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1 Introduction

In this paper, we study the global behavior of solutions for inverse problem of determining a
pair of functions {u(z,t), f(¢)} that satisfy

t
wy — Au — div(|Vu|"Vu) + / g1(t — T)Au(r)dr + vy + alulPu
0

= h(z,t,u,Vu) + f(t)w(z), ze€Q,t>0, (1.1)
u(z,t) =0, zelg,t>0,
ou ¢ Ju m (1.2)
6—n(a:,t)—/0 gl(t—T)%(x,T)dT—Wu\ Vu+ou, xe€ly,t>0,
w(z,0) = ug(x), ui(z,0) =wui(x), x€Q, (1.3)
/ (e, w(@)de = o), >0, (1.4)
Q

where 2 is a bounded domain of R"”(n > 1) with smooth boundary I'o UT; = 0Q. Here a
is a real number and « is a nonnegative constant. Also p,m are positive real numbers and
moreover, h(x,t,u, Vu), ¢(t), g1(t) and w(z) are functions that satisfy specific conditions that
will be enunciated later.

The problem of proving asymptotic stability and blow up of solutions for the hyperbolic
equations with boundary conditions has recently attracted a lot of attention and various results
are available (see [4, 5, 10, 14, 17, 27] and references therein).
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684 Shahrouzi M.

In the absence of the m-Laplacian operator in direct problems (w(x) = 0) with homogeneous

Dirichlet boundary conditions, Chen and Xiong [9] studied
¢
ug — Au+ / g(t — 7)Au(r)dr + up = |ulPu.
0

The authors established blow-up results for this equation, even for vanishing initial energy. Also
they proved that the solutions decay under suitable conditions. See also [2, 7, 8, 13, 18, 25, 26].
Recently, in [3] Bilgin and Kalantarov investigated blow up of solutions for the following

initial-boundary value problem

uy — V(ag + a|Vu|""?)Vu] — bAu; = g(x,t,u, Vu) + |[ulP%u, =€ Q,t>0,

u(z,t) =0, x€9dQt>0,

u(z,0) = uo(z), w(x,0)=ui(z), xe.
They obtained sufficient conditions on initial functions for which there exists a finite time that
some solutions blow up at this time.

Shahrouzi and Tahamtani investigated global behavior of solutions to some class of inverse
source problems. In [22], they investigated the global in time behavior of solutions for an inverse
problem of determining a pair of functions {u, f} satisfying the equation

uge + A%u — |uPu + a(z, t,u, Vu, Au) = f(H)w(z), =€ Qt>0,
with the initial conditions
u(z,0) =up(z), u(z,0)=ui(x), x€Q,
the boundary conditions
u(z,t) = dyu(z,t) =0, = €dQ,t>0,
and the over-determination condition

/ u(z, t)w(z)de =1, t>0,
Q

also, the asymptotic stability result has been established with the opposite sign of power-type
nonlinearities.

Later, in [24], Tahamtani and Shahrouzi considered the following problem:
ugs + A%u — a1 Au 4 aoug + asluPu + b(z, t,u, Vu, Au) = f(Hw(z), x€Q,t>0,
u(z,t) =0, Au=—codyu(z,t), zeTl,t>0,
u(z,0) = uo(x), w(z,0)=wui(z), z€Q,

/ u(z, t)w(z)dr = ¢(t), t>0.
Q

They showed that the solutions of this problem under some suitable conditions are stable if
aq, a9 are large enough, as > 0 and ¢(t) tends to zero as time goes to infinity. They also
established a blow-up result, if ag < 0 and ¢(t) = k is a constant. Their approaches are based
on the Lyapunov function and perturbed energy method for stability result and concavity

argument for blow-up result.
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On Behavior of Solutions to a Class of Inverse Problem 685

Very recently, Shahrouzi [21] investigated the asymptotic behavior of solutions for the fol-
lowing inverse problem:

ug + Ay — /Otg(t — 1)A%u(7)dT — a1 Au + aguy = f(t)w(z), =€ Qt >0,
u(xz,t) =0, x €Ty, t >0,
Au(a, 1) = /Otg(t ) Au(r)dr — ag| VPV, @ €Tyt >0,

u(z,0) = up(x), w(x,0)=ui(z), z€€,

/Qu(x,t)w(x)dx =o¢(t), t>0,

He obtained sufficient conditions on relaxation function and initial data for which the solutions
of problem are asymptotically stable when the integral overdetermination tends to zero as time
goes to infinity. For more information about inverse problems, the interested reader is referred
to the papers [1, 6, 11, 12, 15, 20, 23]

Our objective in the present work is to extend the results of [3, 24] by considering problem
(1.1)=(1.4) in the presence of m-Laplacian operator and boundary conditions.

