
IJST (2015) 39A1: 45-50 

Iranian Journal of Science & Technology 

http://ijsts.shirazu.ac.ir 

 

On the Petrovsky Inverse Problem with Memory Term and 

Nonlinear Boundary Feedback 

 

M. Shahrouzi 
 

Department of Mathematics, Jahrom University, Jahrom, P.O. Box: 74137-66171, Iran 

E-mail: mshahrouzi@shirazu.ac.ir 

 

Abstract 

In this paper we consider a Petrovsky viscoelastic inverse source problem with memory term in the boundary 

condition. We obtain sufficient conditions on relaxation function and initial data for which the solutions of 

problem are asymptotically stable when the integral overdetermination tends to zero as time goes to infinity. 
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1. Introduction 

We study the asymptotic behavior of solutions for 

inverse problem of determining a pair of functions 

{𝑢(𝑥, 𝑡), 𝑓(𝑡)} that satisfy 

𝑢𝑡𝑡 + 𝛥2𝑢 − ∫ 𝑔(𝑡 − 𝜏)𝛥2𝑢(𝜏)
𝑡

0
𝑑𝜏 − 𝑎1 𝛥𝑢 +

𝑎2𝑢𝑡  = 𝑓(𝑡)𝜔(𝑥), 𝑥 ∈ 𝛺, 𝑡 > 0                            (1) 

 

 

                                      {   
𝑢(𝑥, 𝑡) = 0,                                                                𝑥 ∈ 𝛤0 , 𝑡 > 0  

𝛥𝑢(𝑥, 𝑡) = ∫ 𝑔(𝑡 − 𝜏)𝛥𝑢(𝜏)
𝑡

0
𝑑𝜏 − 𝑎3|𝛻𝑢|𝑝𝛻𝑢, 𝑥 ∈ 𝛤1 , 𝑡 > 0    

                                (2) 

 
 
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑢𝑡(𝑥, 0) = 𝑢1(𝑥), 𝑥 ∈ 𝛺   ( 3) 
 

∫ 𝑢(𝑥, 𝑡)𝜔(𝑥)
𝛺

𝑑𝑥 = 𝜙(𝑡), 𝑡 > 0                  (4) 

 
where Ω is a bounded domain of ℝn(n ≥ 1) with 

smooth boundary Γ0 ∪ Γ1 = ∂Ω such that 

𝑚𝑒𝑎𝑠(Γ1) > 0. Here a1, a2 and a3  are positive 

numbers. Moreover, 𝜙(𝑡) and 𝜔(𝑥) are functions 

that satisfy specific conditions that will be 

enunciated later. 

Such problems occur in many mathematical 

models of applied sciences. Applications include 

recovery of inclusions from anomalies of their 

gravitational fields, reconstruction of the interior of 

the human body from exterior electrical, ultrasonic 

and magnetic measurements, recovery of interior 

structural parameters of detail of machines and of 

the underground from similar data and locating 

flying or navigated objects from their acoustic or 

electromagnetic fields. In contrast with the 

extensive literature on global behavior of solutions 

for direct problems in partial differential equations, 

we know few results about inverse problems. For 

example, we consider (1)-(4) in the absence of the 

viscoelastic term and with homogeneous boundary 
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condition this problem reduces to the following 

inverse problem, 
 

𝑢𝑡𝑡  − 𝛥𝑢 + 𝑎1𝑢𝑡 + 𝑎2|𝑢|𝑝𝑢 + 𝑏(𝑥, 𝑡, 𝑢, 𝛻𝑢)
= 𝑓(𝑡)𝜔(𝑥),         𝑥 ∈ 𝛺 > 0  

𝑢(𝑥, 𝑡) = 0,    𝑥 ∈ 𝛤, 𝑡 > 0 

𝑢(𝑥, 0) = 𝑢0(𝑥),   𝑢𝑡(𝑥, 0) = 𝑢1(𝑥), 𝑥 ∈ 𝛺, (5) 

∫ 𝑢(𝑥, 𝑡)𝜔(𝑥)𝑑𝑥 = 𝜙(𝑡), 𝑡 > 0   
𝛺

 

 
This problem has been studied by Eden and 

Kalantarov (2006). They proved the global 

behavior of solutions. Also Guvenilir and 

Kalantarov (2006) established the global 

nonexistence of solutions to an inverse problem for 

differential operator equation. Existence and unique 

solvability of parabolic and hyperbolic inverse 

source problems has been studied by Gozukizil and 

Yaman (2007), (2008). They proved these results 

by using the contraction mapping theorem. 

