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A B S T R A C T

Surveillance camera systems are essential for construction monitoring tasks, including safety, productivity, 
progress tracking, and quality control. This paper investigates optimal design and dynamic adjustment of multi- 
camera systems across construction phases while minimizing cost. The problem is formulated as a Mixed-Integer 
Linear Programming (MILP) model that incorporates evolving layouts, relocation costs, camera specifications, 
and risk-based priorities. As construction progresses, new obstacles can affect coverage, and the approach in
cludes camera replacement across phases. The method was evaluated on a real-world case study involving four 
construction phases, achieving a 17.64 % cost reduction while maintaining effective coverage of high-priority 
zones. These results provide construction managers with a practical decision-support tool for adaptive and 
cost-efficient surveillance planning in dynamic environments. Nonetheless, the model is currently limited to two- 
dimensional layouts, and its practical application depends on the availability of sufficient computational re
sources for solving the exact optimization problem.

1. Introduction

It is known that the construction industry is one of the most haz
ardous sectors, with an exceptionally high percentage of occupational 
injuries and fatalities reported [1–3]. In the United States, in 2019, 5333 
worker fatalities occurred, 1061 of which were from the construction 
industry [4]. Similarly, it was reported that about 50 % of all job-related 
fatalities occur in the construction sector in Korea [5]. Many of these 
incidents are due to non-compliance with safety protocols and unsafe 
behaviors, such as failure to wear personal protective equipment (PPE) 
or using unsafe tools and procedures [6–8].

To mitigate such risks, camera-based monitoring systems integrated 
with computer vision technologies have received increasing attention as 
a promising tool for improving site safety through automated hazard 
detection [9]. These systems offer several advantages, including cost- 
effectiveness, non-intrusiveness, and continuous remote monitoring 
capabilities. However, beyond safety enhancement, surveillance cam
eras have become increasingly important in improving two other critical 
aspects of construction project performance: productivity and quality.

In terms of productivity, surveillance systems enable the continuous 
tracking of worker movements and machinery operations, offering 
valuable insights into task durations, idle times, and equipment 

utilization patterns. These data streams facilitate objective assessments 
of performance, identification of workflow inefficiencies, and proactive 
resource reallocation [10,11]. For quality assurance, high-resolution 
video feeds from strategically positioned cameras allow for real-time 
or post-event inspection of construction activities, material handling, 
and workmanship. This supports the early detection of deviations from 
design specifications—such as improper installations or surface 
defects—thereby minimizing costly rework and ensuring compliance 
with quality standards [12]. These multi-functional applications posi
tion surveillance cameras as a foundational element of modern con
struction management, offering real-time insights into safety, 
productivity, and quality performance indicators.

Despite the growing interest in vision-based monitoring, the strategic 
placement of surveillance cameras remains an unresolved challenge. 
The fixed positioning of CCTV units often leads to blind spots or 
redundant coverage. Therefore, it is imperative to ensure that cameras at 
construction sites are placed optimally for maximum effectiveness [13]. 
Surveillance effectiveness can be improved by aligning camera positions 
with a site’s unique layout, hazards, and at-risk areas [14]. This can also 
enhance the overall safety of a construction site and minimize reliance 
on remote monitoring by experts or training-dependent personnel. 
Reducing this reliance helps lower the labor costs associated with 

* Corresponding author.
E-mail address: mojtabamaghrebi@um.ac.ir (M. Maghrebi). 

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

https://doi.org/10.1016/j.autcon.2025.106569
Received 7 September 2024; Received in revised form 18 September 2025; Accepted 25 September 2025  

Automation in Construction 180 (2025) 106569 

Available online 1 October 2025 
0926-5805/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

mailto:mojtabamaghrebi@um.ac.ir
www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2025.106569
https://doi.org/10.1016/j.autcon.2025.106569


traditional surveillance processes, which are prone to human error [9]. 
This motivates the formalization of the Surveillance Camera Placement 
Problem (SCPP), which aims to maximize effective monitoring coverage 
while minimizing camera count and cost [13–15].

While SCPP has been addressed in various domains, key challenges 
such as construction site dynamics, camera relocation costs, and 
avoiding excessive coverage of irrelevant areas remain largely unre
solved or have been studied in isolation. Additionally, SCPP is classified 
as an NP-hard problem, which has led many researchers to rely on 
heuristic or metaheuristic algorithms that sacrifice global accuracy for 
computational speed [16,17]. Nevertheless, the proposed Mixed-Integer 
Linear Programming (MILP) formulation enables the identification of a 
global optimum under the defined constraints and bounded search 
space. This is achieved using exact solvers such as CPLEX, which employ 
branch-and-bound algorithms to identify the global optimal solution. It 
is important to emphasize that we do not claim polynomial-time solv
ability for all NP-hard problems. Rather, we emphasize that the inherent 
structured nature of our SCPP formulation facilitates exact optimization 
within feasible computational limits.

To address these gaps, this study introduces a dynamic and cost- 
aware optimization framework for SCPP based on Mixed-Integer 
Linear Programming (MILP). Unlike traditional static models, the pro
posed approach incorporates construction phase dynamics, risk-based 
monitoring priorities, and camera relocation costs into a unified math
ematical formulation. The model ensures globally optimal placement 
decisions across all project phases, thereby achieving precise coverage of 
critical zones while avoiding unnecessary monitoring of irrelevant areas. 
Notably, the inclusion of a relocation-aware cost model provides an 
economic dimension that balances trade-offs between installing new 
cameras and reusing existing ones, making the method highly practical 
for budget-constrained projects.

Therefore, this study is guided by the following research question:
How can a surveillance camera system be optimally designed and 

dynamically adjusted across different construction phases to ensure 
effective coverage while minimizing total cost?

To address this, we introduce a MILP-based framework that: 

1. captures progressive site layout changes across multiple construction 
phases,

2. integrates both relocation and installation costs to ensure economic 
feasibility,

3. employs a risk-based, multi-tiered prioritization system to focus 
coverage on critical zones,

4. supports adaptive strategies for maintaining, relocating, or deploy
ing cameras in each phase, and

5. applies pre-processing techniques to reduce computational overhead 
while maintaining model linearity and solvability.

This formulation provides a robust yet practical solution for dynamic 
surveillance planning in construction environments, offering globally 
optimal outcomes that address both technical and economic dimensions.

The subsequent sections of the paper are organized as follows: Sec
tion 2 summarizes existing studies on the applications of surveillance 
cameras on construction sites and the optimal placement of cameras. 
Section 3 provides a detailed description of the proposed method. Sec
tion 4 examines the proposed method using field data from a construc
tion site. The results are presented in Section 5. Section 6 discusses the 
findings and their implications. Finally, Section 7 concludes the paper by 
summarizing the main achievements.

2. Literature review

The use of networked camera surveillance systems has enabled real- 

time tracking of personnel, machinery, and construction activities 
through continuous and remote monitoring [14,18]. These systems 
generate visual data feeds that capture the spatial and temporal dy
namics of construction entities, supporting various tasks such as safety 
monitoring, productivity assessment, and progress tracking. However, 
the success of these applications heavily depends on the strategic 
placement of surveillance cameras—including the type, number, and 
location—in response to evolving site conditions [14,18].

Prior studies on surveillance in construction environments generally 
fall into two conceptual categories: (1) Applications of Surveillance 
Cameras on Construction Sites and (2) Optimization of the Surveillance 
Camera Placement Problem (SCPP).

2.1. Applications of surveillance cameras on construction sites

Surveillance cameras are widely employed as data acquisition tools 
for a range of computer vision tasks, including object detection, 
tracking, activity recognition, and classification [19]. These capabilities 
have been utilized in numerous studies to automate essential functions 
such as hazard identification, resource and worker tracking, construc
tion progress monitoring, and quality assessment.