Motivated by the aforementioned works, our result here is twofold: First, we consider a = 1
and show that if we take initial data and parameters in the appropriately domain, then solutions
of (1.1)—(1.4) are asymptotically stable when ¢(t) tends to zero as time goes to infinity. Our
approaches are based on the Lyapunov function and perturbed energy method. Second, if we
take a = —1, ¢(t) = k (k is a constant), then by using the modified concavity argument,
we prove the blow up of solutions for the problem (1.1)—(1.4) with positive initial data and
appropriate domain for parameters.

2 Preliminaries and Main Results

In this section, we present some material needed in the proof of our main results. We shall
assume that the functions w(x), h(z, ¢, v, Vu) and the functions appearing in the data satisfy
the following conditions:

(A1)
up € Hy (Q)NLPT2(Q) N L™T2(Q), wuy € L*(9), / uo(x)w(x)de = 1,

Q

(A2)

w e H3(Q)NHH(Q) N LPT2(Q) N L™T2(Q), / w?(z)dx = 1;
Q
(A3)
(e, t,u, Vo) < L(IVul® + ul®),
where L > 0.

Throughout this paper, all the functions considered are real-valued. We denote by || - ||, the
Li-norm over . In particular, the L?-norm is denoted by || - || in Q and || - ||r, in T';. Also (-, -)

denotes the usual L%inner product. We use familiar function spaces H}, H?.
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686 Shahrouzi M.

We recall the trace Sobolev embedding
2(n—1)
n—2"

H} (Q) — LYy) for2<g<
where
H%D(Q) ={uec H(Q) : ulp, = 0}
and the embedding inequality
[ullg.r, < BqllVullz, (2.1)

where B, is the optimal constant.

We sometimes use the Poincaré inequality
[l < 62|Vl (22)

and the Young inequality

/

/ 1 1
albgﬁq"i'c(ﬁaqy)qa a‘lvaOa 6>0a a_‘_q_ :17 (23)

where C(5,q) = %(6q)_% are constants.
The following lemma was introduced in [16]; it will be used in Section 4 in order to prove

the blow-up result.

Lemma 2.1 Let k > 0,¢1,¢c2 > 0 and ¢1 + co > 0. Assume that x(t) is a twice differentiable
positive function such that

X'x — (1 +8)[X]? > —2e1xX — ca[x]? (2.4)
for allt > 0. If

x(0) >0 and X' (0)+ p2r~tx(0) >0, (2.5)

then

1 p1x(0) + £x'(0)

t) = 4+00 as t—t] <ty= lo . 2.6
xX(®) =T 0 /2t ke ® p2x(0) + rx(0) (26)

Here

p1=—c1+4/E +Kea and py = —c1 — /3 + Kea.

Adapting the idea of Prilepko et al. [19], the key observation is that the problem (1.1)—(1.4)
is equivalent to the following direct problem:

¢
up — Au — div(|Vu|"Vu) + / g1(t — 7)Au(T)dT + up + alulPu
0

= h(z,t,u,Vu) + f(t)w(z), =€ Q,t>0, (2.7)
u(z,t) =0, x €Ty, t >0,
ou ¢ ou m (2.8)
%(x,t)—/o gl(t—T)%(x,T)dT—|Vu\ Vu+ou, xe€Tly,t>0,

u(z,0) = up(x), w(x,0)=ui(z), =€, (2.9)

in which the unknown function f(t) is replaced by

f@):¢”@f+d@)+(VmV@)+ﬂVMmVuﬂhﬁ—:Agh@—TXVuU%Vwﬁh

rETTe e e
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On Behavior of Solutions to a Class of Inverse Problem 687

+ a(|uPu, w) — (h(t, u),w), (2.10)

where

~

h(t,u) := h(z,t,u, Vu).

