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Global nonexistence and stability of solutions of
inverse problems for a class of Petrovsky systems

Mohammad Shahrouzi and Faramarz Tahamtani

Abstract. In this work, we find conditions on data guaranteeing the global nonexistence
of solutions to inverse source problems for a class of Petrovsky systems. We also estab-
lish asymptotic stability results for the corresponding problems with the opposite sign of
power-type nonlinearities and the integral constraint vanishing as time tends to infinity.
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1 Introduction and preliminaries

There are numerous papers devoted to the study of stability and global nonex-
istence results for direct problems and the existence, uniqueness of solutions of
inverse problems for various evolutionary partial differential equations (see [2, 6,
7,11,13-15]). But less is known about the global nonexistence for solutions of
hyperbolic and parabolic inverse problems. The interested reader is referred to the
papers [4,5].

One of the standard tools for establishing the global nonexistence of solutions is
the concavity argument that was introduced by Levine [9, 10] and was generalized
in [8]. In [5], Eden and Kalantarov applied the modified concavity method to the
problem

uy — Au— [ulPu +b(x,t,u,Vu) = F)w(x), xe€,t>0,
u(x,t) =0, xe€d,t>0,
u(x,0) =up(x), xe€,

/ ulx,Hw(x)dx =1, >0,
Q

and established global nonexistence results as well as stability results depending
on the sign of nonlinearity.

In this work, by modifying the methods in [5], we study the global in time be-
havior of solutions to an inverse problem for a class of Petrovsky systems. More-
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over, we establish an asymptotic stability result for the corresponding problem
with the opposite sign of power-type nonlinearities.
We denote by 6 = 6(€2, n) the constant in the Poincaré—Steklov inequality

Jull? < 6] Vull?, (1.1)

which is valid for each u € HO1 (£2) for a bounded €2 in R". We denote by

1
CB.9) = ————7
q'(Bq)?'/4
the constant in Young’s inequality
ab < Ba? + C(B.q)b" , (1.2)

where a,b > 0, >Oand%+ % =1.

Throughout this paper all the functions considered are real-valued. We denote
by ||-|lx the L* norm over €. In particular, the L2 norm is denoted by |-||. The
usual L? inner product is denoted by (-). We use the well-known function spaces
Hg and H*.

We will use the following lemma.

Lemma 1.1 ([8]). Let @ > 0,Cy,Cy > 0 and C; + Cy > 0. Assume that () is
a twice differentiable positive function such that

V'Y — (L + )y 1 = 2C1yy — Cly)?
forallt = 0. If
V() >0 and ¥ (0)+ yra” 'y (0) > 0,

then

1 log y1¥(0) + ay’(0)
2WCZ+aC, 12V (0) +ay’(0)

y1 =—C1 + \/CIZ +aCy and y, =-C;— \/C12 + aCs.

The content of this paper is organized as follows. In Section 2, we give some
assumptions and touch upon the global nonexistence result (Theorem 2.2). Sec-
tion 3 is devoted to proving the result for solutions when the integral constraint
(3.2) vanishes at infinity which is given in Theorem 3.1.

Y(E)—>+oo as t—t <t =

Here
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2 A global nonexistence result

In this section, we study the global in time behavior of solutions for an inverse
problem of determining a pair of functions {u, f} satisfying the equation

usr + A%u — [ulPu +a(x,t,u, Vu, Au) = fo(x), xeQ,1>0 (2.1)
the initial conditions
u(x,0) =uop(x), us(x,0)=ui(x), xe€8, (2.2)
the boundary conditions
u(x,t) = dyu(x,t) =0, x €9, t>0, (2.3)

and the over-determination condition
/ ulx,Ho(x)dx =1, t>0, 2.4)
Q

where €2 is a bounded domain in R” with smooth boundary 92 and a unit outer
normal v. The functions a, w, ug, 1 and the positive number p are given, while
{u, f} is unknown.

We assume

w e HY Q)N HZ(Q) N LPT2(Q), / w?(x)dx =1, (A1)
Q

la(x,t,u,p.q)| < Milq| + M2|p| + M3]u| (A2)

forall x € Q,¢t > 0and M; > 0 (i = 1,2,3). The initial functions satisfy the
conditions

up € HF(Q) N LPT2(Q), u; € L*(Q), [ uo(X)w(x)dx =1.  (A3)
Q

We consider the following problem by substituting u(x,7) = e*wv(x,?) in
2.1)-(2.4):

Ve + A%v + 220 4 200, — PPy + e MG, v) = e M F(Hw(x),

xeQ, t>0, (2.5)
v(x,t) = dyv(x,t) =0, x €0, t>0, (2.6)
v(x,0) = up(x), vi(x,0) =ui(x)—Aug(x), x €, 2.7
/ v(x,Hw(x)dx = e M 1>0, (2.8)

Q
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where
a(t,v) =a(x,t, eMv, e’UVv, eMAv).