Table 1 organizes the related literature based on the specific appli
cation domains within construction surveillance, highlighting the 
prevalence of object detection across all categories. Prior studies, as 
summarized in Table 1, can be categorized into four application do
mains: safety, productivity, progress monitoring, and quality control. 
Object detection remains the most frequently applied computer vision 
technique across these domains. While other methods, such as object 
tracking, activity recognition, and action or object classification, have 
also been used, particularly in safety and productivity applications, 
object detection is predominantly employed in quality control tasks.

While advancements in computer vision have enhanced data inter
pretation capabilities, the placement strategy of surveillance camera
s—a critical determinant of data quality—has received far less attention. 
Improperly positioned cameras can lead to occluded views, blind spots, 
and degraded visual input, ultimately undermining the effectiveness of 
subsequent computer vision analysis.

To fill this gap, the present study introduces an optimized camera 
placement framework aimed at maximizing data utility. The model 
dynamically allocates camera positions to minimize occlusions and 
ensure comprehensive monitoring of high-risk and high-priority areas. 
This targeted placement strategy significantly improves the performance 
of automated surveillance in key application areas: 

• Safety Monitoring: By maintaining unobstructed views of hazardous 
zones, the system enables early detection and real-time intervention.

• Productivity Assessment: Improved tracking of workers and machinery 
facilitates more precise evaluation of performance metrics.

• Progress Monitoring: Enhanced coverage supports the reliable 
collection of visual data, assisting in the automated tracking of 
construction progress and the early identification of potential delays.

• Quality Control: High-resolution visual data enable accurate detec
tion of material defects and construction anomalies.

Through these improvements, the proposed model considerably en
hances the input quality required for computer vision tasks. Addition
ally, by eliminating redundant or inefficiently placed cameras, it reduces 
data processing overhead, thereby improving the overall efficiency of 
computer vision systems.

2.2. Surveillance camera placement problem (SCPP)

The foundational research on SCPP is often attributed to the Art 
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Gallery Problem (AGP) [77], a computational geometry problem 
focused on optimizing visibility using the fewest number of guards. Both 
SCPP and AGP seek to maximize coverage with minimal resources 
[78–80]. In mathematical terms, the AGP involves a simple polygon P 
(without holes or self-intersections). A guard c (c ∈ P) is considered to 
observe a specific region G where G ∈ P. A point q lies within the 
observation area of guard c if and only if the direct line between q and c 
is entirely contained within the polygon P (qc ⊆ P) [77] (Fig. 1).

Although AGP and SCPP share similarities—which could suggest that 
the Surveillance Camera Placement Problem (SCPP) is a generalized 
version of AGP —they have some key differences. The main distinction 
involves the Field of View (FOV) and the Angle of View (AOV). The FOV, 
which represents the total area a camera can monitor, depends on the 
AOV, which defines the angle through which the camera captures its 
surroundings. A typical healthy human guard has an AOV of about 120◦

[81,82]. In contrast, within the context of SCPP, the AOV can vary 
significantly, ranging from 30◦ to 180◦, depending on the lens type and 
sensor size.

Another significant difference between AGP and SCPP lies in the 
dynamic nature of the construction environment. In detail, construction 
sites are constantly changing as obstacles and walls are built and 
demolished, making it difficult to identify stable and secure locations for 
camera installation. Art galleries, on the other hand, have static layouts 
that allow for the permanent placement of surveillance equipment.

These unique characteristics introduce additional complexities into 
camera placement decisions on construction sites, particularly when 
planning must occur before construction begins to avoid costly modifi
cations during implementation [18]. A considerable number of research 
efforts have addressed the problem of camera placement optimization, 
most of which focus on non-construction environments. Table 2 sum
marizes the most cited papers based on several key categories, including 
project type, surveillance objective (e.g., minimum cost, maximum or 
specified coverage, or 100 % coverage), workspace dimensionality (2D 
or 3D), site layout condition (static, phase-based dynamics, or dynamic 
model), mathematical model type (ILP, INLP, MILP, or MINLP), and the 
nature of the solution method employed (exact or approximate).

As can be seen from Table 2, the following results can be obtained: 

• Most of the methods introduced in recent years have used field data 
obtained from surveillance cameras for validation.

• Most research focuses on optimizing coverage while minimizing 
costs; few attempts have been made to achieve 100 % coverage due 
to practical and financial constraints.

• The Integer Linear Programming (ILP) method is the most commonly 
used in this field, aiming to determine optimal surveillance camera 
locations.
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Fig. 1. Visualization example of AGP.
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• Few studies have focused on finding exact (globally optimal) solu
tions that guarantee the best possible solution for camera placement.

• The majority of methods introduced for construction applications 
assume a static surveillance environment, meaning the positions of 
targets and obstacles remain constant over time. Only a few studies 
have considered construction dynamics; none have accounted for 
relocation costs or incorporated dynamic changes within their 
mathematical models. Re-optimization using mathematical formu
lations has been limited to a small number of discrete layout plans.

In contrast to prior studies, this research introduces a risk-aware and 
dynamically adaptive optimization model for surveillance camera 
placement in construction environments. The model is formulated as a 
Mixed-Integer Linear Program (MILP) and solved using exact algorithms 
to ensure global optimality— overcoming the limitations of most 
existing methods that rely on heuristic or metaheuristic solvers. A key 
advancement lies in the model’s explicit incorporation of site evolution 
across all construction phases, allowing it to capture continuous physical 
changes in layout and risk zones. At each phase transition, the model 
intelligently decides whether to add new cameras or reconfigure existing 
ones to maintain the coverage level required by the project manager 
while minimizing equipment costs. This adaptive decision-making pro
cess is fully embedded within the mathematical formulation, which 
accounts for both camera relocation and purchasing expenses, thereby 
addressing real-world budgetary constraints.

Additionally, the model significantly enhances surveillance effi
ciency by implementing a four-tiered risk-based prioritization scheme. 
This structure ensures that critical zones are continuously monitored 
while deliberately excluding low-risk or completed areas from unnec
essary surveillance, thereby avoiding cost-intensive over-coverage—an 
issue frequently neglected in previous research. By dynamically aligning 
camera layouts with evolving risk profiles and spatial configurations, 
the model delivers a cost-effective and operationally viable surveillance 
strategy.

3. Methodology

The proposed method is structured into a modular three-layer ar
chitecture, as illustrated in Fig. 2, to support the optimization of sur
veillance camera placement on dynamic construction sites: 

• Input Layer: This layer gathers all necessary raw data and project- 
specific information, including the site floor plans for each phase, 
known physical obstacles, candidate camera installation locations, 
and user-defined monitoring objectives.

• Processing Layer: This layer is responsible for transforming the 
input into a mathematically tractable format for optimization. First, 
the environment is discretized through meshing. Next, surveillance 
priority is assigned to each cell based on predefined risk levels. In this 
study, four priority classes are used—Priority 1 (Red), Priority 2 
(Orange), Priority 3 (Yellow), and Priority 4 (White, indicating non- 
critical areas). Finally, the MILP-based optimization is implemented, 
integrating camera specifications, relocation costs, and temporal 
dynamics across phases.

• Output Layer: The final layer generates practical and applicable 
outputs that support both strategic planning and on-site imple
mentation. As shown in Fig. 2, this includes the optimal camera 
layout for each construction phase, clearly reflecting the dynamic 
nature of the project and how the system adapts camera positions 
over time. Additionally, a cost-coverage trade-off analysis is pro
vided to inform decision-makers of the financial implications of 
different coverage levels and camera types. It also highlights the 
model’s extensibility and real-world adaptability.