We use the following additional conditions on g;(s) = e**g(s):
(B1)

(B2)
o0
0
For the sake of simplicity, to prove the asymptotic stability result we suppose that a = 1.

In order to formulate our results, it is convenient to introduce the energy of the problem
(2.7)-(2.9):

1 1 ¢ 1 1
B0) = gl + 5 (1= [ aods ) IVulP + Jo2 Tu)e) + 5 IVull

1 +2 Q2
+ m”“”ﬁu - §||U\|rla (2.11)

where (g1 *v)(t) = fg g1(t — s)|lv(t) — v(s)||?ds.
Now, we are in a position to state our asymptotic stability result:

Theorem 2.2 Let the conditions (A1)—(A3) and (B1), (B2) are satisfied and suppose that
o, ¢, ¢ are continuous functions defined on [0,00), such that ¢" is a bounded function and
@, ¢ tend to zero ast — oo. Also for sufficiently large M, N, we take a, & and § such that

I 2N 13562 > 2
indo 2 kLl ds < —=> .
5<mm{’392’M}’ ¢ /0 gu(s)ds < 7775

Then the solution of the problem (1.1)—(1.4) asymptotically stable and

lim_E(t) = 0. (2.12)
Finally, we consider the following problem that is obtained from (1.1)—(1.4) when ¢(t) = k
and a = —1, by substituting (similar as in [11]) v(z,t) = e Mu(z, t):

t
Vit + (A + Doy + AN+ D)o — Av — A div(| V| Vo) + / g(t — 1) Av(r)dr
0

= e Mh(t, M) + PPy + e M f(Hw(x), z € Q, t >0, (2.13)
v(z,t) =0, x €To,t >0,
¢ (2.14)
g_z = /0 g(t—T)g—Z(:c,T)dT—e/\mt|Vv|va+ow, zel,t>0,
v(x,0) = ug(x), vi(x,0) =us(z) — Aug(x), =« € Q, (2.15)
/ v(z, t)w(z)de = ke ™™, ¢ >0. (2.16)
Q

The value of the parameter A will be prescribed later. Similar to (2.10), we multiply (2.13) by
w(z) and use (2.16) to express

e ME(t) = (Vo, Vw) + A (Vo|™ Vo, Vw) — /t g(t —7)(Vo(r), Vw)dr — e (|[v[Pv, w)
0

rETTe e e
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688 Shahrouzi M.

— e M(h(t, M), w). (2.17)

Substitution of (2.17) into (2.13) one obtains a problem which is equivalent to (2.13)—(2.15).
The energy associated with the problem (2.13)—(2.15) is given by

E\(t) =

S eliz, - 5, (218)
where
I(t)) = |vt||2+A<A+1>||v||2+(1— / g<s>ds)|w||2+<g*w><t>+

We state blow-up result as follows.

Theorem 2.3 Let the conditions (A1)—(A3) and (B1), (B2) are satisfied. Assume

Amt

SIVollis- (219)

2(D1 + AD2)
>0, E)\0)>——— "= 2.20
where
2 2172 4 kmT2N
D=8 (3 + s Il (R ey Va3
p ( 2)[sm+s]
kP2
(p—m) +1 HWHZi; (221)
(p+2) 575 I
E2(1+2l(p+m 2L%(p+m +4 k2 m
Dy = (41 ( ))||w|2+¥|lw||2+ s P A0 [
(p+m) p—m (m +2)[ g )™
Ept2
w233 (2:22)

+
(p+2)[ L+

If A > max{)\o, /\17

p+m} Aos A1 > 0 and for p>m > 2

—4 4)—4
aSmin{ pim_4 Uptmd )) }

2BJ(p+m)  2Bip+m

[T G S
0 - p+m+4’ p+m+ 16 ’

then there exists a finite time t1 such that the solution of the problem (1.1)—(1.4) blows up in a
finite time, that is
lu(®)]| = 400 ast — ty. (2.23)

3 Asymptotic Stability

As mentioned earlier, this section is devoted to the proof of Theorem 2.2. In order to carry the

proof, we need the following lemmas.

