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ABSTRACT
This article introduces a new robust multivariate Hotelling T-square (TS) control chart that incorporates an L-Comoments
covariance matrix into a multivariate statistical process control (MSPC) charting scheme to enhance its robustness and detection
ability. However, among the most popular, conventional Hotelling TS charts are affected by outliers and based on the so-called
classical covariance matrix estimators, which in turn presuppose normality and independence. This sensitivity reduces their
usefulness in complicated practical problems where skewness, heavy tails, and outliers are likely to appear. Using L-Comoments
as a basis of the new chart can overcome these limitations since L-Comoments are not affected by outliers. The performance
of the proposed Hotelling TS (HTS) chart is assessed using total and generalized variances. By comparing the effectiveness of
the L-Comoments-based TS chart using simulated and renewable energy data, the new chart based on the proposed approach
outperforms the traditional chart and robust charts based on powerful estimators such as the minimum volume ellipsoid (MVE)
and the minimum covariance determinant (MCD). Hence, the new approach enables the new exploration of robust and reliable
multivariate quality control analysis for high-dimension and complex datasets.

1 Introduction

Production quality in various industries has traditionally been
critical in maintaining the customer base and market share.
Numerous classical control techniques, like Shewhart control
charts, have been used in the past for tracking variations concern-
ing a single quality performance characteristic for a particular
period of time (Montgomery [1]). However, sophisticated man-
ufacturing and service operations require the specification of

several factors that can be interdependent. Since quality is a
complex variable, commonly a combination of several interre-
lated variables, it is important to find better statistical aid. Such
situations can be effectively managed using bivariate charts since
the univariate charts do not effectively portray the interactions of
the various quality variables.

Hotelling [2] pioneered the work on multivariate quality control
in the middle of the twentieth century when he introduced
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the concept of the T-square (TS) statistic. The chart offered a
means for detecting changes in mean vectors, while covariance
focused on variability. However, the TS chart has two potential
limitations, even though it seems useful. First, it is based on clas-
sical assumptions, such as normal distribution and the absence
of outliers, which are irrelevant to most real-life data. Second,
mean vectors and covariance matrices used in the described
evaluation are susceptible to outliers, which can occur due to
errors or exceptional circumstances. These outliers may lead to
small control limits, rendering the charts practically uselesswhen
weak control limits are concerned (Farcomeni and Greco [3]).

To overcome the aforementioned limitations, multivariate sta-
tistical process control (MSPC) recommends improved and
advanced statistical approaches as potential realistic solutions.
In addition to Hotelling’s control chart, Alfaro and Ortega [4]
discussed the comparative analysis of other methods. Vargas [5]
and Jensen et al. [6] proposed two robust Hotelling’s TS (HTS)
control charts for individual namely, the least minimum vol-
ume ellipsoid (MVE) and the minimum covariance determinant
(MCD) estimators. Later on, Chenouri et al. [7] improved the
HTS chart based on the MCD estimator using reweighted MCD
(RMCD) estimators. Note that their extension is motivated by
the robustness of the shrinkage reweighted estimator; see, for
example, Cabana and Lillo [8]. In addition, Kordestani et al. [9]
and Moheghi et al. [10] proposed a reliable estimator for simple
linear profiles, and they reported that the resulting methods were
unable to explain the functional quantitative characteristics of
quality characteristics.

In statistical process control (SPC), L-moments-based methods
are used to enhance the effectiveness of a process, particularly
in cases of dealing with extreme values and identifying and con-
trolling for outlying observations. L-moments have demonstrated
the potential to improve the efficiency of process control and
monitoring, leading to a growing appreciation and adoption in
recent literature. For instance, Lee [11]’ s control charts were
derived from two skewness measures, the third central moment,
and the third L-moment, with means represented by empirical
simulations on manufacturing process differences. Domański
et al. [12] proposed the application of L-moment statistics and
L-moment ratio diagrams (LMRDs) to monitor the dynamics
in the robustness, resilience, and sustainability of proportional-
Integral-Derivative (PID)-based control systems and introduced
a new measure of discordance to account for their changes.
Likewise, Domański et al. [13] used LMRDs for the portrayal and
evaluation of control system quality. These contributions stress
the applicability of L-moments and other related instruments,
including L-Comoments, for the further enhancement of statis-
tical process monitoring. This fact alone is evidence of a trend
among representatives of the academic community, proving the
advisability of employing these techniques and confirming the
compatibility of the proposed approaches with newmethods, like
the utilization of L-moments characteristics in quality control.
L-Comoments are extended L-moments used to analyze the
relationship and dependence structure between two random
variables to get insights beyond traditional correlation measures.
Analogous to L-moments for a single variable distribution, these
statistics measures are calculated from the concomitants of order
statistics and are very useful in multivariate analysis, particularly
when dealing with outliers and heavy-tailed distributions.

