHT when the operator (V,V#* + k) acting on it. By taking another divergence and
using (A.4) we find that

V/'VFh = 2V, V) 4+ 2(V, V') E + 25V, VI E . (3.21)

By substituting V,V#E from (3.17) into the (3.21) we find
w4 1 p v
VvV, V¥ + 3" P = 5 (V VE 4+ K)h = VN hy) . (3.22)

Solving for ¢ provided that there is no zero mode for V,V# + %/@ operator, we can find
E from (3.17) if E does not have a zero mode of the Laplace operator.

On the other hand by substituting 1 from (3.17) into (3.21) we find E in terms of hy,

1 2 1
(vuv“ + 3H> VoVE = SV Vhyy — VT (3.23)

Knowing E, we can obtain 1 from (3.17). Knowing E and 1, the field Vf is determined
from (3.18). Finally after determining all these fields, A" can be obtained from (3.12).

According to the discussion above, to determine all the fields in the decomposition of A,
and h,,,, we should consider the cases in which W does not contain zero modes of V,V#,
the field E' does not contain the zero modes of the V,V* or (V,V* + %KZ) and VMT does not
contain the zero modes of the operator (V,V* + k).
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In the rest of this section we assume the decomposition (3.11) and (3.12) are well defined.
At the linear level, different eigenvalues of the slice Laplacian do not mix, so we can treat
separately the cases of the special scalar Laplacian eigenvalues V? = 0, —4x/3 and vector
Laplacian eigenvalue V2 = —x. This will be done in appendix D.

The equations of motion (3.5)—(3.8) after substituting the decomposition (3.11) and (3.12)
become:

o pv component (equation (3.5)):

6 ! 1 1 !
- [(W”H) ao+20)+ 5 ([0 Lo- 30,700 - B)+ 304 ] o

+V,.V, <4¢+2¢— % (a® (W E’))') - % (a* VAl - ViV ] )' (3.24)

v

TT" a TT! 2 TT _
+hlﬂj +3Eh'uy —i—(Vpr—S/i) h/“, —0

o uy component (equation (3.6)):

/
(Vv +r) (AT = V) + 9, (61// - 6%(75 + 2k (W — E') + 2<1>gx) =0. (3.25)

e yy component (equation (3.7)):
4 a’ a’ a”’ a\?
0= (VMV“ + H) v+4—y — =V, V¥ (W —E') — ( +2 () ) 0]
3 a a a a
1 1 _ ro2
— §n¢+ 39 3 (agééx) -3 ox’ - (3.26)

« Dilaton (equation (3.8)):

! 1 !
0="+ 3%;{ + Vi - SRV — 27 (a*@p0)
+ B+ 4Dy — BV, V(W — E) . (3.27)

Substituting the decompositions (3.11) and (3.12) in the action (3.9) and after some
integrating by part it will become

S _ g@TT | g@T | g()scalar (3.28)
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where

1 1
S(Q)TT = W / d455dy m{ag(y) |: - Zv#hEJZT)th(TT)pU (329)
5

_ %hgT)’h(TT)p”/ B é,{h/(};T)h(TT),LW] } :

1 1 L1
ST — 2k§/cl4xdy \/—g(o){as(y) [ — §VH(VVT)’V“(VT ) + in(vf)’(vm)/ (3.30)

1 T T w ATy v AT T ATp

=5 (VuAl = v, AL) (VrAT - VPATE) 4 kAT A
/
+ (P () A™) (V" +R) VT } :
scatar 1

G (2)scalar 572 / d*zdy \/—g(©) {a3(y) [&9“1/;8% + 129" 4 69,100 ) (3.31)

1
=69V, V! (W = B) = 0ux0"x — X = Sa*(y)x "0V (®) + 426’

+2®0x (¢' + 4 =V, V¥ (W — E')) + sV, (W — E') V* (W — E')
— 8w? + Kgp? — SHW] — 6a*(y)a' (Yo (¢ + 40 — v, V" (W — E) ) } :

3.2 The action of diffeomorphisms

Under a 5-dimensional diffeomorphisms, (§y = &5, 6x# = ), the fluctuations defined by (3.3)
and (3.4) transform as

Shyw = =V — Vb, — 26;/55@“,, (3.32)
0A, =—0,8" - ¢, (3.33)
3 =—€" — 2/55 , (3.34)
ox = -0, &0, (3.35)

Because of diffeomorphism (gauge) invariance, not all of these perturbations are dynamical.
Counting the degrees of freedom in a gravitational theory implies that the metric and
dilaton fluctuation, (hap, x), contain 16 components, out of which 5 are eliminated by gauge
transformation and another 5 can be eliminated through the non-dynamical components of
Finstein’s equations. We are left with a total of 6 degrees of freedom, which correspond to
a five dimensional massless spin-2 field plus a scalar.

We can find the transformations of the fields defined in (3.11) and (3.12) by comparing
them with the equations (3.32) and (3.33). To do this, we should decompose the gauge
transformations into the transverse and longitudinal directions as well, i.e.

(02", 8y) = (€",&°) = (€T + VI, &), VT =0. (3.36)
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According to the diffeomorphisms in (3.33) and the decomposition (3.36) we can write
A, ==& — 0,8 - 0,8 (3.37)
On the other hand using the relation (3.11) the above equation should be equal to
5A, = 0, 6W + 6A] . (3.38)

Comparing (3.37) and (3.38), we find that a gauge transformation in the transverse and
longitudinal parts could be

T _ T’ _ / 5
64, =-§, , W=-¢-¢. (3.39)
For the hy, field, we obtain from (3.36) and (3.32)
/
Shyy = —2V(, €1 — 2V, V, € — 2%55@”. (3.40)
On the other hand from the decomposition of h,, in (3.12) we obtain

14

Shyw = 2Cu 09 + 2V, V,0E + 2V, 6V, + 6l . (3.41)

By comparing (3.40) and (3.41) one can choose the following gauge transformation for the fields
/
a

Sp = _555’ SE=-¢, §VI=-¢0, on,l=0. (3.42)

3.3 The gauge-invariant fluctuation equations

In this section, we shall obtain the equations of motion after removing the zero modes
of the fields, discussed in section 3.1. To this end, we introduce some new field variables
that make the equations of motion more transparent and easy to work with. The new
variables are defined as

T _ gT T/

B, =A,-V,, (3.43)
A= — % , (3.44)
y=W-FE - X (3.45)

a'z
1 /
752¢+¢—$(a3 W-E)), (3.46)
_ad , K a (1 /4 v/
where we define z in the above equations as
ad|
=2 (3.48)

Under the gauge transformation of the original fields in equations (3.34), (3.35), (3.39)
and (3.42) it is simple to show that all the new fields defined in (3.43)—(3.47) are gauge invariant

0A =6y =67 =60=0B] =0. (3.49)

Starting with the equations of motion in (3.24)—(3.27), we get the following equations
for the gauge-invariant fluctuations (see the details in appendix C):
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e Tensor mode: , )
TT" a . T TT _
WL 43S HET 4 (vpvp _ 35) WIT 0. (3.50)

e Vector mode:
T _
Bu =0. (3.51)

I.e. there are no propagating vector modes.

e Scalar mode:

Logy 27 /
(VMV“+2/-@)>\+$<CL X) +3, (R +3X) =0. (3.55)

We should emphasis that the equations here are applicable when the dangerous zero
modes are not present. They are treated in appendix D.

4 Separation of variables

We are interested in solving the equations (3.50) and (3.53)—(3.55) that correspond to
the fields!!

F={nll 2} (4.1)

uv

We separate variables, expressing the solution as a function of the holographic coordinate
y times a function of the slice coordinate z*

Fly, ") = f(y) f(z"). (4.2)

We classify the modes according to their eigenvalues, m?, of the four dimensional Laplacian
operator of the slice geometry!'?

(V, VY +0k) f(zH) = m2f(zH), (4.3)

where o is a number which depends on the mode (o = 0,% for scalar and graviton mode
respectively) and  is the four dimensional slice curvature. Note that in the case where the
slices are the flat Minkowski space-time (kx = 0) we have

VoV f(at) = m*f(a), (4.4)

where the zero and non-zero eigenvalues of m? correspond to the massless and massive
particles [37].

"The other scalar fields can be found after obtaining X and ~.
12We are using the mostly plus metric convention in Minkowski signature and therefore m? corresponds to
—p? in flat space.
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4.1 Tensor mode

To study the 4-dimensional graviton mode, we begin with the Fierz-Pauli action

1 M? .
Srp = _ﬁ/d%\/ -9 (R(g —2A - 7(huvhu hQ)) ’ (4.5)

where M is the mass of the graviton and h,, denotes the fluctuation around the background
metric g, = g,(PV) + hy,. Expanding this action to quadratic order in fluctuations around the
metric appropriate to the cosmological constant that solves the leading equations of motion

(Minkowski, De Sitter or Anti de Sitter) we find (see details of the expansions in appendix B)

S = / dizy/—g© { - fVAhWVAhW + V”hWVAh“
- fv W7, b+ v hV*h + ngk)yph“”hkmr §R§P) (P#AR"> = hho)
1
s > 1 ()N e N4 _72 _TaAar2 w12 3
SR (4h by = gh ) 4M (Pyuh = ?) + O(h )}, (4.6)

where we have

RO

A
wip T g

(Cuaop — CupGon) . RS =AGw, RO =4A. (4.7)

We impose the transverse-traceless conditions (h,, = hf;;r ).

T _ TTu _
verTT =0, BITr =), (4.8)
then the action (4.6) is
2 o (2 v
Sep= 113 / dizy/—g© {V“hTTV nTTe 4 (3A+M2> WL pTTr } . (49

Therefore, the linearized equation of motion for hEVT is given by
2
<v,,vp —3A- M2> hiy =0. (4.10)

The cosmological constant is related to the slice curvature easily by comparing equations (4.7)
with (2.7) or by solving the background equation of motion

1
Rﬁ}—i(R() 20) o) =0 — RO = RO =48 — A =&, (4.11)
where we have used equation (2.7). Therefore, equation (4.10) translates to
2
(vpvp - 3R M2) hit(z)=0. (4.12)

We now return to our 5-dimensional equation for the tensor mode in (3.50)

/! / !’ 2
B (y,x>+3%hﬁf (y,2) + (vpvp— 3,.;) WIT (y, ) = 0. (4.13)
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We separate variables in (4.13) as follows
h (y,@) = h(y)hy) (), (4.14)

where h?f (x) is chosen to satisfy the eigenvalue equation (4.12) where M? is the eigenvalue.
In that sense, M? will be interpreted as the mass? of the 4-dimensional tensor modes.
We insert (4.14) into equation (4.12) and obtain the following equation for h(y)

/
W' (y) + 3%}/@) + M2h(y) = 0. (4.15)

This is the same equation we obtain in the flat slice case, but now, the solution for the
scale factor is affected by the slice curvature and M? are the eigenvalues of the Laplacian
in curved space (4.12).

If we introduce the function B(y) and the wave-function v4(y) as

Uoly) = hly)e aly) = e 3P, (4.16)
then (4.15) becomes a Schrodinger-like equation for ¢4(y)

~Ug () + Va()woy(y) = M>y(y), (4.17)
Vy(y) = B%(y) = B"(y) . (4.18)

4.2 Scalar mode

For scalar fields we have equations (3.53)—(3.55). When x = 0 then equation (3.55) can
be solved for X\ alone and then substituting into the (3.54) we can determine y. When
x # 0 then we can solve equation (3.55) for v and substitute into the (3.54) to obtain an
equation for A only

4 2 / !
((vuv” + 3m> - "g) ((vyv" +2k) A+ N 4 (3‘; + 22) /\’> (4.19)
2 ! 4 2 !
+% (WV“ + 3n) A TEEN =0,

This equation can be equivalently written as

/ / 92 / 2
Nt (3“ +2z) N ( © 2) A] (4.20)
a z zZa

4 \? 4
<V,N“ + Sn) A+ (VMV” + 35)

3 3
2 [A”+ SV %A} ~0.
9 a 3

This equation shows that we can use the separation of variables to solve the equations of
motion. We now introduce the eigenfunctions of the Laplacian as

V. VY (z) = m*Yo(z), (4.21)
and expand the two scalars in a series

Ay 2) =S M) Vil@), @) = m(y)Yin(2), (4.22)

m
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The prime in the sum means that we do not include the special eigenvalues of the slice
Laplacian (zero modes) that we identified in section 3.1, namely m? = 0 and m? = —(4/3)k.
For these values, the scalar-vector-tensor decomposition we used is ill-defined and we have
to resort to another method (described in detailed in appendix D) to obtain decoupled
equations.™ Excluding the zero modes from the series and dedicating to them a separate
treatment is allowed because, at the linear level, modes corresponding to different eigenvalues
do not couple to each other.

We now insert (4.22) and (4.21) into (3.53)—(3.55) to obtain an infinite set of radial
systems for the coefficients, each for each nontrivial eigenvalue m:

4 a’ 22a’ K
<m2 + 3li> <)\m — avm) + 30 ()\;n + 3'7m) =0, (4'23)
a’ 2 2
(m? + 26) A + A + (3@ + 2Z> N+ 55— m = 0. (4.24)
along with
DX W VI (3 Y =0 4.25

We now solve equation (4.23) for ~,, and obtain

3(22d' N, + a (4K + 3m?) A\y)

= — 4.26
m a' (k2% — 12k — 9m?) (4.26)
Substituting the above result into (4.24) or (4.25) gives an equation for A,
A+ AN, + By, =0, (4.27)
with the following coefficients
a 2 3m? + 4k
A=3—+6— 4.28
e 2 (9m? + 12k — k22)’ (4.28)
2kaz’ 3m*+4
B =m?+ 2k + 2L me Ak (4.29)

a'z (9m? + 12k — k2?)
To write the equation (4.27) as a Schrodinger-like equation we define
3,2

() — az bs(y) = e VOm2 + 125 A (y) . (4.30)

I9m2 + 12k — k22’

Therefore equation (4.27) for A, (y) becomes the following equation for s (y)

s (y) = Vs()s(y) =0, (4.31)
with the effective potential
1 1
Vily) = =~ (1 + ?f;,v’) + Zu’Q + v —m? (4.32)

As shown in appendix D, treating the zero modes correctly one arrives at the same equa-
tion, (4.31-4.32), with m? replaced by zero or —(4/3)k.

