
Quantum Zeno Dynamics of two 
interacting particles
Varqa Abyaneh1 & Parsa Ghorbani2

According to quantum Zeno dynamics (QZD), the evolution of a quantum system can be restricted 
to a subspace of its Hilbert space by frequent measurements. A crucial question in QZD of a particle’s 
position is: how short the time interval between successive measurements should be, in order to 
confine the particle in its initial spatial region? To address this question, we consider a toy model with 
two ions initially known to be, for simplicity, in a one-dimensional spatial region. By simulating the 
evolution of this two-body quantum system, we estimate the measurement frequency needed to 
keep the ions within their initial confined region at a desired confidence level. Two key parameters 
we employ in our calculations are the Zeno time and the leakage probability of the quantum system. 
The measurement frequencies are calculated and compared when ions are located initially at different 
spatial regions. For our simulation, we introduce the Python code 2IonQZD.

The precise manipulation and confinement of ions play a pivotal role in diverse fields of physics due to their 
wide range of applications1. These include quantum computing2,3, quantum sensors4, atomic clocks5, quantum 
simulators6, mass spectrometers7, and cold-atom experiments. For example, in quantum computing, trapped 
ions are among the most promising candidates for qubits (with companies such as IonQ8 and Quantinuum9 
having developed computers that utilize ion traps), alongside superconducting qubits10. By isolating and 
manipulating individual ions, quantum operations can be performed with high precision, paving the way for 
fault-tolerant quantum computation11–13. This precision can be achieved using sophisticated quantum optimal 
control techniques14–18.

Traditionally, ion confinement has been understood to require external forces or fields19, a notion accompanied 
by many challenges20. Heating induced by field fluctuations poses a significant problem, compromising field 
fidelity and increasing the need for error correction21. Control is another issue, as dynamical fields can induce 
decoherence, which is detrimental to applications in which coherence is crucial22. Scalability also poses problems 
as the number of ions increases23. Finally, achieving small confinement regions, such as those necessary for 
fusion reactions to occur, is impractical with traditional field-based methods due to the need for excessively 
strong fields.

Utilizing the Quantum Zeno Effect (QZE), a counterintuitive quantum phenomenon that allows the “freezing” 
of the state of a quantum system through frequent measurements24–26, it seems feasible to think of trapping ions 
solely through measurements. However, trapping ions spatially by measurements requires a generalization of 
the QZE, known as Quantum Zeno Dynamics (QZD). In general, the QZD states that frequent measurements 
restrict the evolution of a quantum system not completely, but within a subspace of its Hilbert space27. The 
experimental validation of QZD in finite-dimensional Hilbert space has already been demonstrated28, but no 
experimental evidence exists for the infinite-dimensional Hilbert space case associated with position. While 
QZD in infinite-dimensional Hilbert space has been analytically shown for a single-particle system29, and Zeno 
dynamics in open systems and multi-particle settings has been extensively studied, particularly in the context 
of system-environment coupling30–32, these works typically focus on dephasing control or decay suppression via 
environmental interactions. Moreover, the interplay between the Zeno and anti-Zeno effects has been explored 
in such contexts, showing that frequent measurements may either inhibit or accelerate evolution depending 
on system parameters. In contrast, our study presents a direct numerical simulation of QZD for a closed two-
particle quantum system, demonstrating spatial confinement via frequent projective position measurements. 
To our knowledge, such simulations quantifying leakage probability and Zeno time for interacting particles in 
infinite-dimensional Hilbert space have not previously been reported.

In the pursuit of a QZD-based method to spatially confine multi-particle systems via frequent position 
measurements, we present Python code 2IonQZD, which demonstrates the QZD for two interacting particles. 
The code can be extended to multi-particle systems with arbitrary interactions. We employ numerical methods, 
specifically the finite difference and Crank-Nicolson methods, to solve the partial differential equations in 
the eigenstate equation and the system’s time evolution. We then quantify the wavefunction’s confinement in 
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position space by defining the “leakage probability” and evaluating the “Zeno time”. Based on these parameters, 
we estimate appropriate measurement frequencies for various confinement sizes to maintain the spatial 
confinement of the particles.

In Sec. "Quantum Zeno Dynamics", we review the theoretical formulation of the QZE and QZD. In Sec. 
"Time evolution of the wavefunction", we describe the numerical methods, specifically the finite difference and 
the Crank–Nicolson methods, used to solve the eigenstate and time-evolution problems for the two-particle 
quantum system. Sec. "QZD of two protons: numerical results" presents the numerical results and simulations 
generated by the code, including plots of the key parameters (the leakage probability and the Zeno time) for 
various scenarios. Finally, we conclude in “Conclusion”. A detailed description of the code 2IonQZD, is provided 
in the Appendix A.

