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Introduction

Wheat, rice, and maize are the three primary staple crops, 
jointly contributing nearly 60% of global caloric intake 
(FAO, 2023; Palacios-Rojas et al., 2020). Among them, 
wheat alone accounts for about 18% of the global dietary 
energy supply (FAOSTAT, 2023), making it a critical 
crop for food security and rural livelihoods. Global wheat 
demand is projected to exceed 1.2 billion tonnes by 2050, 
driven by population growth, dietary shifts, and increas-
ing food requirements (Foresight, 2011; Ray et al., 2019). 
Meeting this growing demand, while managing constraints 
like land degradation, water scarcity, and climate variability, 
requires precision in crop monitoring and management.

In Iran, Golestan Province is one of the most important 
wheat-producing regions, consistently ranking among the 
top five provinces in terms of total production. Despite its 
significance, substantial spatial variability in wheat yield 
exists across its diverse watershed basins. This variation 
is influenced by complex interactions among genotype, 
environment, and agronomic practices. Addressing this 
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Abstract
Analyzing agricultural production systems by identifying the prominent factors affecting yield variations across regions 
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based models for estimating LAI were less accurate than models relying on satellite-derived indices. Additionally, CGR 
did not reach its maximum potential in the study area, and the watershed basins exhibited diverse time-series patterns in 
terms of CGR and LAI. In contrast, NAR remained relatively stable across different basins. These results suggest that 
agronomic practices and breeding strategies aimed at enhancing leaf area development could assist farmers in reducing 
yield variability between watersheds and contribute to overall yield enhancement.
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variability is essential to narrowing yield gaps, optimizing 
resource use, and improving overall production efficiency.

Understanding wheat growth dynamics—particularly 
indicators such as Leaf Area Index (LAI), Crop Growth 
Rate (CGR), and Net Assimilation Rate (NAR)—is vital 
for diagnosing physiological performance and identifying 
growth-limiting factors. LAI quantifies canopy structure 
and is strongly linked to light interception, evapotranspi-
ration, and biomass accumulation (Zhu et al., 2019). CGR 
reflects how efficiently crops convert absorbed light and 
nutrients into biomass over time (Wiegand & Richardson, 
1990). NAR, derived as CGR divided by LAI, serves as 
an indicator of photosynthetic efficiency per unit leaf area 
(Kumar et al., 2024).

Traditional methods of LAI measurement are destruc-
tive and labor-intensive, limiting their applicability at 
large scales. In contrast, advances in remote sensing tech-
nologies—particularly with Sentinel-2 satellite data—now 
enable accurate, timely, and spatially continuous estimation 
of crop biophysical variables across large agricultural land-
scapes (Suliga et al., 2019; Yu et al., 2020; Liu et al., 2021). 
However, despite these advances, region-specific models 
and validations remain limited, especially in data-sparse 
regions like Golestan.

Over the past two decades, two main approaches have 
been used to estimate LAI from satellite data: (1) empiri-
cal or semi-empirical models based on statistical relation-
ships between vegetation indices (VIs) and field-measured 
LAI, and (2) physical models based on Radiative Transfer 
Models (RTMs) (Yu et al., 2020). While VI-based empirical 
models such as the Normalized Difference Vegetation Index 
(NDVI), the Nonparametric LAI Estimator (NPLE), and the 
Exponential Model with Experimental Parameters (EMEP) 
offer simplicity and speed, their performance often varies 
with crop type, growth stage, and local conditions.

(1) evaluateDespite growing interest in using remote 
sensing for crop monitoring, a key research gap remains: 
How can we best utilize satellite-derived physiological indi-
ces like LAI, CGR, and NAR to assess and explain yield 
variability across different watershed basins? Current stud-
ies rarely integrate these parameters at regional scales to 
provide actionable insights into spatial performance differ-
ences and yield-limiting factors. Moreover, there is a lack of 
clarity on whether empirical models or direct spectral indi-
ces offer more reliable estimates of LAI and related physi-
ological traits under diverse field conditions.

This study aims to address this gap by framing LAI, 
CGR, and NAR not merely as monitoring variables but as 
diagnostic tools to assess regional yield potential and iden-
tify management targets for more equitable and efficient 
wheat production across watersheds.

Accordingly, the main objectives of this study were to:

1.	 Evaluate the spatial and temporal patterns of LAI, CGR, 
and NAR across wheat fields in the watershed basins of 
Golestan Province using Sentinel-2 imagery;

2.	 (Compare the accuracy and reliability of empirical 
models (NPLE, EMEP) versus direct vegetation indices 
(e.g., NDVI) for LAI estimation at large scales;

3.	 (Analyze the relationships between field-measured LAI 
and CGR with satellite-derived indices across different 
growth stages;

4.	 (Identify key phenological stages and physiological 
constraints limiting CGR in specific regions, to inform 
more targeted and sustainable wheat management 
strategies.

By linking remotely sensed biophysical indicators with 
regional production disparities, this research aims to support 
both scientific understanding and practical decision-making 
for improving wheat productivity in Golestan Province and 
similar agro-ecological zones.