In the next section, each step is elaborated in detail.
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3.1. Environment modeling

The environment modeling step is essential for establishing a foun
dation for camera placement optimization. It translates the physical 
construction site layout into a digital representation that can be effec
tively analyzed and interpreted by the model. In this section, we clarify 
the process of modeling the construction project environment for the 
Surveillance Camera Placement Problem (SCPP). 

• Process

The modeling process comprises three key stages: 

1. Creating Digital Site Model: We convert the CAD drawing of the 
construction site layout into a high-resolution digital image. This 
image serves as the basis for modeling and analysis. The project 
manager annotates this image to denote the location and dimensions 
of equipment and materials, ensuring an accurate representation of 
spatial constraints and active areas.

2. Obstacle Identification: Obstructions are defined as any features or 
structures that hinder visibility, such as walls, storage units, vehicles, 
or temporary construction equipment. The identification of ob
structions involves analyzing the annotated image to specify ele
ments that block the direct line of sight between potential camera 

placements and their target areas. This is achieved through visual 
inspection and spatial analysis techniques that assess the proximity 
of objects within the model.

3. Candidate Location and Target Area Identification: Potential 
camera locations are identified based on three criteria:

• Visibility: Candidate locations must provide unobstructed views of 
designated target areas.

• Accessibility: Selected locations should facilitate easy installation, 
maintenance, and potential relocation of cameras.

• Structural Integrity: Chosen positions must be structurally sound and 
capable of supporting the cameras.

Suitable locations for cameras may include permanent structures (e. 
g., walls, columns), semi-permanent installations (e.g., cranes, scaf
folding), and boundary assets (e.g., fences). Target monitoring areas are 
defined based on the project phase and risk assessment, prioritizing 
regions such as entry/exit points, high-risk zones, material storage 
areas, and high-traffic worker zones. 

• Model Inputs and Outputs 
The inputs include a digital image generated from the construction 

site layout CAD drawing, alongside engineer-provided annotations 
that specify the location and dimensions of equipment and materials. 

Fig. 2. Proposed camera placement optimization framework.
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The corresponding output is a digital representation of the site that 
highlights obstructed areas, candidate camera installation positions, 
and designated surveillance targets.

To ensure adaptability to construction site dynamics, updates are 
conducted at major phase transitions. These updates incorporate 
changes in site layout, risk-priority zones, and visibility obstructions, 
which are manually integrated into the optimization model. The pro
posed process follows an adaptive methodology to facilitate updates, 
making it reusable across different projects. While currently manual, 
future research could automate this process using BIM integration, IoT- 
enabled sensors, and AI-driven risk assessment to support real-time 
surveillance optimization.

3.2. Environment meshing

To represent a target location as a set of distinct cells, meshing is a 
commonly used method in mathematical modeling [86,92]. The size of 
the cells is an important factor to consider during the process of dis
cretizing the desired location [93]. While smaller unit cells can increase 
precision, they may also reduce computational efficiency.

To perform this step, we convert the CAD drawing of the construction 
site layout into a high-resolution digital image that serves as the input. 
This image is then divided into discrete unit cells through a meshing 
process. Information such as whether individual cells represent obsta
cles or work areas, their relative grid positions, and their assigned sur
veillance priorities can be retrieved for each cell. The size of each cell 
used in this study was set to 1 × 1 m².

3.3. Determining surveillance priority

After environmental modeling and meshing, establishing the priority 
of each cell is essential to ensure efficient surveillance planning. As 
previously mentioned, assigning equal importance to all areas of a 
construction site is neither practical nor economical. To address this, the 
proposed model adopts a risk-based prioritization strategy, assigning 
weights to cells based on their relative importance in terms of safety, 
asset protection, and operational criticality (See Table 3)

In this study, the surveillance area is categorized into four levels of 
priority (0–3), following consultations with experienced site engineers 
and safety managers. This classification is based on factors such as his
torical incident data, frequency of worker activity, and the presence of 
high-risk equipment or operations. The four-level system is as follows: 

• Level 3 (High Priority): Zones with intense, high-risk activities such 
as crane operations, excavation pits, and structural assembly work.

• Level 2 (Moderate Priority): Areas used for material staging or 
equipment storage, which may pose theft and fire risks.

• Level 1 (Low Priority): General access pathways and temporary 
workspaces with lower activity.

• Level 0 (Negligible Priority): Perimeter or completed areas where no 
active construction work is taking place.

This structured classification aligns with the PMBOK (Project Man
agement Body of Knowledge) guidelines (Sections 11.2 and 11.3), which 
emphasize systematic risk identification and qualitative analysis. 
Moreover, by minimizing unnecessary monitoring in non-critical zones, 
this approach improves cost-efficiency while maintaining robust sur
veillance in high-risk areas.

The assigned weights (Wtj) are dynamically updated throughout the 
project based on changes in layout and risk level. These updates are 
manually integrated in the current implementation but could be auto
mated in future studies using technologies such as BIM, IoT-based sen
sors, or AI-driven risk detection. The flexible structure of the model 
supports both manual and automated workflows, allowing practitioners 
to tailor data acquisition frequency and methods based on project needs 

and available resources.
Ultimately, the surveillance priority map is incorporated into the 

optimization workflow to reflect current site conditions. This enables 
the system to adapt to evolving risks and maintain effective coverage 
without incurring unnecessary costs.

3.4. Camera coverage

In this research, camera coverage is defined by two primary pa
rameters: Angle of View (AOV) and visible distance. These parameters 
are directly derived from the specifications of the cameras used, and 
they play a crucial role in determining the effectiveness of surveillance 
on dynamic construction sites.

(i) Angle of View (AOV)
The AOV defines the angular extent of the camera’s Field of View 

(FOV), influencing the width of the area covered by the camera. Cameras 
with a wider AOV can monitor larger areas but may capture fewer de
tails, whereas a narrower AOV provides more detailed coverage of a 
smaller area (Fig. 3). The AOV is particularly important in optimizing 
camera placement, as it determines the spatial layout of camera 
coverage zones.

(ii) Visible Distance.
The visible distance, determined by the surveillance camera’s 

inherent technical specifications (e.g., focal length, image resolution, 
sensor size), is not a configurable modeling parameter but rather a fixed 
characteristic of each camera model. However, simply capturing an 
image at the maximum range does not guarantee its usefulness for sur
veillance purposes. The effective monitoring range—the distance at 
which the image quality is sufficient for meaningful observa
tion—depends on the required level of detail.

To address this, we adopt the internationally recognized perfor
mance guidelines defined by the International Electrotechnical Com
mission (IEC), particularly the IEC 62676–4:2015 standard [94]. This 

Table 3 
Weighting of coverage candidate areas.

Cell coverage weight 
(Wtj)

Color Risk level

0 White Safe
1 Yellow Low risk
2 Orange Medium risk
3 Red Dangerous

Fig. 3. Camera coverage modeling examples.
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standard establishes pixel density thresholds for different levels of sur
veillance functionality: 

1. Detection: Objects are observable but lack detailed characterization. 
For instance, a moving vehicle may be detected without identifying 
its type (See Fig. 4.).

2. Recognition: Elementary characteristics of objects become distin
guishable. For example, a detected vehicle can be identified as a 
truck (See Fig. 4.).

3. Identification: Detailed recognition is possible, such as identifying a 
specific person or distinguishing between similar objects (See 
Fig. 4.).

In this study, the Detection level is selected as the baseline for 
calculating camera coverage. This decision was made in consultation 
with the project manager and reflects a practical trade-off between 
monitoring needs and resource limitations. On construction sites, situ
ational awareness is typically more important than high-resolution 
identification. The detection-level threshold provides sufficient func
tional coverage while maintaining manageable installation costs and 
computational efficiency.