13This eventually leads to the same equations which one would obtain by substituting the special values of
m? in the final result we will arrive at in this section, but the intermediate steps are invalid.

— 26 —



5 Normalizability and stability of tensor and scalar fluctuations

If we substitute the separation of variables introduced in (4.2) into the corresponding actions

for hfz ,A and v, they separate into a y and x* dependent parts. The normalizability

conditions are defined by demanding that the integrals of the kinetic terms over the y
coordinate be finite, which signifies that the modes propagate in the boundary directions.
In the following, we shall perform these steps for the various fields.

5.1 Normalizability of tensor mode

To obtain the normalization condition for tensor mode, we insert (4.14) into the action (3.29)

SO = oty [ ey /=0 o) — RV @97 ()
— WP @ (@) - Sk BT @I @)} 6

where by integration by parts of (h/(y))? in the second term, and using equation (4.15),
we obtain

§E@TT _ 52 / dy/ —g© a® ()2 (y / 4z {V“hTT (2)V,,hTTP7 (2) (5.2)
2
- (3/1 + M2) hhr (J;)hTT“”(:c)} .
The above action indicates that the tensor modes are normalizable provided that

[ dua i) < oo (5.3)

We should emphasize that the action (5.2) gives equation (4.12) upon variation with respect
to hgyT (z).

In terms of the wave function ¢4(y) which is defined in (4.16), the normalizability
condition (5.3) reads as

[ i) < oo. (5.4)

5.2 Normalizability of scalar mode

To find the action of A(y,z), we substitute the new variables from (3.44)—(3.47) into the
action (3.31), and obtain the corresponding action for A and ~ scalar fields

S k:5 /d4xdy \/ — 9 —s ( (a 22 + ka ) (Ou\)?
— 9ka’ (8 v)? + 18kad’ Op Aty — 24k2aa' \y + 12k (/m2 + a’2z2) A2
+ k%a’%? (12 - 22) —3d? 2N (3X + 2k7y) ) (5.5)

By substituting the relations in (4.22) into the action (5.5) and using 7, (y) in (4.26)
and equation (4.27), we find the action of A as follow

= g [ WF@NW) [ dey =00 (0n@)? s mYu@?) . (56)
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where

Fly) = — 3a2 (4k +3m?) 22 [ 27rad'2"” (k2% + 12k + 9m?)
Ve a (12K + 9m? — k22)* 12K 4+ 9m? — K22
2
+ ad’ (12/{ +9m? — KZZ) + 9kaza' 2" + 3kz72' (9@’2 - 2/{a2) ) . (5.7)
This action works for all values of m? except at m? = —4x/3 which is identically zero. However,

as we have already supposed, the scalar field does not contain the zero mode of [1+ %Ii.
Upon the definitions in (4.30), the action (5.6) changes to

S = g [ it ) [atn/=gO (0u@)? s mYu@?) . G8)

In this equation H(y) is given by
3ke? 9 2ka  9d’
H — _1 _ " 2 / _ < ) />
() 2a3 (4k 4+ 3m?) (v e 3¢ " a )’
9re? (e” (3 (2K +m?) a? + /432@2) +2a3a* + na5>
B 2a° (4k + 3m?) (a3 + ke?) ’

(5.9)
where v is defined in (4.30). Therefore, the normalization condition for the scalar mode is

/dy V2 H(y) < . (5.10)

We should note that there is a special case where ®), = 0. This corresponds to the exact AdSs
solution. The equations of motion for fluctuating modes and the normalization conditions
for this very special case, are given in section 6 and appendix E.

5.3 The stability of tensor and scalar fluctuations

In this section, we study the stability of our background solutions under small field fluctuations.
We already showed that in general, the scalar and graviton modes satisfy the following
Laplace equations on the 4-dimensional slices

V,.VHY () = m*Y (z), (vpv” — 2/-@) hid(z) = MR (z). (5.11)

We can unify the above relations into a unique relation depending on the sign of the slice’s
curvature [59]

1 1 (,,2 _ g) sh dS
(VMV“ _ 3‘%) oh =4 _k2sh Minkowski (5.12)
H(2-4)oh  Ads

where s is the spin of the fluctuations (s = 0 for scalar and s = 2 for graviton) and éh =Y, hg{ .
Moreover, « is the curvature radius of (A)dS slices defined in (2.8). In (5.12) the parameter
v is related to the mass of the fields as

1
Vzi\/(d—1)2+4m2a2, m=m,M. (5.13)
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where M is the graviton masses, whereas m are the scalar masses. The stability of the
solutions under the field fluctuations is mainly affected by the presence of either a “tachyonic”
or “ghost” mode:

e Tachyonic stability. The criteria for the modes to be tachyon-stable in maximally
symmetric four dimensional geometries are as follows [59]

|Re(v)| < 3 ds
The mode is tachyon-stable if< k2 <0  Minkowski, (5.14)
Re(v) #0 AdS

Independent of the spin, the above relations translate in terms of the mass to the
following equation

m?>0 dS
The mode is tachyon-stable if ¢ m? > 0 Minkowsksi , (5.15)
m? > %/@ AdS

where in the case of AdS space-time (k < 0), the above relation is the well-known BF
bound.

In the dS™ space-time, in order to have a positive norm state for graviton modes, the
mass squared should satisfy

2
M?*o?>2 = M?*> 3 (5.16)

which is known as the Higuchi bound [57].

¢ Ghost stability. Ghost instability corresponds to a mode with a wrong sign of the
kinetic term. Concerning the actions corresponding to different modes, i.e. relation (5.2)
for graviton and (5.8) for scalar we observe that the kinetic terms have the correct sign.
There is no ghost instability in any one of these modes.

6 A warmup: the mass spectrum on an exact AdS space-time

In this section, as a warm-up, we shall find the mass spectrum of the field fluctuations at
a conformal fixed point, that is an extremum of the potential at which ®y = const. In this

case, the scalar potential effectively is,'*

d(d—1)

V((I)O) = - 02 )

(6.1)

and the corresponding background solution is a globally AdS;.1 space-time with the length
scale /.

Y Note that we still have aéOV = —2m3.

— 29 —



In the ansatz (2.5), the scale factor for a d-dimensional Minkowski and A(dS) slices
is given by

exp (—4F9) —00 < u < 400 Mgy
A = { L eosh (fe) —co<u<+4oo  AdSy (6.2)
ésinh (“'{C) —c<u < +o00 dSq(S%)

where c is an integration constant and « is the curvature length scale of the d-dimensional
slices defined in (2.8).

In conformal coordinates, defined in (2.10), the conformal factor is (the details of the
calculations in this section are given in appendix E)

E(y o) Yo <y < +00 Mg
2
a(y) = W = e3P0 = £ (sin() ) yo<y<wyo+amr  AdSy , (6.3)
L (smh( —%03) - o< y < 130 dSy(S%)

where 7y is a constant of integration.

o For flat slices, the limit v — —oo corresponds to y — yo and this is the boundary of
AdS411. On the other hand, the other boundary u — 400 corresponds to y — +00.

e For AdS slices, two boundaries at © — 0o map to y = yg and y = yo + 7.

o For dS slices, there is a boundary at u — 400 or y = y¢ and space ends at u = —c or
Yy — —00.
6.1 Gravitons

In section 4.1 we found that the graviton mode obeys a Schrodinger-like equation as

3 a/2 3 a//

~Ug(y) + VoW)vg(y) = M*Uy(y),  Vyly)=B® = B" ="~ +_—, (6.4)

4a2  2a

where B(y) now is given by (6.3). In what follows, we solve the equation above, in order
to read the mass spectrum of the graviton modes:

¢ Minkowski slices

From the conformal factor in (6.3), the potential in Schrodinger equation (6.4) becomes (in
the rest of this section we fix yo = 0 for simplicity)

15
Vg(y) = @a (65)
and the solution of the wave function is
we(y) = vy (C1 Jao(My) + C3 Ya(My)), (6.6)

where Jo and Y5 are the first and second kinds of the Bessel functions respectively.
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Vo) 1 W

Figure 4. (a): the potential (6.10) for dS slices with o = 1. V(y) — 2 when y — —oco. The mass
spectrum should be continuous and a mass gap exists at M = % (b): solutions of 1)4(y) for dS slices
with o = 1 near the mass gap at M = 3/2. Only above the mass gap does a continuous spectrum of
the normalizable modes exist.

To have a vev solution, we should set the source to zero by taking Co = 0 at y = 0
boundary. The wave function becomes

Yy(y) = C1/y Jo(My), (6.7)

which is a finite function in the range 0 < y < co. Therefore, when the slices are flat, the
graviton has a continuous mass spectrum and M? > 0 because of the tachyonic stability
condition found in (5.15). This should follow the normalization condition (5.4)

+oco 2
[l =10 [ ayy (ar)? = 7

We should note that for the massless graviton mode M = 0, the wave function is

he(y) = Cry? + Coy™ 2, (6.9)

(6.8)

which indicates that (6.4) does not contain a normalizable massless mode of the graviton
for flat slices.

The mass spectrum we found above, was expected since the potential in (6.5) diverges
when y — 0 and V; — 0 as y — +o00, indicating a continuous mass spectrum with M 2>0.

e dS slices

From equation (6.3), the potential (6.4) for dS slices is

3 )
V. =—(3+— . 6.10

9(v) 402 ( * sinh%i)) ( )
This potential is shown in figure 4(a). The behavior of this potential near the UV boundary
and IR end-point is

15 1
Ve () = e At 0@, y—0, (6.11)
IR 9 15 ay/a ay/o
Vity) = 3 + 2" +0(eV), y — —00. (6.12)
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We observe that we should have a continuous mass spectrum but with a mass gap above
M? = 9/4a?. We should emphasis that the mass gap is above the Higuchi bound, M?a? > 2.

We now solve equation (6.4) when the mass is above or below the mass gap (the details
are in appendix E.1):

o When the mass is above the mass gap, near the UV boundary (y — 0) the solution
behaves as 14(y) ~ y®/?, if we impose the source-free boundary condition. In the IR

limit (y — —oo) the wave function has a periodic behavior ¢y(y) ~ sin (/M? — % y).
For masses above the mass gap, the wave function is finite and normalizable.

e When the mass is below the mass gap, we know from elementary quantum mechanics
that there is no normalizable solution and therefore, no propagating states.

For illustration, we have depicted the wave functions near the mass gap for four different
values of masses in figure 4(b). For values M?a? < 9/4 the wave function diverges as y — —oco
(end of space). Above the mass gap, the wave function is normalizable, it has a continues mass
spectrum due to the shape of the potential and at large values of y, has a periodic behavior.

e AdS slices
The potential for AdS slices becomes (see figure 5)
3 1
V, =———(3—-5—~< ). 6.13
9(¥) 402 ( sin2(g)> (6.13)

The behavior of V,(y) near the UV boundaries is given by

15 1
Uv .y _ - 1
v, (3/)_4y2 a2+(9<y>, y— 0,
15 1
uv - . 1
Vo () = iy —an)? aZ " o ((y ) ) : y—ar. (6.14)

This is a well-shaped potential with a minimum at V(%) = % Therefore, one expects to

have a discrete mass spectrum with a mass gap that is larger than % To show this, we

solve the Schrodinger equation (6.4) which gives rise to

Py(y) = sin'/? (y) [ClPS2 <cos y) + CrQ? <cos y)] ) (6.15)
o a a
where P2 and Q? are the associated Legendre functions with

S
5= % (\/4a2M2 +9— 1) . s>2. (6.16)

To have a regular solution at the y = 0 boundary, we should impose the vev boundary
conditions and put Co = 0. The regularity of the wave function (6.15) on the other boundary
at y = ar implies a discrete mass spectrum through (see for example [58] for the same result)

1
2 _ 2
M f@{@s—&—l) —9], s>2, seN. (6.17)
The minimum allowed value for the mass is above the mass gap i.e.
4 3
M2 == 5 2 6.18
min Oé2 > 2@2 ( )
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Figure 5. Potential for AdS slice with o = 1, The minimum of the potential is in (7, %), and it’s
domain is between (0,7) and goes to infinity at both ends. This potential gives a discrete mass
spectrum with a positive mass gap.

6.2 Scalars

Regarding the mass spectrum of the scalar fields, we note that, as we show in appendix E.2,
when the space-time is globally AdS, the gauge invariant scalars v and A are ill-defined. We
define two new scalar fields y and w as in (E.27).

For the scalar field w, we find equations in (E.26) where after separating variables as
w(y,z) = &(z)w(y), we obtain

a?

wly) = <, (vuv“ + gfe) (z) =0, (6.19)

Such a scalar field as was shown in section 5.2 does not have a kinetic term and therefore
does not appear in the dynamics. Moreover, this is not an allowed mode because as we
showed in section 3.1, with the decomposition of fluctuations that we have used, the scalar
field does not contain the zero mode of operator V,V# 4 %H.

The equation of motion for y is given by (E.28). After separating variables as x(y,x) =
X(z)x(y) and assuming

VR (@) = m? £(x) (6.20)

the equation for x(y) is given by (E.31) i.e.

/

X(0) 435X () + (3~ *()m3) x(v) = 0. (6.21)

Redefining, 9s(y) = X(y)a(y)%, we arrive at

—l (y) + Va(y) s (y) = m3abs(y) (6.22)
3 12 3 "
Vily) = {05 4+ 5 a()m (6.23)
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Considering the conformal factor in (6.3) for maximally symmetric spaces, the scalar potential

above is
15+:yfjm§) My
V() = § " (9 - W) AdSa (6.24)
L <9 + W) dS4(S%)

The behavior of the scalar potential and solution of Schrodinger equation is very similar to
the graviton potential in subsection (6.1). The details are as follows:

« Minkowski slices

The wave function is given by

o(y) = V5 (C1 Iy (myy) + Ca Y(myy) ) (6.25)

v=/4+ 2m3. (6.26)

where

e dS slices
In dS case the IR behavior of the potential does not change, therefore the mass gap
still remains at mi = 9/4a2. The mass spectrum above this mass gap is continuous.
e AdS slices

In AdS space however, there is a constant shift in the minimum of the potential by
4€2m§,. The wave function becomes

Ps(y) = sin'/? <y> [Cl P! <cos ‘Z) +Cr QY (cos Z)] , (6.27)

(0}

where
s:%(\/4a2m§+9—1) . t=/4+02m3. (6.28)

Since in associated Legendre functions s > ¢, we should have

Ezm?{, +4 Ezm% +2
1 + 2 :
@ @

m? > (6.29)

7 The mass spectrum on AdS-sliced solution

In this section, we examine the mass spectrum of the modes corresponding to fluctuations
around non-trivial flow solutions with negative curvature slices. In particular, we consider
solutions that describe conformal interfaces and therefore have two boundaries. In this section,
we will use a concrete example to calculate the spectra numerically, but our comments are
general and applicable to other similar cases.
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V(®,) 25"

Figure 6. The bulk scalar potential (7.1) plotted for specific values ¢;, = 1,/r = 0.94,A;, = 1.6
and Ag = 1.1, The minimum is located at &y = 1 = 3.05 There are two maxima at &g = 0 and
(I)() = Y2 = 5.89.