It has been reported that L-moments have limitations related
to their sensitivity to outliers in the tails of distributions, the
lack of power when analyzing highly skewed distributions, and
their reduced sensitivity compared to traditional moments; see
Lee [11] and Serfling and Xiao [14]. These limitations reveal
the need for the most robust and efficient moments-based
statistical measures. Therefore, in this paper, we suggest using
L-Comoments statistical measures because of their robustness
to outliers and their power when analyzing non-normal dis-
tributions. We acknowledge the computational complexity and
scalability of L-Comoments-based statistics. However, in this
paper, we also propose a solution to these limitations.

Even though much progress has been made statistical process
monitoring, many of the established methods, including the
Hotelling TS chart, use traditional covariance matrix estimators
that are highly susceptible to outliers. However, more complex
methods such as the MVE or the MCD estimators exist, but they
are more limited to only some aspects of robustness. Recently,
L-moments and their alternative, L-Comoments, have been
considered efficient in analyzing multivariate data with outliers
and/or non-normally distributed data. Recognizing this gap, we
propose a new robust HTS chart that utilizes the L-Comoments
covariancematrix as a potential robust alternative for monitoring
a multi-variable process. To compare the performance of the new
methodwith that of the classical,MVE, andMCD-basedmethods,
we will examine the relationship between total and generalized
variance and assess the enhanced reliability of process control
systems. Moreover, the performance comparison based on the
Phase I analysis in outlier detection accuracy is conducted
through Monte Carlo simulations.

The remainder of this article is divided into specific sections.
Section 2 highlights the different quality control techniques,
specifically the HTS chart considered in this study and its
dependency on classical assumptions. It also describes strong
counterparts, like MVE and MCD methods, which deal with the
problem of outliers in multivariate data. Section 3 is the main
contribution of this study and introduces the L-Comoments-
based TS chart and its robust against outliers, skewness, and/or
heavy-tailed datasets. Section 4 provides numerical simulations
and real data applications to support the proposed robust chart,
showing better solutions than classical,MVE, andMCDmethods.
Lastly, the final section of this article provides a conclusion and
future research ideas.

2 Quality Control and HTS Charts

A control chart is normally created to track one type of data at
a time, such as machine productivity, product quality, delivery
performance, etc. However, some cases require the simultaneous
tracking of related factors, necessitating multivariate control
charts. The most popular of these charts is the HTS control chart,
which employs the Hotelling TS statistic as the central statistic
in a multivariate control chart. It highlights the importance of
the distance moved between the out-of-control mean vector and
the nominal mean vector, assuming a constant covariance matrix
(Ali et al. [15]). In an industrial context, it has been shown that
the quality of the finished product consists of a combination of
factors, and one factor alone cannot affect the quality of the final
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product. In the past, individualmarginal univariate control charts
were used to indicate the quality level of each variable separately,
assuming that variables operate independently. However, this
assumption is not valid in most cases. Therefore, there is a need
for a method that handles the correlations and, at the same time,
maintains the quality of the output. The simultaneous control of
all variables and non-susceptibility to the problem ofmultivariate
techniques in a multivariate system make multivariate control
charts a viable solution to the above problem.

Departing from univariate quality control methods that work
on single variables, multivariate quality control methods use
correlations between variables to test whether a process is in
control. They have several advantages, such as computing the
probability of false alarms, capturing the dependencies among
variables, and utilizing only one charting statistic to establish
the overall process stability instead of using one standalone chart
for each quality characteristic. These benefits have increased the
application of multivariate quality control mechanisms to great
heights. Note, though, that these charts are incredibly valuable
for data-driven decision-making and depend on the availability
of the data. (Ali et al., [16]).

2.1 Classical Covariance Matrix-based TS Chart

Among the existing multivariate charts, the HTS control chart is
themost popular in literature, and its use is highly recommended
for processes with multiple quality characteristics. Let 𝑋 = [𝑥𝑗𝑘]
be a data matrix from a multivariate normal distribution, where
𝑗 = 1, 2, . . . , 𝑛 and 𝑘 = 1, 2, . . . , 𝑝. Then, the sample mean 𝑥̄𝑘 ,
variance 𝑠2

𝑘
and covariancematrix (𝑖 = 1, 2, . . . ) at the 𝑖𝑡ℎ sampling

time are defined as:

𝑥̄𝑘𝑖 =
1

𝑛

𝑛∑
𝑗=1
𝑥𝑗𝑘𝑖 , (1)

𝑠2
𝑘𝑖
= 1

𝑛

𝑛∑
𝑗=1
(𝑥𝑗𝑘𝑖 − 𝑥̄𝑘𝑖)2 (2)

and

𝑠𝑘ℎ𝑖 =
1

𝑛 − 1

𝑛∑
𝑗=1
(𝑥𝑗𝑘𝑖 − 𝑥̄𝑘𝑖)(𝑥𝑗ℎ𝑖 − 𝑥̄ℎ𝑖), (3)

for all 𝑘 ≠ ℎ, where, 𝑘 = ℎ = 1, 2, . . . , 𝑝.

When discussing the HTS statistic, let us describe the value of
the 𝑖𝑡ℎ charting statistic. Thus, at the 𝑖𝑡ℎ sampling time, the HTS
statistic is defined by:

𝑇2
𝑖
= (𝐱̄ − 𝜇0)′𝑆−1(𝐱̄ − 𝜇0) (4)

where 𝐱̄ is the sample, 𝜇0 is the target mean vector and 𝑆 is the
sample covariance matrix.