Quantum Zeno Dynamics
The Quantum Zeno Effect (QZE) is a phenomenon in which a quantum system can be “frozen” in its initial state 
when subjected to sufficiently frequent measurements. Each time a measurement is performed on the system, 
the wavefunction collapses back into its initial state, effectively halting the system’s evolution over time33. An 
extension of the QZE concept is the Quantum Zeno Dynamics (QZD), where frequent measurements constrain 
the system’s evolution, without completely freezing it. Instead, the quantum system is constrained to evolve 
within a subspace of the Hilbert space. The Hilbert space can be either finite– or infinite–dimensional. For 
instance, the position Hilbert space of a quantum particle system is infinite-dimensional29,34.. As an application, 
QZD can be utilized to confine an ion within a desired spatial region. While experiments have demonstrated 
the QZE35–38, no experiment has yet been proposed to spatially confine one or more particles using QZD. While 
several theoretical studies have explored QZD in single-particle systems29, and multiparticle systems have 
been studied in the context of Zeno and anti-Zeno effects with system-environment coupling30–32, these works 
focus primarily on dephasing or decay control rather than direct spatial confinement. Our study numerically 
investigates the QZD of two interacting particles undergoing frequent position measurements in a closed system, 
which to the best of our knowledge remains unexplored.

Consider a quantum system initially in a pure state |ϕ0⟩ governed by a non-perturbed Hamiltonian H0 
at time t = 0. Adding an interaction to the system, the Hamiltonian changes to H = H0 + Hint. The system 
evolves over time with the new Hamiltonian. The probability that the system remains in its initial state after a 
single measurement at time t, is called the survival probability and is given by

	 p(t) = |⟨ϕ0|e−iHt/ℏ|ϕ0⟩|2.� (1)

Expanding the survival amplitude A(t) = ⟨ϕ0|e−iHt/ℏ|ϕ0⟩ in a Taylor series for small t, we obtain,

	
A(t) = 1 − it

ℏ
⟨H⟩ − t2

2ℏ2 ⟨H2⟩ + · · · ,� (2)

where the expectation values ⟨H⟩ = ⟨ϕ0|H|ϕ0⟩ and ⟨H2⟩ = ⟨ϕ0|H2|ϕ0⟩. The survival probability is then,

	
p(t) = |A(t)|2 ≈ 1 − t2

τ2
Z

,� (3)

which defines the Zeno time as,

	

ℏ2

τ2
Z

= ⟨H2⟩ − ⟨H⟩2.� (4)

Now, if over a time interval t, we perform not a single measurement but N measurements, the probability of 
finding the system in its initial state becomes

	
p(N)(t) ≈

(
1 − t2

N2τ2
Z

)N

.� (5)

For a large number of measurements N, the survival probability effectively becomes an exponential function,

	
p(N)(t) ≈ exp

(
− t2

N2τ2
Z

)
→ 1, if

t/N

τZ
≪ 1,� (6)

which implies that very frequent (almost continuous) measurements, “freeze” the quantum system in its initial 
state; a phenomenon called Quantum Zeno Effect (QZE).

The QZE can be generalized to quantum Zeno subspaces where incomplete measurements, represented 
by the operator P, project the quantum state of the system into a specific Hilbert subspace HP . If the initial 
quantum state is described by the density matrix ρ0 within the Hilbert subspace HP , the time evolution of the 
system results in the density matrix ρ(τ) = U(τ)ρ0U†(τ), where U(τ) = exp (−iHτ) is the time evolution 
operator, and H is the Hamiltonian of the system. Now, if we measure the evolved density matrix ρ(τ) using 
the projection operator P, the survival probability i.e., the probability that the state is found again in the Hilbert 
subspace, is given by
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	 p(τ) = Tr[ρ(τ)P ] = Tr[V (τ)ρ0V †(τ)].� (7)

with V (τ) = P e−iHτ P . For multiple measurements, say N times, every τ  time, the survival probability after 
t = Nτ  is given by

	 p(N)(t) = Tr[VN (t)ρ0VN (t)]� (8)

where VN (t) = (P e−iHt/N P )N .
In the limit N → ∞, the repeated projections lead to an effective evolution given by

	 VN (t) =
(
P e−iHt/N P

)N
−→ UZ(t) = e−iHZ t,� (9)

where HZ = P HP  is the so-called Zeno Hamiltonian. While UZ(t) is not unitary on the full Hilbert space, it 
is unitary within the Zeno subspace HP = P H. In this limit, the survival probability becomes

	
lim

N→∞
p(N)(t) = Tr

[
UZ(t)ρ0U†

Z(t)
]

= Tr[ρ0P ] = 1.� (10)

The initial quantum state we discussed above, can be any state within a finite- or infinite-dimensional Hilbert 
space. Whether the Hilbert space is finite- or infinite-dimensional depends on the specific system; for example, a 
two-level atom has a finite-dimensional Hilbert space, while the harmonic oscillator has an infinite-dimensional 
one. We are particularly interested in scenarios involving infinite-dimensional Hilbert spaces, such as the QZD 
for the position of particles. Note that the quantum Zeno subspace can be proven analytically for infinite-
dimensional Hilbert space and for a single particle34,39. For a non-relativistic particle with mass m in the potential 
V(x), the Hamiltonian operator is given by H = p2/2m + V (x), where p is the momentum operator. A position 
state of the particle in infinite-dimensional Hilbert space is represented by |x⟩ with x ∈ R in one-dimensional 
space. Now, measuring the particle’s position in a compact subspace R, is described by the projection operator,