We shall use the following bulk scalar potential, whose holographic RG flows were
studied in [28]

12 Ap(Ag—4)

_ 1= (@1+@2)AL(AL—4)®3+ Ar(Ap —4)
& 5

a3 3
303 012 203 0192

V(®g) = o (7.1)

where 1 and @ are defined as

60%\/2(6 — () AL(AL — 1) (7.2)

\/E%%AL(AL - 4) - E%AR(AR — 4) (Z%AL(AL — 4) + K%AR(AR - 4))

64/2(/% —41) 73)

Y2 = .
VBALAL —4) — GAR(AR — 1)

For our numerical investigations we shall use the specific values, 5, =1, g = 0.94, A, = 1.6
and Ag = 1.1, (see figure 6).!5 The potential (7.1) has one minimum located at ®¢ = o =
3.05 and two maxima at &y = 0 and &g = 2 = 5.89.

7.1 UVy — UVpg solutions

A subset of solutions for equations of motion (2.11)—(2.13) with the negative potential in (7.1)
includes those which are stretched between two UV boundaries denoted by UVy, and UVg.
These solutions have at least one A-bounce, which is defined as a point where dA(y)/dy =0
and signals a minimum of the scale factor. Moreover, each solution may have an -bounce
where d®¢(y)/dy = 0 but dA(y)/dy # 0.

In the rest of the paper, we shall study a solution without a ¢-bounce for simplicity.'6
As an example of such a solution we have depicted A(y) and ®o(y) in figures 7(a) and 7(b).

15We do not expect qualitative changes for other values of the parameters in the bulk scalar potential.
16The presence of p-bounces is expected to provide features in the two-point function and shall be studied
in a future publication.
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Figure 7. (a): the scale factor A(y) for a UVy — UVp solution. b: ®q(y) is limited between two
maxima of the potential in figure 6. (c): the space of all solutions which are stretched between UV,
and UVg and have one A bounce. Each point is one solution and the solution in figure (a) or (b) is
the black dot on this map. The green boundary represents the points where solutions are fragmented
into a flat and a UV-IR solution. On the red boundary, we have a vev-driven solution.

The space of all such solutions is parameterized by two real initial conditions, (¢g,So),
where ¢ is the position of the A-bounce in field space, and Sy is the value of @ in the same
position. This space is given by the orange region in figure 7(c). In this same map, the green
boundary represents the points where UV -UVg solutions are fragmented into a flat and a
UV-IR solution i.e. Ry, asymptotes to a finite value and Rr — 0, [28]. On the red boundary
however, we have a vev-driven solution where R, — —oo and Ry obtains a finite value [28].

For each QFT on the UV boundaries,!” there are two parameters. RYY which corresponds
to the curvature of the boundary metric and is defined by (2.22), and ¢_ which is the source

"These QFTs correspond to the dual theories on the left and right sides of the conformal interface.
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Figure 8. (a): the graviton potential (4.18) for the specific solution of figure 7(a). (b): the first five
normalizable solutions of the graviton modes. The vertical dashed lines show the locations of the left
and right boundaries.

of the dual operator that couples to the scalar field in the bulk. These parameters can
be read from the UV expansions of the fields in the u (Fefferman-Graham) coordinate,
i.e. equations (2.15) and (2.16). Overall, for each solution, we have three dimensionless
parameters Ry, Rp defined in (2.17) and the ratio of the couplings £

(pL)l/AL

R)1/AR

§:(so

(7.4)

We have reviewed the numerical results for the above QFT data in appendix F.

7.2 Graviton modes

By solving equation (4.17) we obtain the mass spectrum of the normalizable solutions of
the graviton modes. For example, for the specific solution in figures 7(a) and 7(b), the
potential in the Schrodinger-like equation (4.18) is given in figure 8(a). This is a well-shaped
potential with a minimum Vi, = 1.63 at y = 9.94 therefore we expect to have a discrete
mass spectrum with a mass gap. To see this, we present the first five normalizable solutions
hg(y) in figure 8(b), where their normalization condition is given by (5.4).

One can obtain the expansion of the graviton potential (4.18) near the UV boundary
(here we have considered that one of the boundaries is at y = 0) by using the expansion (2.24)

(A_—2)A2

15 —araa ) YLy T Oyt ), 0<A_ <}
A_—2)A2
VlJ(y) = @ + _ﬁsﬂ_ y2A_72 + O(yO) % < A <1. (7'5)
HREYAT + 02 1<A_ <2

The leading term for the potential in (7.5) always behaves as y%, so for every UV, —UVg
solution, the graviton potential diverges at both boundaries. Consequently, we should expect
a discrete mass spectrum for the gravitons.
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Figure 9. (a), (b): the mass spectrum of the first five graviton modes in terms of dimensionless
curvatures for solutions on the dashed line in map 7(c).
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Figure 10. The physical masses as functions of the couplings ¢ defined in (7.4).

Knowing the expansion of the potential (7.5), the wave function of the graviton modes
can be computed by solving (4.17). Near y = 0, the wave function is

Yo(y) = (cry®? 4+ )+ (cy ™2 +--1), (7.6)

where ¢; and co are constants of integration. To have a vev mode, we should choose ¢y = 0.
The value of the ¢; will be fixed by the normalization condition, once we find the solution
for the whole range of the y coordinate.

To find out the overall behavior of the mass spectrum for UV}, — UVy solutions, we
consider a fixed value of @y and all possible values of Sy (that is, all solutions on the dashed
line in figure 7(c)). The values of M? for the first five normalizable modes are shown in
figures (9(a)) and (9(b)) as a function of the dimensionless curvatures. In both plots, the
mass square for each mode monotonically decreases between two finite values by decreasing
the dimensionless curvatures. It should be noted that there is a positive lower bound for
all the graviton mass spectrum (M? > 3.44).

We should note that the physical mass of each mode should be measured in units of the
QFT length scale. The QFT length scale in flat space is the relevant coupling. In a curved
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Parameter | green boundary | red boundary figure

RrL finite —00 19(a)

o finite 0 19(b)

RYV finite finite 21(a)

Rr 0 finite 20(a)

oF +o0 finite 20(b)
M?a? finite finite 9(a), 9(b)

Table 1. QFT data (the dimensionless curvature, coupling and physical mass of gravitons) as one
approaches the green and red boundaries of the map 7(c).

space, it has two length scales. The extra length scale is the curvature of the manifold on
which the QFT is living in the case of a single boundary solution. Therefore, in the single
boundary case,'® the physical mass of the theory defined on curvature RVV is given by

M2 —_ MQOéQRUV

phys (77)

where M is the mass which is appeared in (4.17) and « is the fiducial length scale of the
slice geometry. If we want to compute the masses in units of the space-time curvature
then the relevant ratio is

2
Mphys — M2a2 = 1

e (7.8)

Indeed, M« gives masses in units of the space-time curvature.

In the case of two-boundary solutions that describe conformal interfaces, the two bound-
aries have different physical curvatures R[L]}I/%. Therefore, the only sensible way to define a
dimensionless spectrum is via the dimensionless combination M?2a?.

To show the behavior of the physical mass spectrum as a function of QFT boundary
data, we present figures 9(a) and 9(b). In these figures the horizontal axes have parameters
that parameterize the path in solution space indicated by a dashed black line in figure 7(c).
The right side of the plots corresponds to the red boundary in 7(c) while the left side of the
plots corresponds to the green boundary in 7(c). The information of the physical parameters
near the green and red boundaries are summarized in the table 1 by using the data of the
figures in appendix F.

The behavior of the physical masses as a function of the ratio of the couplings, &, is
depicted in figure (10).

7.3 Scalar modes

For the scalar field, we solve equation (4.31) with the potential (4.32). Since the potential
depends on the mass, for each mode there is a different potential. The first five potential
profiles, and their corresponding wave functions 1,(y) are depicted in figures 11(a) and 11(b)
respectively. We have imposed the normalization condition (5.10) to draw the wave functions.
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Figure 11. (a) Potentials and (b) wave functions for the first five normalizable modes of the scalar
field fluctuations.
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Figure 12. (a), (b): the mass of the first five scalar modes in terms of dimensionless curvatures.

The expansion of the scalar potential near the UV boundaries is (see appendix G for
more details)

1 Vi 2224 Oy LA <1

Vi) = L ea —s)ea gy 4" ") 7 < . (19)
4y Va + O(y?2-72) l<A_<3
Vo +O(y*22-) S<A_<2

with V; and V5 are given in (G.9) and (G.10).

As figure 11(a) shows, all the scalar potentials, asymptote to —oo on the left boundary
and to +oo on the right boundary. The reason comes back to the leading term in the
expansion (7.9), and the fact that in our numerical calculations AL = 1.6 and A% = 1.1.

8Gingle boundary solutions with negative constant curvature slices exist only if ® runs off to the boundaries
of field space. Such solutions were studied in [30].
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Figure 13. The behavior of the physical mass of the scalar field fluctuations as functions of the
couplings £ defined in (7.4).

The expansion of the solution of the Schrodinger equation for the scalar modes, (4.31),
near the UV boundary is

SLA

%(y):cl(yg‘A* + )+ ey +-), (7.10)

where ¢; and co are the two constants of integration.

We should note that the normalization condition for the scalar A is given by (5.10)
and we have checked this condition for different scalar modes. Integration on y shows a
finite value for each mode.

To show the behavior of the mass spectrum for scalar modes as functions of boundary
QFT data, we present figures 12(a) and 12(b).

The numerical results show that the scalar field mass spectrum behaves similarly to the
tensor mode spectrum. We also present the mass spectrum of the gravitons and scalars in
the same plot in figures 14(a) and 14(b) for comparison.

As it can be seen in both figures, for all the values of Ry, and Rp, the mass squared of
the graviton for the first mode is smaller than that of the scalar field.

We should note that the minimum value for the scalar mass is at m? = 8.00. For the
second mode as we move to the right of the plots, for some values of dimensionless curvature,
the mass square of the graviton falls so that the curve for the graviton mass squared crosses
the one for the scalar and after that, it lies below the scalar mass squared. For higher modes,
the graviton mass squared always lies above the scalar one.

This is an interesting effect as for Minkowski flows, it has been observed that the lightest
graviton mass is always heavier than the lightest scalar mass, [12-14]. Although, there is
no general proof, this observation was made by calculating many different spectra. On
the other hand, we observed here that for non-zero negative curvature the lowest tensor
mode can become lighter than the scalar mode. The implications of this for theories of
composite gravity may be interesting.

8 The mass spectrum on dS-sliced solution

In this section, we shall consider the mass spectra in holographic theories on positive constant
curvature manifolds. Such manifolds include the spheres in the Euclidean case and de
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Figure 15. A(y) and ®¢(y) for a regular UV to IR solution. The IR end-point is located at &g =5
as y — —oo. The UV boundaries is located at the maximum of the potential &5 = 5.89.

Sitter space in Minkowski signature. We shall consider a concrete example where we do our
numerical calculations, but the general case is similar.

We consider the same bulk potential given in equation (7.1). The only regular solutions
are those that have a UV boundary on one side and an IR end-point on the other side. As
an example of this solution we have depicted A(y) and ®o(y) in figures 15(a) and 15(b).
In these figure the IR-endpoint is located at &y = 5 as y — —oco. The UV boundary is at
the maxima of the potential at &3 = 5.89.

Figure 16 shows the relation between the dimensionless curvature of the UV boundary
(R) and the location of the IR end-point (¢g) for solutions asymptoting to the maximum
at &g = 0. In this figure, the IR end-point is changing between the maximum of the bulk
potential at &g = 0 and its minimum at &g = 3.05. When the IR end-point approaches the
minimum of the potential we have a flat solution (RVY — 0).
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Figure 16. Dimensionless curvature of the UV boundary vs the position of the IR end-point ¢g. The
data belong to the solutions with IR end-points between zero and minimum of the potential.

8.1 Graviton modes

Knowing the background solution, we can analyze the mass spectrum of the graviton and
scalar field fluctuations.

For regular solutions that stretch between a UV boundary and an IR end-point, the
expansion of the potential and the wave function near the UV boundary is the same as in
the AdS case. For the potential we have (7.5)

(A—2)A2

| A T RO, 0<A- <3
A_—2)A? -
Vi) = 55+~ ¢ A2+ 000) p<A-<1, (B
bR o) t<a <

and the expansion of the wave function is given by (7.6)
Voly) = (1y®? 4+ )+ (g™ 4 ), (8.2)

where ¢; and co are the two constants of integration. To have a normalizable mode, we
should choose c5 = 0.

Figure 17 shows the effective graviton potential (4.18) corresponding to five solutions
with different IR end-points corresponding to different values of the dimensionless curvature
R of the dual QFT. All these potentials have the same behavior near the IR end-point
(y — —o0). To see this, using the expansion of A(y) in (2.36), one can find the expansion
of the potential in the Schrodinger-like equation i.e.

9 5 &

2y 4y
W—TGEX/OQO‘ +O(€0‘), y—>—OO (83)

Vyly) =

where ¢ and Vj are the two constants appearing in the expansion of the y coordinate in
terms of u coordinate on (2.31) and the expansion of the potential near the IR end-point, i.e.
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Figure 17. The potential (4.18) of the graviton corresponding to five different values of IR end-point.
The IR value of all the potentials tends to (here we have considered a = 1/v/2).

relation (2.27). Since Vj < 0, the next to leading term increases the potential V. Therefore
y — —oo is always a local minimum of the potential V;. In our case here the potential V
turns out to be monotonic as the numerical results show. This suggests a mass gap

9
M?2> "
~ 4a2

We do not know however if this is true in the general case for other bulk potentials.