Materials and Methods

Study Region

This study was conducted during the 2020–2021 wheat 
growing season across ten eastern watershed basins in 
Golestan Province, Iran, including Zaringol, Ghorchai, 
Tilabad, Narmab, Chehelchai, Oghan, Madarsoo, Kalhaji, 
Yelcheshmeh, and Gharnaveh, covering a total area of 
approximately 7,450 km² (Fig. 1). The study area includes 
diverse land uses (forests, residential areas in the south and 
extensive croplands in central areas), with Five climate 
types — based on the De-Martonne classification—rang-
ing from arid in the north to humid and semi-humid in the 
south—with annual precipitation varying between 250 and 
700 mm. As a key rainfed agricultural area, Golestan which 
is among Iran’s top wheat-producing provinces, ranking 
second in rainfed and sixth in irrigated wheat production in 
2020–2021. Overall, it ranks fourth nationally in total wheat 
output (Statistical Center of Iran, 2021), supporting its 
selection as a representative site for regional wheat growth 
monitoring.

Fields Sampling and Laboratory Measurements

Initially, a comprehensive field survey was conducted 
across the study region, with 50 specific points within 
wheat fields (Fig. 1). Subsequently, over the course of the 
wheat growing season and spanning five distinct pheno-
logical stages, namely stem elongation (SE), middle ear 
emergence (MEE), late ear emergence (LEE), flowering 
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(FL), and milk development (MD) using the Zadoks growth 
scale, as described by Zadoks et al. (1974), leaf area and dry 
matter were measured in the Crop Physiology Laboratory, 
Department of Agronomy at Gorgan University of Agricul-
tural Sciences and Natural Resources at each stage of sam-
pling. The LAI was measured using the DELTA-T model 
leaf area meter, which adjusted by recorded plant density. 
The Kolmogorov-Smirnov test was used to check whether 
the variable distributions were normal using SAS statistical 
software (version 22.0).

CGR Calculation

The estimation of CGR in this study involves a comprehen-
sive four-step process, as illustrated in Fig. 2. The CGR in 
grams per square meter per day (g m⁻² day⁻¹) was calculated 
using the Eq. (1) (Sinclair, 1986):

CGR = SRAD × 0.48 ×
(

a + b × n

N

)
× FINT × RUE� (1)

Fig. 1  Location of the study area in Golestan Province, Iran, showing the spatial distribution of ground sampling sites
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Fig. 2  A flowchart depicting the process of estimating Crop Growth 
Rate (CGR) in wheat fields. The legend clarifies the meaning of five 
different shapes used in the diagram. Step 1 (blue) and Step 2 (green) 
would run simultaneously. Then, Step 3 (orange) is run, resulting in 

Step 4 (gray), where the final analysis is conducted. This includes 
evaluating the Leaf Area Index (LAI) and analyzing CGR within the 
study area
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Wheat Field Mapping and Classification

Wheat fields were delineated by subsetting Sentinel-2 
mosaicked images using predefined study area shapefiles. 
Pre-classification images were prepared for each sampling 
date, followed by supervised classification using ENVI 
5.3. The classification method with the highest accuracy 
was selected for final mapping. Supervised classification, 
a widely used approach for land cover mapping (Jensen, 
2015; Lu & Weng, 2007), was applied to classify wheat, 
canola, and residential/bare lands using Maximum Likeli-
hood Classification (MLC), Minimum Distance to Means, 
and Mahalanobis Distance methods. Fifty training samples 
per class were used, while water bodies and forests were 
excluded through vegetation removal and water masking.

Classification accuracy was evaluated using an error 
matrix and Kappa coefficient (Cohen, 1960, Eq. (3)), cate-
gorizing agreement levels as strong (Kappa > 0.8), moderate 
(0.4 ≤ Kappa ≤ 0.8), or low (Kappa < 0.4) (Foody, 2002). A 
total of 300 reference points, selected via stratified random 
sampling, were used for validation. All analyses were per-
formed in ENVI 5.3.

Kappa Coefficient =

Total Sample × Total Correct Sample

−
∑

(Column. Total × Row Total)
(Total Sample)2

−
∑

(Column. Total × Row Total)

� (3)

Wheat Field Mapping and Classification

A total of seven Vegetation Indices (VIs)—NDVI, DVI, 
RVI, IPVI, TVI, MSAVI, and SQRT(IR/R)—were com-
puted and assessed (see Table 1) using SNAP software ver-
sion 8.0.5. VIs are mathematical combinations of spectral 
bands, particularly in the red, green, and infrared wave-
lengths, designed to establish functional relationships 
between crop characteristics and remote sensing data (Wie-
gand et al., 1989).

Where SRAD, FINT, and RUE represent terrestrial solar 
radiation (MJ m⁻² day⁻¹), the fraction of incident radia-
tion intercepted by the leaves, and radiation use efficiency 
(g MJ⁻¹), respectively. The factor 0.48 is used to convert 
solar radiation (SRAD) to Photosynthetic Active Radiation 
(PAR) (Monteith & Unsworth, 2007). a and b are Ångström 
coefficients (typically equal to 0.25 and 0.5), n and N also 
denote sunshine hours and day length (hours), respectively 
(Ångström, 1924).