Recently, Tahamtani and Shahrouzi (2013) 

studied asymptotic behavior of solutions for the 

following inverse problem: 
 
𝑢𝑡𝑡 + 𝛥2𝑢 − 𝛼1𝛥𝑢 + 𝛼2𝑢𝑡 + 𝛼3|𝑢|𝑝𝑢

+ 𝑏(𝑥, 𝑡, 𝑢, 𝛻𝑢, 𝛥𝑢) = 𝑓(𝑡)𝜔(𝑥),
𝑥 ∈ 𝛺, 𝑡 > 0 
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 𝑢(𝑥, 0) = 0,   Δ𝑢 = −𝑐0𝜕𝜈𝑢(𝑥, 𝑡),
𝑥 ∈ 𝜕Ω, 𝑡 > 0 

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑢𝑡(𝑥, 0) = 𝑢1(𝑥), 𝑥 ∈ Ω  

∫ 𝑢(𝑥, 𝑡)𝜔(𝑥)𝑑𝑥 = 𝜙(𝑡),    𝑡 > 0  
𝛺

 

 
and showed that the solutions of this problem under 

some appropriate conditions are stable if α1 , α2  are 

large enough, α3 ≥ 0 and 𝜙(𝑡) tends to zero as 

time goes to infinity and establish a blow-up result, 

if α3 < 0 and 𝜙(𝑡) = 𝑘 are a constant. For more 

information about inverse problems we refer the 

readers to Belov and Shipina (1988); Bui (2002); 

Gbur (2001); Shahrouzi and Tahamtai (2012); 

Shidfar et al. (2010). 

In direct problems, it is worth mentioning some 

papers in connection with existence and blow up of 

solutions for viscoelastic equations. Cavalcanti et 

al. (2002) were the first to study exponential decay 

for solutions of 
 

𝑢𝑡𝑡 − Δ𝑢 + ∫ 𝑔(𝑡 − 𝜏)Δ𝑢(𝜏)
𝑡

0

𝑑𝜏 + 𝑎(𝑥)𝑢𝑡  

= 𝑢|𝑢|𝑝−2.                                   (6) 
 

This work was later improved by Cavalcanti and 

Oquendo (2003) and Berrimi and Messaoudi (2006) 

using different methods. Messaoudi (2002) and 

(2003) showed that, concerning nonexistence, 

Todorova and Georgiev's results (1994) can be 

extended to (6) using the concavity method with a 

modification in energy functional due to the 

different nature of the problem. 

Recently, Zarai et al. (2013) considered elastic 

membrane equation with memory term and 

nonlinear boundary damping. They proved a 

general decay and blow up result for some solutions 

of the following problem: 
 

𝑢𝑡𝑡 − 𝑀(𝑡)𝛥𝑢 + ∫ ℎ(𝑡 − 𝑠)𝛥𝑢(𝑠)
𝑡

0

𝑑𝑠

= 0     𝑖𝑛  𝛺 × (0, ∞)         
𝑢(𝑥, 0) = 𝑢0(𝑥)   𝑎𝑛𝑑   𝑢𝑡(𝑥, 0) = 𝑢1(𝑥)    𝑖𝑛  𝛺̅  

𝑢 = 0            𝑜𝑛  Γ1 × (0, ∞)       

𝑀(𝑡)
𝜕𝑢

𝜕𝜈
− ∫ ℎ(𝑡 − 𝑠)

𝜕𝑢

𝜕𝜈
(𝑠)

𝑡

0

𝑑𝑠 + 𝛼|𝑢𝑡|𝑚−2𝑢𝑡

= |𝑢|𝑝−2𝑢   𝑜𝑛  𝛤0 × (0, ∞) 
 

Motivated by the aforementioned works, we take 

𝑎1, 𝑎2 in the appropriately domain, then prove that 

solutions of (1)-(4) are asymptotically stable when 

𝜙(𝑡) tends to zero as time goes to infinity. Our 

approaches are based on the Lyapunov function and 

perturbed energy method. 

