1JST (2015) 39A1: 45-50
Iranian Journal of Science & Technology

http://ijsts.shirazu.ac.ir

On the Petrovsky Inverse Problem with Memory Term and
Nonlinear Boundary Feedback

M. Shahrouzi

Department of Mathematics, Jahrom University, Jahrom, P.O. Box: 74137-66171, Iran
E-mail: mshahrouzi@shirazu.ac.ir

Abstract

In this paper we consider a Petrovsky viscoelastic inverse source problem with memory term in the boundary
condition. We obtain sufficient conditions on relaxation function and initial data for which the solutions of
problem are asymptotically stable when the integral overdetermination tends to zero as time goes to infinity.
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1. Introduction

We study the asymptotic behavior of solutions for
inverse problem of determining a pair of functions

{u(x, t), f(t)} that satisfy

Au(x,t) = fotg(t —DAu(r) dr — az|Vu|PVu,x €I, ,t > 0

{ u(x,t) =0,
u(x,0) = up(x), u(x, 0) = uy (x), x€N (3)
f ulx, Hw(x) dx = ¢(t), t>0 (4)
0

where Q is a bounded domain of R"(n = 1) with
smooth  boundary T,UTl; =0Q such that
meas(;) > 0. Here a;,a, and a; are positive
numbers. Moreover, ¢(t) and w(x) are functions
that satisfy specific conditions that will be
enunciated later.

Such problems occur in many mathematical
models of applied sciences. Applications include
recovery of inclusions from anomalies of their
gravitational fields, reconstruction of the interior of
the human body from exterior electrical, ultrasonic
and magnetic measurements, recovery of interior
structural parameters of detail of machines and of
the underground from similar data and locating
flying or navigated objects from their acoustic or
electromagnetic fields. In contrast with the
extensive literature on global behavior of solutions
for direct problems in partial differential equations,
we know few results about inverse problems. For
example, we consider (1)-(4) in the absence of the
viscoelastic term and with homogeneous boundary
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Upe + A%u — fotg(t —0)A%u(r) dr — a; Au +
au; = fwx), xeNt>0 Q)

x€l,,t>0

O]

condition this problem reduces to the following
inverse problem,

Uy —Au + aju; + ay|ulPu+ b(x, t,u, Vu)
= f(Hw(x), x€EN>0
ulx,t) =0, x€r, t>0
u(x,0) = uy(x), u(x,0) =u,(x),x €0, (5

f ux, w(x)dx = ¢(t), t>0
0

This problem has been studied by Eden and
Kalantarov (2006). They proved the global
behavior of solutions. Also Guvenilir and
Kalantarov  (2006) established the global
nonexistence of solutions to an inverse problem for
differential operator equation. Existence and unique
solvability of parabolic and hyperbolic inverse
source problems has been studied by Gozukizil and
Yaman (2007), (2008). They proved these results
by using the contraction mapping theorem.

Recently, Tahamtani and Shahrouzi (2013)
studied asymptotic behavior of solutions for the
following inverse problem:

U + A%U — ay du + ayu; + azlulPu
+ b(x,t,u,Vu,Au) = f(H)w(x),
x€e€Nt>0
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u(x,0) =0, Au = —cy0,u(x,t),
x€00,t>0
u(x,0) = uy(x), u(x,0) = uy (x), x €N

f ulx, )w(x)dx = ¢(t), t>0
0

and showed that the solutions of this problem under
some appropriate conditions are stable if a; , o, are
large enough, a3 >0 and ¢(t) tends to zero as
time goes to infinity and establish a blow-up result,
if g <0 and ¢(t) = k are a constant. For more
information about inverse problems we refer the
readers to Belov and Shipina (1988); Bui (2002);
Gbur (2001); Shahrouzi and Tahamtai (2012);
Shidfar et al. (2010).

In direct problems, it is worth mentioning some
papers in connection with existence and blow up of
solutions for viscoelastic equations. Cavalcanti et
al. (2002) were the first to study exponential decay
for solutions of

t

U — Au + f gt —DAu(r) dt + a(x)u,
vz ulu|P~2. (6)

This work was later improved by Cavalcanti and
Oquendo (2003) and Berrimi and Messaoudi (2006)
using different methods. Messaoudi (2002) and
(2003) showed that, concerning nonexistence,
Todorova and Georgiev's results (1994) can be
extended to (6) using the concavity method with a
modification in energy functional due to the
different nature of the problem.