It is important to emphasize that the optimization model is designed 
to be flexible and configurable. While the detection level has been 
determined based on the specific monitoring objectives and resource 

limitations of the current project, researchers can adjust the effective 
visual range to suit the particular needs of their respective projects and 
the operational conditions of their construction sites.

3.5. Mathematical modeling

To set up surveillance cameras effectively in a given area, it is 
necessary to understand how to maximize their Field of View (FOV) 
within the spatial constraints of the site. This study introduces a math
ematical model designed to minimize the costs associated with deploy
ing surveillance systems in dynamic construction environments, 
addressing both fixed and variable factors that influence the optimal 
number and placement of cameras. By incorporating these dynamic and 
cost-related factors into the optimization process, we ensure that the 
proposed approach is not only efficient but also adaptable to the 
evolving needs of a construction site.

Mixed-Integer Linear Programming (MILP) problems can be 
addressed using either exact or heuristic algorithms. In this study, an 
exact algorithm was selected to solve the MILP formulation to improve 
both cost-efficiency and operational performance. Achieving a globally 
optimal solution considerably improves both cost-efficiency and oper
ational performance by reducing redundant expenditures and removing 
suboptimal camera placements—an essential consideration in budget- 
constrained applications such as construction site surveillance.

Fig. 4. FOV (Field of View) components in the camera.
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The proposed approach ensures a globally optimal solution (within 
the problem scale and available computational resources), which is an 
important consideration in construction site surveillance where subop
timal camera placements may lead to inadequate coverage and 
increased safety risks. While heuristic and metaheuristic approaches 
offer improved computational efficiency, they do not provide the same 
guarantees of optimality. To further enhance the practical solvability of 
the problem and facilitate the exact solution, some decision variables 
were transformed into parameters prior to the optimization process. 
This modeling choice reduced the computational burden, contributing 
to the feasibility of obtaining an exact solution within the available 
computational resources.

To implement this, we first present an innovative step-by-step 
approach for calculating the FOV for each camera based on its 
mounting position and any visual obstructions. Fig. 5 illustrates a sce
nario in which a camera is positioned at location i, where i ∈ I and I is the 
set of candidate locations. The gray cells represent the coverage area of 
this camera, determined by its Angle of View (AOV) and coverage radius 
D. The visible area (μitj) is depicted by these gray cells.

A cell j (j ∈ J) falls within the visible range of a camera located at i if 
the following three conditions are met: 

1. Distance Condition: The distance between the target cell j and the 
camera at location i must not exceed the coverage radius of the 
camera D (Eq. (1)). 

rij ≤ D (1) 

where rij denotes the distance between the camera located at cell i and 
the target cell j. 

2. Angle of View Condition: The target cell j must be positioned 
within the Angle of View (AOV) of the camera located at position i 
(Eq. (2), Fig. 6). 

α ≤ γ ≤ α+AOV (2) 

3. Obstacle Condition: Eq. (3) is used to ensure that no obstacle exists 
between the camera at location i and the target cell j. Fig. 7 illustrates 
this condition by showing a straight line between i and j. Eq. (3)
constrains the coverage area defined by Eq. (1) and Eq. (2). 

yobs − yi ∕=

(
yi − yj

xi − xj

)

(xobs − xi)∀(xobs, yobs) ∈ P (3) 

where:
(xi,yi): the coordinates of the camera located at position i.
(xj,yj): the coordinates of the target cell j
(xobs,yobs): the coordinates of a view-obstructing cell
Set P contains all the view-obstructing cells.
Failure to meet any of the aforementioned conditions will result in 

classifying the target cell j as uncovered by the camera located at i. The 

Fig. 5. Coverage criteria: condition 1 Fig. 6. Coverage criteria: condition 2

Fig. 7. Coverage criteria: condition 3.
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calculated coverage area for each camera is stored in matrix Ci, where 
covered cells are represented by a value of 1 and uncovered cells by a 0.

After obtaining the coverage matrix for each candidate location, a 
Mixed Integer Linear Programming (MILP) model is developed to 
minimize surveillance costs while ensuring that the desired coverage 
rate is met. The objective function and constraints of the model are 
detailed as follows:   

yit ≥ xit − xi(t− 1) ∀i,t=2,…NT (5) 

yit ≥ xi(t− 1) − xit ∀i,t=2,…NT (6) 

∑

j
ztj × wtj

∑

j
wtj

≥ CRt ∀t (7) 

xit × μitj ≤ ztj ∀i,t,j (8) 

∑

i
xit × μitj ≥ ztj ∀t,j (9) 

xit ≤
∑

j
μitj ∀i,t (10) 

NC ≥
∑

i
xit ∀t (11) 

To clarify the model formulation, Table 4 provides definitions of the 
variables and parameters used.

The objective function of the proposed model (Eq. (4)) is formulated 
to minimize the overall cost associated with the dynamic deployment 
strategy of cameras. This formulation considers various factors, such as 
the relocation and removal of cameras during different project phases, 
while ensuring that the required coverage is maintained through con
straints governing camera movement and redundant coverage 

calculations. The objective function comprises five distinct cost com
ponents, each representing a different aspect of the camera placement 
process. These components are detailed as follows: 

1. Purchase: The first term accounts for the total expenditure on 
acquiring the required number of cameras.

2. Initial Installation: The second term captures the total cost of 
installing all cameras during the initial phase of the project.

3. Movement: The third term represents the total cost of moving 

cameras across different phases of the project.
4. Intermediate Removal: The fourth term covers the total cost of 

removing cameras during intermediate phases of the project.
5. Final Removal: The final term accounts for the total cost of 

removing all cameras at the end of the project.

It is important to note that the parameters of the model were derived 
using both theoretical and empirical approaches. Specifically, for 
determining the cost parameters fi and f i, we employed an empirical 
approach. While this method was used, alternative approaches can also 
be considered to define these parameters. For instance, theoretical 
frameworks such as multi-criteria decision-making techniques can be 
utilized to systematically derive parameters based on established 
criteria and priorities. Users could define parameter values using 
methodologies that align most effectively with the unique requirements 
and constraints of their specific project.

Constraint (5) ensures that a camera can only be relocated to a new 
position if it was previously installed at another location. Constraint (6) 
ensures that a camera can only be removed if it was previously installed. 
Constraint (7) guarantees that the required coverage, as defined by the 
project manager, is met or exceeded at all phases of the project lifecycle.

A notable innovation in the proposed model is the introduction of the 
decision variable ztj, which plays a key role in enhancing computational 
efficiency by reducing redundant coverage calculations. Typically, 
models may recompute coverage for a given zone multiple times if it 
falls within the field of view (FOV) of several cameras. The variable ztj in 
Eq. (7) directly addresses this inefficiency. Eqs. (8) and (9) define the 
permissible range of values for ztj and determine its relationship with the 
decision variable xit and the coverage parameter μitj. Specifically, ztj is 
assigned a value of 1 if, and only if, cell j is monitored by at least one 
camera, regardless of the number of cameras covering that cell. Eq. (9)
ensures that if cell j is covered in phase t (ztj=1), then at least one camera 
located at i must be installed and covering that location. Eq. (10) ensures 
that each camera is assigned to cover at least one cell. The number of 
cameras installed in each phase does not exceed the minimum number of 
cameras required (Eq. (11)).

The proposed approach utilizes Python 3.12.1 [95] (VS Code editor 1.89.1 
[96]) to transform site layout maps related to various project phases into nu
merical data and employs the IBM CPLEX Optimization Studio [97] to solve the 
proposed Mixed-Integer Linear Programming (MILP) model. CPLEX is a widely 
recognized optimization tool that uses classical algorithms, such as branch-and- 
bound, to solve complex problems efficiently. While CPLEX served as the solver 
for this research, it is important to note that the development or improvement of 
the branch-and-bound algorithm itself was not the focus of this work. The 
extensive validation of CPLEX across countless research studies highlights its 
practical effectiveness, making it an appropriate choice for the objectives of this 
study. Finally, the optimization results are depicted using Python. To provide an 
opportunity to replicate the proposed method and encourage further 

Table 4 
Nomenclature.