FINT was calculated using the Beer-Bouguer-Lambert 
Law (Eq. (2), Monteith, 1969), where KPAR represents the 
light extinction coefficient (Sinclair, 2006). The RUE for 
wheat was set at 2.2 g MJ⁻¹, and KPAR at 0.65, following 
the methodology proposed by Soltani and Sinclair (2012).

FINT = 1 − exp−KP AR× LAI � (2)

Satellite Data Source

In this study, 15 Sentinel-2 images were used, with three 
image frames for each date. These images, obtained at 
the L1C correction level, correspond to map part codes 
T40SCG, T40SBG, and T40SCF. They were acquired in 
sync with field sampling on specific dates in 2021: February 
28, March 30, April 4, April 14, and May 9. All images were 
sourced from the Copernicus Open Access Hub ​(​​​h​t​t​p​s​:​/​/​s​c​i​
h​u​b​.​c​o​p​e​r​n​i​c​u​s​.​e​u​/​​​​​)​.​​

Pre-processing and Water Masking

Fifteen Sentinel-2 images (100 km × 100 km swath) geo-
referenced in the UTM/WGS84 spatial reference (Thales 
Alenia Space France, 2021) were used. To ensure uniform 
spatial resolution, all spectral bands were resampled to 
a 10-meter pixel size. Mosaicking was performed due to 
the use of three image frames, with both resampling and 
mosaicking conducted in SNAP 8.0.5. Water bodies were 
identified using NDVI < 0 in SNAP 8.0.5, and accuracy was 
validated with 100 reference points to ensure the reliability 
of the water masking process.

Table 1  Spectral vegetation indices (VIs) analyzed in this study♣

Vegetation indices (VIs) abbreviation Equation References
Difference Vegetation Index DVI b8-b4 Tucker, 1979
Normalized Difference Vegetation Index NDVI (b8-b4)/(b8 + b4) Rouse et al., 1974
Ratio Vegetation Index RVI b8/b4 Pearson & Miller, 1972
Infrared Percentage Vegetation Index IPVI b8/(b8 + b4) Crippen, 1990
Transformed Vegetation Index TVI √

(b8 − b4)/(b8 + b4) + 0.5 Rouse et al., 1974

Modified Soil Adjustment Vegetation Index MSAVI (1 + L) (b8-b4)/(b8 + b4 + L) Qi et al., 1994
SQRT(IR/R) SQRT(IR/R) √

b8/b4 Tucker, 1979

♣In all formulas, b4 is the red band and b8 is the NIR band

1 3

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/


International Journal of Plant Production

R2=1-

∑ n
i=1

(
X̂i-Xi

)2

∑ n
i=1

(
Xi-

-
Xi

)2 � (6)

	● oot Mean Square error (RMSE).

RMSE =

√√√√∑n
i=1

(
X̂i−Xi

)2

n
� (7)

	● Mean Absolute Error (MAE).

MAE = 1
n

×
∑ n

i=1

∣∣∣X̂i-Xi

∣∣∣� (8)

	● Mean Bias Error (MBE).

MBE = 1
n

×
∑ n

i=1

(
X̂i-Xi

)
� (9)

In these equations, X̂iand Xi represent the estimated and 

measured values (LAI and CGR), respectively, “
-
Xi” is the 

mean of all measured values, and n is the number of observa-
tions. High estimation accuracy was indicated by the high-
est R² values, the lowest RMSE and MAE values, and MBE 
values closest to zero (with negative MBE indicating under-
estimation and positive MBE indicating overestimation).

After evaluating each method using these criteria, the 
most accurate vegetation index (VI) or model was selected 
to compute LAI and CGR values. These values were then 
mapped using ArcGIS version 10.6.1 based on the derived 
mathematical equations.

Although this study did not focus on water consumption 
and crop yield, the prominent physiological indices of LAI, 
CGR, and NAR are strongly linked to these traits in agro-
ecosystems. LAI affects absorbed radiation and transpira-
tion in canopies, which, in turn, affects evapotranspiration 
and water use efficiency. CGR also serves as an important 
component for yield potential, especially when water sup-
ply is variable. NAR, which represents photosynthetic effi-
ciency per unit leaf area, is critical for effective dry matter 
partitioning to reproductive sinks. Mapping and comparing 
these indices in a study area provides indirect insights into 
spatial variability in resource use and productivity in agro-
ecosystems, serving as a physiological basis for future inte-
gration with crop yield and water-use data to support yield 
gap assessments.

Evaluation of Vegetation Indices (VIs)

After calculating the VIs, their numerical values were 
extracted at corresponding sampling locations, and the rela-
tionships between the VIs and ground data, including LAI 
and CGR, were analyzed. Pearson correlation coefficients 
(PCC) were also determined using SPSS (v.22.0).