The solutions of the Schrédinger-like equation (4.17) near the IR end-point when M? >
9/4a? are given as a linear combination of an ingoing and outgoing waves. On the other
hand they are exponentially growing or decreasing when M? < 9/4a? i.e.

1
by(y) = éreVa + g’ + -, v= im' (8.4)
We have the following properties for the graviton mass spectrum:

o« M?> %
The modes are normalizable. The mass spectrum is continuous and all modes above
the mass gap are in the spin-two principal series of SO(1,4). We refer to appendix I
for basic information on the different types of representations of the SO(1,4) isometry

group of the 4-dimensional de Sitter space.

VRS
The modes are non-normalizable. The upper bound is the mass gap and the lower
bound is the Higuchi bound (5.16). These modes belong the spin-two complementary

series.
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s 0<M*< 3

The modes in this region belongs to the Exceptional series II. For spin two fields there
are just two modes in this representation with masses

M?*a* =0,2. (8.5)
These two modes are non-normalizable. We conclude that the spectrum of normalizable
modes is continuous with M? > %.

8.2 Scalar modes

If we consider the scalar modes, the UV behavior of the potential and wave function will
be the same as in the AdS slices. The expansion of the potential near the UV boundary
at y = yo is given by

Vily —yo|**="240ly —wl**-72 0<A_<1

Vi) = BA-—5)CA-=3) Vily —yol**= 72+ Oly — wo° 1<A_<1 56)
’ 4ly — yol? Vo + Oly — yo|*2-—2 1<A_< % 7
Vo + Oly — yo[* 22~ 3<A <2

with V1 and V3 are given in (G.9) and (G.10). The UV behavior of the wave function is

Ya(y) = cr(ly —wol2 2+ )+ eally — ol 2T +--4), (8.7)

where ¢; and ¢y are the two constants of integration.
The IR behavior of the potential is given by the following expansion
9 5 17 &

LLE Yed o). (8.8)

Vi) =42 =™ ~ o2

Near the IR end-point the wave function is similar to the wave function of the gravitons i.e.

2 1 1
Voly) = ereE H et b, = VO dmial, (8.9)

where ¢; and ¢é; are constants of integration.

To find the behavior of the scalar potential for the regular UV to IR solutions we have
sketched figures 18(a) and 18(b). Figure 18(a) shows two examples of the scalar potential
when % < A_ < 2 (here we have considered A_ = 1.6). These two potentials are sketched at
a fixed value of the IR end-point!? ¢ = % Figure 18(b) shows three examples of the scalar
potential at a fixed value of the mass m? = 1 but with different values of the IR end-point. In
the background potential there is a maximum at ¢ = 0 and a minimum at ¢ =~ 3. According
to the figure 18(b) as the IR end-point ¢y moves away from the UV boundary, the potential
finds a peak very near the UV boundary. However, when the IR end-point ¢ is close the
UV boundary (the red curve) the peak disappears.

When 1 < A_ < % the scalar potential always goes to positive infinity near the UV
boundary, see figure 18(c) for A_ = 1.1.

19Tn this section o stands for the endpoint value of ®q for the flow.
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Figure 18. (a) The scalar potential (4.32) for two modes with m?a® = 1,4 (the IR end-point is

at g = %) Near the UV-boundary Vi(y) — —oo. (b) Scalar potential near the UV boundary for
different values for the IR end-point ¢g and for a fixed mass m?a? = 1. In both (a) and (b) A_ = 1.6.
(¢) Shows three examples of scalar potential when we consider regular solutions with A_ = 1.1. The
location of the UV boundary in the above figures gives the value of yg in equation (8.6).

The scalar wave function is given by solving the equation (4.31) and the solution depends
on the shape of the scalar potential. Specifically we can find the expansion of the wave
function near the UV boundary and IR end-point and therefore we can read the boundary
conditions. These are summarized in table 2 according to the value of A_. Since the scalar

9 2

potential at IR reaches to the value ;75 — m* we can split the analysis of the mass spectrum

into two sets of modes:
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I<A_<3|3<A <2
Vs in the UV limit, y — yo eq. (8.6) +o0 —00
Vs in the IR limit, y — —o0 eq. (8.8) % —m? & —m?
s UV boundary conditions eq. (8.7) ca =0 co =0
s IR boundary conditions m? < % eq. (8.9) ¢1=0 ¢1=0
15 IR boundary conditions m? > % eq. (8.9) — —

Table 2. First two rows show a summary of the UV and IR behavior of the scalar potential. The last
three rows show the UV and IR boundary conditions that we should impose to find a normalizable

solution. The dashed line in last row are due to the fact that at IR end-point we have a linear

combination of ingoing and outgoing waves and therefore we do not need to impose a boundary

condition.

0m2>

_9_
402

For all values of 1 < A_ < 2 there is a continuous mass spectrum. The modes are
normalizable provided that we consider the vev boundary condition on the UV boundary.
The solution near the IR end-point behaves as a linear combination of ingoing and
outgoing waves. All modes are in the scalar principal series of SO(1,4) representations.

Here we have two different cases:

1) When 1 < A_ < % at UV boundary Vy — 400 therefore, we can not have any
normalizable mode.

2) When % < A_ < 2 at UV boundary V; — —oo therefore, we should have a
normalizable mode if we choose the vev boundary condition on the UV boundary.
However, the regularity of the solutions in the IR end-point requires to put ¢; =0 as a
boundary condition. In this case, if we find a continuous mass spectrum for masses in
ﬁ > m? > 0 those modes would belong to the scalar complementary series of SO(1, 4)
representations.

For special masses with m?a? = —j(j +3) <0, j =0,1,2,---. the modes are in the
discrete series representations. Except the massless mode, the rest are tachyonic-unstable
according to (5.15).

For our example we found no normalizable modes with m? < %.
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A Some useful formulae for maximally symmetric slices

In a four dimensional maximally symmetric space

R©
Ry,l/po’ = Tz (Clupgyg - C'u,gcl,p) 3 R#y - R/(f,/) - KJC,UJ/y R(O = 4/’4}, (Al)

We obtain the following useful identities:
[v/u vy] Tpa = _R)\pp,l/T/\a - R)\O'/.LVTp)\
K
= _g (CpVT,uO' - CpuTzzo' + Coqu,u - CU/LTpV) . (A 2)
K

Wu» V. T, = _R/\pw/Tz\ = 3 (vaTu - CpuTV) . (A.3)
V'V, VAT, = (V,V* + k) V', (A.4)
2VHV (T, = (V. V" + K) Ty + V,V T}, (A.5)
V,V,Vis = (V, V¥ — &) Vs, (A.6)

where s is a scalar field.

B Derivation of the perturbations around the background solution

In this appendix we compute in detail the equations of motion and Lagrangian for the

background field fluctuations, used in the main text.

The metric gap in terms of the background metric gg% and its fluctuations h s p is given by

ds® = a®(y)gapda?dz? = a*(y) (gg)g + hAB(y,x“)> da?da? . (B.1)

The inverse and determinant of the metric can be expanded around the background as follows

g"" = g7 — WP L WAchCP + O(hY), (B.2)
1 1 1
—q = (0) o 1 AB L. C N2 3
V—g9=1\/9g {1 + 2h 1 (hABh 2(h c) > + O(h )] . (B.3)

To expand the field equations up to the second order in perturbations, we make use of the
following relations for the Christoffel connection, Ricci tensor, and the Ricci scalar.
The perturbation of the Christoffel connection is

T9p = F(l)gB + FQ)%B ; (B.4)
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where

1
I‘(l)gB — 5g(O)CD (vf)hDB + vg)hAD _ V(DO)hAB) , (B.5>
1
p(2)AQB — _ig(O)CMg(O)DNhMN (fo)hDB + Vg)hAD _ V(DO)hAB> : (B.6)

(0)

where the covariant derivatives, V X , are defined with respect to the metric gg%. Using the

perturbations of the Christoffel connection, the Ricci tensor is given by
Rap = Ry) + Ry} + Ry, (B.7)

in which REBI)S is the unperturbed Ricci tensor, and

Ri) = VoG, - vPrg,, (B.8)
R, = vOTOG, - vPT®G 4+ DO 0G - TG (B.9)

The Ricci scalar up to the second order is

where
RO — g(O)ABRg))37 (B.11)
R — g(o)ABR(A1])3 _ hABRg),)g, (B.12)
R®) = gOABR®). — pABR() + nAchPORY). (B.13)

B.1 Equations of motion

To obtain the equations of motion for background field fluctuations, we separate the scale
factor as

Gap :angB. (B.14)
The Christoffel connection of the metric is
F(G)ABC = F(Q)ABC + 5é~ Oploga + 5§ Ocloga — gBCgAD Oploga, (B.15)

where @A 5+ is the Christoffel connection for g4p. We have the following relations for
Ricci tensor and Ricci scalar

REEB) = R(Ag}; —gapV9?loga + 3[8A logadploga

— gapg®Pdclogadploga — v‘j’)vg) log a} , (B.16)
R =472 [R(g) —8V921oga — 12¢4B8 4 log a g log a} . (B.17)

We expand all terms in equations (B.16) and (B.17) up to the first order in fluctuations.
Equation (B.16) has the following expansion

el G,0 an
Ry = RYEY + RGY. (B.18)
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Upon using the perturbed equations (B.2)—(B.13) we obtain the following relations

ng’o) = RE?)B — gg%g(o)CDV(cg) (a_lvg)a) — 3Vf)(a_1vg)a)
— 3gffég(0)CDa_2V(Co)aV(£)a + 3a_2VE£)aV§§)a , (B.19)

1 1 1 1
RE4GB,1) — iv(c(‘))qu())th + §V(C('])V(59)hCA - ig(O)CDv(CQ)V(DO)hAB . iv(BO)v,(L?)hCC

1
+ - giupg O PTOEL Y a + (giphP — 9O Phap) V) (T Va)  (B.20)
+ SI’(I)SB(aAVg))a) — 3a72hABg(O)CDVg))aV(£)a + 3a72gl(féhCDV((?)an)a.

Also, the expansion of the Ricci scalar (B.17) is

RG = RGO 4 RG1) (B.21)
with
RO =72 (RO 8048V (0~ VP a) 124 a2V YoV Pa), (B.22)
RO =g 2 [VPVO AP v OV DR n AP R, 18149 (a7 v Ea) (B.23)

+4g 048GO (GOt VP hap—V P hap) (™' VE ) +1204 8029 Pav D).
Finally, the expansion of the energy-momentum tensor reads as
G G,0 G,1
T =T + TG (B.24)

where by using the equation (2.4) for the Lagrangian in (2.1)

1 1

Ti5" = —59abVE 20V Oy — gliha’V (20) - VY@V d, (B.25)
1 1

Ti5" = — 399V 2V Ox + giph PV 2V @0 — ShapV ) 20V dg

1 1
- 59.%“23%‘/(@0))( - §hABV((I>O) + V(f?)q)ng])X + Vg)‘bovf)X- (B.26)

The equation of motion (2.2) after the expansion will be

1

1
Ry — 5GURREOY — SGLEROY TR =0, (B.27)
By defining the following relations
hyy =26,  huyy = Ay, hu = hu, (B.28)
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the equation of motion (B.27) give rise to the following equations, after using the rela-
tions (B.20), (B.22), (B.23) and (B.26)

/
(1) B, + 3%% + VPR =2V (b, + VYol + 2V, V.0
/
~207 (a*V(,4)) + G [ - 3%1# — V,VPh+ VPV Dy,

a

/ " /N 2
—2V, VP + 6—¢' + 6(“ + 2() >¢ — 9473 (a3<1>6x)/
a a a
+207° (a?’v,,Ap)'} — kG (20 + h) + 26hy, =0, (B.29)
/
(hy) V, VYA, — vyh/uu +Vu [ - 6%¢ +200x + '~ VVAV} +rAu=0, (B.30)
a a’ a 2 a
(yy) =V, VFh+ VIV, —3—h + 6( + 2() )¢ +6—V"4,
a a a a
42y 207 (@) +h(20 —h) =0,  (B31)

(0)

where h = h%, and V, is covariant derivative with respect to gMOV. In deriving the above
equations, we have considered that a = a(y). A prime denotes the derivative with respect to y.
By linearizing the scalar equation of motion (2.3) we find

' 1 2 ' 1
X'+ V, VY + 3%;{ - §a2agovx -= (a3q>g¢) + ®p¢’ + 5c1>gh’ —®)VFA, =0. (B.32)

B.2 Action

As mentioned earlier, another way to obtain the linearized field equations, is to expand the
action (2.1) up to the second order in perturbations, and then use the quadratic terms to
find the field equations for fluctuations. To obtain this we use Gap = a’gap in

1
p— / P2 vV/=C (R ~ 9,800 — V(2)) . (B.33)
2kK3
to find
1 _ _
S = 2—’% /d43:dy a®y/—g {R(g) +12a72¢g*P 010050 — 8a 3VE49) (a?’gABV(g) log a)

— ¢*B9,005 — a2V(<I>)} : (B.34)
In the above, and all the rest of this section we treat the scale factor a as a general scalar field
and therefore this defines the action of the appropriate covariant derivatives here and below. Of

course for our purposes, in the end a(y) will a function of the Fefferman-Graham coordinate y.