The use of the control chart, as proposed by Henning et al. [17],
can be divided into two phases. In Phase I, the upper control limit
(UCL) and lower control limit (LCL) are defined by:

𝑈𝐶𝐿 =
𝑝(𝑚 − 1)(𝑛 − 1)
𝑚𝑛 −𝑚 + 1 − 𝑝𝐹𝛽,𝑝,𝑚−𝑝−1, 𝑎𝑛𝑑𝐿𝐶𝐿 = 0, (5)

respectively; where 𝑝 is the number of quality characteristics, 𝑚
is the number of Phase I samples, 𝑛 is the size of each sample and
𝐹𝛽,𝑝,𝑚−𝑝−1 refers to Snedecor’s 𝐹 distribution.

In Phase II, the control limits are updated as:

𝑈𝐶𝐿 =
𝑝(𝑚 + 1)(𝑛 − 1)
𝑚𝑛 −𝑚 + 1 − 𝑝𝐹𝛽,𝑝,𝑚−𝑝−1, 𝑎𝑛𝑑 𝐿𝐶𝐿 = 0. (6)

The LCL remains at zero in both phases of the control. In order
to construct the multivariate control charts, two assumptions
should be tested: (1) the normality, and (2) the independence of
data. However, extreme values significantly affect the normality
of the service environment. In this regard, recommendations are
to build robust HTS charts to alleviate such concerns, which are
explained in the subsequent section.

2.2 MVE andMCD TS Charts

When large sets of high-dimensional multivariate data are avail-
able, the MVE and MCD can be used as efficient estimators for
the mean vector and covariance matrix. The structure of the
estimates is protected in the MVE method since it delivers the
MVE that encompasses a sufficient number of data points. On
the other hand, the MCD method aims to construct an estimator
of dispersion around a location measure based on a subset of
the data and minimize the determinant of the covariance matrix,
with the ability to downweight up to 50% of outliers. The two
methods are important and valuable approaches to Multivariate
Analysis designed to deal with problems that stem from outliers
and extreme values during the process of data gathering.

As pointed out by Sedeeq et al. [18], the HTS control charts based
on MVE and MCD estimators enhance the intensity of quality
control mechanisms. These methods improve the sensitivity and
accuracy of the charts in a way that the mean vector and covari-
ance structure, with respect to the probability density function,
are not affected by outliers. These techniques are applicable when
it is desired to identify problems and their causes as soon as
possible. They establish robust control boundaries, thus raising
the system’s standardization level. As a result, the quality of
decisions improves, and operations become twice as effective.

Let the robust mean vector of MVE be noted as 𝜇𝑥.𝑚𝑣𝑒 =
(𝜇𝑥1.𝑚𝑣𝑒, 𝜇𝑥2.𝑚𝑣𝑒, . . . , 𝜇𝑥𝑝.𝑚𝑣𝑒) and that of the MCD as 𝜇𝑥.𝑚𝑐𝑑 =
(𝜇𝑥1.𝑚𝑐𝑑, 𝜇𝑥2.𝑚𝑐𝑑, . . . , 𝜇𝑥𝑝.𝑚𝑐𝑑). The robust covariance matrices,
𝐒𝐑(𝑖), are then defined as:

𝐒𝐑(𝑖) =

⎛⎜⎜⎜⎜⎜⎝

SR(𝜔)𝑥1𝑥1 SR(𝜔)𝑥1𝑥2 ⋯ SR(𝜔)𝑥1𝑥𝑝
SR(𝜔)𝑥2𝑥1 SR(𝜔)𝑥2𝑥2 ⋯ SR(𝜔)𝑥2𝑥𝑝
⋮ ⋮ ⋱ ⋮

SR(𝜔)𝑥𝑝𝑥1 SR(𝜔)𝑥𝑝𝑥2 ⋯ SR(𝜔)𝑥𝑝𝑥𝑝

⎞⎟⎟⎟⎟⎟⎠
, (7)

where 𝜔 ∈ {1, 2} denotes the type of robust covariance matrix.
Thus, SR(1) represents the MVE, and SR(2) the MCD.

The robust HTS statistics for MVE and MCD are given by

𝑇2𝑀𝑉𝐸 = (𝐱̄ − 𝜇𝑥.𝑀𝑉𝐸)′(𝐒𝐑(1))−1(𝐱̄ − 𝜇𝑥.𝑀𝑉𝐸), (8)

𝑇2
𝑀𝐶𝐷

= (𝐱̄ − 𝜇𝑥.𝑀𝐶𝐷)′(𝐒𝐑(2))−1(𝐱̄ − 𝜇𝑥.𝑀𝐶𝐷), (9)
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respectively; where 𝐱̄ denotes the sample mean vector. Note
that the control limits of the Hotelling’s 𝑇2𝑀𝑉𝐸 and 𝑇2𝑀𝐶𝐷 are
determined in Phase 1 and later on used in Phase 2 for continuous
process monitoring.