Estimation of LAI Using NDVI-derived Empirical 
Models

In addition to the VIs derived from satellite imagery, two 
empirical models based on the Normalized Difference Veg-
etation Index (NDVI)—NPLE (Su, 1996) and EMEP (Viña 
et al., 2011)—were used to estimate LAI. These models 
were tested for significance using ground-based LAI data, 
and the model with the highest performance was selected 
for LAI estimation.

Nonparametric LAI Estimator Model (NPLE)

The NPLE model, was given by Eq. (4):

LAI =
√

1 + NDV I

1 − NDV I
×NDVI� (4)

Within vegetation, the NPLE model produces output values 
from 0 to 10 based on NDVI values. Its structure makes it 
highly sensitive to changes in LAI, especially in areas with 
high NDVI. As a result, the NPLE model highlights LAI 
variations in densely vegetated regions (Su, 1996).

Exponential Model with Experimental Parameters (EMEP)

The EMEP model established a relationship between NDVI 
and LAI using natural logarithmic and exponential func-
tions (Eq. (5), Viña et al., 2011):

LAI=
ln

(
1

1-(NDVI-Y0
a )

)

b
� (5)

Where, the parameters a, b, and Y0 are model calibration 
parameters. Although the model lacked direct biophysical 
interpretations, it showed good performance in estimating 
LAI for crops like corn and soybeans (Viña et al., 2011).

Various statistical metrics employed for comparing esti-
mated data (Model Outcomes and Vegetation Indices) with 
ground data (LAI and CGR) Include:

	● Coefficient of determination ( R2)
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Among these methods, Maximum Likelihood Classification 
(MLC) achieved the highest precision, with a Kappa coef-
ficient (K) of 0.96 for the March 30 image (data not shown). 
The effectiveness of the MLC has been reported by other 
researchers (Hussain et al., 2022; Rahimi-Ajdadi, 2022; 
Seyam et al., 2023).The map of detected wheat-cultivated 
fields in the study area are presented in Fig. 3.

Evaluation of Vegetation Indices (VIs) for LAI and 
CGR Estimation Across Phenological Stages

The evaluation of vegetation indices (VIs) derived from 
Sentinel-2 imagery and their correlation with ground-based 
measurements of LAI and CGR across different wheat 
phenological stages demonstrated significant variability in 
performance. MSAVI, DVI, and SQRT(IR/R) consistently 
exhibited strong correlations across all development stages, 
making them reliable indicators for monitoring wheat LAI 
and CGR. Notably, the SQRT(IR/R) index showed the high-
est correlation in two of the five LAI comparison stages. 
Originally introduced by Tucker (1979) and structurally 
expressed as SQRT(RVI), this index is closely related to 
RVI, which was developed by Pearson and Miller (1972) 
and is widely used in LAI studies. Correlation strength var-
ied by phenological stage, with the highest values observed 
during early (stem elongation) and late (milk develop-
ment) development stages, while weaker relationships were 
recorded during middle reproductive phases (middle ear 
emergence and flowering).

Table 2 highlights the detailed Pearson correlation coeffi-
cients (PCC) comparing VIs with LAI and CGR across five 
key wheat development stages. During stem elongation, 
all Vis (p < 0.01) showed strong positive correlations with 
LAI (PCC > 0.85) and CGR (PCC > 0.84), with SQRT(IR/R) 
(PCC = 0.937) and RVI (PCC = 0.934) demonstrating the 
highest correlation with LAI. Middle ear emergence pre-
sented more variability in correlation strength, with DVI 

Results and Discussion

Water Masking and Wheat-Grown Fields Detection 
Accuracy

The water masking using negative NDVI values (NDVI < 0) 
effectively identified and masked all 100 reference points 
corresponding to water bodies. This simple and reliable 
approach could be a valuable method for distinguishing 
water cover in cropland studies. The accuracy of wheat-
grown fields detection was also assessed using multiple 
supervised classification methods and reference points. 

Table 2  Pearson correlation coefficients (PCC) analysis comparing vegetation indices derived from Sentinel-2 images with ground-based measure-
ments of LAI and CGR at five key wheat development stages in the research area
Images Variable-developmental stage Vegetation indices (VIs)

MSAVI IPVI SQRT(IR/R) DVI TVI NDVI RVI
Feb 28 LAI (stem elongation) **0.917 **0.899 **0.937 **0.858 **0.895 **0.899 **0.934

CGR (stem elongation) **0.910 **0.920 **0.913 **0.845 **0.918 **0.920 **0.891
Mar 30 LAI (middle ear emergence) **0.718 *0.339 *0.358 **0.770 *0.338 *0.339 **0.382

CGR (middle ear emergence) **0.507 0.176 n.s 0.172 n.s **0.561 0.175 n.s 0.176 n.s 0.214 n.s

Apr 4 LAI (late ear emergence) **0.800 **0.613 **0.617 **0.802 **0.612 **0.613 **0.618
CGR (late ear emergence) **0.758 **0.608 **0.607 **0.755 **0.608 **0.608 **0.606