	
P =

∫

R
dx|x⟩⟨x|.� (11)

If the particle is found within the region R, the projection operator P preserves it; if it is at the boundary of or 
outside the region R, it is projected to zero. As shown in Refs34,39., the evolution of the particle within the region 
R is governed by the Zeno Hamiltonian HZ = P HP , and the unitary evolution within the Zeno subspace is 
given by UZ(t) = exp(−iHZt). For very frequent measurements, the Zeno Hamiltonian operator HZ  looks 
like

	
HZ = p2

2m
+ VR(x)� (12)

where the potential VR(x) is defined as

	
VR(x) =

{
V (x), x ∈ R,
∞, otherwise. � (13)

Therefore, as seen from Eq. (12), the evolution of a single particle, subjected to frequent position measurements, 
adds an additional potential term to the Schrödinger equation40. This extra potential at the boundary of the 
compact region, acts as a “hard wall” or Dirichlet boundary, effectively confining the particle within the region. 
Note that this effective infinite potential wall arises in the limit of infinitely frequent measurements and should 
be understood as an idealization. In practice, increasingly frequent projective measurements impose stronger 
boundary constraints, and in the limit, these mimic Dirichlet boundary conditions at the edge of the region R, 
effectively creating a “hard wall” potential29,39.

Time evolution of the wavefunction
We now describe the numerical model used to simulate QZD for a two-proton system. Our goal is to study 
the effect of frequent position measurements on the evolution of the wavefunction and estimate the conditions 
required for spatial confinement.

In general, the evolution of a non-relativistic two-body quantum system is governed by the time-dependent 
Schrödinger equation. For simplicity, we assume that each proton is allowed to move along only one spatial 
dimension, reducing the problem to a two-dimensional partial differential equation. Extending this approach to 
three spatial dimensions is straightforward, although the numerical calculations will be more computationally 
intensive. Because an analytical solution is typically not feasible, we employ the finite difference method42,43 to 
solve the differential equation to obtain the initial eigenstate. The time evolution of the wavefunction is obtained 
using the Crank-Nicolson method44.

Since we are ultimately interested in confining ions by means of the QZD to a region of physical space, we aim 
to demonstrate that QZD applies to a two-body quantum system by quantitatively estimating the appropriate 
measurement frequency to achieve this goal. In general, two particles may interact via an arbitrary potential, but 
for practical reasons we assume that two particles are actually two protons interacting though their electrostatic 
potential.
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To demonstrate the viability of the QZD in a two-proton system with measurements of their positions, it is 
necessary to solve the relevant Schrödinger equation. The Hamiltonian for this problem incorporates the kinetic 
energy of the protons and the potential energy resulting from their electrostatic repulsion. The solution to the 
Schrödinger equation for the two-body problem is studied analytically in41. However, we present a numerical 
solution to this problem, as it allows us to calculate the key parameters such as the leakage probability and the 
Zeno time.

The time-independent Schrödinger equation for two-body system is given by

	 Hψ(x1, x2) = Eψ(x1, x2),� (14)

where

	
H = − ℏ2

2m1

∂2

∂x2
1

− ℏ2

2m2

∂2

∂x2
2

+ V (x1, x2).

Here, H is the Hamiltonian operator, representing the total energy of the system. m1 and m2 are the masses of 
the protons, and ψ(x1, x2) is the wavefunction of the two-body system, depending on the positions x1 and x2 
of the two protons. E is the total energy eigenvalue of the system, and V (x1, x2) is the potential energy function 
arising from the repulsive Coulomb interaction between the two protons,

	
V (x1, x2) = kq1q2

|x1 − x2| ,� (15)

where k = 8.99 × 109 N m2/C2.
Assuming that the protons are initially confined in a one-dimensional region from xi = 0 to xi = L, for 

i = 1, 2, the boundary conditions are given by,

	 ψ(0, x2) = ψ(x1, 0) = ψ(L, x2) = ψ(x1, L) = 0.� (16)

In the next subsections, we explain a method to solve the time-independent and time-dependent Schrödinger 
equations to evaluate key parameters of the leakage probability and the Zeno time.

Eigenstates from finite difference method
Let us assume that the protons are in their ground state and confined in a spatial region. We choose the ground 
state as the initial state for simplicity. Since the ground state is the most localized and stable bound state of the 
system, it provides a starting point for evaluating how the wavefunction evolves. Moreover, the ground state has 
minimal initial energy and spatial spread, making it a natural reference for quantifying leakage and Zeno time. 
Nevertheless, our method can be applied to excited or arbitrary states. To obtain the ground state wavefunction 
solution, we need to solve the time-independent Schrödinger eigenvalue problem Hψ = Eψ, which is a second-
order partial differential equation (PDE). To achieve this, we discretize the continuous variables into a finite N by 
N grid using the finite difference method (FDM)43.