2. Preliminaries and main results 

In this section, we present some materials needed in 

the proof of our main results. We shall assume that 

the functions 𝜔(𝑥), 𝜙(𝑡) and the functions 

appearing in the data satisfy the following 

conditions\newline 
 
(𝐴1)     𝑢0 ∈ 𝐻0

1(𝛺) ∩ 𝐿𝑝+2(𝛺),

∫ 𝑢0(𝑥)𝜔(𝑥)𝑑𝑥 = 𝜙(0),
𝛺

 

(𝐴2)  𝜔 ∈  𝐻4(𝛺) ∩ 𝐻0
3(𝛺) ∩  𝐿𝑝+2(𝛺),

∫ 𝜔2(𝑥)𝑑𝑥 = 1,
𝛺

     

(𝐴3)   𝑔(𝑡) ≥ 0  , 𝑔′(𝑡) ≤  0,

1 − ∫ 𝑔(𝑡)𝑑𝑡 = 𝑙 > 0.
∞

0

  

 
Throughout this paper all the functions 

considered are real-valued. We denote by ‖. ‖𝑞 the 

𝐿𝑞-norm over Ω. In particular, the 𝐿2-norm is 

denoted ‖. ‖ in Ω and ‖. ‖Γ𝑖
 in Γi . Also (. , . ) 

denotes the usual 𝐿2-inner product. We use familiar 

function spaces  𝐻0
1(𝛺), 𝐻4(𝛺). 

We recall the Poincare inequality 
 
‖𝑢‖2 ≤ 𝐵2‖∇𝑢‖2,                                                       (7) 
 
where 𝐵2 is the optimal constant. 

Also, the Young's inequality is sometimes used, 
 

𝑎𝑏 ≤ 𝛽𝑎𝑞 + 𝐶(𝛽, 𝑞)𝑏𝑞′
,                                           (8)  

 

where 𝑎, 𝑏 ≥ 0,   𝛽 > 0, 𝐶(𝛽, 𝑞) =
1

𝑞′(𝛽𝑞)
−

𝑞′
𝑞

 are 

constants and  
1

𝑞
+

1

𝑞′ = 1. 

Adapting the idea of Prilepko et.al (2000), the key 

observation is that the problem (1)-(4) is equivalent 

to the following direct problem, 
 

𝑢𝑡𝑡 + 𝛥2𝑢 − ∫ 𝑔(𝑡 − 𝜏)𝛥2𝑢(𝜏)
𝑡

0

𝑑𝜏 − 𝑎1 𝛥𝑢

+ 𝑎2𝑢𝑡  = 𝑓(𝑡)𝜔(𝑥),
𝑥 ∈ 𝛺, 𝑡 > 0                                (9) 

 

                                        {
𝑢(𝑥, 𝑡) = 0,                                                               𝑥 ∈ 𝛤0 , 𝑡 > 0  

𝛥𝑢(𝑥, 𝑡) = ∫ 𝑔(𝑡 − 𝜏)𝛥𝑢(𝜏)
𝑡

0
𝑑𝜏 − 𝑎3|𝛻𝑢|𝑝𝛻𝑢, 𝑥 ∈ 𝛤1 , 𝑡 > 0    

                                     (10) 

 
 

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑢𝑡(𝑥, 0) = 𝑢1(𝑥), 𝑥 ∈ 𝛺          (11)  
 
in which the unknown function 𝑓(𝑡) is replaced by 

 
𝑓(𝑡) = 𝜙′(𝑡) + 𝑎2𝜙′(𝑡) + (𝛥𝑢, 𝛥𝜔) + 𝑎1(𝛻𝑢, 𝛻𝜔) 

− ∫ 𝑔(𝑡 − 𝜏)(𝛥𝑢(𝜏), 𝛥𝜔)
𝑡

0

𝑑𝜏,                               (12) 
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So the energy associated with problems (9)-(11) 

is given by 
 

𝐸(𝑡) =
1

2
( ‖𝑢𝑡‖2 + (1 − ∫ 𝑔(𝑠)𝑑𝑠

𝑡

0

) ‖𝛥𝑢‖2

+ (𝑔 ∗ 𝛥𝑢)(𝑡) + 𝑎1‖𝛻𝑢‖2)

+
𝑎3

𝑝 + 2
‖𝛻𝑢‖𝑝+2,𝛤1

𝑝+2
                 (13) 

 

where (𝑔 ∗  𝑣)(𝑡) = ∫ 𝑔(𝑡 − 𝜏)‖𝑣(𝑡) − 𝑣(𝜏)‖2𝑡

0
𝑑𝜏. 