Apr 14 LAI (Flowering) **0.924 **0.830 **0.832 **0.919 **0.829 **0.830 **0.827
CGR (Flowering) **0.451 **0.388 **0.455 **0.441 **0.384 **0.388 **0.477

May 9 LAI (milk development) **0.952 **0.951 **0.961 **0.943 **0.946 **0.951 **0.947
CGR (milk development) **0.927 **0.962 **0.929 **0.913 **0.963 **0.962 **0.897

**Significant at the 0.01 level; * Significant at the 0.05 level; n.s. Not significant

Fig. 3  Map of Wheat-cultivated fields in Eastern Basins, Golestan 
Province, Iran, utilizing Sentinel-2 Imagery and the Maximum Likeli-
hood Classification (MLC) method
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B and Y0 coefficients for EMEP model were adjusted and 
calibrated as 0.7298, 0.2064 and 0.6159, respectively. Both 
models performed well at later development stages, partic-
ularly during milk development, where R² values reached 
0.923 (p < 0.01) for NPLE and 0.926 (p < 0.01) for EMEP in 
LAI estimation, with low RMSE values of 0.216 and 0.313, 
respectively. Similar trends were observed for CGR, where 
both models captured growth dynamics accurately during 
later phenological stages, reflecting their robustness at these 
critical phases.

However, during earlier development stages (middle ear 
emergence and late ear emergence), the models exhibited 
reduced accuracy, with lower non-significant R² values 
(0.138–0.38) and higher error metrics for both LAI and 
CGR, likely due to greater variability in canopy structure 
and environmental factors. Despite these challenges, EMEP 
generally outperformed NPLE, particularly in CGR estima-
tion, with consistently lower mean bias error (MBE) and 
root mean square error (RMSE) values across most devel-
opment stages. This suggests that EMEP has a slight edge 
in capturing growth rate dynamics in wheat fields, espe-
cially during periods of rapid growth. These results empha-
size the importance of selecting appropriate VIs based on 

(PCC = 0.561, P < 0.01) and SQRT(IR/R) (PCC = 0.507, 
p < 0.01) maintaining significant relationships, while NDVI 
and TVI exhibited non-significant correlations. Correla-
tions recovered during late ear emergence and flowering, 
with CGR reaching exceptionally high values (PCC > 0.94, 
p < 0.01) during the flowering stage, indicating that VIs may 
be more reliable for growth rate estimation than canopy 
structure during this phase. The milk development stage 
recorded the highest correlations with LAI, with NDVI and 
TVI achieving near-perfect correlations (PCC = 0.962 and 
0.963, p < 0.01, respectively), confirming their suitability 
for late-stage LAI estimation. Among the indices, DVI and 
SQRT(IR/R) were the most effective for LAI estimation, 
while MSAVI and SQRT(IR/R) performed best for CGR.

Evaluation of Vegetation Indices (VIs) for LAI and 
CGR Estimation Across Phenological Stages

The performance evaluation of the NPLE and EMEP mod-
els for estimating both Leaf Area Index (LAI) and Crop 
Growth Rate (CGR) across different phenological stages 
demonstrated satisfactory outcomes, with notable differ-
ences in accuracy at various growth stages (Figs. 4 and 5).A, 

Fig. 4  Scatterplots comparing observed LAI (field measurements) with 
LAI estimates generated by the NPLE model across various wheat 
phenological stages: (a) stem elongation, (b) middle ear emergence, 
(c) late ear emergence, (d) flowering, and (e) milk development. The 

green dashed line represents the 1:1 agreement line, while the red 
dashed line illustrates the linear regression fitting line, highlighting the 
relationship between the observed and estimated data
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highlighting their reliability for predicting vegetation state. 
While empirical models provide robust and accurate esti-
mates, particularly in late development stages, VIs offer 
greater flexibility and real-time adaptability. Compared to 
empirical models, VIs are cost-effective, provide timely and 
repeatable data, and can be applied on a large scale, making 
them highly suitable for operational agricultural monitor-
ing. Therefore, given their high correlation with key bio-
physical parameters, VIs were prioritized (as Table 3) for 
further analysis to streamline vegetation assessment while 
preserving accuracy. Observed versus predicted values for 
LAI and CGR using different VIs as dependent variables, 
along with associated statistical metrics, are presented in 
Figs. 6 and 7, respectively.

development stage to enhance Sentinel-2-based crop moni-
toring accuracy. Integrating multiple indices, particularly 
MSAVI, DVI, and SQRT(IR/R), could further improve the 
precision of remote sensing applications in wheat growth 
assessment.