3 The proposed HTS based on L-Comoments
Covariance Matrix

Many other extensions of the classical framework of the HTS
chart have been suggested in numerous studies. For example,
Ali et al. [16] proposed a new chart utilizing the F-test in place
of the TS-test. New calibration variance estimators based on L-
moments (L-location, L-scale, L-CV) were introduced to enhance
charts’ efficiency when outliers are present, which are crucial
for analyzing apple fruit, simulated, and real-world data; see,
for example, Shahzad et al. [19, 20]. Later on, to overcome or
minimize the impact of extreme observations, L-moments and
Trimmed L-moments based CV estimators were developed by
Shahzad et al. [21]. A satisfactory improvement was achieved
when testing these methods on sensitive and nonsensitive vari-
ables using scrambled responsemodels in both simulation studies
and practical settings. For updates on the current state of the art
in robust HTS charts, see Sedeeq et al. [18] and Ali et al., [22].
Building on this rich background, this work proposes to develop
an L-Comoments-based HTS control chart.

Serfling and Xiao [14]’s L-Comoments refer to more modern
developments in the study of classical covariance and correlation
measures developed from Hosking [23]’s L-moments. These
measures are particularly useful for data that contain outliers,
are skewed toward one direction, or have heavy tails. Oyegoke
et al. [24] proposed the Hotelling 𝑇2 control chart for minimum
vector variance for monitoring high–dimensional correlated
multivariate process.

The 𝑟𝑡ℎ L-moment of a given random variable 𝑋 is defined as:

𝜆𝑟 =
𝑟−1∑
𝑘=0

(
𝑟 − 1
𝑘

) (−1)𝑘
𝑟

𝔼[𝑋(𝑟−𝑘)], (10)

where 𝑋(𝑘) denotes the 𝑘-th order statistic and 𝑟 represents the
order of moment under consideration.

The first two L-moments are defined by:

𝜆1 = 𝔼[𝑋] (L-location), 𝜆2 =
1

2
(𝔼[𝑋(2)] − 𝔼[𝑋(1)]) (L-scale).

(11)
The second-order L-Comoment for 𝑋 and 𝑌 are

𝜆2,𝑋𝑌 = 1

2
𝔼[(𝑋(2) − 𝑋(1))(𝑌(2) − 𝑌(1))]. (12)

For a multivariate dataset 𝐗 = (𝑋1, 𝑋2, . . . , 𝑋𝑝)⊤ specified by 𝑝
variables 𝐒𝐿 is an L-Comoments covariance matrix, which is
configured in the form of

𝐒𝐿 =

⎡⎢⎢⎢⎢⎣

𝜆2,𝑋1𝑋1 𝜆2,𝑋1𝑋2 ⋯ 𝜆2,𝑋1𝑋𝑝
𝜆2,𝑋2𝑋1 𝜆2,𝑋2𝑋2 ⋯ 𝜆2,𝑋2𝑋𝑝
⋮ ⋮ ⋱ ⋮

𝜆2,𝑋𝑝𝑋1 𝜆2,𝑋𝑝𝑋2 ⋯ 𝜆2,𝑋𝑝𝑋𝑝

⎤⎥⎥⎥⎥⎦
, (13)

where 𝜆2, 𝑋𝑖𝑋𝑖 refer to the L-scale diagonal elements, and 𝜆2, 𝑋𝑖𝑋𝑗
are the L-Comoments elements off diagonal.

Since the L-Comoments covariance matrix is less sensitive and
computationally efficient than the classical covariance matrix, it
is feasible to construct HTS charts. As a result, TS charts improve
anomaly detection and monitoring in a number of ways based on
the limitations encountered by traditional covariance estimation,
especially when dealing with large raw datasets influenced by
outliers and skewness. The L-Comoments covariance matrix
𝐒𝐿-based robust HTS chart is then given by,

𝑇2𝐿 = 𝑛(𝐗̄ − 𝛍̂)⊤𝐒−1𝐿 (𝐗̄ − 𝛍̂), (14)

where

∙ 𝐗̄ = (𝑋̄1, 𝑋̄2, . . . , 𝑋̄𝑝)⊤: Sample mean vector.

∙ 𝛍: Population mean vector.

∙ 𝐒𝐿: L-Comoments covariance matrix.

The control limits of the proposed chart are computed using
the classical F-distribution approach, thus ensuring the chart’s
compatibility with established SPC techniques. Despite using L-
Comoments for a better covariance matrix estimation to handle
non-normality and outliers, the control limits continue to rely
on F-distribution to make them maintainable and interpretable.
The proposed method is based on L-Comoments that enable it to
perform well with outliers while using standard F-distribution-
based limits as outlined by Equations (5) and (6). Thus, in Phase
II, the proposed control chart gives a signal if the charting statistic
defined in Equation (14) plots on or beyond the control limit
defined in Equation (6), i.e., 𝑇2𝐿 ≥ UCL.

It is worth noting that:

∙ L-Comoments are least affected by outliers within the data
compared to the traditional 𝑇2𝐿 statistic, making them more
reliable.