Symbol Description Type

i Index of camera candidates Parameter
j Index of target areas Parameter
t Index of time periods Parameter
NT Number of project phases Parameter
C Purchase cost of each camera Parameter
fi Camera installation cost at location i Parameter
f i Camera removal cost from location i Parameter
CRt Coverage requested of project manager in phase t Parameter
wtj Coverage weight of cell j in phase t Parameter
μitj Parameter indicating whether a camera placed at 

location i in phase t covers cell j
Parameter (binary)

NC Number of cameras Decision Variable
xit Variable indicating whether a camera is installed 

at location i in phase t
Decision Variable 
(binary)

yit Variable indicating whether a camera is moved to 
location i in phase t from another location

Decision Variable 
(binary)

yit Variable indicating whether a camera is removed 
from location i in phase t

Decision Variable 
(binary)

ztj Variable indicating whether cell j is monitored by 
at least one camera in phase t

Decision Variable 
(binary)

Z = min

[

C×NC+
∑

i
xi1 × fi +

∑

i

∑NT

t=2
yit × fi +

∑

i

∑NT

t=2
yit × f i +

∑

i
xiNT × f i

]

(4) 
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advancements in the field, we have made all the developed codes and case study 
data publicly available on the project’s GitHub repository (https://github. 
com/smartconstructiongroup/Camera_Placement_ Optimization).

The progressive stages of the proposed approach, up to achieving the 
globally optimal arrangement, are schematically depicted in Fig. 8. In 
Fig. 8, the blue areas indicate candidate locations for camera installa
tion, the black areas represent obstacles to the camera view, and the 
white areas represent the target monitoring zones.

4. Case study

A case study of a residential construction project with an area of 
3200 m2 in Mashhad, Iran, was conducted to validate the proposed 
method. The site dimensions are 80 m by 40 m. Fig. 9 presents the 
current layout of the construction site, and Table 5 summarizes key 
project details.

During this project, the monitoring area changed significantly due to 
evolving site layouts. This research focused on optimizing CCTV camera 
placement during four key construction stages: foundation, frame and 
roof, roughing, and finishing. The proposed model adapted effectively to 
the changing layout in each phase, consistently ensuring the coverage 
levels required for designated priority areas—as defined by the project 
manager—to minimize unnecessary costs.

Fig. 8. Schematic representation of optimizing camera placement step: (a) Initial Layout Representation; (b) Defining Obstacles, Coverage Zones, and Camera 
Placement Candidates; (c) Grid-based Discretization of the Layout; (d) Risk Analysis; (e) Coverage Analysis; (f) Final Optimized Coverage Map.

Fig. 9. Current design of the construction site.

Table 5 
Specifications of case study.

Building dimensions 30 × 20 m

Project progress Roughing
Dimensions of mesh networks 1 × 1 m
Number of meshes 3200
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Furthermore, this study sought to optimize camera locations not only 
in outdoor areas but also within indoor spaces, such as inside buildings. 
The monitoring process aimed to determine the optimal camera type 
from among five available surveillance models, whose specifications are 
listed in Table 6. This case study was selected solely to demonstrate the 
proposed method; however, researchers can replicate the method with 
different case studies using the developed code available in the project’s 
GitHub repository (http://github.com/smartconstruction group/ 
Camera_Placement_Optimization).

5. Results

As construction progresses through its various phases, considerable 
changes occur in the site layout and the distribution of obstacles. These 
changes require ongoing monitoring and adjustments to camera loca
tions to ensure that key areas are adequately covered while minimizing 
surveillance in unimportant zones. To address this challenge, the pro
posed model continuously adjusts camera placements to accommodate 
changes in site layout and environmental conditions.

The study presents a series of site layouts considered during the 
research, which are depicted in Fig. 10, along with an analysis of the 
differences between them and the corresponding need for adjustments at 
various stages of the construction process.

In the foundation phase (Fig. 10(a)), the site is largely free of ob
structions, allowing perimeter-mounted cameras to record wide site 
views with minimal obstruction. As the project moves into the framing 
and roofing phase (Fig. 10(b)), the construction of vertical structur
es—such as pillars, walls, and the roof framework—brings about notable 
changes to the site layout. Consequently, it may become necessary to 
adjust the positioning of existing cameras or add new ones to maintain 
the required coverage.

In the roughing phase (Fig. 10(c)), additional support elements, 
windows, and framing considerably increase the complexity of the 
environment. Constructions, equipment, and materials generate more 

occlusions, reducing the coverage of existing cameras. As the project 
enters the finishing phase (Fig. 10(d)), interior walls, floors, and ceilings 
are introduced, thereby altering the space plan. New blind spots are 
introduced that may need additional cameras placed in the newly 
formed interior spaces and corridors. Key areas like exit doors, entry
ways, and construction zones where activities or materials are concen
trated become critical areas for surveillance, and the location of cameras 
in relation to these spaces should be given sufficient attention.

Finally, the dynamic nature of construction sites necessitates a 
flexible and responsive approach to surveillance camera placement. Our 
study demonstrated the necessity of continuously relocating camera 
positions to accommodate the dynamic layout and environmental 
changes at each construction stage. This dynamic adjustment can be 
effectively realized through the implementation of our newly proposed 
model via camera relocation. The results are not limited to on-site se
curity and enhanced safety but also lead to optimized resource alloca
tion, enabling the approach to be adapted to various construction 
scenarios and applied in real-time situations. To demonstrate the 
effectiveness of the approach, a case study is included that evaluates 
different camera types and coverage scenarios.

Five types of cameras (A, B, C, D, and E) with varying Angles of View 
(AOV), visible distances, and purchase costs (as detailed in Table 6) were 
evaluated. The SCPP was optimally solved for a case study to determine 
the lowest investment cost across ten scenarios with coverage rates 
ranging from 10 % to 100 %.

As anticipated, the overall cost of surveillance—including the pur
chase of cameras, along with the expenses related to installation, 
removal, and relocation throughout different phases of the project
—rises in direct proportion to the desired coverage rate for each type of 
camera. Fig. 11 illustrates the optimization results, with each column 
representing the cost needed to achieve the respective coverage across 
the entire project. For instance, the orange column at 90 % coverage 
shows that the total cost of type B surveillance cameras, from initial 
installation to final removal, amounts to $1580 to reach 90 % coverage.

Table 6 
Details on the types of cameras used.

Camera type AOV (◦) Distance vision (m) C ($) fi ($) fi ($)

Written Detect Recognize Identify

A 120 80 28.22 14.11 9.36 142 15 10
B 47 50 48.64 24.32 16.13 281 15 10
C 87 80 38.93 19.46 12.91 187 15 10
D 113 60 29.97 14.98 9.94 175 15 10
E 92 50 24.85 12.42 8.24 90 15 10

Fig. 10. Weighted site layout for various construction phases: (a) Foundation; (b) Frame and roof; (c) Roughing; (d) Finishing.
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As demonstrated, the selection of an optimal camera type notably 
impacts the overall monitoring costs. In fact, the type of camera that is 
most cost-effective will depend on the desired percentage of coverage. 
For instance, with a low coverage percentage, like 10 % to 20 %, the 
most cost-effective camera type is E with an overall monitoring cost of 
$115 and $140, respectively. On the other hand, the type C cameras are 
most appropriate for maximum coverage conditions (70 %–100 %). The 
related costs of type C vary from $449 to $1983. In contrast to these, the 
type A cameras are used in intermediate coverage conditions of 30 % 
and 60 %. The price for these ranges from $167 to $359.