Specifically, we assume the protons with positions x1 and x2 are confined to be in a one-dimensional potential 
well of length d, hence experiencing a hard wall potential with vanishing wavefunction at the boundaries (see 
Eq. (16)).

In this method, the continuous wavefunction ψ(x1, x2) is replaced by a discrete ψ(i, j) on the grid, where 
(i, j) is a point on the grid corresponding to (x1, x2). We must ensure that the grid calculations are well-behaved. 
Clearly, the potential in Eq. (15) is not well-behaved for x1 = x2. This can be rectified by regularizing V (x1, x2),

	
V (x1, x2) = kq1q2√

(x1 − x2)2 + ϵ2
,� (17)

where q1 and q2 are the respective charges of each proton. The regularization parameter ϵ, is set to 10−15 m. This 
is justified by noting that when the denominator of Eq. ((17)) is below this number, we expect a strong nuclear 
force to overcome the Coulomb repulsion45. Now the eigenvalue problem reduces to a set of algebraic equations 
on the grid,

	

− ℏ2

2

[
ψ(i + 1, j) + ψ(i − 1, j) − 2ψ(i, j)

m1∆x2 +ψ(i, j + 1) + ψ(i, j − 1) − 2ψ(i, j)
m2∆x2

]

+ k
q1q2√

(i − j)2∆x2 + ϵ2
ψ(i, j) = Eψ(i, j), i, j = 1, 2, ..., N − 1

where ∆x = L/N  is the distance between two successive points on the grid.
The boundary conditions translated from the continuous form in Eq. (16) into the grid form become

	 ψ(0, i) = ψ(i, 0) = ψ(N, i) = ψ(N, i) = 0� (18)

for i = 0, 1, .., N .  We have one equation for each (i, j) pair, and the eigenvectors and associated eigenvalues can 
be obtained numerically.
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Crank–Nicolson time evolution
To grasp the required frequency of measurements to observe the QZD effect, it is crucial to study the time 
evolution of the two-proton quantum system. The idea is to perform a measurement to check whether both 
protons are confined within the desired spatial region at each time interval τ . Therefore, we need to solve the 
time-dependent Schrödinger equation, iℏ∂ψ/∂t = Hψ. In order to do that, we exploit the Crank–Nicolson 
method, which is a stable numerical approach based on the finite difference method. The Crank–Nicolson 
scheme for the time-evolving system is given by44,

	

(
I − i∆t

2ℏ H

)
ψ(i, j, k + 1) =

(
I + i∆t

2ℏ H

)
ψ(i, j, k),� (19)

where I is the identity matrix, H is the Hamiltonian matrix, ψ(i, j, k) is the state with i, j representing the spatial 
grid point of each proton and k representing the time step, and ∆t is the size of the time step (to be distinguished 
from the time interval between measurements τ ).

In our simulations, the confinement region R is defined as a square of side length d. The value of d is a tunable 
parameter that determines the initial confinement area, and the time evolution of the wavefunction is used to 
assess how quickly it spreads outside this region.

Leakage function
Instead of the survival probability discussed in Sec. 3, we introduce the related quantity leakage function. The 
leakage function is a related concept that serves as a measure of how much of the wavefunction has extended 
beyond a predefined boundary during the time between two successive measurements, τ . This is useful for 
understanding the probability that the quantum system is confined within a certain region, thereby calibrating a 
suitable value for the frequency of confinement measurements, fQZD = 1/τQZD, to observe QZD.

In the continuous form, the leakage L(ψR, τQZD) is defined as

	
L(ψR, tQZD) =

∫

outside
|ψR(x1, x2, tQZD)|2 dx1 dx2.� (20)

Here, ψR(x1, x2, τQZD) represents the wavefunction (previously measured and confined within the region 
defined by R) of a proton at position x1 and the other proton at position x2 after the time τQZD has passed, 
when another measurement takes place to determine the positions of the protons. The integral is calculated over 
and outside the region R. The region R is defined by the confinement length d, and the leakage is calculated by 
summing the probability density outside this region in the extended grid.

In the discrete form, the leakage L(ψR, τQZD) can be expressed as

	
L(k) =

∑
outside

|ψR(i, j, k)|2.� (21)

In this equation, ψ(i, j, k) is the value of the wavefunction at the grid point (i, j, k), where k is the time grid point 
associated with τQZD. The sum is taken over grid points that lie outside the initial grid (As in the continuous 
case, the integral is over the region outside that defined by R). What we demonstrate numerically in the next 
section is that the leakage function vanishes when the measurement time interval tends to zero,

	
lim

τQZD→0
L(ψR, τQZD) = 0.� (22)

Having L(ψd, τQZD) = 0 is equivalent to the frequency of measurements fQZD → ∞. Note that this is 
equivalent to having an infinite potential wall at the boundary of the region R in Eq. (12).