Comparison Between VIs and Empirical Models

In this study, vegetation indices (VIs) were selected over 
more complex empirical models due to their strong corre-
lation with ground-based measurements such as LAI and 
CGR. As shown in Table 2, Pearson correlation coefficients 
(PCC) between VIs derived from Sentinel-2 imagery and 
ground-based data consistently demonstrated significant 
relationships across various wheat development stages, 

Selected Vis
Phenological stage/sampling Leaf area index (LAI) Crop growth rate (CGR)
Stem elongation SQRT(IR/R) IPVI
middle ear emergence DVI DVI
late ear emergence DVI MSAVI
Flowering MSAVI RVI
milk development SQRT(IR/R) TVI

Table 3  Selected vegetation indi-
ces (VIs) for accurate Estimation 
of leaf area index (LAI) and crop 
Groeth rate (CGR) at five critical 
wheat phenological stages

 

Fig. 5  Scatterplots comparing observed LAI (field measurements) with 
LAI estimates generated by the EMEP model across various wheat 
phenological stages: (a) stem elongation, (b) middle ear emergence, 
(c) late ear emergence, (d) flowering, and (e) milk development. 

The green dashed line indicates the 1:1 agreement line, while the red 
dashed line represents the linear regression fitting line, highlighting the 
relationship between the observed and estimated data
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the maximum obtainable LAI and the significant variation 
between fields (while the majority of fields show a maxi-
mum LAI of 4 to 5.5) shows that the potential of arable 
lands and the management level in the fields cause the gap 
between the maximum expected LAI and the actual obtained 
LAI, although positive feedback between LAI and fraction 
of absorbed radiation could not be ignored. The observed 
peak LAI during the late ear emergence stage corresponds 
with the crop’s maximum vegetative growth, which is criti-
cal for assimilate accumulation. The subsequent decline 
in LAI during the flowering and milk development stages 
can be attributed to leaf senescence and the plant’s shift in 
resource allocation from vegetative growth to grain filling. 
Eyni-Nargeseh et al. (2020) reported that the reduction in 
CGR is attributed to leaf senescence during the post-flow-
ering stage and the allocation of a greater proportion of 
photosynthetic assimilates to the grains. These variations in 
LAI provide valuable information for optimizing agricul-
tural practices. CGR also peaked at the late ear emergence 
stage, with spatial and temporal variations during differ-
ent phenological stages (Fig. 9). The peak CGR during the 
late ear emergence stage signifies the period of maximum 
photosynthetic efficiency and nutrient assimilation, critical 

Spatial-Temporal Maps of LAI and CGR in Wheat 
Fields of Eastern Watershed Basins of Golestan 
Province: Implications for Crop Management

The LAI estimated maps for wheat-cultivated fields in east-
ern watershed basins of Golestan Province, as depicted in 
Fig. 8, illustrate the spatial distribution and temporal changes 
of LAI across different phenological stages. The minimum 
and maximum LAI values observed in the study area var-
ied significantly with the progression of wheat development 
stages. During the stem elongation stage, the LAI exhibited 
its initial increase, with values ranging from a minimum of 
approximately 2.5 to a maximum of 4.5 (for the major parts 
of wheat fields), indicating the early development of leaf 
biomass. In the middle ear emergence stage, LAI values 
increased further, reflecting enhanced canopy density and 
vigor, with minimum and maximum values shifting to 3 and 
5.5 (for major parts), respectively. The trend continued into 
the late ear emergence stage, where LAI peaked in certain 
areas, showing values between 2.97 and 6.88. Mohammadi 
et al. (2015) stated that the wheat LAI in Golestan Prov-
ince ranged from 0.304 to 2.317 and from 2.66 to 6.049 in 
the tillering and booting stages, respectively. Considering 

Fig. 6  Scatterplots comparing field-measured LAI with estimated LAI 
using selected vegetation indices (VIs) across different wheat devel-
opment stages: (a) stem elongation with SQRT(IR/R), (b) middle ear 
emergence with DVI, (c) late ear emergence with DVI, (d) flowering 

with MSAVI, and (e) milk development with SQRT(IR/R). Each scat-
terplot features a green dashed line indicating the 1:1 agreement line 
and a red dashed line representing the linear regression fit, highlighting 
the relationship between the data points
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during the late ear emergence stage, while NAR values are 
not significantly different in all watershed basins (Fig. 11C). 
The results clearly show that CGR values align with LAI 
changes across different phenological stages, while NAR 
remains relatively stable in all watershed basins. This 
reveals that LAI is the prominent trait driving CGR val-
ues compared to NAR. Since CGR is a product of LAI and 
NAR, and NAR is relatively stable in all watershed basins, 
our results demonstrate that LAI has a more pronounced 
effect on CGR. This highlights the importance of canopy 
development and leaf area expansion (as reflected in LAI) in 
influencing biomass accumulation during the late ear emer-
gence stage.

It’s worth highlighting that the values of LAI (and CGR) 
exhibit significant variability across different watershed 
basins, indicating that they are influenced by various factors, 
especially during the transition from middle ear emergence 
to flowering phenological stages. These findings suggest 
that leaf senescence initiates before the onset of flowering in 
wheat-cultivated fields in the study area, resulting in a short 
period of maximum LAI. Consequently, the wheat fields 
in our study area do not achieve the anticipated maximum 

for determining final yield potential. The gradual decline in 
CGR observed during the flowering and milk development 
stages can be attributed to the shift in the plant’s physio-
logical priorities from vegetative expansion to reproductive 
development and grain filling. The maximum CGR at the 
late ear emergence stage varied from 20.66 to 24.73 gr m− 2 
day− 1 (Fig. 10), which is far below the maximum reported 
CGR for C3 plants, as stated by Monteith (1978), where the 
maximum growth rate for C3 stands falls in the range of 
34–39 gr m− 2 day− 1.