By comparing the costs associated with different camera types across 
various coverage levels, project managers can make informed decisions 
to achieve the desired coverage while minimizing overall investment. 
Emphasizing the installation of cost-effective type E cameras in areas 
with low coverage needs, and expensive type C cameras in high-demand 
zones, helps to optimize the resources allocated for the project’s sur
veillance requirements. The proposed procedure is cost-effective and 
provides efficient site monitoring throughout the construction process.

Moreover, this approach has the ability to create a layout within the 
limits of a maximum cost limit established by project managers. For 
instance, if the budget for surveillance cameras is restricted to $800 the 
most economical option as depicted in Fig. 11 is to position two type C 
cameras offering 80 % coverage at an expense of $661. This feature 
allows decision makers to customize a surveillance system that adheres 
to budgetary constraints while still meeting the desired coverage level.

Schematic representations of the optimal layouts for the scenarios 
examined during the roughing phase are illustrated in Fig. 12.

The optimal layouts shown in Fig. 12 for the scenario with full 
coverage depict four different shades of purple, each representing a 
specific level of coverage as detailed below: 

• The lightest purple shade (A) signifies coverage by a single camera.
• The medium purple shade (B) signifies coverage by two cameras.
• The darker purple shade (C) signifies coverage by three cameras.
• The darkest purple shade (D) signifies coverage by four cameras.

The fact that there are no more than four overlaps in the complete 
coverage of the area being monitored highlights the efficiency and 

effectiveness of the proposed model. In particular, the model strategi
cally places the cameras at distances to minimize overlap, reducing the 
total number of cameras needed while still achieving the required 
coverage.

In cases where indoor and outdoor areas are assigned equal priority 
weights, the model may naturally cover outdoor areas first. This is 
because outdoor locations often provide broader coverage due to fewer 
obstructions, making it more cost-effective. However, if a distinction 
between indoor and outdoor coverage is necessary, the model can be 
adjusted by assigning higher weights to indoor areas or applying specific 
constraints to prioritize indoor camera placement. This ensures that 
indoor spaces are covered earlier in the optimization process. This 
flexibility highlights the model’s ability to address complex and specific 
requirements, as it is designed to be easily adaptable to different 
scenarios.

As previously discussed, achieving 100 % coverage of the environ
ment is essentially impractical. The present study provides evidence to 
support this claim. The relationship between cost and coverage per
centage is nonlinear, as illustrated in Fig. 11. At lower coverage per
centages, the cost increases gradually. However, as coverage approaches 
100 %, the increase in cost becomes significantly more pronounced. The 
use of a logarithmic scale on the y-axis effectively emphasizes the 
exponential cost escalation as coverage nears full completion. Specif
ically, for a 10 % increase in coverage from 90 % to 100 %, the total cost 
increases approximately eightfold for Type A cameras, twofold for Types 
B and C cameras, and sevenfold for Types D and E cameras. This sub
stantial cost increase may not be economically viable, rendering it un
feasible for the current project.

While 100 % coverage of the surveillance site is theoretically desir
able, it is usually impractical in real-world scenarios. Obviously, full 
coverage requires that every point in the area be covered; however, it 
often cannot be achieved because of limitations in places for camera 
installation. Fig. 11, for example, illustrates how 100 % coverage from 
type D cameras requires the excessive investment of $8575 and 41 
cameras. It is possible to further reduce the monitoring cost to $2175 by 
setting up only four central cameras with a total sum of 10 cameras 
through various project phases, and achieving full coverage (See 
Fig. 13.). In practice, however, less than full coverage is usually achieved 

Fig. 11. Cost-Coverage tradeoff of different types of cameras.
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in real life due to aspects like power supply, network connectivity, 
problems associated with access control, and weather protection 
measures.

This research is conducted based on a case study to achieve the 
coverage rate of the monitoring environment with an overall coverage of 
90 %. The analysis presented in Fig. 11 shows that the C-type camera is 
the optimal camera type for this objective. The optimal layout for 
deploying C-type cameras at a 90 % coverage rate, as depicted in Fig. 14, 
is designed for each phase of the project. This design includes a 
maximum of four cameras, which provide the required coverage. The 
budget estimated to be spent on purchasing and relocating CCTV cam
eras at different phases to obtain the optimal design for this site was 
$873. Fig. 14 clearly shows that the cameras are covering high-risk, 
medium-risk, and low-risk areas. Notably, areas behind the building 
that do not require monitoring were excluded from the surveillance 
system, reflecting a strategic approach to resource allocation.

The study results, as anticipated, indicate a need for adjustments in 
both the number and placement of surveillance cameras throughout the 
construction process. To emphasize the necessity of these modifications, 
the camera layout during the foundation phase of the proposed case 
study was implemented under the assumption of a static site layout for 
subsequent phases. In this scenario, the optimal camera layout deter
mined during the foundation phase was maintained across all subse
quent stages. Fig. 15 shows the coverage simulation results for this fixed 
camera placement strategy in subsequent phases of the project.

Although we initially achieved an impressive 90 % camera coverage 
rate during the framing phase, a notable drop in coverage was observed 
during the roughing and finishing phases. This emphasizes the need for 
camera relocation during construction projects. In detail, coverage fell 
to 50 % in the roughing phase and 56 % in the finishing phase. This 
decline can be attributed to the obstruction of camera views by struc
tural elements like walls. Figs. 15(b) and 15(c) illustrate this by showing 
that the addition of walls during these phases completely eliminated 
surveillance coverage within the building. Moreover, critical areas 
designated as high risk (Red B and C zones) and medium risk (Orange A 
zones) during the roughing and finishing phases were not captured by 
any cameras.

It is worth mentioning that the camera placed on the side of the 
building did not capture any footage during the roughing and finishing 
phases. As a result, not only were key safety areas left without moni
toring, but a considerable amount of expenditure was also wasted. 
Creating a layout for each phase of a project guarantees a practical and 
flexible approach, enabling necessary modifications to the monitoring 
system as construction advances.

To further support the practical applicability of the proposed 
method, we evaluated the final cost and relocation decisions across all 
construction phases. The case study covered four major phases, during 
which the system dynamically responded to evolving site layouts and 
changing high-priority zones. Notably, the system autonomously 
determined the most cost-effective reconfiguration strategy at each 

Fig. 12. Optimal camera layout in different scenarios.
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transition point. For instance, transitioning from frame and roof works 
(Phase 2) to roughing works (Phase 3) prompted the relocation of one 
camera and the addition of another. Similarly, an additional camera was 
introduced in the transition to finishing works (Phase 4), reflecting the 
system’s adaptive behavior in maintaining adequate coverage over the 
high-priority zones.

The total monitoring cost across all phases amounted to $873 using 
the proposed MILP-based approach to achieve at least 90 % coverage 
throughout all construction phases, compared to $1060 in a static 
deployment strategy without intelligent relocation. This represents a 
17.64 % reduction in total cost, demonstrating that the model not only 
produces optimal configurations at each phase but also considerably 
reduces financial overhead. These results validate the model’s ability to 
generate efficient, dynamic surveillance strategies under realistic proj
ect constraints and emphasize its value as a practical decision-support 
tool in construction monitoring.

6. Discussion

To comprehensively evaluate the novelty and practical contributions 
of the proposed approach, a detailed comparative analysis has been 
performed against a broad range of existing literature on surveillance 
camera placement. This evaluation not only illustrates the model’s ad
vancements within the construction domain but also emphasizes its 
applicability across a variety of surveillance environments, including 
bridges, metro systems, urban areas, and general indoor environments.