∙ They are able to handle datasets with deviations from
normality.

∙ In light of the above two points, L-Comoments-based charts
will decrease the number of false positives and enhance the
identification of actual outliers.

The performance of the proposed robust HTS chart (𝑇2𝐿) can
be evaluated by comparing it to traditional TS chart (𝑇2𝑐 ) and
robust methods such as MVE (𝑇2𝑚𝑣𝑒) and MCD (𝑇2

𝑚𝑐𝑑
) using

𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑇𝑟𝑎𝑐𝑒(𝑆)) and 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐷𝑒𝑡(𝑆)).
The chart that yields the lowest values for these variances is
deemed the most effective.

4 Numerical Illustration

The use of L-Comoments in robust HTS charts is relatively
new, and to the best of the author’s knowledge, this subject
has not yet been investigated in the literature. Consequently,
a comparative analysis was carried out to quantify the total
and general variances in relation to the adapted and proposed
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charts. The computational complexity and scalability of the
L-Comoments-based HTS control chart are important aspects,
especially regarding a high-dimensional dataset. The proposed
method’s major computation task is the L-Comoments matrix’s
computation, which calls for the computation of pairwise dif-
ferences for all the variables. Although this process is similar to
the usual covariancematrix estimation, it offers better robustness
to outliers and non-normality. In a high-dimensional setting,
the computational cost may blow up significantly. However, the
proposed method reduces this by using linear combinations of
order statistics that reduce the influence of extreme values and
optimizematrix operations. In addition, thematrix inversion step
in the computation of the 𝑇2𝐿 statistics is a common step in the
multivariate analysis procedure. The scalability can be further
improved by implementing thematrix operations in a parallelized
or distributed computing environment, which enables easy pro-
cessing of large datasets. The following subsections are devoted
to the findings and analyses.

4.1 Simulation Study

4.1.1 Phase I Performance Analysis

To evaluate the performance based on Phase I analysis, we
conducted Monte Carlo simulations with 1000 replications. In
each replication, we generated 100 subgroups of size 12, where
D% of the data were considered outliers with specified shift
sizes applied to all parameters. In this study, the proposed
chart’s charting statistic is compared against the UCL, and a
signal is considered correct if the statistic exceeds the UCL in
the presence of outliers. The accuracy of correctly detecting
outliers is recorded for each iteration and reported for four
estimators across various shift sizes and contamination levels in
Table 1. The best-performing method (i.e., highest accuracy) is
highlighted in bold in each row. The average accuracy for each
method is also included at the bottom of the table to provide
a more comprehensive comparison. In addition, we computed
the rank of each method per condition (row), with lower ranks
indicating better performance. The average rank for eachmethod
is also reported. The results show that in most cases, the L-
Comoments estimator achieves higher detection accuracy and
consistently ranks first among the evaluated methods. Another
notable finding is that the MCD estimator performs better in
scenarios involving positive parameter shifts, whereas the L-
Comoments estimator demonstrates superior accuracy under
negative shifts. However, when considering overall performance
across all scenarios, L-Comoments is regarded as the most
effective and reliable method.

4.1.2 Phase II Performance Analysis

To perform the Phase II analysis, 12 subgroups (m = 12), each
of size 6 (i.e., n = 6) of multivariate normal data were initially
generated in R using a mean vector (5, 10, 15) and covariance⎡⎢⎢⎣
4 2 1

2 3 1.5

1 1.5 2

⎤⎥⎥⎦. Thus, 𝑝 = 3 of which each variate counts 72

observations. Outliers were then included in the dataset to model
a practical, realistic situation. These steps helped ensure that

TABLE 1 The accuracy of different estimators in outlier detection
through Phase I analysis.

Shift size 𝑫 ClassicalMVEMCDL-Comoments

−3, −3, −2 0.33 0 0.001 0 0.001
−3, −3, −2 0.40 0.003 0.010 0 0.017
−3, −3, −2 0.47 0.062 0.127 0.009 0.148
−3, −3, −2 0.54 0.356 0.500 0.096 0.563
−3, −3, −2 0.61 0.760 0.850 0.414 0.892
−3, −3, −2 0.68 0.967 0.983 0.811 0.993
−3, −3, −2 0.75 0.997 0.998 0.983 0.999
3, 1, 2 0.33 0 0.0010.006 0.005
3, 1, 2 0.40 0.001 0.0050.095 0.039
3, 1, 2 0.47 0.025 0.105 0.435 0.222
3, 1, 2 0.54 0.180 0.4050.848 0.603
3, 1, 2 0.61 0.607 0.831 0.986 0.887
3, 1, 2 0.68 0.919 0.982 0.999 0.991
3, 1, 2 0.75 0.994 0.996 1.000 0.999
Average of accuracy 0.419 0.485 0.477 0.526
Average of rank 3.536 2.464 2.464 1.536

TABLE 2 Covariance matrices for 𝑝 = 3.