If we expand the above action up to the second order of perturbations, we obtain

Spert = S 4+ 5@ (B.35)
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where after some integration by parts, we find
$0 = o [ g0t [ GheRE TR+ VPV - 9T,
— v W e, w04y 4 n1Bv 0w Ve, — %h%vff)%v(o)%o — a®>x0p,V  (B.36)
- ;thCCV(%)] —6n VW a2y Vg 4 300 v Va2V 04 4 gy (azhABVg)a)} .
This action can be written as a total derivative term
S(TIz)) _ 2ig/ds% mv(j) (agvg)hw _ BVOARB,
+ 3a?hPpv 04 4 5a2hABVg)a - 2a3xv(0)A<I>0) . (B.37)
and
S = 21&% [ dey/=g0 {a3 [ VD hasV O 4 L9 OB, A
_10pasg0pc, L Lg0s g0, L OB v0Ag L 9pAByO) g ¢(O)
o VA B oT VAl CTXValt'B 0 A PoVpX
VAT O - St V(@0)| - (V90 (54 aVOPHG + haeV 0T )
- %(V(O)C VO ABhpe + %a3Rf)CBDhABhCD + ia?’R(o (hcyhyc—;hcchyy>
+ %ﬁR% (A chBC —hCeh?P) — %a?’R(C) GhABhAB - ;h002>} +5% (B.38)

where 5’5% includes the total derivative terms

1
Sib = o0 / &/ —gOV Q4 (B.39)

with
QA = —%aQ (Shcc(—hBBV(O)Aa + 2045V OB 4 2hpo (3hPCV DA 4 ThACTY(0)BY)

+2a(hPC(—2V e + VO nAp) + WO (VOARE, 4 2V 04d, — vV pAB)

+ WP (—2V P + 3V hp ) . (B.40)
In deriving the actions in (B.37)—(B.39) we have utilized the following background equations
of motion
1 a// a/2 a// a/2
)P =—-RO 3= 25 | =—x-3[— -2 B.41
0 4 a a? . a a? ]’ ( )
3 a’ a/2
2 — 2RO _g[ 4o
V(®g) =-R 3 2 B.42
a ( O) 4 ( a + CL2> ? ( )
Do,V (Pg) = 6aa' @) + 2a Dy . (B.43)
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B.3 The boundary terms

In the previous subsection we have found some total derivative terms in (B.37) and (B.39).
In addition to these boundary terms, we should include the Gibbons-Hawking-York (GHY)
term on the boundaries to see what boundary condition leads to a well-posed action. The
GHY term is

Sany = - / d'z —7<G>K<G>‘ : (B.44)
K5 B

where B denotes the regulated boundary and according to the relation (B.14) for the metric,

(@)

the induced metric on this regulated boundary, v,z is

Vg = 15| (B.45)

In general, the regulated boundary has one component in the case of flat and sphere slices, one
space-like and two time-like components in the case where the slice is global de Sitter space,
three space-like components when the slice manifold is a non-compact negative curvature
manifold with boundary, and two components when the slice manifold is a compact negative
curvature manifold.

The induced metric is defined in terms of the unit normal vector n 4, describing the
embedding of the slices in the five dimensional space-time

%(4(% = gAB — NANE . (B.46)

The extrinsic curvature is also given by

(@ _ (9)
KI(L‘GB) = 'y‘(AG)C’yJ(BG)DVZY np = a(KI(L‘g])B + ’y%%a lncvgg a), (B.47)
with
Kl(fl)a = %(f)cwng(co)np . (B.48)

To first order in perturbations, the GHY term (B.44) is
Sty = e Z / a1 @ (WA K9 — AP K —nAnPhap K9 —n VBB (B.49)

+nAVE£)hBB +4a~ hBBnAVEL?)af8a_1hABnAV(BP)afDA(v(g)ABhBCnCD

i

where B; is any component of the total boundary. In the last line D is the covariant derivative
with respect to the metric 7% 5 defined in equation (B.46) on the regulated boundary.
By writing (B.37) as an action on the regulated boundary i.e.

1
s = 322 Z [ o1 Ona (P VAR — PO,

+ 3a2h 5V O4a + 5a2h 4PV - 225 VO )

, (B.50)

i
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and adding the linear GHY action (B.49)
sy s — QZ / '\ @a (WA KO WP K PP hapK (B.51)

+7a" 1 h BnAVEL‘)a—3a_1hABnAVg)a—2anVf£)<I>o—DA('y(g)ABhBCnC))

’
i

which can be written as

1
Sreg—bond = ) Z / d*z\/—9a? ((7(9)ABK(9) — KWAB 4 7€3a_lgABnCV(CO)a
5 B

— 3a*1nAV(O)Ba)hAB — (QnAVEE)QO)X — DA(fy(g)ABthnC)) 5

(B.52)

The last term in (B.52) is a total derivative.

o standard AdS boundaries

We have two standard AdS boundaries at y = 0 and y = am with unit normal vectors
ny = 7(1,0,0).

In addition to the action in (B.52) we should consider the boundary counter-terms (see
for example [24]) as well

1 14
= I{g/d4xma4 (—2 — ia_2R7<g) + (’)(RV@)Q) , (B.53)
where 79 is given by
dsi(a) = (C,uu + huu)dxudxu . (B.54)
If we put the regulated standard AdS boundary for example at y = ¢ with ¢ — 0, then
x = (O())y>+ +- -

hMV = <5Tuu(x)>y4 +oe (B55)

|y:e ’ {yze ’

as they are vev perturbations. Here one can check that since a ~ ¢! then on y = €
regulated AdS boundary

lim 5, = /d4 (40677 (2)) +20-A_(O(2))) (B.56)

e—0
To derive the above result we have summed over (B.52) and (B.53).

¢ side boundary

Considering the slice metric in Poincare coordinates, the bulk metric is
ds? = a(y)*(dy* + (dz + nijda’da?)) (B.57)

The normal vector to the regulated side boundary at z = € is given by

na = <0,‘z,6> , (B.58)
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therefore the extrinsic curvature defined in (B.48) is given by

3
K9 =o, z@”:—%%«—+ K9 == (B.59)

Considering the above values, the regulated boundary action in (B.52) is given by
1 o? 2 . o?
SZ:e = K:g/dydgx <_a3(3€?’hyy + E?’]Uh“) — 3(7/20/,62hzy> . (BGO)

According to the analysis in appendix H near the regulated boundary at z = € we have
the following behaviors:

From equations (H.7) and (H.8) for scalar vev perturbation with m? > 0

1 2 %( 1+4m2o¢2_1)

Ehyy = 6*3¢) ~ € 9 — 0 (BG].)

From equation (H.45) and definitions in (H.43) and (H.36) for graviton vev perturbation
above the BF bound M?2 > —ﬁ we find

1 37,/ 4am2a2
*hij ~ 62( % 2 — 0. (B.62>
€

Moreover, for the vector field in our theory with mass m? = —2x = % from (H.21)

and (H.22) one leads to

1 1
?hw=gyg~%2%o. (B.63)

C Simplified equations and decoupling of the modes

In this appendix we provide details on the derivation of the tensor and scalar equations
in section 3.

To find a simpler form for equations of motion in (3.24)—(3.27), we introduce the following
new field variables

T _ AT T’

BT = AT —yT (C.1)
AE¢—§, (C.2)
y=W-FE - 2% (C.3)

az

1
TE2¢+¢—aﬂﬁav—Ewﬂ (C.4)
_ad , K a1l 4 ,)
o= 25)\ + A+ 37 a<a3(a v) - (C.5)

As we already argued in section 3.3 the new fields defined above are gauge invariant under
the five dimensional diffeomorphisms i.e.

SA=6y=06r=060=0, 6B =0. (C.6)

In section 3.1 we showed that the decomposition of the fields is reliable if we drop the
zero modes of the scalar and vector fields. Considering this, we shall find the equations
of motion for new fields as follows:
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Starting from the py component of the Einstein equations (3.25) we have

v a/
(V, V" + #)BY 469, (a - aT) ~0. (.7)
Taking the divergence of the above equation and using the identity V“V,,V”BE =0
we obtain )
\ YA (0 - C;T) =0. (C.8)

Since o and 7 do not contain the zero mode of the Laplace operator, we conclude that

!/

a
—7—0=0. C.9
T (C.9)
The above equation in terms of the original fields becomes

! 1 1
0=1 — %qf) + SR(W = B') + @)y (C.10)

Substituting (C.9) into (C.7) gives
(V,VY+£K)Bl =0— Bl =0, (C.11)

where the last equality is due to the fact that we have considered BE to does not have
the zero mode of the O + x operator. In terms of the original fields equation (C.11)
means that
T T/
A, =V, . (C.12)

If we begin with the pr component of the equations of motion (3.24), we have

6
0=—Cu [2(VHV“ + K)T — ﬁ(cﬁa’ﬂ/ + 53(@30)/} +2V, V.7

2 / / 2
- @*V (B + it + 3%}53’ + (vpvp - 3n> RIT. (Ca3)

Applying equation (C.9) we find

0=—-20u(V,V’ +r)T+2V,V,7

2713 1 1T | 2@ T 2 T
= S[PVuBE] + T+ 8T h 4 (V- Sh) T (C4)
By taking a trace from the above equation we obtain
4
(V”VM + 31‘6) 7=0. (015)

Since T does not contain the zero mode of (V,V* + 3x) operator, we conclude that
T=0. (C.16)

The above equation in terms the of original fields is

2¢+¢—%(a3(W—E’))/:0. (C.17)
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Because of the (C.9) we will have

a' K a /1
_ 00\ v, 0L s ’):0. C.18
7=0 = 24X+, a<a3(a’y) (C.18)

Putting equations (C.11) and (C.16) into the equation (C.14), we obtain a decoupled
equation of motion for graviton mode

" a / 2 T
M +3—huy + (vpvp - Sn) Wi = 0. (C.19)
e The yy component of the Einstein equation (3.26) after applying (C.16) leads to

4 a’ a’ a/\? [ 22 1
_ By 422 n =) (=4 ([ =(® ’—2) 2
0 (V“V + 3/€>)\—|— a)\ aV“V 'y—i-(a) <3 ) (a3(a 7)) =2X], (C.20)

or equivalently

4 a a a’ a 2
= - 4= — = H —ENY—(—+2[=
0= (Vu V" + 5o + 4% = L9, vr(W — ) <a+ (a) )¢>
1 1 _ r2
— g/{qb +3a 3 (a%%x) — gégx', (C.21)

e The Dilaton equation (3.27) after substituting from equation (C.16), becomes

1 22/
0= (VuV* + 202+ —(a*) + i(’” +3)). (C.22)

or in terms of the original fields

li
1
0=x"+ 3%;{ + Vi = 5?0 Vx — 207 (a,3c1>6¢)'
4B+ 4D — BV, VE(W — E). (C.23)

D Zero modes

In this section we will investigate the zero modes that we found in section 3.1 directly,
without using any decomposition. For simplicity in notation, we rename the equations of
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motion (3.5)—(3.8) as follows

a/
EQL= A, 43— h, + ¥,V by =27V )tV Vo h 29,

/
—2¢73 (a3V(#AV)),+CW {h”BZh’VprthVPV”hPU

" !/

/ 2
—2vap¢+6(;¢'+6<a +2<a) )¢—2a_3 (a3c1>gx)'

a a

+2a73 (a?’vaﬂ)/} — KCpu (20+h) 426y =0, (D.1)
/
EQ2=(V,V'+r)A,—V"h,,+V, [—62¢+2<I>6X+h’—V”A,,} =0, (D.2)

a a’ a 2 a
EQ3:—VHV“h+V“V”hW—3ah’+6(a+2<a> >¢+6aV“Au
4B 207 (BB x) + (20 1) =0, (D.3)
EQ*HCL// M_122 _3 34/ ) //1//_/;17
X=X VUV X5 a* 0V X - (a <I>0¢) R0+ 5 ~BHVF A, =0.  (D.4)

In the following steps we will show that there are three independent scalar equations that we
can construct from the above equations. To do this, for simplicity in notation we introduce
the following scalars fields

I(y,a") =V, A", H(y,a")=V*V'hy, — VIV, k. (D.5)

Then for example equation (D.3) becomes

/ / " I\ 2
2
EQ3:H+6a13ah’nh+6(a+2<a) +’"”>¢+4<1>g '7—(a3<1>6x)/:0, (D.6)
a a a a 3 a3

By a trace of equation (D.1) we get
a a a 2 a’ a
EQ4 =2H +18—1 + 6I' — 2xh — 9—h' — 3n" — 8(/<; -6 ( ) — 3>¢+ 24—¢/
a a a a
—6VoV% — 8a3(a3®yx) = 0. (D.7)

On the other hand, if we get V#V" from equation (D.1) then we shall find

! / I\ 2 " /
EQ5 =32 H' + H" —6x%1 — 251" + 6(2 (“) + “)vav% +6Lv,voy
a a a a a

— 2473V, V*(a*®)x) = 0. (D.8)

The divergence of the equation (D.2) also gives

/
EQ6 = —H' + 261 — 62V, V% + 28,V Vo = 0. (D.9)
a
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However, since we have the following equality
/
EQ5 = -32EQ6 — (EQ6) , (D.10)
a

equation EQ5 is not an independent equation.
To show that (D.4) is not an independent scalar equation, we define a new scalar as follow

Z(y, ") = (V. V' + k)h = VIV"h,, = —H + Kh, (D.11)

If we begin with the following combination we will find

!/

EQ3-3YEQ6=0—
Ka
a a a 2 a’ a2
H+3—H -k (h + 3h/> + 2(/@ + 6() + 3)¢> + 18—V, Ve (D.12)
Ka Ka a a Ka
’ /
+4®)x' — 2073 (a3(1>6x) - 6% VoV =0

where we have used the background equation of motion (B.41). In terms of the Z function
defined in (D.11) the above equation is

a” o, (4’

6 /! (I)//
+ Q(I)OX - 7@0 (VQVQ + (1 + 3’@’) ) X - (D13)

On the other hand, we find the following combination of equations
, K- 12“ +3<
EQZ = (EQ3) - s EQ3 - —EQ4 +EQ6=0— (D.14)
a

124’'®) 124 ,2 a
Z_( a®;, + a? 2% )(bGa(b

a 18 2
0 g7 VaV? X'+ (a;{), + 2<1>g>x’
0

3) 2 2.1 13
6a’ @ 3a 6(ka“a’ + 3a’)
+ 2® 1 ) . D.1
- ( a @/2 (a 2¢1° " ) ad®), X (D-15)

By using equations (D.6), (D.7) and (D.9) one can show that the equation of motion EQyx
or (D.4) is not an independent equation

a®d!