The comparison presented in Table 7 is structured according to 
several evaluation metrics, including dynamic modeling capability, 
consideration of relocation costs, risk-based prioritization, guarantee of 
global optimality, availability of open-source code, the type of case 
study used, and the scale of the case study in square meters.

Table 7 summarizes the comparative analysis of the present study 
against existing works, highlighting the key differentiating factors. Un
like previous studies, the proposed model systematically incorporates 

Fig. 13. Optimal camera placement with central candidate point.
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construction site dynamics, relocation costs, and risk-based prioritiza
tion within an integrated optimization framework, which is solved using 
an exact algorithm to ensure global optimality. As seen in the table, most 
prior research either neglects site evolution or justifies static placements 
due to high relocation costs. Furthermore, while both heuristic and 
metaheuristic methods offer faster computational efficiency, they do so 
at the cost of solution accuracy, leading to potentially suboptimal 
camera placements and higher long-term costs. The presented model 
ensures an exact, cost-minimizing surveillance strategy that dynamically 
adapts to project phases, balancing new camera purchases with reloca
tion decisions. Additionally, this study is among the few that provides 
open-source code availability, allowing researchers and practitioners to 
customize and further develop the model based on their specific needs.

By addressing these overlooked aspects, the proposed approach of
fers a more realistic and practical solution to construction site surveil
lance, ensuring that camera placements remain cost-effective and 
adaptable throughout the project lifecycle. A detailed explanation of 
these contributions is provided below. 

1. Dynamic Model and Relocation Costs

Construction projects require frequent reassessment of camera 
placement due to evolving site layouts, risk profiles, and operational 
constraints. Unlike traditional static methods, the proposed model offers 
a cost-effective and adaptable surveillance strategy by incorporating 
relocation and removal costs into the optimization process. As demon
strated in Table 7, previous studies—including various domains such as 
construction sites, bridges, metros, urban areas, and indoor environ
ments—lack an integrated framework that explicitly addresses dynamic 
site conditions and their impact on surveillance efficiency and cost. The 
presented approach fills this gap through an integrated model that ac
counts for both the evolving nature of the site and the associated relo
cation costs.

Existing research on camera placement optimization, while some
times acknowledging site dynamics [9,86], often falls short by neglect
ing inter-phase continuity and the crucial trade-off between relocation 
costs and the purchase of new cameras. Instead of optimizing camera 

Fig. 14. Optimal camera layout for different phases of the project: (a) Foundation phase; (b) Frame and roof phase; (c) Roughing phase; (d) Finishing phase.
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placement across all project phases simultaneously, these studies typi
cally analyze each site plan independently, resulting in phase-specific 
optimal layouts that fail to consider the overall project trajectory. 
Moreover, these studies frequently justify maintaining fixed camera 
positions throughout the project by citing high relocation costs. This 
leads them to prioritize a single, although suboptimal, camera config
uration that performs relatively well across all phases, rather than 
pursuing phase-specific optimal solutions. This approach neglects the 
potential benefits of dynamic camera repositioning and ultimately 
compromises the overall surveillance effectiveness across the project 
lifecycle.

This lack of a holistic perspective leads to several inefficiencies. First, 
independently optimizing each phase disregards the potential cost 

savings and performance gains achievable through strategic camera 
repositioning. Second, neglecting relocation costs in the optimization 
process can result in frequent and unnecessary camera movements, 
increasing project expenses and potentially compromising site safety 
due to inadequate monitoring adjustments. For example, an apparently 
optimal placement in one phase could be made instantly obsolete by 
subsequent construction changes, such as a newly constructed wall 
obstructing the camera’s view. This emphasizes the necessary need for a 
dynamic optimization process that predicts and adapts to evolving site 
conditions.

In contrast, the proposed method introduces an integrated mathe
matical model that integrates site dynamics, relocation costs, and the 
trade-offs between new camera purchases and repositioning existing 

Fig. 15. Optimal layout of the foundation phase in: (a) Framing phase; (b) Rough work phase; (c) Finishing phase.

Table 7 
Comparison of the proposed model with related works.

Reference Methodology Dynamic 
Model

Relocation 
Costs

Risk-Based 
Prioritization

Global Optimality 
Guarantee

Open-Source Code 
Availability

Type of Case 
Study

Size of Case 
Study (m2)

[86] PMGA ✕ ✕ ✕ ✕ ✕ real 2000
[84] NSGA-II ✕ ✕ ✓ ✕ ✓ real 6000
[83] MIP ✕ ✕ ✕ ✕ ✕ real 13,450
[9] NSGA-II ✕ ✕ ✕ ✕ ✕ real 3265
[18] Modified Genetic 

Algorithm
✕ ✕ ✕ ✕ ✕ real 6560

[85] GA ✕ ✕ ✓ ✕ ✕ real 350
[14] GA ✕ ✕ ✓ ✕ ✕ real 2100
[87] COLSA ✕ ✕ ✓ ✕ ✕ simulation 250,000
[88] GA ✕ ✕ ✓ ✕ ✕ real 8500
[98] Hill Climbing ✕ ✕ ✕ ✕ ✕ simulation 40,000
[90] BCO ✕ ✕ ✕ ✕ ✕ simulation N/A
[91] LH-RPSO (PSO +

Resampling + LHS)
✕ ✕ ✕ ✕ ✕ real 83,322

[99] Greedy, Dual Sampling ✕ ✕ ✓ ✕ ✕ simulation N/A
[100] BPSO ✕ ✕ ✕ ✕ ✕ simulation 400
[101] BIP ✕ ✕ ✕ ✓ ✕ simulation 72
[102] BIP، Greedy، MCMC، 

SDP
✕ ✕ ✕ ✕ ✕ simulation N/A

[103] IP ✕ ✕ ✕ ✕ ✕ real 100
[104] BIP ✕ ✕ ✓ ✕ ✕ real 300
[105] BPSO ✕ ✕ ✕ ✕ ✕ simulation 2250
[80] Hill-Climbing ✕ ✕ ✓ ✕ ✕ real N/A
[106] GA ✕ ✕ ✓ ✕ ✕ real 167
[92] ILP ✕ ✕ ✓ ✕ ✕ real 132,400
This 

study
MILP ✓ ✓ ✓ ✓ ✓ real 3200
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ones. By considering all construction phases simultaneously, this model 
facilitates strategic resource allocation and minimizes unnecessary ex
penditures. The result is a cost-effective and sustainable approach that 
ensures required surveillance coverage throughout the entire project 
lifecycle while enhancing overall project safety. 

2. Risk-Based Prioritization

A number of existing studies either completely overlook risk-based 
prioritization or implement simplistic binary classifications, dis
tinguishing only between “high-priority” and “low-priority” areas. This 
oversimplification fails to capture the diverse levels of risk present in 
dynamic construction environments. The present study introduces a 
more enhanced, four-level risk categorization that improves surveillance 
efficiency: 

• High-risk zones (e.g., heavy machinery areas, hazardous operations)
• Medium-risk zones (e.g., active workspaces, high worker activity 

areas)
• Low-risk zones (e.g., equipment storage, temporary material 

placement)
• Non-critical zones (e.g., worker rest areas, managerial offices) – 

requiring no surveillance

By assigning a weight of zero to non-critical areas, the model effec
tively eliminates redundant coverage, optimizes camera allocation, and 
considerably reduces overall costs. This detailed approach to risk-based 
prioritization enhances economic efficiency and aligns closely with real- 
world safety and security requirements. As demonstrated in Table 7, few 
studies incorporate risk-based prioritization, and those that do often fail 
to implement a multi-level system or dynamically adjust risk levels over 
time. 