Multiplying the equation (2.5) by w(x) and using (A1), (2.8) we obtain
f@) = M (v, M%) = AP (]Pv,0) + @ v) 0).  (29)

Adapting the idea of Prilepko et al. [13], the key observation is that the problem
(2.5)—(2.8) is equivalent to the problem (2.5)—(2.7) in which the unknown function
f(t) in (2.5) is replaced by (2.9). (The value of the parameter A will be given
later.)

Once the unknown function f(¢) is eliminated, the standard theory of nonlinear
hyperbolic equations also becomes applicable to deduce the local in time existence
of solutions (see [1,3,12]).

We define the energy function for the solution v(x,t) of the direct problem
(2.5)-(2.7) by

)L t
1
E@) = 72 = S Qo + 220l + [av]?). 210)
Lemma 2.1. Assume that (A1)—(A3) hold. Let v(x,t) be a solution of the direct
problem (2.5)—(2.7). Then

E(t) = E(0) — Dy,

where
E(0) = ——Ilu (= —Az l[uoll* — —IIAu 1> + L luoll23
1 0 0 b 12 Uollpya>
3 -1 2 12 +2
Ao AP +2
D = (u + § :M‘) [ + 4 (2.11)
= XMy (p ) [EE2p 15+

N AZME + 200> Mo M3 + 2M 3 WE
2Ms e

with some positive constant
3
A= max{u,p_l(p + 2+ ZMi)}’
i=1

where i is the maximum root of 213 — OMA? — M3 = 0.
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Proof. Multiplication of equation (2.5) by v; and integration on Q2 give

d pt2_ 1 2 201,112 2
- L R - S0+ 2+ 1A00P)
Ap 5
+ mezlpt”vuj,’L + 24| |1
= M@t v). ve) — he M (v, A2w)
+ AeA(P_l)t(|v|Pv,w) _ Ae_ZAt(d([, v),w)’ (212)

Inserting (2.10) into (2.12), we obtain

AP0 212 20 |ue||? = —e M (a2, v), ve)

e_M(v, A2w) + 2PV (y|Py, ) — Ae P (G(1,v), w).  (2.13)
Let us recall the condition (A2) and Poincaré and Young’s inequalities (1.1),

(1.2). Taking some suitable values for a,b,q,q’ and B in (1.2) to estimate the
terms on the right side of (2.13), we get the following estimations.

Estimations (1):
M@, vo)l = M1||Av||||vt|| + Mz | Vol + Mol
N (e STINTG

M, M3 2
+ (T + M, + 2 )”U;”
e 2A1

e ™ (v, A%0)| < || 12+ ||A2w||2

p+2 —2At
M1 ()P w>|<e*1"||v||”“ M o2
T PR (p+ BB

(e ‘

e M (a(t,v).0)| < AV + == v

M2)2
+e-2“( S OAM; +M3)||w||2
3
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Combining Estimations (1) and (2.13), we arrive at

d 2 2
ZE(r) > M; |E(t S N My —1 )PPt
a <>_(; Jew+ (2 pHZ 1) ol
M
+ (22— 55 = 002 |2 = D1 (). 2.14)

where

”Aza)”2 A’p+2 || ||p+2
+2
2My - (p )BT

Di(t) = e—m[
+ (AzM +022M; + M) o] .
2Ms

At this point, we choose

3
A= max{p,,p_l(p +2+ ZMi)}v

i=1

where  is the maximum root of 213 — M,A% — M3 = 0. Now (2.14) takes the
form

3
%E(z) > (ZMi)E(t)—Dl(t). (2.15)

i=1
Therefore (2.15) with (2.11) yields the desired result. O

Theorem 2.2. Assume that

2B
luol| >0 and E(0) > + Dy, (2.16)
p+4
where
2 2 p+2
—5la%0)? + (b + D2 ol
QM2 4+ 2)0%2(M; + OM5)?
+ =3 ISE ]2 (2.17)

Then there exists a finite time t* such that the solution of direct problem (2.5)—(2.7)
blows up at t*.
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Proof. The choice of the functional is standard (see [4]),

v (1) = [v(@)]>.
Then
Y'(t) = 2(v,ve),
Y (1) = 2(v, vee) + 2]|ve |12 (2.18)

From (2.5) and (2.10) we deduce that

_(P Piaui2 4 P 1o LAY
(v.vee) = (5 +2) EO) + 18I+ ZE ol + (14 ) el = 220, v)

Ay T e R —At 2
+2p+4e [vll,4s —e " (at,v),v) + e (v, A%w)

— PV (u] P, ) + e (A1, v), ). (2.19)

On exploiting condition (A2), inequalities (1.1), (1.2) and choosing suitable values
for a,b,q,q’ and B in (2.2), to estimate the last four terms in (2.19) we get the
following estimations.

Estimations (2):

pM3 + 2(My + 6M>)? e

e @t v).v)| = EJjav) +

2e—ZAt

e (v, A%w)| < AZ—”||v||2 + 1A%0|2
' - 8 A%p ’
Ap=Dt,.1p < p Apt ..\ P+2
le (lv]?v, )| < 2 12° vllo s
1

—2A +2
e t||w||5+2,

+
(r + D555t
2MF + 202 (M + OM,)?

lwl|?
A2p

™22 (1, v), w)| < §||Av||2 4
AZP 2
+ THU” .