Now, we are in a position to state our asymptotic 

stability result: 

 

Theorem 2.1. Let the conditions (𝐴1) − (𝐴3) be 

satisfied and suppose that 𝜙, 𝜙′ and 𝜙′′ are 

continuous functions defined on [0, ∞), such that 

𝜙′′ is a bounded function and 𝜙, 𝜙′ tend to zero as t 

goes to infinity. Also, there exist positive constants 

𝑀, 𝑁 such that 
 

2𝑁 + 𝑀𝛿

2𝑀
≤ 𝑎2 ≤

2𝑎1

𝛿𝐵2
2,  

∫ 𝑔(𝑠)𝑑𝑠 ≤
2𝜉

1 + 2𝜉

∞

0

 

 
and 
 

𝑁 ≥ max {
2𝛿𝑀 + 1 − 𝑙

𝑙
,
𝛿𝑙𝑀 − 𝑙 + 1

2𝜉𝑙 + 𝑙 − 1
,

𝛿𝑀

𝑝 + 2
} 

 
where 𝛿, 𝜉 are positive numbers such that 𝜉 is 

sufficiently small. Then the solutions of problem 

(1)-(4) are asymptotically stable and 
 

lim
𝑡→∞

𝐸(𝑡) = 0. 

3. Asymptotic stability 

As mentioned earlier, the proof of asymptotic 

stability result, Theorem 2.1 is given in this section. 

In order to carry the proof we need the following 

Lemmas. 

 

Lemma 3.1. Under the conditions of Theorem 2.1, 

the energy functional 𝐸(𝑡), defined by (13), 

satisfies 
 
𝑑

𝑑𝑡
𝐸(𝑡) ≤ −𝑎2‖𝑢𝑡‖2 + 𝑓(𝑡)𝜙′(𝑡).                      (14) 

 

Proof: Multiplying equation (9) by 𝑢𝑡, performing 

an integration by parts and using (A3) and (13) our 

conclusion follows. 

 

Lemma 3.2. Under the conditions of Theorem 2.1, 

the function 𝑓(𝑡), defined by (12), satisfies for 

some 𝑀. 𝑁 > 0 

 

|𝑀𝜙′(𝑡) + 𝑁𝜙(𝑡)|𝑓(𝑡) ≤
𝛿𝑀

2
‖𝛥𝑢‖2 

+
1 − 𝑙

2𝑙
(𝑔 ∗ 𝛻𝑢)(𝑡) +

𝛿𝑀𝑎1

2
‖𝛻𝑢‖2 + 𝐻(𝑡),    (15) 

 
where 𝛿 > 0 and 
 
𝐻(𝑡) = |𝑀𝜙′(𝑡) + 𝑁𝜙(𝑡)||𝜙′′(𝑡)) + 𝑎2𝜙′(𝑡)| 

+
𝑎1|𝑀𝜙′(𝑡) + 𝑁𝜙(𝑡)|2

2𝛿𝑀
‖𝛻𝜔‖2 

+ (
1 + 𝛿𝑀

2𝛿𝑀
) |𝑀𝜙′(𝑡) + 𝑁𝜙(𝑡)|2‖𝛥𝜔‖2.           (16) 

 
Proof: We have from definition of 𝑓(𝑡) 
 
|𝑀𝜙′(𝑡) + 𝑁𝜙(𝑡)|𝑓(𝑡) 

= |𝑀𝜙′(𝑡) + 𝑁𝜙(𝑡)|(𝜙′′(𝑡) + 𝑎2𝜙′(𝑡)) 

+|𝑀𝜙′(𝑡) + 𝑁𝜙(𝑡)| ∫ 𝑔(𝑡 − 𝜏)(𝛥𝑢(𝜏), 𝛥𝜔)
𝑡

0

𝑑𝜏 

+|𝑀𝜙′(𝑡) + 𝑁𝜙(𝑡)|(Δu, Δω) 