Lemma 3.1 Under the conditions of Theorem 2.2, the energy functional E(t), defined by

(2.11), satisfies

GEO < ol + [ whit.wdo + 1060 (31)

Proof Multiplying (2.7) by u;, performing an integration by parts and using (B1) and (2.11)
our conclusion follows. (]

rETTe e e
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On Behavior of Solutions to a Class of Inverse Problem 689

Lemma 3.2 Under the conditions of Theorem 2.2, the function f(t), defined by (2.10), for
some M, N > 0 and 79,71 > 0 satisfies

SN6% M~ 1-1 M, m M~y
MO0+ No1(0) < (g + 2504 ) IvulP + MRVl + 5 g
1-1
+7(91*Vu)() H(t), (3.2)

where § > 0 and

/ 2
H(O) = 1M0'(0) + Notolle (o) + ¢/ 0] + LLEERPOR (14 L o

M@'(t) + No(®)|"™ 2| O ps M (6) + NP2 i

2yl VR g
L2 M/ (t) + No(t)[?

+ i (5 + 2 e (33

Proof 'We have from the definition of f(t) that
M@ (1) + No(1)] £ (1)
= [M¢/ (1) + No(1)|(¢"(£) + ¢/ (£) + [M& (1) + No (1) (|Vul " Vi, Vew)
—[M&(t) + Noft \/ g1t = 7)(Vu(r), Ve)dr — | M (1) + No(t) |(R(t, ), w)
+ 1M () + No(0)|(|ulu, ) + [M (t) + No(1)] (Vu, Vw). (3.4)

By using the Young inequality (2.3) and (A3), the last five terms on the right-hand side of (3.4)
can be estimated as follows, for any § > 0 and 79,71 > 0, taking a1 = |Vu||, b = |M¢'(¢) +
No@)[[[Vwll, ¢=¢' =2 and 3 = %, we deduce that

SN 92 M@ (t) + Nop(t)|?
M (1) + No)|(Vu, Vo) < DN ygyp  MEOTNOOF, G 12 35)
20N0
and taking
_ p+1 _ / 7p+2 ;o
o= lulgth b= 160+ Nollwlyra o= 252 g =p2
with 8 = M4"’1 , we deduce that
y M/ (1) + No(t)|+?
M (1) + No(®)l(fulPu,w) < 0 o2 + '(p 2(>€M%<p+2 Tl 6o
4p+4
Similarly, we can derive
M (1) + No(®)|(IVul™Vu, Vo)
M”y M(b/ + N¢ m+2
M50 |wuptg + EOL RO gz, (3.7)

(m+ 2)[M’Yo(m+2)}

4m—+4
|M§' () + No(t)| (h(t, u),w)

M’YO 71 || ||p+2 L2|M¢/(t) + N¢(t)|2 (i + i) ||WH2
pi2 ¥ M Y N ’

IVl i3 +

where the additional condition (A3) has been used in (3.8).

rETTe e e
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690 Shahrouzi M.

We now estimate the integral term on the right-hand side of (3.4) as follows:

M3 () + No(1)| / g1(t — 7)(Vuu(r), Vo)dr

/ 2 t 2 5;

_ 1Mo (t)—gN¢(t)| ||W|2+%/Q(/O gl(t—T)Vu(T)|dT> do ;
’ 2 t 2 %j—

- Ml(b(t);rzvqb(t)l ||w|\2+%/ (/ gl(t—r)(|Vu(7')—Vu(t)|—|—|Vu(t)|)dT> dz. e
Q Em

Using Schwarz and Young’s inequality, and fo g1(s)ds < fo g1(s)ds =1 — [, we obtain

/Q(/Otgl(t—T)(|Vu(T)—Vu(t)|+Vu(t)|)d7') do
§/Q(/Otgl(t—TﬂVu(T)—Vu(t)|d7’)2d:c+/Q </Otgl(t—7')|Vu(t)|d7’)2d:c
+2/ (/tgl(t—r)Vu(T)—Vu(t)|d7'> </0tgl(t—7)|Vu(t)dT>d:1:
< 1_1/ (/ ot — )|Vt )|d7>2dx+}/ﬂ </Otgl(t—7')|Vu(T)—Vu(t)|d7'>2dx
<= // /91 t —7)|Vu(r) — Vu(t)|2d7dx+%/9|Vu(t)2(/Otgl(s)ds)2dx

< (1= DIVl + 27 g+ Tu) 1), (39)