Recently, Zarai et al. (2013) considered elastic
membrane equation with memory term and
nonlinear boundary damping. They proved a
general decay and blow up result for some solutions
of the following problem:

t
Uy — M) Au + f h(t — s)Au(s) ds
0
=0 in N x(0,)
u(x,0) = up(x) and u.(x,0) =u,;(x) in 2
u=20 on I} X (0, )

M2 fth(t )2 (5) ds + alug ™2
v, s) 5, () ds + alu, Uy
= |ulP~2u on I x (0,)

Motivated by the aforementioned works, we take
a,, a, in the appropriately domain, then prove that

{ u(x,t) =0,

Au(x, t) = fotg(t — ) Au(r) dt — az|VulPVu,x € I; ,t > 0

u(x,0) = uy(x), u(x,0) =u;(x),x €N 1

in which the unknown function £ (t) is replaced by

solutions of (1)-(4) are asymptotically stable when
¢(t) tends to zero as time goes to infinity. Our
approaches are based on the Lyapunov function and
perturbed energy method.

2. Preliminaries and main results

In this section, we present some materials needed in
the proof of our main results. We shall assume that
the functions w(x),¢(t)and the functions
appearing in the data satisfy the following
conditions\newline

(A1) ug € HE(Q) N LP*2(),

| w@omadx =9,

0]
(A2) w € H*(2) N H(2) n LP*2(0),

J- w?(x)dx = 1,

0
(43) g®) =0 ,g'(t) < 0O,

1—f g®dt=1>0.

0
Throughout this paper all the functions

considered are real-valued. We denote by ||. |, the
Li-norm over Q. In particular, the L?-norm is
denoted ||.|| in @ and |||, in ;. Also (.,.)
denotes the usual L?-inner product. We use familiar

function spaces H(Q2), H*(1).
We recall the Poincare inequality

lull® < B, [IVull?, @

where B, is the optimal constant.
Also, the Young's inequality is sometimes used,

ab < Ba? + C(,B,q)bq’, (8)

where a,b >0, >0, C(B,q) = —r are
q(Bq) 1

constants and % + i =1
Adapting the idea of Prilepko et.al (2000), the key
observation is that the problem (1)-(4) is equivalent
to the following direct problem,
t
Uy + A%u — j gt — A*u(r) dr — a, du
0

+ au; = f(Hwx),
XENE>0 )

x€l,t>0
(10)

f@) =¢'(t) + a,¢'(t) + (Au, Aw) + a;(Vu, Vw)
—J gt —t)(Qu(r),dw) dt, (12)
0
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So the energy associated with problems (9)-(11)
is given by

1 t
E(®) = 5( luell? + (1 - g(s)ds) l4ull?
0

+ (g * 4w)(0) + allqullz)

as
e 1 LG 46T (13)

where (g + v)(t) = [ g(t = Dllv(®) — v(D)II? dr.
Now, we are in a position to state our asymptotic
stability result:

Theorem 2.1. Let the conditions (A1) — (A3) be
satisfied and suppose that ¢,¢’ and ¢ are
continuous functions defined on [0, ), such that
¢'" is a bounded function and ¢, ¢' tend to zero as t
goes to infinity. Also, there exist positive constants
M, N such that

2N + M§ 2a,
———<a,<—;

2M 5B

<
fo 96)ds = T3
and
26M +1—-1 SIM—-1+1 6M
N = max({

I AT I=1'p+2

where §,¢ are positive numbers such that & is
sufficiently small. Then the solutions of problem
(1)-(4) are asymptotically stable and

tlim E(t) =0.

3. Asymptotic stability

As mentioned earlier, the proof of asymptotic
stability result, Theorem 2.1 is given in this section.
In order to carry the proof we need the following
Lemmas.

Lemma 3.1. Under the conditions of Theorem 2.1,
the energy functional E(t), defined by (13),
satisfies

d
O =< —a;llucll® + ()" (©. 14

Proof: Multiplying equation (9) by u,, performing
an integration by parts and using (A3) and (13) our
conclusion follows.

Lemma 3.2. Under the conditions of Theorem 2.1,
the function f(t), defined by (12), satisfies for
some M.N >0

M
M@’ (&) + NI (¢) < —-14ull
6Ma,
2

+ g s ) + STl + HE, (15)

where § > 0 and

H(®) = [M¢/(6) + N$OII¢" (1) + 0,/ ()]
LT (;)5 ;[w)(tn ol

)Mo/ @ + Ne@F Il (16)

(1 + 6M
26M

Proof: We have from definition of f(¢t)
IM@'(t) + Np(t)|f (t)
=|M¢'(®) + N I(¢" (D) + ay' (D))
HM'©) + NP [ 9(¢ = D(Bu(®), 40) dr
0

+|M¢p'(t) + Nop(t)|(Au, Aw)
+a;|M@'(t) + No(O)|(Vu,Vw). (17)

By using the Young's inequality (8), the last three
terms in the right hand side of (17) can be estimated
as follows, for any § > 0, taking a = ||[Aul|, b =
|[Mp'(t) + N¢(DIllAwll, g=¢q"=2 and B =