+𝑎1|𝑀𝜙′(𝑡) + 𝑁𝜙(𝑡)|(∇u, ∇ω).       (17) 
 

By using the Young's inequality (8), the last three 

terms in the right hand side of (17) can be estimated 

as follows, for any 𝛿 > 0, taking 𝑎 = ‖Δ𝑢‖, 𝑏 =
|𝑀𝜙′(𝑡) + 𝑁𝜙(𝑡)|‖Δ𝜔‖,   𝑞 = 𝑞′ = 2  and 𝛽 =
𝛿𝑀

2
, we deduce that 

 
|𝑀𝜙′(𝑡) + 𝑁𝜙(𝑡)||(Δu, Δω)|

≤
𝛿𝑀

2
‖Δ𝑢‖2 +

|𝑀𝜙′(𝑡) + 𝑁𝜙(𝑡)|2

2𝛿𝑀
‖Δ𝜔‖2,     (18) 

and  
 

𝑎1|𝑀𝜙′(𝑡) + 𝑁𝜙(𝑡)||∇u, ∇ω| ≤
𝛿𝑀𝑎1

2
‖∇𝑢‖2 

+
𝑎1|𝑀𝜙′(𝑡) + 𝑁𝜙(𝑡)|2

2𝛿𝑀
‖∇𝜔‖2.                          (19) 

 
We now estimate the integral term in the right-

hand side of (19) as follows: 
 

|𝑀𝜙′(𝑡) + 𝑁𝜙(𝑡)| |∫ 𝑔(𝑡 − 𝜏)(𝛥𝑢(𝜏), 𝛥𝜔)
𝑡

0

𝑑𝜏|

≤
|𝑀𝜙′(𝑡) + 𝑁𝜙(𝑡)|2

2
‖Δ𝜔‖2

+
1

2
∫ (∫ 𝑔(𝑡

𝑡

0Ω

− 𝜏)|𝛥𝑢(𝜏)| 𝑑𝜏)

2

𝑑𝑥 

≤
|𝑀𝜙′(𝑡) + 𝑁𝜙(𝑡)|2

2
‖Δ𝜔‖2 

+
1

2
∫ (∫ 𝑔(𝑡 − 𝜏)(|𝛥𝑢(𝜏) − Δ𝑢(𝑡)|

𝑡

0Ω

+ |Δ𝑢(𝑡)|) 𝑑𝜏)

2

𝑑𝑥 
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Using Schwartz and Young's inequality, and 

∫ 𝑔(𝑠)
𝑡

0
𝑑𝑠 ≤  ∫ 𝑔(𝑠)

∞

0
𝑑𝑠 = 1 − 𝑙, we obtain  

 

∫ (∫ 𝑔(𝑡 − 𝜏)(|𝛥𝑢(𝜏) − Δ𝑢(𝑡)|
𝑡

0Ω

+ |Δ𝑢(𝑡)|) 𝑑𝜏)

2

𝑑𝑥

≤ ∫ (∫ 𝑔(𝑡 − 𝜏)|𝛥𝑢(𝜏)
𝑡

0Ω

− Δ𝑢(𝑡)| 𝑑𝜏)

2

 

+ ∫ (∫ 𝑔(𝑡 − 𝜏)|Δ𝑢(𝑡)|
𝑡

0

𝑑𝜏)
Ω

2

𝑑𝑥

+ 2 ∫ (∫ 𝑔(𝑡 − 𝜏)|𝛥𝑢(𝜏) − Δ𝑢(𝑡)|
𝑡

0

𝑑𝜏) (∫ 𝑔(𝑡
𝑡

0Ω

− 𝜏)|Δ𝑢(𝑡)| 𝑑𝜏) 𝑑𝑥

≤
1

1 − 𝑙
∫ (∫ 𝑔(𝑡 − 𝜏)|Δ𝑢(𝑡)|

𝑡

0

𝑑𝜏)
Ω

2

𝑑𝑥

+
1

𝑙
∫ (∫ 𝑔(𝑡 − 𝜏)|𝛥𝑢(𝜏) − Δ𝑢(𝑡)|

𝑡

0

𝑑𝜏)
Ω

2

𝑑𝑥

≤
1

𝑙
∫ ∫ 𝑔(𝑠)𝑑𝑠

𝑡

0Ω

∫ 𝑔(𝑡
𝑡

0

− 𝜏)|𝛥𝑢(𝜏) − Δ𝑢(𝑡)|2 𝑑𝜏𝑑𝑥

+
1

1 − 𝑙
∫ |Δ𝑢(𝑡)|2 (∫ 𝑔(𝜏)