3. Global Optimality Guarantee

A notable feature of this study is its potential to achieve a globally 
optimal solution—an aspect not commonly addressed in previous 
research (as shown in Table 7). Previous studies predominantly rely on 
heuristic and metaheuristic methods (e.g., genetic algorithms, particle 
swarm optimization, and greedy methods) for their computational ef
ficiency in large-scale problems. However, these approaches sacrifice 
accuracy for speed, yielding only approximate solutions that often result 
in redundant camera placements, inefficient cost allocations and sur
veillance blind spots across multiple project phases.

In contrast, the present study emphasizes cost minimization by 
formulating the problem as a Mixed-Integer Linear Programming model 
and solving it using exact optimization methods, rather than relying on 
faster but less accurate heuristic and metaheuristic approaches. 
Although both heuristic and metaheuristic methods provide faster 
computational results, their inability to systematically explore all 
possible solutions frequently leads to suboptimal configurations—either 
by deploying redundant cameras that incur unnecessary costs or by 
leaving certain high-risk areas inadequately monitored. Considering 
that monitoring costs represent a significant portion of the overall 
project expenses, any optimization algorithm that overlooks economic 
efficiency leads to the risk of generating financially unsustainable 
monitoring strategies.

Among the reviewed studies, one research work [101] provides an 
exact solution; however, its applicability to real-world construction 
projects may be limited, as it is based on a small-scale simulated case and 
does not explicitly account for dynamic site conditions and relocation 
costs within its optimization framework. 

4. Type and Size of Case Study

The type and size of a case study are key factors in determining a 
study’s practical relevance, particularly in the complex and dynamic 
environment of construction sites. The realism of a study directly in
fluences the applicability of its findings, making real-world case studies 
essential for deriving meaningful and implementable conclusions. The 
proposed study is based on a 3200 m2 real-world construction project, 
ensuring practical alignment with real project conditions.

While some studies [87,98] utilize large case studies, their reliance 
on simulated environments limits the generalizability of their findings to 
real-world scenarios. Furthermore, a number of studies 
[14,85,86,100,103–106] have employed heuristic and metaheuristic 
methods that operate on considerably smaller case studies, ranging from 
100 to 2250 m2. While the computational efficiency of these approaches 
is often cited as justification for their use in large-scale problems, the 
case studies employed in these instances remain smaller than the one 
presented in this work. This discrepancy highlights the contribution of 
this study in applying an exact solution method to a larger, real-world 
case study.

Although [101] provides an exact solution, as previously noted, it 
relies on a highly simplified, simulated environment of only 72 m2, 
which limits its applicability to real-world scenarios. On the other hand, 
some studies [9,83,84,88,91,92] attempt to address large-scale, real- 
world environments, but they often neglect key considerations such as 
solution exactness, construction phase dynamics, and camera relocation 
costs. In addition to these limitations, all of the mentioned studies fail to 
incorporate the dynamic nature of construction and the costs associated 
with camera relocation within their mathematical models—factors that 
notably weaken their real-world impact.

In summary, the proposed model represents an integrated, cost- 
conscious, and phase-adaptive solution for optimizing camera place
ment in dynamic construction environments. Unlike prior studies that 
address only a subset of practical requirements, the method simulta
neously incorporates site dynamics, relocation costs, prioritized risk 
zones, and exact optimization guarantees into a single, flexible frame
work. It is important to emphasize that collecting real-world construc
tion site data is challenging due to access restrictions, privacy concerns, 
and project management approvals. Moreover, extending to signifi
cantly larger case studies would require additional computational re
sources, which are beyond our current capacity. This open-access 
approach enables the generation of results that are tailored to the spe
cific demands of distinct projects and the computational resources 
accessible to researchers.

7. Conclusions

Ensuring efficient visual monitoring on construction sites is impor
tant to both operational efficiency and safety. However, optimally 
placing surveillance cameras remains challenging due to the dynamic 
nature of construction environments and the lack of systematic guide
lines. To address these challenges, this paper presented a Mixed-Integer 
Linear Programming (MILP) model for optimizing surveillance camera 
placement in dynamic construction environments, accounting for the 
unique characteristics and key factors influencing optimal camera 
placement.

The proposed framework overcomes the limitations of previous 
research by simultaneously considering a broader range of factors. Un
like most existing studies, this model provides a global solution rather 
than relying on approximate algorithms to solve the optimization 
problem. As a result, it guarantees that the selected locations minimize 
costs. The model not only reduces the number of cameras required but 
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also minimizes the costs associated with relocating cameras (installation 
and removal) between different phases, which arise from the dynamic 
adjustment of their positions in response to changing site layouts and 
environmental factors. By generating an optimal layout based on the 
desired coverage percentage set by the project manager, the model en
sures that surveillance needs are precisely met according to the re
quirements of the project manager.

In this study, the viewing distance of the camera, one of the key 
variables of the model, is determined based on the objectives of the 
project manager. For example, if the goal is to identify the type of ac
tivity, the number and placement of cameras will differ from when the 
objective is to identify individual workers. When the goal is to identify 
individuals, the viewing distance of the camera must be reduced, which 
in turn increases the number of cameras required. This approach im
proves the efficiency of the surveillance system by tailoring it to real- 
world conditions and specific monitoring needs.

This strategy for surveillance involves adjusting camera viewing 
distances according to the surveillance objectives of the project man
ager. For instance, if the goal is to identify activities, cameras will be 
positioned differently than if the goal is to recognize individual workers. 
This adjustment in viewing distance requires an increase in the number 
of cameras, thereby enhancing the efficiency of the system and better 
aligning it with real-world conditions.

The applicability and effectiveness of the proposed framework are 
verified through an experiment conducted on a 3200-square-meter 
construction site. The results demonstrate the practical value of the 
MILP model in optimizing surveillance camera placement and ensuring 
required coverage while minimizing costs in a dynamic construction 
environment. The findings highlight the ability of the model to generate 
optimal camera layouts, balancing cost minimization with the required 
coverage tailored to the desired level of surveillance defined by the 
project manager.

Future research should explore the extension of monitoring strate
gies into three-dimensional environments. Construction sites often 
involve high-risk activities at various elevations, and traditional two- 
dimensional surveillance systems may fail to capture vertical dy
namics, leading to missed critical zones. Developing 3D-aware moni
toring approaches would offer more accurate and comprehensive 
coverage of hazardous areas, thus enhancing on-site safety.

Another important direction is determining the optimal timing for 
adjusting camera placements. Due to the dynamic and evolving nature 
of construction projects, a static camera layout can become inefficient as 
the site progresses. Identifying suitable intervals for repositioning 
cameras can ensure sustained monitoring effectiveness and also reduce 
unnecessary operational adjustments, thereby lowering long-term costs.

Integrating intelligent and digital technologies presents additional 
opportunities to improve system flexibility. The use of Building Infor
mation Modeling (BIM), IoT-enabled sensors, and digital monitoring 
platforms can support real-time data collection, automated hazard 
identification, and dynamic adaptation of the surveillance strategy 
based on live site conditions.

Finally, enhancing the model with a Target Detail Level (TDL) 
parameter would allow for simultaneous optimization of multiple sur
veillance objectives—such as detection, recognition, and identi
fication—tailored to different risk zones across the construction site. 
This would enable hybrid monitoring strategies where certain areas 
prioritize broader coverage, while others require more detailed visibil
ity. Achieving this would involve expanding the current formulation to 
incorporate varying field-of-view (FOV) requirements across different 
site areas.

In conclusion, addressing these future research directions will lead to 
more effective and efficient surveillance systems for construction sites. 
The implementation of three-dimensional monitoring, optimized cam
era arrangements, integration with intelligent technologies, and Field of 
View (FOV) components will contribute to safer construction environ
ments and more cost-effective surveillance practices.
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