%M, we deduce that

[M¢'(t) + Nop(£)||(Au, Aw)|

M M@’ (t) + Np(t)|?
< - ldull? + ——= =" llAwl%, (18)
and
oMa,
a;|Me'(t) + Np(®)]|Vu, Vw| < > [|Vul|?
! 2
+a1|M<l> )+ Nop(o)| Vol (19)

26M

We now estimate the integral term in the right-
hand side of (19) as follows:

IM¢'(6) + N (0] j 9t — D Uu(), Aw) d
0
_IME'®) + NI

5 lAwl?
+%L (JO g(t
— D)ldu()| dr>2 dx
< Mg’ (t) : No(t)|? T
%fn <fotg(t—r)(|Au(T) — Au(o)|

+ [Au(®)]) dT> dx
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Using Schwartz and Young's inequality, and a, 5
fotg(s) ds < fomg(s) ds = 1 — [, we obtain Y = L uudx + 2 Il
t rs
—ff f g(s — Dl Au(r) — Au(s)||?>drds, (23)
0 Y0

fﬂ ( [ 9= 00au@ - suco

2
+ |[Au(t)|) dr) dx

< fﬂ ( f gt — DlAu()

2
— Au(d)] dr)

2

- A d d
+f (J; g(t T)l u(t)l T) X
+2 -7 Au T —Au d[

— )|Au(t)] dT) dx

1 ¢ 2
=71C f (f gt —1)|Au(t)| dr) dx
a \Jo

1
Tf (f gt — Dl du() - Au(t)ldr) dx

Slf fg(s)dsfg(t
—17)

|Au(t) — Au(t)l2 drdx

1 ¢ 2
+1—_IJ;1 |Au(t)|? (J; g(r)dr) dx

< (1 - DllAu]l?
1-1
7l
* Au) (¢). (20)

/\

Therefore we have

IM¢'(t) + N (2)]

¢
f gt —1)(Au(r), Aw) dt
0

Mo’ N 2
OO
-1
+(1 )| dul?
1-—
+ T(g * Au)(t). 21

Applying estimations (18), (19) and (21) in (17)
yields the desired result.

Proof of Theorem 2.1. Inspired by the idea in
Tahamtani and Shahrouzi (2013), we define

L(t) = ME(t) + Ny(b), (22)

where

for some & > 0 that will be explained later.
It is clear that L(t) and E(t) are equivalent in the
sense of the following Lemma.

Lemma 3.3. Under the conditions of Theorem 2.1,
there exist two positive constants a,; and a, such
that

aL(t) < E(t) < a,L(t).

We differentiate (22) and use equation (14) to
obtain

L'(t) < (N — May)llull* — Né(g * Au)(t)
+Na,(u,u) + N(ug,u) + Mp'(t)f(t). (24)

It follows from (1) and boundary conditions (2)

(e ) = —llAull? = as|VulZi2,, — a,IVull?
f Auf gt — t)Au(r)drdx
—az (ug, u) + ¢ f (6). (25)

Utilizing (15) into (25), we get
L'(t) < —(May — N)|lull? - NIIAuII2

— NaglIVullP2,.

—N{(g*Au)(t)+NJ Auj g(t
Q 0

— 1)Au(t)drdx
—Nay||Vull> + [M@'(t) — Np(t)If (¢). (26)

Consequently, from definition of §L(t) and
inequality (7), we deduce

5M
L'(t) + 8L(E) < — (Ma2 _N- 7) lle 12
sM
= (=)ol

8Ma, 6NBZa
- (Na1 - 1—%) Ivull”

- (NE - 67M) (g * Mu)(t)

oM
_ o p+2
as (N — )1l

t
+NfQ AuJ;g(t —)Au(r)drdx

+ M’ (t)
= No()|f (D). (27)

Similar to (21), we obtain
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t
f Auf gt —DAu(r)drdx
Q 0
< (1-3) Iaul?
= ) u
1-1
By virtue of (28) and Lemma 3.2, (27) becomes
L'(t) + SL(t)
oM
<~ (Ma, =N = =) P
(Nl M 1- l) e
2 2 )"

_<Na1 _5Ma1 -

%) IVu||?

oM 1-1
- (Ne- 7 0 1) (g 8)(®)
—ay (V- =) vl
+ H(t), (29)

where H(t) satisfies (16).
At this point if we choose 6 > 0 it is sufficiently
small and

2N+ M5 _ 24 f°° g <2
oM =% Sggre | 9@ <o
also
20M+1—-1 6IM—-1+1 &M
N > max({

l T28l+1-1"p+2
then we easily derive
L'(t) + 6L(t) < H(t)

thanks to the assumptions on ¢(t),¢'(t) and
¢"(t). Indeed ¢(t), @' (t) tends to zero as t goes to
infinity and ¢"(t) is a bounded function, so the
right-hand side of last inequality tends to zero. This
implies that from Lemma 3.3

Jm E© =0
Therefore, solutions of (1)-(4) are asymptotically
stable and the proof of Theorem 2.1 is completed.
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