QZD of two protons: numerical results
As pointed out in the previous section, we assume that the ions are protons with their known charge and mass. 
The goal here is to demonstrate the effect of frequent measurements on the evolution of the wavefunction. 
According to QZD, if we choose the frequency of the measurements to be large enough, the wavefunction 
will remain confined within the Hilbert subspace defined by the measurement process. To achieve this aim, 
we calculate the leakage probability of the wavefunction as a function of time for different confinement sizes. 
Although the Coulomb repulsion pushes the protons apart, the confinement size d is chosen such that the ground 
state remains well localized within the region R, ensuring the initial leakage is negligible. We also numerically 
compute the Zeno time defined in Eq. (4). The numerical calculations are performed by our code in Python 
called 2IonQZD. A detailed description of the code is provided in Appendix A. Running the code, the first 
result we obtain is the solution to the time-independent Schrödinger equation, which is a two-body eigenstate 
problem. In the code, we set the distance between two protons (confinement size) to d=1e-12 m, and specify 
the ground state solution by setting selected_eigenstate = 0. The result in Fig. 1, shows the ground 
state probability density in color legend, in terms of the protons’ positions. It is evident that the probability 
density is symmetric in the protons’ positions and as expected it is close to zero on the line x1 = x2 where the 
Coulomb repulsion is maximum.

Now, taking the ground state wavefunction as a starting point, the code computes the time evolution of 
the wavefunction elaborated in Sec. A. The key parameter in our computation is the leakage probability which 
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quantifies the extent to which the wavefunction penetrates outside the confinement region over time. By 
evaluating the leakage probability as a function of time for different confinement region sizes d, we estimate the 
appropriate measurement time intervals required to ensure the protons remain confined in various scenarios.

Note that in our simulations, we do not explicitly perform wavefunction collapse after each time step, but 
instead compute the time evolution under the full Hamiltonian and evaluate the leakage probability at regular 
intervals. This models how the system would evolve between successive projective position measurements. The 
goal is to estimate how small the measurement time interval τ  must be so that the leakage remains below a 
desired threshold—effectively mimicking the role of frequent measurements in Quantum Zeno Dynamics.

First, for the confinement region d = 10−12 m, we fix the time step δt = 10−18 and let the wavefunction 
evolve. For nine time steps, we show the probability density versus the protons’ positions in Fig. 2. As seen from 
this figure, the wavefunction has spread beyond its initial confinement region after 9 × 10−18 ≃ 10−17 s, which 
means that the probability of both protons being confined inside the region defined by d = 10−12 m is small. 
This figure shows qualitatively that selecting the measurement time interval as large as 10−17 s is not practical 
for confining the protons in the region d = 10−12 m.

We then examine the impact of smaller time steps on the evolution of the wavefunction. Let us choose 
δt = 10−21 s, i.e., a time step two orders of magnitude smaller than the previous choice. We calculate again 
the evolution of the wavefunction after a given number of time steps. In Fig. 4, the wavefunction evolution 
after nine time steps is shown as the probability density versus the protons’ positions. It is easily seen that the 
wavefunction has not evolved much and both protons are still likely to be in the confinement region. Again, 
this figure qualitatively demonstrates that selecting a measurement frequency as small as 9 × 1021 ≃ 10−20 s, 
results in both ions remaining confined in the region d = 10−12 m.

Figures 2 and 3 present only the qualitative behavior of the wavefunction over time. In order to calibrate the 
measurement time interval, we need to calculate the leakage probability for different confinement sizes. The 
leakage probability for a single measurement is defined in Eq. (20). Running the code for different values of 
the confinement sizes d = 10−10 m, d = 10−11 m, and d = 10−12 m, the leakage probability is obtained for 
each scenario. The result is depicted in Fig. 4. As expected, the leakage probability always increases over time 
independent of the confinement size. It is evident from this figure that when the protons are closer, due to the 
stronger repulsive force, the leakage probability approaches one more quickly. For d = 10−12 m, the probability 
that at least one of the ions is outside the confinement region at the time 2 × 10−18s, is close to one. This time is 
6 × 10−17 s and 6 × 10−15 s for d = 10−11 m and d = 10−10 m, respectively.

In Fig. 5, the leakage probability is compared for different confinement sizes on a logarithmic scale. The figure 
clearly shows that for a given elapsed time, the leakage probability is higher for a smaller confinement size.

Finally, we calculate the Zeno time for different values of the confinement sizes for the ground state 
wavefunction as defined in Eq. (4). The Zeno time is interpreted as how fast the wavefunction decays from its 
initial state. In Fig. 6, the Zeno time is shown as a function of the confinement size d. For smaller values of d, the 
Zeno time is smaller and for larger values of d, the Zeno time is larger. The reason is that the Coulomb repulsion 
is stronger for smaller d which causes the 2-dimensional wavefunction to spread faster.