Therefore, we have

| M/ (t) + No(t)[*

M0+ N0 [ on(t = 7)(Vu(s), Vapar < O ENAOE g o
v+ o g v, (310)
Applying estimations (3.5)—(3.8) and (3.10) in (3.4) yields the desired result. O
Proof of Theorem 2.2  Inspired by the idea in [24], we define
F(t) = ME(t) + N(¢1(t) + §2(1)), (3.11)
where
b1(t) z/ﬂuutdx+ Slel?, s / / g1(s = )|Vuls) — Vu(r)|Pdrds  (3.12)
for some ¢ > 0 such that [~ gi(s)ds < 1+2£
We differentiate (3.12) and use (3.1) to obtain
F'(t) < (N = M)lutl|* = N&(gr + Vu)(¢)
+N /Q g + N, w) + MRt u), ug) + M (£) £ (1). (3.13)

It follows from (2.7) and (2.8) that

2 +2
(uee,w) = =[[Vul]® = [ Vul 713 + allul?, = llullps - /Qumdff
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+ /O 0t = 7)(Vu, Va(r))dr + (h(t, u), w) + 6(6) £ (1), (3.14)
Combining (3.13), (3.14) and (3.11) yields
F'(t) + 6F(t)

t s
< OME(t) + 5N/ uurdr + 67N||UH2 - §5N/ / g1(s = 7)||Vu(s) — Vu(r)||*drds
Q o Jo

— (M = N)|Jugl|* = Né(gr * Va) () + M (R(t,u), ug) = N|[Vul® = N|[Vuli3

+ Nafullg, = Nul?33 + N/O 91(t = 7)(Vu, Vu(r))dr
N(h(t,u),u) + | M@ () + No(t)| £ (1). (3.15)

Applying (2.11) into (3.15), we get

P+ 07() < = (31 = 250 = Nl = (v = 2501wl = (e = 3 o+ Ty

N oM m+2 oM +2
M0, — (V= 25 Ivulid+ (25 - N )l

+ (aN - O“STM) lull2, + Nt u), ) + N/O 1 (t — 7)(Vu, Vu(r))dr
+ 6N / gz + M () + N £ (1), (3.16)
Q

where 1 — fo g1(8)ds <1 has been used.

Now, by using the Young inequality (2.3) and (A3), the terms on the right-hand side of (3.16)
can be estimated as follows:

<5N92

N
6N/ wngde < Ol + 5 [Vl (3.17)
Q
> Mo mi2 , Mm o, L2101 1 2
M1, w)| < 20 guid + gz 4 L ;+7 el (3.18)
0 NW’O m+2 N% p+2 L*¢? 1 2
<20 — + = .
N|(h(t,u),u)| < IVullmiz + == llullrz + 55 o V Va7, (3.19)

-1
N/ g1(t — 7)[(Vu, Vu(r))|dr < N(l - ) | Vul|? + N( 57 )(gl * Vu)(t). (3.20)
Utilizing estimations (3.17)—(3.20) and Lemma 3.2 into (3.16), we get
F'(t) + 6F(t)

2 . 202
S—{N—W—W—Nc—l)—l Z—L9< 1]IWI2
2 2 2 2 Yo o
M ) §(M + N) L? 1 2
wa(w = 250, = [ar = P v S
SM 1-1 M No m+2
(Nﬁ— T—(N+1)<7)>(91*VUJ)() <N_m——|—2 —M'YO_—)HV ullmia

oM Nn +2
= (= 22 - vt - B gt + ) (.21)

rETTe e e
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692 Shahrouzi M.

where H(t) satisfies (3.3).
By virtue of the trace embedding inequality (2.1) and for ¢ < %, we deduce

F'(t) + 6F(t)