𝑡

0

𝑑𝜏)
Ω

2

𝑑𝑥

≤ (1 − 𝑙)‖Δ𝑢‖2

+
1 − 𝑙

𝑙
(𝑔

∗ Δ𝑢)(𝑡).                                                                      (20) 
 

Therefore we have 
 

|𝑀𝜙′(𝑡) + 𝑁𝜙(𝑡)| |∫ 𝑔(𝑡 − 𝜏)(𝛥𝑢(𝜏), 𝛥𝜔)
𝑡

0

𝑑𝜏|

≤
|𝑀𝜙′(𝑡) + 𝑁𝜙(𝑡)|2

2
‖Δ𝜔‖2

+
(1 − 𝑙)

2
‖Δ𝑢‖2

+
1 − 𝑙

2𝑙
(𝑔 ∗ Δ𝑢)(𝑡).              (21)  

 
Applying estimations (18), (19) and (21) in (17) 

yields the desired result. 

 

Proof of Theorem 2.1. Inspired by the idea in 

Tahamtani and Shahrouzi (2013), we define 
 
𝐿(𝑡) = 𝑀𝐸(𝑡) + 𝑁𝜓(𝑡),                                        (22) 
 
where 
 

𝜓(𝑡) = ∫ 𝑢𝑢𝑡𝑑𝑥 +
𝑎2

2
‖𝑢‖2

Ω

 

−𝜉 ∫ ∫ 𝑔(𝑠 − 𝜏)‖𝛥𝑢(𝜏) − Δ𝑢(𝑠)‖2𝑑𝜏𝑑𝑠,                (23)
𝑠

0

𝑡

0

 

 
for some 𝜉 > 0 that will be explained later. 

It is clear that 𝐿(𝑡) and 𝐸(𝑡) are equivalent in the 

sense of the following Lemma. 

 

Lemma 3.3. Under the conditions of Theorem 2.1, 

there exist two positive constants 𝛼1 𝑎𝑛𝑑 𝛼2 such 

that  
 

𝛼1𝐿(𝑡) ≤ 𝐸(𝑡) ≤ 𝛼2𝐿(𝑡). 
 

We differentiate (22) and use equation (14) to 

obtain 
 
𝐿′(𝑡) ≤ (𝑁 − 𝑀𝑎2)‖𝑢𝑡‖2 − 𝑁𝜉(𝑔 ∗ Δ𝑢)(𝑡) 

+𝑁𝑎2(𝑢𝑡 , 𝑢) + 𝑁(𝑢𝑡𝑡, 𝑢) + 𝑀𝜙′(𝑡)𝑓(𝑡).          (24) 
 

It follows from (1) and boundary conditions (2) 
 

(𝑢𝑡𝑡, 𝑢) = −‖Δ𝑢‖2 − 𝑎3‖∇𝑢‖𝑝+2,Γ1

𝑝+2
− 𝑎1‖∇𝑢‖2 

+ ∫ Δ𝑢 ∫ 𝑔(𝑡 − 𝜏)Δ𝑢(𝜏)𝑑𝜏𝑑𝑥
𝑡

0Ω

 

−𝑎2(𝑢𝑡 , 𝑢) + 𝜙(𝑡)𝑓(𝑡).                                          (25) 
 

Utilizing (15) into (25), we get 
 
𝐿′(𝑡) ≤ −(𝑀𝑎2 − 𝑁)‖𝑢𝑡‖2 − 𝑁‖Δ𝑢‖2

− 𝑁𝑎3‖∇𝑢‖𝑝+2,Γ1

𝑝+2
 

−𝑁𝜉(𝑔 ∗ Δ𝑢)(𝑡) + 𝑁 ∫ Δ𝑢 ∫ 𝑔(𝑡
𝑡

0Ω

− 𝜏)Δ𝑢(𝜏)𝑑𝜏𝑑𝑥  
−𝑁𝑎1‖∇𝑢‖2 + |𝑀𝜙′(𝑡) − 𝑁𝜙(𝑡)|𝑓(𝑡).           (26) 
 