Figures 4 and 5 provide more information. The time τY  during which the two-proton system remains in 
the confinement region with Y confidence level (CL), is extracted from Fig. 4. This gives us an estimation of 

Fig. 1.  The ground state probability density associated with the wavefunction solution to the Schrödinger 
equation for the two-proton system with electrostatic interaction in pico meter scale.
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the measurement frequency one has to consider to confine the ions for a long enough time within the desired 
spatial region. If we perform N  measurements every τY  time, the probability of finding the system within the 
confinement region after t = N τY  is given by P = Y N . Let us take Y = 95%. For d = 10−12 m, a confinement 
size where one might expect the probability of the ions fusing to not be negligible, from Figure 4 we see that 
τY ∼ 10−19 s. Therefore, after 100 measurements the survival probability is P = (95%)100 ∼ 0.5%. From Fig. 
6, the Zeno time for d = 10−12 m is τZ ∼ 10−12 s. We observe that even choosing the measurement frequency 
as small as τY ∼ 10−19s < τZ = 10−12 s, does not help remain the protons confined within the confinement 
region, and the two-ion system after only 10−17 s decays almost entirely into the exterior of the region. This is 
to be expected given that we are confining two ions at subatomic distances. Therefore, to quantify the parameter 
τY  in the condition τY = t/N ≪ τZ  in Eq. (6), in order to get successful ion trapping, one should take into 
account the connection between τY  and the leakage probability from Figs. 4 and 5. Let us choose d = 10−7 m, 
which is still small, but possibly closer to the type of distances that might be relevant to quantum computing. The 
corresponding Zeno time as shown in Fig. 6 is τZ = 5 × 10−7. As seen in Fig. 4 (f), if the measurement frequency 
is chosen to be τY ∼ 10−11 ≪ τZ , the survival probability will be P ∼ 99.9%. After 100 measurement, the 
survival probability becomes P ∼ (99.9%)100 ∼ 82% which demonstrates the QZD for the two-ion system.

In real-world implementations, ideal projective measurements are unattainable. Factors such as finite 
measurement precision, detector response time, and environmental decoherence place practical limits on how 
frequently and accurately position measurements can be performed. Furthermore, coupling to the environment 
can introduce decoherence that may compete with or obscure Zeno effects. These considerations imply that 

Fig. 2.  The probability density against the ions’ positions is shown for nine time steps 10−18 s. The 
wavefunction is mostly collapsed after 10−17 s.
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while our simulations demonstrate the ideal limit of Zeno confinement, experimental realizations would require 
balancing measurement rate, precision, and environmental control.

Conclusion
The Quantum Zeno Dynamics (QZD) is a generalization of Quantum Zeno Effect (QZE). It states that a quantum 
system may be frozen in a subset of its Hilbert space, if frequent measurements are performed on the system. If 
the Hilbert space is taken to be the position of particles, then QZD would help confine them in a desired region 
of interest. Possible applications range from quantum computing where the trapped ions would form the qubit, 
to fusion where spatially confining ions to very small distances in a controlled manner is critical.

An analytical proof of QZD for a single particle is already provided29. However, for two or more interacting 
particles, the calculations become involved and studying the behavior of the systems’ wavefunction when 
measurements are performed is computationally intensive as it cannot be done analytically. In this work, we 
have performed numerical analysis to demonstrate the QZD using a two-ion system, which can be generalized to 
multi-ion systems. We have developed Python code which computes the solution to the Schrodinger eigenvalue 
problem for two-interacting particles confined to a one-dimensional space of length d. The Python also evolves 
the two-particle system in time using the Crank Nicolson method, as well calculating the Zeno time for the 
quantum system. Furthermore, we define the ‘leakage function’, a metric quantifying the degree to which the 
wavefunction has spread outside of the region defined by d after a given time.

Fig. 3.  The probability density versus the protons’ positions is shown for nine time steps, 10−21 s. The ions are 
observed with high probability inside the confinement region.
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As an application of the code, we analyzed the quantum two-proton system and obtained the eigenstate 
solutions. The ground state wavefunction is depicted in Fig. 1. Subsequently, we used the ground state solution 
of the system as the initial state, and allowed the system to evolve over time, assuming that two ions were initially 
confined in regions ranging from d = 10−12 to d = 10−7 m. Two key parameters, the leakage probability and 
the Zeno time, were defined and evaluated for different confinement regions with the results presented in Figs. 4 
and 5. Using these results, we could estimate the appropriate measurement frequencies for two specific cases 
d = 10−12 and d = 10−7, in order to keep the two ions trapped within the desired confinement region; hence 
demonstrating the QZD for the two-ion system.

In summary, the main contribution of this work is the demonstration—through explicit time evolution, Zeno 
time and leakage analysis—that spatial confinement via QZD is achievable in a realistic two-particle setting with 
repulsive interaction. This is achieved through a full real-space simulation of two interacting particles subject to 
repeated spatial projections, revealing how the QZD can suppress Coulomb-driven separation at small scales. In 
addition, we provide open-source code which can be extended to three-dimensional or many-body systems. Our 
method bridges analytical theory and computational modeling, offering a platform for exploring measurement-
induced confinement in more complex quantum scenarios.