The findings show that the major parts of the wheat fields 
in the study area have moderate LAI (3 to 5.5) and CGR 
(22–24.73 gr m− 2 day− 1) at the late ear emergence stage, 
highlighting the necessity of managing wheat-grown fields 
to optimize CGR.

Temporal Trends of LAI, CGR and NAR in Wheat 
Fields of Eastern Watershed Basins of Golestan 
Province Across the Growing Season

As expected, we observed a strong synchrony between CGR 
and LAI trends (Fig. 11A&B), with their peaks coinciding 

Fig. 7  Scatterplots illustrating the comparison between field-measured 
CGR and computationally estimated CGR using selected vegetation 
indices (VIs) across different wheat development stages: (a) stem 
elongation with IPVI, (b) middle ear emergence with DVI, (c) late ear 

emergence with MSAVI, (d) flowering with RVI, and (e) milk devel-
opment with TVI. The green dashed lines indicate the 1:1 agreement 
line, while the red dashed lines represent linear regression fitting lines, 
highlighting the relationships within the data
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Fig. 8  LAI estimation maps for wheat fields in eastern Golestan Prov-
ince’s croplands using selected VIs at the phenological stages included 
(a) stem elongation using SQRT(IR/R), (b) middle ear emergence 

using DVI, (c) late ear emergence using DVI, (d) flowering using 
MSAVI, and (e) milk development using SQRT(IR/R)
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Fig. 9  Crop growth rate (CGR) maps for wheat fields in the croplands 
of Golestan Province’s eastern basins using specific vegetation indi-
ces (VIs) during various phenological stages: (a) stem elongation with 

IPVI, (b) middle ear emergence with DVI, (c) late ear emergence with 
MSAVI, (d) flowering with RVI, and (e) milk development with TVI
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Crop Growth Rate (CGR) is a key indicator of wheat 
productivity, influenced by various factors including tem-
perature (Kuroyanagi, 1985), soil quality, organic fertil-
izers (Hossain et al., 2021), and nutrient sources (Khan 
et al., 2017), which are optimal in input-intensive wheat-
cultivated fields in Golestan Province with suitable climatic 
conditions for wheat production (except for radiation). Our 
study showed the CGR and LAI peak values of 24.73 g m⁻² 
d⁻¹ and 6.88 for wheat-cultivated fields, respectively, which 

CGR for wheat cultivars, with the highest observed value 
being 24 g m− 2 day− 1. The synchrony of the middle phe-
nological stages of wheat with frequently cloudy days in 
February to March, a pattern associated with the Caspian 
Sea’s proximity, contributes to a sharp decline in both LAI 
and CGR after the late ear emergence stage, alongside other 
physiological factors like nitrogen remobilization. Consid-
ering these results, it is prudent to explore strategies aimed 
at increasing the fraction of absorbed radiation, which could 
hold promise for future breeding programs.

Fig. 10  The estimated Crop 
Growth Rate (CGR) values and 
estimated Leaf Area Index (LAI) 
values at late ear emergence, 
as part of the LAI and CGR 
analysis within the study region, 
encompassing wheat fields in the 
croplands of the eastern basins 
of Golestan Province. Notably, 
this stage exhibited the highest 
estimated values for both LAI 
and CGR
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Fig. 11  Trends of (A) Crop Growth Rate (CGR), (B) Leaf Area Index 
(LAI) and (C) Net Assimilation Rate (NAR) across five phenological 
stages (SE: Stem elongation, MEE: middle ear emergence, LEE: late 
ear emergence, FL: flowering, MD: milk development) in study area 

watersheds. The larger left panels for each trait display the watershed 
basins with the highest and lowest values, while the smaller right pan-
els show the values across all watershed basins
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Conclusion

Monitoring the LAI and CGR during five critical phenologi-
cal stages revealed that he critical stages where the LAI and 
CGR in the studied watershed basins begin to diverge occur 
after the late ear emergence stage. During this stage, both 
LAI and CGR parameters typically experience their peak 
values, indicating maximum canopy cover (high LAI and 
canopy closure) and rapid biomass accumulation (repre-
sented by high CGR). However, as the crop shifts into flow-
ering and milk development stages, LAI and CGR start to 
decrease. At flowering stage, LAI remains relatively stable 
or slightly declines as the canopy reaches full maturity, 
while CGR begins to decrease more sharply due to slower 
biomass accumulation. This divergence marks the shift in 
the plant’s focus from vegetative growth to reproductive 
development. In the milk development stage, the divergence 
becomes more pronounced. LAI declines as leaves begin 
to senesce, whereas CGR drops significantly because the 
crop’s energy is redirected toward grain filling rather than 
producing new biomass. This stage represents the final tran-
sition from active growth to the maturation phase. Under-
standing these stages is crucial for targeted management 
practices, as it helps farmers focus on sustaining canopy 
health and optimizing resource use during early growth 
while ensuring enough energy is available for reproductive 
success in later stages.