Using Estimations (2) in (2.19), by conditions (2.16), (2.17) we obtain

(v v) = (1+ %)Hv, V12 = 2A(vs, ). (2.20)
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By using (2.20) in (2.18) we get

v (1) > _2(PM3 +2(M; + QMZ)Z)W([) n 4(1 n B)”U[HZ — 20 (0),
8
then
YOW'©) = 29y @) - (TN Oy
P ’
+(1+ 5w P,
where

ol = o O O

has been used. Hence we see that the hypotheses of Lemma 1.1 are fulfilled with

2pMs + 4(M; + 6M>)?
=" C = C2:P3+( 1+ 60M>3)
8 P
and the proof of Theorem 2.2 is complete. o

3 A stability result

In this section we study the asymptotic stability of solutions to the following in-
verse problem for a class of Petrovsky systems:

Ui + A%u+au; + ulPu—bu = fOw(x), xeQ,t>0, (3.1
u(x,t) =0y(x,1) =0, xe€0dRQ, t >0,
u(x,0) = uo(x), ur(x,0) =ui(x), xe€Q,

/ u(x,Hw(x)dx = ¢), t >0, (3.2)
Q

where 2 is a bounded domain of R” with smooth boundary d€2. The functions
w,Uup, U1, P () and the positive constants a and b are given, while {u(x,t), f(¢)}
is unknown.

We shall assume that the functions appearing in the data of the problem are
measurable and satisfy the following conditions:

(uo.u1) € (HF(Q) NLPT2(Q)) x L*(Q),  (uo,w) = ¢(0). (AS)

As was mentioned in the previous section, we multiply (3.1) by w(x) and use
relation (3.2) to express

f(©)=¢"(t) + (Au. Aw) +ag'(t) + (JulPu,®) — be(1).
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Theorem 3.1. Assume that (Al) and (AS5) hold. Furthermore, let the damping

coefficient b € (n,072),a > n > 4?1?622 for § sufficiently small, and let ¢(-) :

R — R™ be a continuous function of the class C? such that ¢" is bounded and
¢(t),¢'(t) = 0 ast — +o0. Then

Jim [l @) + 1 8u@)]? + u @3] =0. (3.3)

Proof. Multiplying both sides of (3.1) by u; + nu scalarly in L?(S2) gives the
relation

E'(t) + (a = n)llul)® + nllAul® + nllul 253 = byllul? = (Au, Aw)(@ + n¢)
+([ulPu, )@ + np) + ¢" (@' + ng) + (an — b)pd' — nbd* + alp'*, (3.4)

where

1
p+2

an

. 1 1 —b 2
E@) = Sl + S 1Aull® + ——— > + llly iz + 0. w).

Now, we estimate the first two terms on the right-hand side of (3.4). The subse-
quent estimations follow from Schwartz’ and Young’s inequalities:

Estimations (3):

laullAwl(1¢" )] + nlg@)])
1
< el Au® + E(W(I)I +nl¢®)]) A0,

|(ulPu. w)|(I¢" ()] + nlp (1))

+2
< elul 213 + ple. p) (16 O] + nlgON)" " wllF L3,

where
1

(p+2)leLip)p+

p(e, p) =

Inserting Estimations (3) and the definition of § E(¢) (§ > 0) into (3.4), we deduce
that

E'(t) + 8E@) + (@ —mucl® + (1 — &) Au?
+ (= o)ulll33 = bnlul> —8E@) < H(). (3.5)
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where
1
H(O) = 1¢"¢/| + 1 (18'| + 1lg]) 180l + B + am)|@'d| + nlp"¢| +ale'?

+p(e. ) (16 (O] + nl¢ )"l 213

We can rewrite (3.5) as follows:

E'(t) + 8E(t) < —(a - g)nutuz - (n —&— g)IIAull2

§ p+2 § 2
= (n=e =SS + (bn o+ 5Gan =) I
+ 6n|(us, w)q| + H(). (3.6)

By virtue of the Poincaré—Steklov inequality (1.1) and

1 6>
()] < Sluel® + -l Au]?,

inequality (3.6) implies

- - Y
/ _ e 2
E'0)+8E() < —(a—n—3 =T )lul

5 ) as 8(b —n)H? s
(n € > no <b+7)+T [Au||

g p+2
~(n-e- m)||u||p+2 + H().

At this point, takinga > n > ¢,& = %(b —1)#? and assuming § to be a sufficiently
small number and n < b < 672, we derive from the last inequality the inequality

E'(t)+8E(t) < H(t)

thanks to the assumptions on ¢ (), ¢’(¢) and ¢”. Indeed, ¢(¢), ¢’ (¢) tend to zero
as t tends to infinity and ¢” is a bounded function, so we get

H({t)—>0 as t— oo.
Therefore for some positive constant y, result (3.3) follows from
+2 =
lue I + Au@) | + lu @75 < vEQ@),

and the proof of Theorem 3.1 is complete. o
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