Consequently, from definition of 𝛿𝐿(𝑡) and 

inequality (7), we deduce 
 

𝐿′(𝑡) + 𝛿𝐿(𝑡) ≤ − (𝑀𝑎2 − 𝑁 −
𝛿𝑀

2
) ‖𝑢𝑡‖2

− (𝑁 −
𝛿𝑀

2
) ‖Δ𝑢‖2

− (𝑁𝑎1 −
𝛿𝑀𝑎1

2
−

𝛿𝑁𝐵2
2𝑎2

2
) ‖∇𝑢‖2

− (𝑁𝜉 −
𝛿𝑀

2
) (𝑔 ∗ Δ𝑢)(𝑡)

− 𝑎3 (𝑁 −
𝛿𝑀

𝑝 + 2
) ‖∇𝑢‖𝑝+2,Γ1

𝑝+2

+ 𝑁 ∫ Δ𝑢 ∫ 𝑔(𝑡 − 𝜏)Δ𝑢(𝜏)𝑑𝜏𝑑𝑥
𝑡

0Ω

+ |𝑀𝜙′(𝑡)
− 𝑁𝜙(𝑡)|𝑓(𝑡).                                (27) 

 
Similar to (21), we obtain 
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∫ Δ𝑢 ∫ 𝑔(𝑡 − 𝜏)Δ𝑢(𝜏)𝑑𝜏𝑑𝑥
𝑡

0Ω

≤ (1 −
𝑙

2
) ‖Δ𝑢‖2

+
1 − 𝑙

2𝑙
 (g ∗ Δu)(t).                                                (28) 

 
By virtue of (28) and Lemma 3.2, (27) becomes 

 
𝐿′(𝑡) + 𝛿𝐿(𝑡)       

≤ − (𝑀𝑎2 − 𝑁 −
𝛿𝑀

2
) ‖𝑢𝑡‖2

− (
𝑁𝑙

2
− 𝛿𝑀 −

1 − 𝑙

2
) ‖Δ𝑢‖2

− (𝑁𝑎1 − 𝛿𝑀𝑎1 −
𝛿𝑁𝐵2

2𝑎2

2
) ‖∇𝑢‖2

− (𝑁𝜉 −
𝛿𝑀

2
− (𝑁 + 1)

1 − 𝑙

2𝑙
) (𝑔 ∗ Δ𝑢)(𝑡)

− 𝑎3 (𝑁 −
𝛿𝑀

𝑝 + 2
) ‖∇𝑢‖𝑝+2,Γ1

𝑝+2

+ 𝐻(𝑡),                                                                       (29) 
 
where 𝐻(𝑡) satisfies (16). 

At this point if we choose 𝛿 > 0 it is sufficiently 

small and 
 
2𝑁 + 𝑀𝛿

2𝑀
≤ 𝑎2 ≤

2𝑎1

𝛿𝐵2
2  ,      ∫ 𝑔(𝑠)𝑑𝑠 ≤

2𝜉

1 + 2𝜉

∞

0

 , 

 
also 
 

𝑁 ≥ max {
2𝛿𝑀 + 1 − 𝑙

𝑙
,
𝛿𝑙𝑀 − 𝑙 + 1

2𝜉𝑙 + 𝑙 − 1
,

𝛿𝑀

𝑝 + 2
} 

 
then we easily derive 
 

                               𝐿′(𝑡) + 𝛿𝐿(𝑡) ≤ 𝐻(𝑡) 
 

thanks to the assumptions on 𝜙(𝑡), 𝜙′(𝑡) and 

𝜙′′(𝑡). Indeed 𝜙(𝑡), 𝜙′(𝑡) tends to zero as 𝑡 goes to 

infinity and 𝜙′′(𝑡) is a bounded function, so the 

right-hand side of last inequality tends to zero. This 

implies that from Lemma 3.3 
 

                                  lim
𝑡→+∞

𝐸(𝑡) = 0. 

 
Therefore, solutions of (1)-(4) are asymptotically 

stable and the proof of Theorem 2.1 is completed. 
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