EQy = 6a9 (EQZ — EQ3), (D.16)

which for driving of the above relation we have used (B.41) and (B.43).
We should also notice that there is only one independent vector equation. By acting
a V¥ on (D.1) one obtains

1 1
EQV = _g(ag(””Au +VaV*A, — VMVQAQ)), + 5(03(Vah;f‘ - Vﬂh'))/

CL’ 2 a// a/ , 3 3 ,
+6(2 <a) + ) 90+ 65,0 — 2078V, (@% 0 =0, (D7)
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and it is easy to show that
/
EQV = —-32EQ2 - (EQ2)'. (D.18)
a

D.1 Gauge invariant scalars and equations of motion

So far we have found the following facts about the number of equations of motion and scalars:

¢ In equations of motion we have five scalars: H, I, h, ¢ and x, where the first two are
defined in (D.5).

o We have five equations of motion for scalars, EQ3, EQ4, EQ5, EQ6 and EQY. However,
we also have two relations between these equations, (D.10) and (D.16). Therefore, in

total we have three equations of motion for scalars, EQ3, EQ4 and EQ6 which are
defined in (D.6), (D.7) and (D.9).

o Using the transformations given in equations (3.32)—(3.35), we have the following
transformations for scalars:

/
SH = §5(VEV by — VIV, h) = —26V 6" + G%V“V"{E’ , (D.19)
6 = 6(VFA,) = =V, .M -V, VHe (D.20)
/
h = —2vhe, — 8L ¢ (D.21)
a
T
5 = —¢ — —¢°, (D.22)
a
oy = —DL &0, (D.23)

Now suppose that all the scalars are proportional to a single mode i.e.
V. V's(y,z) = M3s(y,z), (D.24)
where s = {H,1,h,¢,x}. By separating the variables as
s(y,z) = s(y)3(x), (D.25)

and considering the gauge transformations (D.19)—(D.20), we will find the following gauge
invariant scalar fields

/

D= H'(y) — 281 (y) — 2M3P)x(y) + 6M3 = 6(y). (D.26)
Q=H(y) — mﬁ(y) +2(4K + 3M§)ai£6x(y) , (D.27)
0 = ¢(y) + (gg - ;{;,)x(y) - qif)x’(y)v (D.28)
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A

where we have imposed (D.24) for scalar Laplacian. If we find I(y), A(y) and ¢(y) from (D.26)—
(D.28) and then insert them into the independent equations EQ3, EQ4 and EQ6 we will find

4k + 3MZ)a" ' '
(6( H+32 O)CL _2(1)62)@_3&1"_'_3(19’4_9_0, (D29)
RaQ ra RQ
2\ /7 2
6(4r +3Mg)a” oy MLSM()) (a? (26 + @F) — 124) ©
RaQ RaQ
3., 9. 3 9a’
L L S OV s D Yo (D.30)
K RQ K RQ

Ir=0. (D.31)

By inserting I and © from (D.31) and (D.29) into (D.30) one finds a differential equation
just for €. For example, for two specific scalar zero modes this equation becomes

o Mg =0:
N d @ (120" + a® (8k + 50F)) + 24ad’ {)’Q,
a a2®p — 12420,
2% ® (24 2 2 4 @/2 12aa’ ®”
2k ®p (24a +a/g/~i+ 0))/4— ad'®g o o (D.32)
3 2O — 120720,
. Mg = —%/{
3a’ 2
O+t SR =0, (D.33)
a

Both equations above are exactly the same as the equation of motion for A, in (4.27) with
values given by (4.28) and (4.29) when m = M.
D.2 Lichnerowicz differential operator and its eigen-values

Before we focus on the zero modes, we show the relation between eigen-values of the
Lichnerowicz differential operator when acts on scalar, vector and tensor modes. The
Lichnerowicz differential operator A on spin 2 field is defined as [60]

« g o 8 2
~Ahyy = VoV hy + 2Rypush?” = 2ROy, = VoVl = ghl + 560G . (D.34)

where in the last equality we have used the maximally symmetry properties of the slice
geometry (2.7). For a vector field A, and a scalar field s this operator is related to the
Laplace operator as follows

—AA, = (VOVa — 1)A,, (D.35)
—As=V*V,s. (D.36)

Suppose that the eigen-values of the Lichnerowicz operator are defined by
~As=Mgs, —AA,=M{A,, —Ahy =Mih,,. (D.37)
Considering (D.35) and (D.37) and by starting with the identity (A.2) (V#A, # 0)

VAV, VYA, = (V, V4 + k)VYA, = (VY4 — MEVYA, = 0. (D.38)
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Since V¥ A, is a scalar then from the last equality above we conclude that
M? =M. (D.39)

If we start with (D.34) and with the eigen-value defined in (D.37) then we will have

8 2
(vava - M3 — 3,{) Py = = S (D.40)
By using the following identity
VYVEV yhyo = 2 Vah > VH*h V'V, V*h D.41
ul/a—_gﬁ o +§ﬁ ap + v ap s ( . )

and inserting the value of the Laplace operator from (D.40) we find
(V"V, = M3 — k) VFhay, = 0. (D.42)
Since VHh,,, is a vector therefore from (D.35) we conclude that
M2 = M?. (D.43)
Equations (D.39) and (D.43) show that the eigen-values of the Lichnerowicz operator for

scalar, vector and tensor modes are equal. In summary we would have the following equations
on a four dimensional maximally symmetric space

VOV4s = Mis, (D.44)
VOVaA, = (Mg + K)A,, (D.45)
(vava — ME — iff) P = —gmh@y. (D.46)

D.3 Vector zero mode

From (3.18) one observed that the decomposition (3.12) is valid as long as V*h,, does
not have the zero mode of —x of the Laplacian vector mode. Here we are interested in
this zero mode without using the decomposition (3.18). Looking at (D.42) we conclude
that we should consider

Mi = —2k. (D.47)

Therefore, equations (D.44)—(D.46) become

VoV s = —2kKs, (D.48)
VVLA, = —KkA,, (D.49)
2 2
<Vava - 3/4/) hl“/ = —glﬂ}hgl“/ . (D50)
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D.3.1 Separation of the variables and equations of motion

To solve equations of motion we first use the following separation of the variables

hy (Y, ) = h(y) by (z) Au(y,z) = A(y) A, (), (D.51)
s(y,z) = s(y)s(x), se{p,x,h,H,I}. (D.52)
Moreover, from (D.51) and (D.52) we find
Wy, ) = h(y)3(x), (D.53)
and
I(y,z) =V, A (y,x) = A(y)V“le(x) = I(y)s(x) . (D.54)

With the above separation, equations (D.48)—(D.50) give

(V" + 26)3(z) = 0. (D.55)
(V,VY +w)A,(2) =0, (D.56)
(vava _ g,{) o (2) = %,{g(x)gw, (D.57)

At the first step, we start from (D.54) and use (D.55) which leads to
VFHA,(2) = 3(z) = —iv“vug(m) — VH(Au(x) + ivué(fn)) =0—
Aua) = —ivﬂg(x) + () + BT (x). (D.58)
where f(x) is a scalar function and BE is a transverse vector with
VAV f(x) =0, V'Bl(z)=0. (D.59)

However, all scalars of the theory satisfy (D.55) therefore, the only possible value of function
fis f(z) = 0. We conclude that

Aya) = —%Vué(x) +BT(2). (D.60)

In the next step, we start with the vector equation EQ2 in (D.2), separate the variables
and use (D.56) to find

N - a’ o -
WV @) + | - 620() + 20hx(w) + K@) - 1) Vus@) =0, (Do)
Acting a V* on the above equation and using (D.55) one finds
. - a - -
— (y) V'V hyp(x) — 26 { = 6—a(y) +280x(y) +A'(y) - I(y)] §(x) =0. (D.62)

The above equation is a separated differential equation with two variables y and z, therefore
if we suppose

VEVY hyu(x) = —2kc3(x), (D.63)
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where ¢ is a constant, then from (D.62)

~6%6(y) + 28x(y) + (1~ W (y) — I(y) = 0. (D.64)
Putting (D.64) into (D.61) gives

VYhyu(x) = ¢V, 5(x). (D.65)

If we start with the tensor equation EQ1 in (D.1) and impose (D.40) with M2 given
in (D.47), after simplification we will find

a o _ !
P + 3Eh;“’ =2V, Vhyya + VuVih + 2V, V6 — 2a7° (agv(uAV))

/ !/
+Cuw { —h" - 3%h’ — kh =V ,V’h+VNVh,; — 2V, VP + 6%(15’ (D.66)
a” AN -3 ( 35/ ) -3 (39 4r)
+6<a+2<a> —3>¢—2a (a @Ox) + 2a (a V, ) } =0.

By separating variables and using relations (D.55), (D.60) and (D.65) we find
21 a/A/ 7 2 1 -3(.3 ! 3
W' (y) + 371 () ) By (@) + (1 = 20h(y) + 20(y) + 0" (¢’1(y)) ) VuVi(a)

G = /) =350 ) + 101 = 20h00) + 207 (1) + 6% 0) (0.67)

"

+ 6(2 + 2(0;/)2 + §>¢(y) —2a73 (a?’(I)f))((y)),} 5(z) = 2a73 (aSI(y)),V(uBZ) (x) .

A trace of the above equation gives

24a’

2
-~ /() (D.68)

a?

9

a

(=88 = S 4200 = 20shio) + (2 — 4 (s 20) Jotw) +

80 @B (w) + 60 (@* () )3(x) =0,

By using equations EQ3 in (D.6), (D.64) and (D.68) we can find the values of I(y), ®{(y)
and x/(y). Inserting these values into the equation (D.67) gives

(/) + 350 ) ) = 207 (1)) VB ). (D.69)

where

- 1 - 1 -
T (#) = By (2) + 5 (4 — DV, 908(2) + <c - 2) Ci(z). (D.70)
It is easy to show that I, (z) is a trace-less and transverse rank two tensor
,(z) =0,  VMI,(z)=0. (D.71)
The right hand side of (D.69) is trace-less and also we have

V'V(.Bly = V'V,B} + V", V,|B] = —kB]} + kB, = 0. (D.72)
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Equation (D.69) can be rewritten as
2 a’ A
<8y + 3a3y> I, (y,z) =0 (D.73)
with y
0 (5:2) = h(y) Lo (2) 2 [ dy'16/)9 B ). (D.74)
I, (y, ) is transverse and traceless and have the eigenvalue 2x of the Lichnerowicz operator.

D.4 Scalar zero modes

Before finding equations of motion for the specific case of the scalar zero modes we first write
the equations of motion EQ1, EQ2 and EQ3 in terms of the eigen-value of Laplace operator
for scalar fields. We assume all scalar modes have the same mass

ViuVis(y,x) = Mgs(y, z), (D.75)

and use the separation of variables which we introduced in (D.51)—(D.54) to simplify equations
of motion. The vector equation EQ2 in (D.2) becomes

(MZ+2R)1(y) Ay (2)~ I (9) V" P () [6;’as(y)—z@ax(y)—ﬁ’(y)H(y)] V,5(x) = 0, (D.76)

Divergence of the above vector equation together with (D.75) give (VXA (x) = 3(z))

6a’

W (y) VIV by () = <2H1(y) — ——Mgo(y) + 20, Mix(y) + Mgﬁ’(y)>§(:v) . (D.77)

The above equation is a separated differential equation for y and = variables therefore, we write

VEVY hyy(x) = —2kc3(x), (D.78)
where c¢ is a constant. Equation (D.77) then gives
6a’ .
261(y) = == Mgé(y) + 20 Mix(y) + (Mg + 2k)h'(y) = 0, (D.79)
If we start with the tensor equation EQ1 in (D.1) we will get
~ a - ~ ~ ~ o7
EQT = (h”(y) + BEh'(y) + (Mg + 2/{)h(y)>hw(m) = 2h(y)V(,V¥hy)a(7)

+ (h(y) +20(9)) Vi Vi3(z) = 27 1(y))'V(, A, (2)

+ Cuv { —'(y) — 3%ﬁl(y) — (k + MZ + 2ke)h(y) + 2073 <a3l(y)>/ + G%Cb,(y)

4 G(C; + 2(‘;/)2 S ]‘gg>¢(y) 9q? (a3<1>{)x(y)>/} 5(2) = 0. (D.80)
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A trace of the above equation leads to

(1 -+ 20+ 33) (i) + 220 ) + 2
2

-3 (M3 + 5) (3‘;'¢'<y> - (% oy’ - 123) by) — a‘3(a3¢>6x(y))’> —0, (D81

where we have used equations (B.41), (D.75), (D.78) and (D.79).
If we insert the value of I(y) from equation (D.79) into the equation EQ3 in (D.3) then

a K 2\ /2
~af + 2o+ 00 () + 2200 ) + (LI Cseglo) s
K AT
+20px'(y) — (W + 2<1>6’>x(y) =0.

In the following we will show how to separate equations of motion we found in this

section for two scalar zero modes

4
M = 0,—3k. (D.83)

D.4.1 Mg = 0 zero mode

For this zero mode after separation of variables and from equations (D.44)—(D.46) we have

VeV45(z) =0, (D.84)

VOV A, (z) = kA, (z), (D.85)

(vava - 8/{) By (z) = —2/<;§(a:)§ . (D.86)
3 v 3 m

In first step and for M3 = 0, we find ®f and x'(y) from equations (D.81) and (D.82).
We also note that equation (D.79) gives

I(y) = —ch/(y). (D.87)
Next, from equation (D.76) we construct the following equation by imposing a V,,

IV (uAy) () = 21 () V (Vo ()
—2 %acb(y) — 200X (y) — I (y) + 1(y) | VW Vii(z) = 0. (D.8%)

By using the above equation and its y derivative we will find the following relation after
inserting the values of I(y) from (D.87) and the values of @ and x/(y) that we found in
the first step

~

8kp(y)V,V,i5(x) = —26(14+2c)h(y)V, V., 5(x) (D.89)

3a’ ., - ~
_ (sh'+ h”) (20— 1)V,9,5(2) 44V (, Vo (@) + 80xV A, ()
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In the final step we insert the values of I(y), ®j and x'(y) into the equation EQT in (D.80)

and then use the equation (D.89) to get rid of V(,A4,)(z). We find

3a’

(#(w) + 28 () + 26h(0) )Ty () = 0. (D.90)
where

M, (z) = 4khy,(z) — 4V(Mvaﬁy)a(x) +(1-20)V,V,8(z) — (1 +2¢)kus(x).  (D.91)
The rank two tensor in (D.91) is trace-less and transverse, i.e.