𝐂𝐥𝐚𝐬𝐬𝐢𝐜𝐚𝐥 ∈

⎛⎜⎜⎜⎝

3.706334 1.549703 1.186819

1.549703 2.463255 1.242680

1.186819 1.242680 1.868866

⎞⎟⎟⎟⎠
𝐌𝐕𝐄 ∈

⎛⎜⎜⎜⎝

3.729679 1.547495 1.178412

1.547495 2.744551 1.482215

1.178412 1.482215 1.829621

⎞⎟⎟⎟⎠
𝐌𝐂𝐃 ∈

⎛⎜⎜⎜⎝
3.941915 1.761626 1.072898

1.761626 2.764842 1.358384

1.072898 1.358384 1.727217

⎞⎟⎟⎟⎠
𝐋 − 𝐂𝐨𝐦𝐨𝐦𝐞𝐧𝐭𝐬 ∈

⎛⎜⎜⎜⎝

2.512185 1.282087 1.056093

1.282087 2.405270 1.039499

1.056093 1.039499 2.188231

⎞⎟⎟⎟⎠

our dataset not only contains non-normal data but also includes
issues often experienced in applications. The covariance and
correlation matrix were estimated using existing and proposed
robust methods, as presented in Tables 2 and 3. The results of
the first simulation experiment, which included Mahalanobis
distance values, are illustrated in Figure 1. The control charts
configured in Phase I are depicted in Figures 2–5. It is necessary
to note that out-of-control points are also indicated on the charts
to display the charts’ ability to identify outliers. As shown in
the figures, the plotted points are within the control limits; see,
for example, Figures 2–5. Hence, it proves the reliability and
validity of the charts in the Phase II context. In addition, the
results in Table 4 clearly indicate that the proposed robust HTS
chart is better than the adapted charts in terms of the total
and generalized variance profiles. The proposed chart is the best
one, see Table 4. Also, the experiment was repeated with 𝑝 = 2
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TABLE 3 Correlation matrices for 𝑝 = 3.

𝐂𝐥𝐚𝐬𝐬𝐢𝐜𝐚𝐥 ∈

⎛⎜⎜⎜⎝

1.0000000 0.5128869 0.4509446

0.5128869 1.0000000 0.5791826

0.4509446 0.5791826 1.0000000

⎞⎟⎟⎟⎠
𝐌𝐕𝐄 ∈

⎛⎜⎜⎜⎝

1.0000000 0.4836797 0.4511082

0.4836797 1.0000000 0.6614466

0.4511082 0.6614466 1.0000000

⎞⎟⎟⎟⎠
𝐌𝐂𝐃 ∈

⎛⎜⎜⎜⎝

1.0000000 0.5336112 0.4111795

0.5336112 1.0000000 0.6216044

0.4111795 0.6216044 1.0000000

⎞⎟⎟⎟⎠
𝐋 − 𝐂𝐨𝐦𝐨𝐦𝐞𝐧𝐭𝐬 ∈

⎛⎜⎜⎜⎝
1.0000000 0.5215669 0.4504325

0.5215669 1.0000000 0.4531015

0.4504325 0.4531015 1.0000000

⎞⎟⎟⎟⎠

FIGURE 1 Mahalanobis distance for the 𝐂𝐥𝐚𝐬𝐬𝐢𝐜𝐚𝐥, 𝐌𝐕𝐄, 𝐌𝐂𝐃
and 𝐋 − 𝐂𝐨𝐦𝐨𝐦𝐞𝐧𝐭𝐬methods.

FIGURE 2 𝐂𝐥𝐚𝐬𝐬𝐢𝐜𝐚𝐥 HTS control chart.

FIGURE 3 𝐌𝐕𝐄 HTS control chart.

FIGURE 4 𝐌𝐂𝐃 HTS control chart.

FIGURE 5 𝐋 − 𝐂𝐨𝐦𝐨𝐦𝐞𝐧𝐭𝐬 HTS control chart.
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TABLE 4 Estimated variances for single experiment with 𝑝 = 3.

Methods Total variance General variance

𝐂𝐋𝐀𝐒𝐒𝐈𝐂𝐀𝐋 8.038455 7.951858
𝐌𝐕𝐄 8.023851 7.847778
𝐌𝐂𝐃 8.033974 7.902949
𝐋 − 𝐂𝐨𝐦𝐨𝐦𝐞𝐧𝐭𝐬 7.105685 7.04318

TABLE 5 Estimated variances for single experiment with 𝑝 = 2.

Methods Total variance General variance

𝐂𝐋𝐀𝐒𝐒𝐈𝐂𝐀𝐋 6.897234 6.88774
𝐌𝐕𝐄 6.369495 6.769141
𝐌𝐂𝐃 6.262833 6.817549
𝐋 − 𝐂𝐨𝐦𝐨𝐦𝐞𝐧𝐭𝐬 4.369212 3.415774

TABLE 6 Estimated variances for thousand experiments with 𝑝 =
3.

Methods Total variance General variance

𝐂𝐋𝐀𝐒𝐒𝐈𝐂𝐀𝐋 9.890883 11.73827
𝐌𝐕𝐄 9.696847 10.89521
𝐌𝐂𝐃 9.740129 11.24723
𝐋 − 𝐂𝐨𝐦𝐨𝐦𝐞𝐧𝐭𝐬 7.174125 6.220549

and showed similar behavior, and the results are summarized in
Table 5.