Fig. 5.  The leakage probability vs. time is shown for different confinement sizes d.

 

Fig. 4.  Shown are the leakage probability for various proton confinement sizes, from d = 10−12 m, to 
d = 10−7 m, as a function of time.
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Data availability
The Python code that supports the findings of this study has been deposited in: ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​v​a​r​​​q​a​-​a​b​y​​a​n​​
e​h​/​​P​a​p​​e​r​s​​/​t​​r​e​e​​/​​m​a​i​n​​/​Q​u​a​​n​​t​u​m​​_​Z​e​​n​o​_​D​y​​n​​a​m​​i​c​s​_​​o​f​_​T​w​o​_​I​n​t​e​​r​a​c​t​i​n​g​_​P​a​r​t​i​c​l​e​s

A Python Code: 2IonQZD
In this section we elaborate the Python code provided in appendix B, which enables us to study the time-evolu-
tion of wavefunction of the two-ion interacting system by utilizing the Crank-Nicolson method. The main code 
main.py uses a support module called quantum_functions.py in which the electrostatic interaction po-
tential, the essential function to construct the Hamiltonian matrix, and the function to be used in Crank-Nicol-
son approach, are defined. The necessary system requirements to run the code are the libraries NumPy, SciPy 
and Matplotlib.

A.1 quantum_functions.py
The module quantum_functions.py defines various functions and parameters that are called and utilized 
in main.py.

A.2 main.py
It is assumed that both ions are protons with the masses defined in the code by m_1=1.67262192 e-27 kg 
and m_2=1.67262192 e-27 kg. The electric charge q_1=1.60217663 e-19 C and q_2=1.60217663 
e-19 C. The reduced Planck constant in the code is denoted by hbar = 1.05457182e-34. Other 
parameters in the code are defined as follows:

•	 epsilon = 1e-15

This is the regularisation ϵ, defined in Eq. (17) to prevent the potential singularity at x1 = x2.

•	 d = 1.00e-12 The desired position subspace in units of meter, in which the ions will be confined due to 
QZD through frequent measurements. Changing this value affects the Zeno time.

•	 N = 100

N defines the number of PDE spatial grid points in x and y dimension. The larger values for N leads to more 
accurate calculations.

•	 delta_X = d/N

This is the spatial grid length in units of meter.

•	 coulomb_potential(x, y, q_1, q_2, epsilon)To evaluate the leakage function, the idea is to 
extend the previous already measured confinement region to d_ext and calculate the probability density that 
at least one ion is found outside the confinement region d. Therefore we define,

Fig. 6.  The Zeno time is shown for different confinement sizes d. Larger distance d results in longer Zeno time.
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•	 confinement_ratio = 2

The parameter confinement_ratio being set to 2 here, makes the original confinement distance d double, 
creating an extended region.

•	 d_ext = confinement_ratio * d

Now, the new extended region is given by d_ext. Setting confinement ratio = 2 we have d_ext=2 
d.

•	 N_ext = confinement_ratio * N

This is the number of spatial grid points parameter after extending the region from d to d_ext multiplying 
the original grid points N by confinement_ratio. The new grid has the same multiplication factor more 
points compared to the original grid, as the factor the new region d_ext is larger compared to the original 
confinement region d, keeping to the same grid points resolution before and after the region extension.

•	 delta_X_ext = d_ext/N_ext

This is the spatial step size for the extended region d_ext.

•	 selected_eigenstate = 0

The parameter selected_eigenstate takes values 0, 1,... corresponding to ground state, first 
exited state, etc, of the Schrodinger equation. Setting selected_eigenstate = 0, the code will numer-
ically solve the ground state starting off from the lowest-energy eigenstate, as eigenstates are typically indexed 
starting from 0 in ascending order of energy.

•	 deltaT = 1e-20

This is the time step size in the Crank–Nicolson approach for the time evolution of the two-ion quantum 
system.

•	 num_time_steps = 10

This is the number of time steps for the Crank–Nicolson method being set to 10 here, which means that the 
code will perform 10 iterations with time step deltaT for each.Having introduced the fixed parameters in 
the code, we now turn to calculation of the ground state wavefunction when two ions are initially measured 
to be in the confined region d. To do so, the Hamiltonian H of the quantum system is constructed as a combi-
nation of the potential energy (Coulomb interaction) and kinetic energy matrices: H = T + U.

•	 V = qf.coulomb_potential(X, Y, q_1, q_2, epsilon)

This is the two-ion Coulomb potential called from quantum_functions.py imported as qf to be used 
to creat the potential matrix in the next code line. The arguments X and Y stand for the spatial grid points 
corresponding to each ion’s position, and q_1 and q_2 are electric charges of the two ions in the system, 
respectively. The argument epsilon is the regularization parameter defined above.