1 B ON 11 oM
<—— 21—z )M?*—2(N+— |M-L*—+— 2_(Ne— —
S G O e e (K Gl

—(N+1) (12—_ll>) (g1 * Vu)(t)—% {(1 —2aB3 — 350*)N?+(adMb3 +1—1—SM)N

1 1 SM Nvo
—L292<—+—)] Vu2—<N———M ——)v m+t2
o [Vl 3 Y0 [Vullmia

oM N~y
- (- 2 = arm - g3+ o, 3.2

At this point if we choose 79 =1 = 1 and

| 2N 1 —350% [ 2¢
1 - [ — < 2
5<mm{2’ 362" M } RV P /0 g1(8)ds < 758

2M(0+p+2) 2M+m+2) MI—-1+1
N > max , ,
p+2 m+ 2 260 +1-1

such that Ny, My are the maximum root of the following equations

,NO}; M>M0a

(I —2aBj3 — 300*)N? + (a6 Mb3 +1—1—M)N — 2L*6* = 0,

2(1— g)M2—2<N+5;V>M—2L2 =0,

respectively, then we easily derive
F'(t)+0F(t) < H(t). (3.23)
Thanks to the assumptions on ¢(t), ¢'(t) and ¢ (¢). Indeed, ¢(t), ¢'(t) tends to zero as ¢ tends
to infinity and ¢”(t) is a bounded function, so we get
H(t) -0 ast— oo.
Thus for some positive constant C, the result (2.12) follows from
E(t) <CF(t),

and the proof of Theorem 2.2 is complete.

4 Blow Up

In this section, we are going to prove that for sufficiently large initial data some of the solutions
blow up in a finite time. To prove the blow-up result (Theorem 2.3) for certain solutions with
positive initial energy, we need the following lemma for the problem (2.13)—(2.15).

Lemma 4.1 Let the conditions (A1)—(A3) and (B1), (B2) be satisfied and
Ilp+m+4)— /°° p+m
cAprmra) -2 ds < 2T
= 2Bi(p+m) R

Then
2D,

Ex(t) > E\(0) — Nptmtd)

rETTe e e
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On Behavior of Solutions to a Class of Inverse Problem 693

2}5:_;?} such that Ao is the mazimum root of the following equation:

(p—m)(p+m+8)A+4(p—m)A\—4L*(p+m +4) =0.

for X > max{ Ao,

Proof A multiplication of (2.13) by v; and integrating over {2 gives

AP p+2 Ay +2 At (T At
me PHlvllpia — mrat "llmiz —e (At e ), vr)

+ EXe 2 f(1), (4.1)

d
BB = A+ Dfee]” +

where the condition (B1) has been used.
Plugging definition of f(t), (2.17), into (4.1), we obtain

d A Am ~
ZEAt) > 2N+ Due])? + p—pe*ptnvup” A [p]| 72 — oM (R(t, eMo), vy)

dt +2 P2 42 mt2
+ kxe M (Vo, Vw) + kXN DYH(| V0| Vo, Vw) — kAN P~V (jp]Po, w)

¢
— ke 2 (h(t, M), w) — k)\e_)‘t/ Vw(x)/ g(t — 7)Vo(r)drdz. (4.2)

Q 0

It is easy to verify that
_ ~ €0 Am €1 L2 1 1

0,0l < P ITIRTE + Gt + 5 (L i 49)

where (A3) and Young’s inequality (2.1) have been used.
Combining (4.3) with (4.2), we obtain

d L*/1 1 Ap el Am o

ZE B> (o 2 —4 = 1 2 A S Dt p+2_ [ AT S0} Amt

= A()_( : <€O+61)+ )|vt|| +(p+2 5 Je = oo T g )e
VTS + kde ™M (Vo, Vw) + kXeM ™ VE(|Vo|" Vo, Vw) — kxe* P~V (jo]Po, w)

t

— kxe P (h(t, e Mu), w) — k)\efAt/ Vw(x)/ g(t — 7)Vou(r)drdz. (4.4)
Q 0

Employing the last inequality, we obtain from (2.18) the following inequality:

%E,\(t) —(Ap—ei1(p+2)EAN(t)

> (S0 - 2D St - S0w - i+ 2)lolR,
N (Ap —nifp;r 2) mATz B %)exmqwmﬁ N <2A+ Ap — 612(p+ 2)
_ %2 (% " é) n 1) loe]I? + Ap — 612(;0 +2) (g Vo) (t) + A+ 1)(Ap2— ei(p+2)) o]
+ w <1 - /Otg(s)ds> Vo] + Exe M (Vo, Vw) 4 kAeN™ V(| Vo™ Vo, Vw)
— kA PDY(|u[Po, w) — ke 2 (h(t, M), w)
— ke M A Vw(z) /Ot g(t — 7)Vo(r)drdz. (4.5)

Now, the five terms on the right-hand side of (4.5) can be estimated as follows:

Exe™|(Vv, Vw)|

rETTe e e
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I(Ap—ei(p+2)) 2 (Ml + M3) 2, k2A%e2M
< Vol + —= Vuw||, 4.6
1 [Vl [[vlI* + 0w 61(p+2))|| [ (4.6)
A= (V| )| < 2| vo|mt2 4 RN e IVwlimts (4.7)
kxeM™™ V|V, Vw)| < "Vl + e Vowlmis, 4.7

1

R 1
Ic)\e’QAt|(h(t,eAtv),w)\ < %e)\mt”v ||m+2 €1 )\pt” ||p+2 —I—L2( + o )e*2)\t”w”2, (4.8)
1

m—+2 + 4 p+2

t
k‘/\ef)‘t/ w(ac)/ g(t — 7)Av(r)drdx

Q 0
K2)\2e—2M
ST

kAP (oo, w)| < 41 Mol +

1-1 1-1
Vol + ——=IIVoll* + == (g + Vv) (), (4.9)

kp+2 /\p+2e—2)\t

p+2
(p + 2)[51(P+2)]p+1 ||w||p+2‘ (4'10)
4p+4

Taking into account estimates (4.6)—(4.10) and trace embedding inequality (2.1) in relation
with (4.5), we get

EEA@) (A — e1(p+2))Ex(t)

Ap — +2) L*/1 1
+<2>\+ L 51p woalr?) <+>+1>|Ut”2
€0 €1
)\

2

A - 2
p m 51(p ) 50>e)\mt”vv”m+2
A

« 2 -
+(300-at+2) - 220w -ap+2) - 150 )19l
+1)()‘p (p+2))”v”2
+ (Ap_glz(p”) - 12; l)(g*VU)(t) —e 2D, (4.11)

where Dy satisfies (2.21).

At this point if we choose g = 22=™) and g, = 22=™) then we obtain

2m+4 2p+d
d Alp+m)

@EA() 9

Ex(t) = ((p—m)(p+m+ 8N +4(p— m)A — 4L*(p + m + 4))||v. ||
-+<p;”%l—2a3%-l§l>uvmﬁ

+ (Z(p-i—m) - 1—1)(9*Vv)(t) —e 2Dy, (4.12)

21
At this point if we choose
2(1 -1 l 4)—4 e
Amax{m()}’ o< ptmitd -4 / g(s)ds < 2™
p+m 2B3(p+m) 0 p+m+4

where )¢ is the maximum root of the following equation:

(p—m)(p+m+8)A° +4(p—m)\—4L*(p+m +4) = 0.

Then we deduce

iEx(t) _Aptm)

w7 E\(t) > —e 2Dy, (4.13)

5 2
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On Behavior of Solutions to a Class of Inverse Problem 695

Finally, we end up by integrating (4.13) between 0 and ¢:
2D,
Ap+m+4)’

and the proof of Lemma 4.1 is complete. d

Ek(t) > E>\(O) — Vvt >0, (4.14)

Proof of Theorem 2.3  To obtain the blow-up result, the choice of the following functional is

standard
MOES G (4.15)
Then
X' (t) = 2(v,vy), (4.16)
X (t) = 2(v, vie) + 2|Jve || (4.17)

A multiplication of (2.13) by v and integrating over ) gives
(vet,v) = =20+ 1)(vg,0) = AA+ Dlol® = [[Vol* + aflolf, — ™[ Vol7i75
t
+/ g(t = 7)(Vo, Vo(r))dr + M o715 + e (h(t, M), 0) + ke 2N f(1). (4.18)
0

Taking into account definition of unknown function (2.17), we obtain

(vet,0) = =2+ 1)(ve,0) = AA+ Do]]* = [[Vol* + allvllf, — ™[ Vol
* /01t g(t —7)(Vo, Vo(r))dr + e [o][242 + e (h(t, o), v) + ke~
+ ke M(Vo, Vw) — ke72M(/ﬁ(t, M), w) + ke MM DH (Vo[ "V, Vw)
— ke N /0 g(t = 7)(Vo(7), Vw)dr — kX0 (|o]v,w). (4.19)

Again by exploiting the condition (A3), Young’s inequality (2.1), we can obtain the following
estimations for the terms on the right-hand side of (4.19):