" (z) =0, V() =0. (D.92)

D.4.2 Mg = —%n zero mode

By separation of variables and from equations (D.44)—(D.46) we find

VoVa5(x) = —%/{5(56), (D.93)
VOVod,(z) = —éﬁfx#(x) , (D.94)
(vava 4 2/{) o () = %,@g(gg)gu,, . (D.95)
For this zero mode from (D.81) one directly observes that
2(c — é)n(ﬁ"(y) + ?)Z/ﬁ’(y) + g,«;fz(y)) =0. (D.96)

This is in fact equation (D.33) where from (D.27)
~ 1\ -~
Q= H(y) — wh(y) = —2x (c - 6) h(y). (D.97)

For Mg = —3k, and from equations (D.96) and (D.82) one may find W'(y) and ®f. Then
from equations (D.76) we construct the following equation by imposing a V,

0 o~ ot 0750+ 260 o
+ %f/(y)( — 18V, Vh)a (@) + 6(1 + 30)V,uV,5(x) + 4(2 = 30)rV (, 4, ) = 0.

Using equation (D.80) and the above equation we can construct the following equation

EQT + %%EQ + %EQ’ —0,
N 1—6¢c)a ~ 2(1 — 6¢) » 49/
> M) (B2 + 255 h) + 52 ()’ +ax ()
2a’ 4  8a?
~ )+ (5 - o)) =0, (D.99)
where
I, (z) = 3V, V,3(x) + ku3(z) (D.100)

The combination II,,(z) is transverse and trace-less.
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E Derivations around AdS space

The AdSs space-time is obtained by a constant background scalar field or ®(, = 0. In this
case, the scalar potential in the action (2.1) reduces effectively to a constant cosmological
term V = —% with d = 4 in our case. Considering the metric (2.5), the scale factor for
d-dimensional Minkowski and A(dS) slices is given by [24]

exp(—%£9) —00 < u < 400 My
AW = gcosh("?c) —00 < u < 400 AdSa (E.1)
gsinh(“f) —c<u< 400 dSq(S?)

where c is an integration constant, ¢ is the AdSg41 length scale and « is the curvature length
scale of the d-dimensional slices. Moreover, since the d-dimensional slices are maximally
symmetric, we obtain

0 My
RY) =kCuw, R =dr, with r={¢-UD 445, . (E.2)

(172 a2

() dSq(5%)

«

Using e~ 4®du = dy one goes to the conformal coordinates

—c+ Llog Yo <y < o0 My
u = { —c + 2¢arctanh [tan(% — %)] Yo <y < yo+ T AdSy; (E.3)
—c+ 20 arccothle™ y_ayo] —00 <y < 1o dS;(S%)

where 1 is a constant of integration. The scale factors in y coordinate then become

Uy —yo) ! Yo <y < +00 Mg
a(y) ='W = Lisin(=m) ™ yo<y<yo+ar  AdSy - (E.4)
—ﬁ(sinh(y_ayo))f1 —oo <y < o de(Sd)

We should note that the above solutions can be found directly from equations of mo-
tion (B.41)—(B.43).

In next sections we shall investigate the scalar and graviton modes in the above background
solutions.

E.1 Gravitons

In section 4.1 we found that the 4-dimensional graviton mode obeys the Schrodinger-like
equation (4.17) with potential given by (4.18). In this appendix, we find the mass spectrum
of graviton modes for dS and AdS slices.

e dS slices

From equation (6.3) the potential in this space-time reads as

Vo(y) = % (3 + 5) : (E.5)

sinh? ()
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The behavior of V(y) at the UV boundary and IR end-point is

15 1
uv —
9 15
IR _ -2 2y/a dy/o -
Vi (y) = 12 + 2¢ +0 (e ) , Yy — —00, (E.6)

When the mass is above the mass gap, we write it as

1
2 _ 2
The expansion of the wave function, that is the solution of (6.4) with the potential (E.5),
near the UV boundary is
s 2

3 04V 1 5 3
valy) =i (F + 2 vt + Ollogu)y) ) +ea(yF -

5+ 12

1802 7

13

Frow)) . (E8)

To have a finite wave function near the UV, we should set ¢; = 0 (source-free boundary
condition).

The expansion of the wave-function near the IR end-point is
By(y) = by EW 4 by emiEW 4 (E9)

That is, in the IR limit the wave function is finite and has a periodic behavior.

On the other hand, when the mass is below the mass gap, by setting

1
M? = @(9 —1?), (E.10)
the wave function will become
v 2 12 21,
boly) = creo oFy (= 3,458 42 )+ epe 3 o Py (= §, -5 — §1 - Sie)
2 9
(e —1)°?

(E.11)
where ¢; and ¢y are constants of integration. Moving towards the UV boundary at
y = 0 the leading term in the expansion of (E.11) is

be(y) = Qﬁag (qséi%)) +021f((i : %))) Y2+ Oy

=

), (B12)

2 2 2

By choosing ¢; such that the big parenthesis vanishes we can make the wave function
finite. However, the expansion of the solution (E.11) near the IR end-point, y — —o0, is

Yy(y) = cae"2a¥ + Oel"2a Y, (E.13)

Because ¢z is a free constant the wave function (E.11) blows up at the IR end-point.
Therefore, there is no normalizable vev solution below the mass gap when we have the
dS slices.
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e AdS slices

The potential here becomes

V(y) = 5 (3 — 5 esc? (Z) ) . (E.14)

a2

The behavior of V,(y) at two UV boundaries is

15 1
Uv N _ B 1
VW) = S+0(y') . y—0,
15 1
Uv 1
_ N _ _ E.1
v, (v) My —an? o + 0O ((y el ) , Yy — am (E.15)

The solution of the Schrodinger equation (6.4) is

Ye(y) = sin'/? <Z> {C’le (cos Z) + CQ? (cos y) } ) (E.16)

a
where P? and Q? are the associated Legendre functions, with
1
325(\/4a2M2+9—1) . s>2. (E.17)

The expansion of the (6.15) near the y = 0 boundary is given by

¥y(y) ZC’2<2 <z>_3/2+;(32+8— D <Z>1/2+O<z>5/2>
+Cl(éla(3 ~Ds(s+1)(s+2) (Z)% +0 (Z)m) +ooo o (BI8)

To obtain a regular solution we should set Cy = 0. After eliminating the second term
in (E.16) the expansion near the second boundary i.e. y = am is

o3/?
Ye(y) = —014 - (am — y)_3/2 sin(sm) + O ((am — y)l/z) ) (E.19)

To obtain a source-free solution, at the second boundary we impose the boundary
condition 14 (o) = 0 which dictates that s should be an integer number and therefore
the mass spectrum of the graviton modes is discrete

1
MQ:HQ[@SH)?—%, s>2, seN. (E.20)

To check the normalizability we also obtain that

/aw|w ‘Zd _|C |2/om' : <y> |:P2( y)]Qd _ |C IQL(S—'_Q)' (E21)
0 g Y = 1 0 S1n o s COSa Yy = a|Uq 25—}—1(8—2)!. .

Although (E.20) gives a minimum positive mass, for the massless case we can solve the
Schrodinger equation independently. The solution is

Vy(y) = fsin;; @ + C;S;ZS/(Q%(%) (0052(Z> _ 3> _ (E.22)

This solution is not finite either at y = 0 or at y = am, so there is no massless
normalizable graviton mode in global AdS space.
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E.2 Scalars

The scalar mode equations (C.10), (C.17) and (C.21) will reduce to the following equations
by setting ®f = 0

Y — C;,qﬁ + %F&(W - E)=0, (E.23)

2 4 ¢ — i(J)(W —E)) =0, (E24)
<v V“+4n)¢+4 . —fv JVEW — B — (“”+2< ,> )gb—w_o (E.25)

Solving ¢ from (E.23) and inserting into the (E.24) and (E.25) and after simplifying by
equation (B.41) we find

4
(a®w) =0, <vuv“ + 3/-;) w=0, (E.26)

where we have defined

/

w=1— %(W —E). (E.27)

This is not an allowed scalar mode since it satisfies equation (E.26), however, we have assumed
that the scalar field should not be the zero mode of the V,V# 4 %/{ operator.

In addition to the above mentioned equations there is another equation, (C.23), where
for @, = 0 reduces to

/
X'+ 3%;{ + (VY — a?m)x =0, (E.28)

where mg is the mass of the background scalar field. In this case, if we decompose the
scalar field as

X(y,x) = X(x)x(y), (E.29)

and assume that its four dimensional part obeys

V. V() = m2 £() (E.30)
then x(y) satisfies
a/
X' () +3 X' () + (my — a’mg) x(y) = 0. (E-31)
The action for x reads as
1
Sx=~52 / d'wdy \/ -9 a® (y) (9ux0"x + X* + a’mi?) . (E.32)
5

By separation (E 29) the above action can be written as

Se= g [ e N [ /-0 (QR@F ) - mE @), (B3
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where we have integrated by part the x’? term in (E.32) and have used the equation (E.31).
Therefore, the normalizability condition for this field reads as

/ dy a®(y)x*(y) < 0. (E.34)

We note that by the same steps as subsection 4.1 for graviton, that is by defining a new
scalar field as

Us(y) = x()e BW . a(y) = e 3P0 (E.35)

the equation (E.31) can be written as

= (y) + Va(y) s (y) = m2abs(y) (E.36)
Vi(y) = B?(y) — B"(y) + a*(y)m3 . (E.37)

According to the scale factors given in (6.3), when the slices are de Sitter or anti-de Sitter
space-time, the leading term of the above potential in the expansion near the UV boundary is

1
Vily) = 1320 = 5)2A- - 3) + 0(0), (E.38)
where A_ is given with (2.18).

The expansion of the wave function near the UV boundary is

bs(y) = er(yi B ) dealy A ). (E.39)

F QFT data for two boundary solutions

As we already mentioned in section 7.1, there is one QFT on each UV boundary. Each QFT

RYV and ¢_. For every solution, we have three dimensionless

is defined by two parameters,
parameters Rp, Rr and ¢ totally.

The QFT data on the boundaries are given as follows:

o In figures 19(a) and 19(b) we present R, and ¢ as we change Sy (moving vertically
along the dashed line in map 7(c)). Moving towards the red boundary in map 7(c),
R — —oo while ¢ — 0. This corresponds to a vev-driven solution. Moving towards
the green boundary, both Ry, and ¢ find the finite values.

« In figures 20(a) and 20(b) we present R and ¢*. As we increase Sy and move towards
the red boundary in map 7(c), Rr and ¢ reach the constant values. However, by

moving towards the green boundary, Rz — 0 while pf — +oc0.

o Figure 22 shows the ratio of the couplings in (7.4).
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Figure 19. (a) shows the changes in log(—R 1) as we move along the dashed line in map 7(c). (b)

shows the behavior of . The red
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Figure 20. (a) shows the changes in log(—Rg) as we move along the dashed line in map 7(c).
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Figure 22. The ratio of the couplings in (7.4).

G The near UV boundary behavior of the scalar mode

In this appendix we shall derive the near-boundary expansions of the scalar mode and
its potential.
As we showed in subsection 4.2, the equation for the scalar field is (4.31)

s = Vs(y)ys =0, (G.1)
with the potential (4.32)
a Lo 1, 2
Vs(y) = —k 1+@v +Zv +§v —m~. (G.2)

The function v(y) is defined in (4.30)

3,2
v(y) = az
T 9m? 112k — k22 (G-3)
with z(y) that is defined in (3.48) as
a® P
z = a’O = I(’]' (G.4)

Knowing the expansions of A(y) and ®(y) from (2.24) and (2.25) one can obtain the expansion
of z(y) in d = 4 dimension as

A2 (4A2 —TA_—6)p® gp

12025_F)(A_—1), YA+ O(y"2) 0<A_<3
2y) = —p- Ayt 4 AT I A L o) b<Aal <1, (G)
—CAL QYA TR 1 Oy A 1<A_ <2

where except for the leading term, the other terms in the expansion change depending on
the value of A_.
Expansion of the function v(y) near the boundary would be

2A 2
o(g) = log [ LDEEL aa_a) ST O P=fsl )
Im? + 12k %wfi_z%%— +0(?) 1<A_<2 o
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with

A (3m2(9 - 4A2 +4A ) + 25(A_ +1)(2A% —11A_ +18))¢?

= - 2(9m2 + 126)(A_ — 1)(2A_ + 1) ' (G.7)

Finally, the expansion of the scalar potential near the UV boundary is

Vig?h-"2 4 O(y*A-72), 0<A- <3
1 V1y?2-"2 4+ 0@y0) l<A_ <1
Valy) = 75(2A- =5)(2A- = 3) + A ° , o (G3)
4y Vo +0Oy==79) I<A_ <3
Vo 4+ O(y*=22-) 3<A_<2
with

202 (25(A- +1)(2A2 — 11A_ +18) + 3m2(9 — 4A2 +4A )

_ 2
i= (2A_ + 1) (9m2 + 12k) = (G.9)

and
2k 5 1 9 2/A_
Vo= (A —8) —m? - R(AZ +2A_ —21)”
= —m? - 2%(3&_ —10A_ —5). (G.10)

The last equality comes from equations (2.17) and (2.26) i.e.

R A~ = R@YP- 24~ = RO = 45 (G.11)

H Laplace operator on AdS;;; and dS;4; manifold.

In this appendix, we briefly review the action of the Laplace operator in AdS and dS space-
times on scalar, vector, and spin 2 fields. We also examine the solutions of the zero modes
which we discussed in section 3.1.

H.1 AdS, slices

Consider the AdS, space-time in Poincaré coordinate
2 o? 2 i j
ds® = ;(dz + nijdz'dz ) ,  z€]0,00), (H.1)

where « is the curvature length scale and 7;; is the (d — 1)-dimensional Minkowski space-time.
The non-zero components Christoffel connections associated to (H.1) are

1 1 ; 1.,
I = T Fz‘zj = ;771']'7 Fij = —;yj- (H.2)
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H.1.1 Scalar field

The Laplacian of a scalar field in Poincare coordinates is (the indices are raised by n%)

22 9 ; d—2
Oo(z,z) = 2 0; +0;0" — T(‘)z d(z,x). (H.3)
For a massive scalar field, the equation of motion is
(O —m?)p(z,2) = 0. (H.4)

By a Fourier transformation in Rb42,

d=lq¢ _.
6(2.0) = [ Gy o 0z10). (15)
equation (H.4) becomes
(2’2(82 +¢%) — 2(d — 2)0, — anz)qb(z, q) =0, (H.6)
where we have considered ¢'q; = n% qiq; = —q>.