•	 U = qf.create_potential_matrix(V, N)

Now, with the V defined above we create the potential energy matrix U in which it reads the potential V and 
grid size N as arguments and returns the potential matrix.

•	 T = qf.create_kinetic_matrix(N, delta_X, m_1, m_2) 

This calls the function create_kinetic_matrix(N, delta_X, m_1, m_2) as T from quan-
tum_functions.py which requires the number of grid N, the spatial step size delta_X and the masses 
of two ions m_1 and m_2. As discussed before, the kinetic matrix is constructed based on the finite difference 
method.In the library scipy.sparse.linalg, we make use of the function eigsh, which is a matrix 
eigenvalue solver. It computes a limited number of eigenvalues and eigenstates of a given sparse Hamiltonian 
matrix.
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•	 eigsh(H, k=selected_eigenstate + 1, which=“SM”)

This calculates k eigenvalue and eigenstates of the Hamiltonian matrix H. By the argument which=“SM”, 
the function eigsh finds the s“mallest magnitudes”for eigenvalues of H. We set k=selected_eigen-
state+1 i.e. k=0 to ensure that the ground state is included. The result is two arrays. One is the lowest k 
eigenvaliues and the other is an array of columns each corresponding to an eigenvalue. We choose the eigen 
state of interest i.e. the ground state, by eigenvector = eigenvectors[:, selected_eig-
nestate]. Note that the ground eigenstate here is stored in a one-dimensional array.
The resulting grould state eigenvector should be normalized using the line norm = np.linalg.
norm(eigenvector) which utilizes the function np.linalg.norm from NumPy library.

•	 eigenvector_2D = qf.eigenvector_1D_to_2D(eigenvector, N)

This function is defined in quantum_functions.py (imported as qf) and is called here in order to make 
the eigenstate one-dimensional array into a N × N  matrix. From each point on the grid of the wavefunction 
we extract the probability density of the two ions at the corresponding grid point positions.Next, we consider 
the wavefunction evaluated above in the extended grid. This is to ultimately calculate the leakage function 
because of the diffusion of the original wavefunction outside the desired confinement region. First, we define 
a Next × Next matrix with zero entries by initial_state_2D = np.zeros((N_ext, N_ext)). 
To put the original confinement grid in the center of the new extended region, or equivalently to set the 
original wavefunction in the center of the new extended grid, we define the parameter offset = (N_ext 
- N)//2. Then,

•	 initial_state_2D[offset : offset + N, offset : offset + N]

= eigenvector_2D
This accommodates the original wavefunction (eigenvector_2D) of N × N  subregion into the center 
of the extended Next × Next region, with all surroundings being zero. This padding allows us to observe 
the wavefunction leakage outside the initial boundaries, by zero entries outside the original grid turning to 
non-zero values as the sysyem evolves in time.It is sometimes easier to work with 1D array instead of 2D ma-
trix, so we employ the function flatten() to turn the initial eigenstate matrix in the extended region into a 
1D array by initial_state_1D = initial_state_2D.flatten(). This array is normalized then 
by linalg.norm.

In the next step, we begin to evaluate the time evolution using the Crank-Nicolson method. First, we need to 
define the Hamiltonian in the new extended region by giving the potential and kinetic energy matrices in the 
extended grid. This is done by these lines

•	 U_ext = qf.create_potential_matrix(V_ext, N_ext)
•	 T_ext = qf.create_kinetic_matrix(N_ext, delta_X_ext, m_1, m_2)where the elecro-

static potential in the extended region is defined by

•	 V_ext = qf.coulomb_potential(X_ext, Y_ext, q_1, q_2, epsilon)To proceed with the 
time evolution of the wavefunction in the extended region we need to solve the Eq. (19) for each grid point. 
Let us define A = (I − iH∆t/2ℏ) and B = (I + iH∆t/2ℏ) as

•	 A = sparse.eye(N_ext**2) - (1j * deltaT/(2 * hbar)) * H_ext 
•	 B = sparse.eye(N_ext**2) + (1j * deltaT/(2 * hbar)) * H_ext

The parameter time step size deltaT, is already set above. The function eye(N_ext**2) is the 
Next × Next identity matrix, and 1j is the imaginary unit value i.

•	 psi_1D_t, psi_2D_t =

qf.solve_future_states(num_time_steps, initial_state_1D, A, B, N_ext)
This line calls the function solve_future_states from quantum_functions.py. This function 
started from the computes the evolution of the wavefunction every DeltaT for the number of times fixed 
already by num_time_steps. The result will be stored in two arrays as 1D and 2D representation of the 
wavefunction.

•	 leakage = qf.calculate_leakage(psi_2D_t[-1], N, N_ext)

This line calls the function calculate_leakage from quantum_functions.py. It calculates the 
leakage function. That is the probability that at least one of the ions is found outside the initial confinement 
region.
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B 2IonQZD Code
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