K l 1-1
[ ate=niwun. vollar < (1= 3 IvelP + 15 o T, (1.20)
—\t (T < PO ame m+2 | M1 QAP |[,|PF2 of 1, 1 2
(e, 0,0 < LTl + ol 2 (ol (121)
Y (p+ m) 2 4 ke M 2
- _ 4.22
ke (Yo, V)| < Vol + gy V1 (4.2

km+2672)\t

kX" (V0] Vo, V)| < E2ed Vol 7iE +

m+ Vw|mts,  (4.23)

||
2
(m +2) gt

~ 1 1
ke (h(t, ), w)| < E2eX Vo5 + Bl uln] + LZ(MO + Ml) ol (4.24)

/ g(t — )|(Vou(r), Vw)|dr
0

1-— 1-1 k2e2M
< (13wl 1 e oo + B v, (1.25)
kp+2€72)\t

+2
lwllysa- (4.26)

ke)‘(j -1t |(|’U|1 v w)| 1 )\th’UH 2 +
- ‘2 P+ 92 w1 (p+2 p
(1 )[ 12;+2 )] !
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696 Shahrouzi M.

Combining estimations (4.20)—(4.26) with (4.19), we obtain

1 1 l 5
(W) > @A+ Do) — (A2 A+ 22 (2 + ) Vo2 = (2E™E L5 ) w2
Bo M 8 2

m m 1-1
+allollf, = (uo + )™Vl i3 — (g Vo))

— (1 = V) olp15 — Do, (4.27)
where Dy satisfies (2.22).
Applying (2.18) into (4.27), yields

4 1 1
tt, U ZLAt— +1)(vg,v) — + A+ —+ —
v pEmrip A+ 1 M4\ L2
2 Mo 1
AA+D(p+m+4) 2 (p+m)l 5 2 alpt+m)
- ’ ol = (RXEL 5 ) e - ST e
_ CptmAAN m+2 ptm+4 1-1
(k1= T Yo vt + (25 =APRZI0
p+m+4 A +2 , ptm+4 9
=+ P ) ol + Pl - o (1.25)
and by using trace embedding inequality (2.1), we obtain
+m+4 1 1
(vet,0) > P22 B (1) — (22 + 1) (v, 0) — ()\2+)\+L2(—+—)
2 Ho M1
1 4 B2 l
_/\(>‘+ )(p+m+ ) HUHZ_ a 2(p+m)_(p+m) —|—§—21 ||VU||2
4 4 8 2
p+m—4+4\ mt2 p+m+4 1-1
_ I N _
(ko1 - ) om oty + (25 o=
p+m+4 A +2  ptm+4 5
-( 14——75—;7;—-—1) Mol + 222 o2 - D, (4.20)
where the inequality 2 +T+4 fo ) > [ has been used.

At this point, we choose g = Qmﬁl and 1 = T:}l and p > m > 2. Also suppose that

4 Foo 4 —4—2aB?2
AN\, a< Mot / g(s)ds < min prm+ ptm B3 (p +m) ,
2Ba(p+m)”  Jo p+m+6 p+m+ 16

where A; is the maximum root of the following equation

—4 -4 212
PEmMZ Ny prm=2y (p+m+4)=0.
4 4 p—m
Therefore, we deduce the following inequality:
+m+4 +m+4
(v, 0) 2 === Ba(0) + F e ur[* = A+ Do v) = Do (430)
Then by using (2.20) and Lemma 4.1, we obtain, from (4.30),
+m+4
(vir,0) = Emmm— e[ = 2A + D)o, 0). (4.31)

To this end, by substituting (4.15)—(4.17) in (4.31), we arrive at

x%wz4(r+p+m>n| ~ @A+ DY),

rETTe e e
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On Behavior of Solutions to a Class of Inverse Problem 697

thus

ptm
8

X" (t)x(t) = (1+ )] = A+ DX/ (H)x (1), (4.32)

where

[ (0] < 4llvel o]

has been used.

Hence we see that the hypotheses of Lemma 2.1 are fulfilled with

H_p+m
] )

142X
===

c1 co =0,

and the conclusion of Lemma 2.1 gives us that some solutions of problem (2.13)—(2.16) blow up

in a finite time and since this system is equivalent to (1.1)—(1.4), the proof is complete.
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