Our study showed although satellite imagery could help 
us to analyze and interpret the state of agroecosystems, but 
precise determination of the satellite imagery-based indices 
or products is necessary for up-scaling the single-vitiate 
relationships to the whole study area. After setting and test-
ing the accuracy of the equations, trend analysis of physio-
logical parameters in the agroecosystems would be possible. 
Time-series mapping of CGR, LAI and NAR helped us to 
find LAI optimization is most prominent and promising trait 
that can fill the gap of CGR between wheat-cultivated lands 
in different watershed basins. Our results on NAR revealed 
that photosynthetic performance per unit leaf area in all 
wheat cultivars is relatively consistent, and differences in 
crop growth are likely due to LAI or other structural traits. 
Optimizing the LAI by strategic plans like appropriate sow-
ing date, selecting cultivars with rapid leaf expansion, pro-
longed Leaf Area Duration (LAD), and improved canopy 
structure could improve fraction of absorbed radiation, 
especially in cloudy days of February to March (which 
contributes to a sharp decline in both LAI and CGR after 
the late ear emergence stage). Sensitivity analysis using 
process-oriented crop simulation models can help research-
ers identify the most suitable sowing dates, cultivars, and 
canopy structures to optimize the fraction of absorbed 

is less than the potential (peak) of CGR reported by Monte-
ith (1978) (34–39 g m⁻² d⁻¹).

Many studies in the Golestan Province on crops such as 
canola (Faraji, 2012; Biabani et al., 2021), cotton (Saberpour 
et al., 2022), and winter cereals (Rahemi-Karizaki et al., 
2021) further support the interplay between LAI, radiation 
interception, and CGR. Solar radiation (SRAD) is particu-
larly crucial for biomass accumulation and yield (Gurjar et 
al., 2017). However, in Golestan Province, persistent cloud 
cover during grain filling leads to reduced SRAD, limiting 
CGR and yield potential. This aligns with findings by Eyni-
Nargeseh et al. (2020), who emphasized the importance 
of early-stage CGR through efficient light absorption via 
expanded leaf area. The different LAI production could be a 
main source for different CGR of studied fields in different 
watershed basins, along with low incident radiation from 
February to March in all watershed basins, which explains 
why the observed CGR is lower than the expected maxi-
mum. Maximizing wheat yield in low-SRAD regions like 
Golestan requires optimizing radiation interception, which 
is directly related to LAI. Rahemi-Karizaki et al. (2021) 
highlighted the impact of LAI dynamics on dry matter accu-
mulation, underscoring the need to align crop phenology 
with seasonal radiation patterns. Ensuring crops reach and 
maintain maximum LAI during peak radiation periods is 
vital. This can be achieved by selecting cultivars with rapid 
leaf expansion, prolonged Leaf Area Duration (LAD), and 
improved canopy structure. Sowing date optimization also 
enhances SRAD capture. Further yield improvements hinge 
on increasing Radiation Use Efficiency (RUE) and optimiz-
ing canopy structure. While NAR was stable in all water-
shed basins, using cultivars with higher light absorption 
fractions or enhanced RUE is well-suited for the studied 
area. Yunusa et al. (1993) observed higher light extinction 
coefficient (K) values and RUE in modern wheat cultivars, 
a finding echoed by Tao et al. (2018). Given that modern 
varieties already approach the theoretical Harvest Index 
(HI) limit (Acreche et al., 2009; Li et al., 2022), future yield 
gains will depend more on radiation capture and conversion 
efficiency (Furbank et al., 2015; Xiao et al., 2020; Wang et 
al., 2019). Therefore, a shift from HI-centric strategies to 
those emphasizing light interception and RUE is warranted. 
This includes breeding for optimal phenological traits, 
ideal canopy architecture (e.g., leaf angle adjustment), and 
appropriate plant densities. Agricultural extension services 
and breeding programs must collaborate to disseminate and 
implement these strategies effectively.
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matic conditions and sensor noise could affect generaliz-
ability and upscaling of the results. Reliance on one growing 
season, which ignores year-to-year climatic variability and 
interannual trends, along with the lack of cultivar-specific 
physiological calibration (which affects NAR precision), 
also could be a source of errors in absolute values. However, 
these errors could be ignored when the outputs are used for 
comparing the trend of studied traits in different watershed 
basins during different crucial phenological stages.

Validating the models using cultivar-level physiologi-
cal parameters, incorporating remote sensing-based proce-
dures and process-oriented crop simulation models to refine 
a more robust sowing window, optimize canopy structure, 
and sustain Leaf Area Duration (LAD)—especially in the 
canopy closure stage—and expanding this framework for 
quantifying the effects of climate change using CMIP6 
models to offer valuable solutions for adaptive crop man-
agement and regional food security planning are further 
research directions that could be recommended.
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