The solution of the above equation is given in terms of the Bessel functions. In the
coordinate space, the solution is

d—1 .
¢(z,7) = /(;lﬂ)d?l e*"qi“”lf(q)z(dfl)ﬂZy(\/q?z), (H.7)

where f(q) is an arbitrary function and

1
[ —1)2 242
v= 2\/(d 1)?2 +4m2a?, (H.8)

In equation (H.7), Z, stands for one of the two linearly independent solutions of the Bessel
equation.
d—2 ~
If we consider equation (H.6), and perform a change as ¢(z,q) = z 2z ¢(z, q), this equation

can be written as the following Schrodinger-like equation

4m2a? +d(d — 2)

_le/(zv Q) + VAdS(Z)é(Zv Q) = QQQB(Z, Q) ) VAdS(Z) = 42

. (H.9)

Considering ¢*> = —n% ¢iq; > 0, the above equation shows that for each mode, the value of
i qg — ¢? is continuous for all values of the mass. This is because ¢> > 0 no matter what
the sign of Vaqg is. Therefore, the energy of each mode, i.e. gy is continuous.

Expanding solution of (H.6) near the AdS boundary at z = 0 one finds

$(z,q) = C1g ™ 2T 7 4+ Cog’z" T - (H.10)

For masses with m? > 0 we should choose C; = 0 (vev solutions). However for massless
mode the expansion is

d—1

$(z,q) = C1g~ T +Cog'7 27 4 (H.11)
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H.1.2 Vector field
The conventional Lagrangian for a massive gauge field is

1 1

L=~ F"Fu —gm

ZA, AP (H.12)
The equation of motion for the gauge field is then
0=V, F" —m?A" =V ,(VFA” — VY AF) —m?AY (H.13)

in which, after taking a divergence of the first line, it implies that V,A* = 0 and (H.13)
in a maximally symmetric space can be written as

V. V*A, — (k+m?*)A, = 0. (H.14)

The term xA, comes from the commutation of the covariant derivatives.
The zero mode that appeared already in equation (C.11) corresponds to a massive
vector field with a mass

m? = —2k. (H.15)

To find the solution of our vector field zero mode we start with the following equation

(Vu,VY + k)Au(z,2) =0, (H.16)
where in the AdS, case we have a?x = —(d — 1). Following [61], we decompose the p index
into z and ¢ components with ¢ = 1,--- ,d — 1. For the A, component the Laplace operator is

22 1 1 2z
PA, = S |(02 4+ 07) — —(2d —3) — =(d — 4)0.| A, + =0 A;. H.1
\YAY " (07 +05) z2( 3) z( )0 + a28 (H.17)

So the equation (H.16) becomes

» d—4 2 . 2d—3 d—1
PA+ 0,04, — ——A, +=9A - —F5"A, — —— A, =0. (H.18)
z z z
The gauge condition V,A* = 0 now reads as
; d—2
A = —-0,A,. + ——A,. (H.19)
z

By using the above gauge condition and the Fourier transform of A,, equation (H.18) becomes
(2202 + 22> + 2(2 = d)0. — d| A.(2,2) = 0. (H.20)

Similar to the scalar field, the solution for A, is given by the Bessel function

dd—l )
M) = [t e Az (Ve (H.21)

where A,(q) is an arbitrary function and

_d+1
-

y (H.22)
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For A; components, equation (H.16) becomes
(2202 4+ 220, 0 + (4 — )20, — 2(d — 1)] A; = 2: 0,A. . (H.23)

Now as in [61] we introduce a vector field such that
Ay(z,2) = 2A,(2, 7). (H.24)
Then the equation (H.23) changes to
[22(33 +0,07) + 2(2 — d)d, — d] A, =220,A, . (H.25)

The solution of the homogeneous part of the above equation is like the A,-component, and
it can be shown that the full solution has the following form

Ai(z,z) = / (;ljr;?l e 5 (d=1)/2 {Ai(q)Zy(\/q?z) - iz.AZ(q)%ZVH (\/q>22>} . (H.26)

The gauge condition (H.19) in terms of A, becomes

2(0,A, + 9 A;) — (d—1)A, =0. (H.27)
Inserting (H.26) and (H.21) in the above equation leads to
A, = %Ai 4 - (H.28)
H.1.3 Gravitons

The equation of motion for a massive spin 2 field in d = 4 is (4.12). In d-dimensions we obtain

2
<V,,Vp g 1%) By (2, 2) = M?hy (2, 7). (H.29)

By decomposing i and v indices in z and z* directions we obtain three different modes
hzz,hz;, and h;;. Moreover, we work in transverse and traceless gauges in which

VHhy, = bt = 0. (H.30)

This leads to the following constraints

2(0zh.y + 0'hy) + WY 4+ (3 — d)h.. =0, (H.31)
z(0zhiz + 8jhl‘j) +(2—-d)hi, =0, (H.32)
h..+h%=0. (H.33)

For the zz component of (H.29), the equation of motion is
[z28§ + 222 +2(2—-d)0., — MQaQ} hy (z,2) =0. (H.34)

Again the solution is given in terms of the Bessel functions

dd—l o 3
ho(2,7) = / (%)dﬁl 19 (q)2 D2, (ﬁz) , (H.35)
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and

1
_ _1\2 2.2
V= 5\/(d 1)2 + 4M2a2. (H.36)
The equation of motion for h;, components is
2282 +22¢% + 24—-d)0, — (d—2+ M2a2)} hix(z,x) = 220;h, . (H.37)

In deriving the above equation, we have used the gauge conditions (H.31) and (H.33). Once
again, we introduce

hi» = zhiz,  ha.. = zh... (H.38)
Then equation (H.37) becomes
[z28§ + 222 +2(2—d) 0, — Mzaz} hi-(z,x) = 22 d;h.. . (H.39)

The solution for the homogeneous part is the same as h,, and the full solution is

hiten) = [ st 0 12 () et 2o (V2) | (10

Using the gauge constraints (H.31) and (H.33), there is a relation between the coefficients
in (H.40)

(3 + 2v — d)HzZ = 2iq; H;, - (H.41)
The equation of motion for h;; components is

2202 + 222 + 2(6 — d) 0. — (2d — 6 + M?a?) | hyj (2, )
= —2771']‘ hzz + 4Z@ihjz . (H.42)

Again if we introduce a new tensor field as

hul/ = Z2h,u,z/7 (H43>

the homogeneous part of equation for Bij becomes the same as scalar part h,, and we obtain

(2202 + 22> + 2(2 — d) 0. — M??|hij(2,2) = —2ni; hes + 420ih; (H.44)

So the solution for the homogeneous part is the same as the two previous cases and the
full solution is

Eij(z,x) = / (;ZZ;(_Jl e~ 5 (d=1)/2 [Hij(q)Z,, (\/qzz> (H.45)

_ ;(sz(q) G 65 220 <\/q3z> + q(mijH=2(q) + 20 Hiz(q) 45) Zoa (\/;Z> )} '
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H.2 dS, slices

Now we study the dS; space-time in Poincaré Coordinate with metric
,_ o 2 i 7.7
(2

where as in AdSy, « is the curvature length scale, z is the conformal time and d;; is the (d—1)-
dimensional Euclidean space-time. The non-zero components of the Christoffel connections
associated to (H.46) are

1 1 : 1.
s, = = Ffj = _;(Sij, Fzzj = —;51]" (H.47)

Here we examine the equation of motion for different fields in this space-time.

H.2.1 Scalar field

When the Laplace operator acts on a scalar field in this coordinate, it gives

2 d—2
O¢(z,z) = —% 82— 92 — (Z)az} é(z, 7). (H.48)
The equation of motion for the scalar field, i.e. equation (H.4) after the Fourier transform (H.5),
becomes

(2202 + 2) — 2(d — 2)0- + a®m?) 6(2,¢) = 0. (H.49)

where we have considered the momentum in Euclidean space ¢'q; = +¢%. The solution of
the above equation is the same as in the AdS case (H.7) however with

v = %\/(d ~1)? —dm2a?. (FL50)

By a change as ¢(z,q) = z%é(z, q) the equation (H.49) becomes a Schrodinger equation
as follow

—4m?a® +d(d — 2)

_é//(za qE) + Vds(z)cfb(z, qE) = Q%qg(za qE) Vas(z) = 1,2

(H.51)

Considering q%; =4 qiq; = q% + ¢ > 0 this equation again implies that qj%; and therefore the
energy spectrum of the gg is continuous for all values of the masses m.
Expanding solution of (H.49) near z = 0 one finds

d— d—
$(z,q5) = C1g5"2 7 ¥V + Cag’2 T+ 4. (H.52)

In the case of massless mode the expansion is

d—1 d—1

d(2,q8) = C1qy ° +Caqy® 25 4+, (H.53)
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H.2.2 Vector field

The Laplace operator acting on A, component of a vector field gives

2

1 1 2z
H _ _ 2 _ 92y _ — 9y (A _ iady-~12' I
Vv,V A, 5 (0 o7) > (2d — 3) z(d 4)0, A, + a2a A;. (H.54)

z (2
There is also the transversality condition on the gauge field that reads as
~ 1
J'A; =0, A, — —(d—2)A,. (H.55)
z

So the Laplacian of A, can be written as an operator acting on A, only

1

22 1
ViVIA, = == [(83 —0%) — e G 2)82} A, . (H.56)

The equation of motion (H.16) with ok = d — 1, for the A, component after the Fourier

transform is
2202 + q}) + 2(2 — d)0- — d] 4. = 0. (HL.57)

This equation is the same as (H.20), so the solution is (H.21).
The Laplace operator acting on A; components gives

22 d—1 (4—d) 2z
V. VHA; = -3 {(63 - 8]2) - + az]Ai + ?&AZ : (H.58)
The equation of motion for A; is
(02 + 4) + 2(4 — d)d. — 2(d — 1)] A; = 2:0,A., (H.59)

again this equation is the same as (H.23) with the solutions given by (H.26).

H.2.3 Gravitons

In dS space the constraints of transverse and traceless gauge on different components of

graviton is

2(0zhsy — Ohyy) — WY 4+ (3 — d)h., =0, (H.60)
2(02hiz — ¥ hig) + (2 — d)hiz = 0, (H.61)
h,. —h% =0. (H.62)

The Laplace operator acting on h,, component in transverse and traceless gauge is

2-d). 2

22
ViVihe: = == [63 — 07 + D, — ZQ} h.. (H.63)

So the equation of motion (H.29) for this component of the graviton is

(2202 + 2%} — 2(d — 2)0. + M*a?|h.. = 0. (H.64)
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The above equation is the same as (H.34) except for the sign of the last term. So the solution
is also the same as (H.35) with

1
V= 5\/(d —1)2 — 4M2a2. (H.65)
The Laplace operator for h;, component is
2o .o d  (4—4d) z
mﬁ%%:—MFg—@—Z,+ - @%m+%ﬁWm (FL66)
The equation of motion is
(2202 + 2%} + 2(4 = ) 0. — (d — 2 — M?a?) | hiz (2, 2) = 220;h... (H.67)

The above equation is the same as (H.39) except in the sign of M2?a?. So the solution is
the same as (H.40) but with v given in (H.65).
The Laplace operator for h;; component is

4—-2d 6—d
L (6=d)

2
2
Vuvuhij = —% {az — (922 + 5 6Z:| hij + 4%81'}@2 + Eéz]hzz . (H.68)

z z

The equation of motion is
2202 + 2%q% 4+ 2(6 —d) 9, — (2d — 6 — Mzaz)]hij(z, x) = 20;jh., +420;h, . (H.69)

The above equation is the same as (H.42) except in the sign of M?a? and the coefficient
of h., on the right-hand side. So the solution is the same as (H.45) with —¢;; instead of
n;; and v given in (H.65).

I Unitary representations of dS; and mass spectrum

In this section we briefly review the unitary irreducible representations of the isometry group
of the 4 dimensional de sitter space, SO(1,4), for more details see [62].

In a dSy space-time with the length scale a, for massive/massless fields with spin s = 0
and s = 2, the relation between the scaling dimension A and the mass is

A:;j:u—HnQaZ:A(?)—A), (L1)

where we have used relations (H.50) and (H.65).
The various distinct unitary irreducible representations classify according to the values
of the above scaling dimension.

e Scalar principal series:

3
A:§+iu, uweR, (1.2)

where for scalar modes in dSy

1 4
— 2,2 2
p=5V dm?a? -9, m* > 902 (1.3)
This representation describes a massive scalar field with a mass above m? = —422 and

with a continuous mass spectrum.
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e Scalar complementary series:
0<A<3. (I.4)

9
42

It describes a massive scalar field with masses in 0 < m? <
o Exceptional (discrete) series I:
This representation describe scalar modes with angular momentum j where 7 =
0,1,2,---. The mass spectrum is discrete
2 2 e/,
m-a® = —j(j+3). (L5)

e Spin-two principal series:

For spin two fields this representation describes a continuous mass spectrum similar to
the scalar principal representation i.e.

3
A:§+i,u, peR, (1.6)

where 1 9
o= 5\/4M2a2 -9, M?*> PR (1.7)
e Spin-two complementary series:

The scaling dimension for spin-two modes in this representation falls within the following
range

1<A<2. (1.8)

It describes a massive spin two field with a continuous mass spectrum in between
% < M? < %. The lower bound is the Higuchi bound.

o Exceptional series II:

For spin two fields it contains just two discrete modes
M?*a?=0,2, (L.9)
where both modes are below the Higuchi bound (5.16).

I.1 The representation content of the scalar zero modes

We have two zero modes for scalar fields with masses

0 2 4=

m- = N m = ——KkK = 5
3 o?

where plus(minus) sign stands for four dimensional AdS(dS) slices.

(L.10)

e m? =0 on dS corresponds to the j = 0 mode of the exceptional discrete series I, (I.5).

o« m? = —% on dS is a tachyon and corresponds to the 7 = 1 mode of the exceptional
discrete series I, (L.5).

e m? =0 on AdS is a normalizable mode according to (H.11).

« m? =% on AdS is also a normalizable mode according to (H.10).
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