Moreover, the experiment was conducted ten times more, i.e.,
1000 runs for (p,n,m) = (3, 6, 12). The results of the generalized
and total variances were calculated, and summarized in Tables 6
and 7.

The results presented in Tables 4–7, illustrate the performances of
the Classical, MVE, MCD, and L-Comoments methods for vari-
ance estimation in various experiments. For single experiments
with 𝑝 = 3 in Table 4, the Classical method gives total variances
of 8.038455 and total generalized variance of 7.951858. However,
it is very sensitive to outliers. MVE (8.023851 and 7.847778)
and MCD (8.033974 and 7.902949) show better results compared
to the Classical method. Nevertheless, the L-Comoments-based
chart has the lowest variances of 7.105685 and 7.04318, indicating

TABLE 7 Estimated variances for thousand experiments with 𝑝 =
2.

Methods Total variance General variance

𝐂𝐋𝐀𝐒𝐒𝐈𝐂𝐀𝐋 7.566753 8.682598
𝐌𝐕𝐄 7.340383 8.427893
𝐌𝐂𝐃 7.326569 8.49546
𝐋 − 𝐂𝐨𝐦𝐨𝐦𝐞𝐧𝐭𝐬 4.610207 3.062352

FIGURE 6 Power data boxplot.

FIGURE 7 Power data Mahalanobis distance for the 𝐂𝐥𝐚𝐬𝐬𝐢𝐜𝐚𝐥,
𝐌𝐕𝐄,𝐌𝐂𝐃 and 𝐋 − 𝐂𝐨𝐦𝐨𝐦𝐞𝐧𝐭𝐬methods.

TABLE 8 Estimated variances for power data.

Methods Total variance General variance

𝐂𝐋𝐀𝐒𝐒𝐈𝐂𝐀𝐋 566.064 11465.12
𝐌𝐕𝐄 82.04595 1661.264
𝐌𝐂𝐃 68.09585 1156.679
𝐋 − 𝐂𝐨𝐦𝐨𝐦𝐞𝐧𝐭𝐬 8.003718 9.89456

the inherent variability of the data and stabilizing outliers or
extreme impacts with a relatively high level of accuracy. For
single experiments with 𝑝 = 2 in Table 5, this trend persists. Once
again, the L-Comoments method provides minimum variances
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TABLE 9 Power data for TenneT TSO and Transnet BW.

TenneT TSO Transnet BW TenneT TSO Transnet BW TenneT TSO Transnet BW TenneT TSO Transnet BW

9.68 1.44 10.16 1.38 10.94 1.38 11.39 1.50
12.09 1.77 12.79 1.87 13.33 1.95 13.88 2.47
14.73 2.68 14.95 3.02 15.29 3.64 16.01 3.94
16.60 5.03 17.82 6.16 18.59 6.69 19.50 8.08
20.15 9.07 20.90 9.81 21.43 11.57 21.89 14.28
21.47 15.76 21.59 17.60 21.45 18.76 20.71 19.08
19.71 18.71 16.97 16.45 14.11 14.43 12.47 13.24
10.13 12.27 8.56 11.23 8.54 10.40 9.25 10.73
10.20 11.45 10.54 12.05 10.94 11.99 10.58 15.77
11.06 16.34 12.28 17.56 13.69 15.80 15.31 19.68
14.31 18.25 15.08 17.64 16.11 17.61 16.55 20.32
16.85 20.49 16.44 16.82 15.79 15.29 14.73 16.36
13.32 14.48 14.25 12.92 13.30 15.42 12.98 14.08
14.09 14.89 14.24 13.81 13.11 16.03 12.47 12.01
13.10 14.47 13.11 12.93 11.99 13.08 12.02 12.90
13.46 11.91 13.02 13.42 15.68 12.64 15.32 11.62
16.34 14.05 15.71 11.98 17.33 11.54 18.57 12.58
20.90 12.48 21.27 12.54 21.84 13.18 25.36 12.43
28.86 11.93 33.16 16.82 38.89 14.87 46.23 15.10
52.98 15.86 57.96 17.47 64.50 18.84 71.26 19.88
74.08 19.16 73.61 21.08 74.94 20.34 76.18 20.03
74.02 19.58 72.44 22.09 73.52 21.99 74.03 18.33
74.77 18.56 73.32 18.56 74.83 17.11 73.10 14.19
71.26 15.69 71.95 16.71 69.97 18.88 69.58 21.67

of 4.369212 and 3.415774, demonstrating accuracy and stability,
especially in the lower dimensionality of data.

In the context of aggregated results of 1000 experiments, as shown
in Tables 6 and 7, the L-Comoments method is highly resilient
and precise. For 𝑝 = 3 in Table 6, the Classical method exhibits
very high variances, indicating a strong influence of outliers.
Comparing MVE and MCD with Classical variances, we can
conclude that thesemethods work better for further reductions of
variances, with MCD >MVE having values of 9.696847, 10.89521;
9.740129, and 11.24723. However, the variance that belongs to L-
Comoments is the lowest at 7.174125 and 6.220549, amplifying
important data trends while reducing noise and outlier impact.
Similarly, for 𝑝 = 2 in Table 7, the L-Comoments method shows
better variance computations than other methods, with variances
of 4.610207 and 3.062352. In this analysis, L-Comoments provides
a fairly acceptable level of quantification accuracy that is rela-
tively immune to data distortion, making it suitable for large and
complex datasets. The new usage of L-Comoments introduced
makes it a novel analyzing tool for datasets with outliers, noise,
skewness, and high variability, such as in renewable energy
systems and other real-world systems that will be explained in
the upcoming subsection.

4.2 Wind Energy Power Data

Wind energy offers a clean, renewable alternative to fossil fuels,
reducing greenhouse gas emissions and aligning with global sus-
tainability goals. By applying quality and reliability engineering
principles, the wind energy sector can enhance efficiency, reduce
costs, and accelerate the transition to sustainable energy. In this
article, the wind energy dataset used in this analysis contains
power generation data from two German energy companies,
TenneT TSO and Transnet BW. The dataset comprises non-
normalized power generation values recorded at 15-min intervals,
resulting in a total of 96 observations per day. Specifically, the
data analyzed corresponds to a single day, dated August 23, 2019,
with the first recorded value at the time 00:00:00 and the last at
23:45:00. The dataset is publicly available on the Kaggle platform.

Finally, through the boxplot in Figure 6, it can be seen that
TenneT actually has relatively high variability, with many points
allocated beyond the whiskers, which may contain some abnor-
mal and extraordinary values in the dataset. In contrast, the
Transnet BW dataset density is more concentrated, and there
are no extreme values dominating, making it more desirable. In
such situations, the Hotelling TS control chart developed from
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the covariance matrix of L-Comoments is more optimal than the
one developed from conventional methods, as L-Comoments act
as a better estimator of distribution characteristics for skewed
and heavy-tailed data. Real outliers are revealed through L-
Comoments, enhancing the monitoring and interpretation of the
Hotelling TS chart and assisting in monitoring powerful datasets
for anomaly detection.

The depth-depth (DD) plots in Figure 7 demonstrate the effec-
tiveness of robust methods in comparing Mahalanobis distance
computation with the classical approach. Among these methods,
L-Comoments showhigh efficiency in reconstructing the identity
line with minor corrections to Mahalanobis distances and the
ability to preserve the shape of the data. Furthermore, the
estimates of L-Comoments also show that they are robust against
outliers and non-Gaussian data. The L-Comoments method
results in lower total and generalized variance compared to
Classical, MVE, and MCD methods.

The values of variance presented in Table 8 show the significant
advantage of L-Comoments, proving that it is a statistically
accurate and effective approach. The classical method, lacking
robustness, showed high total variance (566.064) and general
variance (11465.12) due to sensitivity to outliers and normality
assumptions not suitable for wind power data. However, MVE
(82.04595, 1661.264) and MCD (68.09585, 1156.679), which are
known for their restrictive nature in handling outliers, had high
variance estimates. Thus, when using the L-Comoments method,
the variances were very small, 8.003718 and 9.89456, confirming
its high trustworthiness and precise datamanipulation in the case
of outliers, positive skewness, and high kurtosis. These results
indicate the efficiency and reliability of L-Comoments for use in
TS charts, paving the way for improved modeling and decision-
making in renewable energy systems. The data used is provided in
Table 9. Overall, L-Comoments prove to be the best-suited robust
TS chart method, opening up possibilities for other control charts
in the field.

5 Conclusion

This comprehensive study suggests the new proposed control
chart, i.e., L-Comoments-based robust HTS control chart, that
improves the efficiency and reliability of multivariable quality
control scenarios. As compared to other available methods,
the newly proposed L-Comoments HTS Control chart is not
overrepresented in the case of outliers and does not need
any normality assumption. Therefore, it is more robust against
outliers that can distort skewed data or data sets that contain
a lot of outlying values. Real-world usage assessment based on
renewable energy data and simulated comparative examination
proved that the proposed HTS control chart is superior than
the available classical, MVE, and MCD covariance-based TS
charts with significantly having smaller variances (both total
and generalized). This improvement is not only beneficial for
enhancing outlier detection performance but also useful for
ensuring stable monitoring in large and high-dimensional data.

Future studies can deal with extending L-Comoments-based
methods to several multivariate quality monitoring settings,
especially in high-dimensional or big data scenarios. Combining

thesemethodswithmodern high-performance computing frame-
works may increase scalability and computational efficiency in
manufacturing and other data-intensive industries. In addition,
the scope can be broadened to integrate broader performance
metrics such as false alarm rates, ARL, and breakdown robustness
that may be ideally facilitated using L-Comoments and their
extensions. This programmatic union would offer a more strin-
gent and sturdy bias for recording multivariate processes under
demanding data environments.

Data Availability Statement

The data that supports the findings of this study are available in the
supplementary material of this article.
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