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1 Introduction

In this paper, we study the global behavior of solutions for inverse problem of determining a
pair of functions {u(x, t), f(t)} that satisfy

utt − Δu− div(|∇u|m∇u) +
∫ t

0

g1(t− τ )Δu(τ )dτ + ut + a|u|pu

= h(x, t, u,∇u) + f(t)ω(x), x ∈ Ω, t > 0, (1.1)⎧⎪⎨
⎪⎩

u(x, t) = 0, x ∈ Γ0, t > 0,
∂u

∂n
(x, t) =

∫ t

0

g1(t− τ )
∂u

∂n
(x, τ)dτ − |∇u|m∇u+ αu, x ∈ Γ1, t > 0,

(1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.3)∫
Ω

u(x, t)ω(x)dx = φ(t), t > 0, (1.4)

where Ω is a bounded domain of R
n(n ≥ 1) with smooth boundary Γ0 ∪ Γ1 = ∂Ω. Here a

is a real number and α is a nonnegative constant. Also p,m are positive real numbers and
moreover, h(x, t, u,∇u), φ(t), g1(t) and ω(x) are functions that satisfy specific conditions that
will be enunciated later.

The problem of proving asymptotic stability and blow up of solutions for the hyperbolic
equations with boundary conditions has recently attracted a lot of attention and various results
are available (see [4, 5, 10, 14, 17, 27] and references therein).
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In the absence of the m-Laplacian operator in direct problems (ω(x) = 0) with homogeneous
Dirichlet boundary conditions, Chen and Xiong [9] studied

utt − Δu+
∫ t

0

g(t− τ )Δu(τ )dτ + ut = |u|pu.

The authors established blow-up results for this equation, even for vanishing initial energy. Also
they proved that the solutions decay under suitable conditions. See also [2, 7, 8, 13, 18, 25, 26].

Recently, in [3] Bilgin and Kalantarov investigated blow up of solutions for the following
initial-boundary value problem

utt −∇[(a0 + a|∇u|m−2)∇u] − bΔut = g(x, t, u,∇u) + |u|p−2u, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

They obtained sufficient conditions on initial functions for which there exists a finite time that
some solutions blow up at this time.

Shahrouzi and Tahamtani investigated global behavior of solutions to some class of inverse
source problems. In [22], they investigated the global in time behavior of solutions for an inverse
problem of determining a pair of functions {u, f} satisfying the equation

utt + Δ2u− |u|pu+ a(x, t, u,∇u,Δu) = f(t)ω(x), x ∈ Ω, t > 0,

with the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

the boundary conditions

u(x, t) = ∂νu(x, t) = 0, x ∈ ∂Ω, t > 0,

and the over-determination condition∫
Ω

u(x, t)ω(x)dx = 1, t > 0,

also, the asymptotic stability result has been established with the opposite sign of power-type
nonlinearities.

Later, in [24], Tahamtani and Shahrouzi considered the following problem:

utt + Δ2u− α1Δu+ α2ut + α3|u|pu+ b(x, t, u,∇u,Δu) = f(t)ω(x), x ∈ Ω, t > 0,

u(x, t) = 0, Δu = −c0∂νu(x, t), x ∈ Γ, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,∫
Ω

u(x, t)ω(x)dx = φ(t), t > 0.

They showed that the solutions of this problem under some suitable conditions are stable if
α1, α2 are large enough, α3 ≥ 0 and φ(t) tends to zero as time goes to infinity. They also
established a blow-up result, if α3 < 0 and φ(t) = k is a constant. Their approaches are based
on the Lyapunov function and perturbed energy method for stability result and concavity
argument for blow-up result.
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Very recently, Shahrouzi [21] investigated the asymptotic behavior of solutions for the fol-
lowing inverse problem:

utt + Δ2u−
∫ t

0

g(t− τ )Δ2u(τ )dτ − a1Δu+ a2ut = f(t)ω(x), x ∈ Ω, t > 0,
⎧⎪⎨
⎪⎩

u(x, t) = 0, x ∈ Γ0, t > 0,

Δu(x, t) =
∫ t

0

g(t− τ )Δu(τ )dτ − a3|∇u|p∇u, x ∈ Γ1, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,∫
Ω

u(x, t)ω(x)dx = φ(t), t > 0,

He obtained sufficient conditions on relaxation function and initial data for which the solutions
of problem are asymptotically stable when the integral overdetermination tends to zero as time
goes to infinity. For more information about inverse problems, the interested reader is referred
to the papers [1, 6, 11, 12, 15, 20, 23]

Our objective in the present work is to extend the results of [3, 24] by considering problem
(1.1)–(1.4) in the presence of m-Laplacian operator and boundary conditions.

Motivated by the aforementioned works, our result here is twofold: First, we consider a = 1
and show that if we take initial data and parameters in the appropriately domain, then solutions
of (1.1)–(1.4) are asymptotically stable when φ(t) tends to zero as time goes to infinity. Our
approaches are based on the Lyapunov function and perturbed energy method. Second, if we
take a = −1, φ(t) ≡ k (k is a constant), then by using the modified concavity argument,
we prove the blow up of solutions for the problem (1.1)–(1.4) with positive initial data and
appropriate domain for parameters.

2 Preliminaries and Main Results

In this section, we present some material needed in the proof of our main results. We shall
assume that the functions ω(x), h(x, t, u,∇u) and the functions appearing in the data satisfy
the following conditions:

(A1)

u0 ∈ H1
0 (Ω) ∩ Lp+2(Ω) ∩ Lm+2(Ω), u1 ∈ L2(Ω),

∫
Ω

u0(x)ω(x)dx = 1;

(A2)

ω ∈ H2(Ω) ∩H1
0 (Ω) ∩ Lp+2(Ω) ∩ Lm+2(Ω),

∫
Ω

ω2(x)dx = 1;

(A3)

|h(x, t, u,∇u)| ≤ L
(|∇u|m

2 + |u| p
2
)
,

where L > 0.
Throughout this paper, all the functions considered are real-valued. We denote by ‖ · ‖q the

Lq-norm over Ω. In particular, the L2-norm is denoted by ‖ · ‖ in Ω and ‖ · ‖Γi
in Γi. Also (·, ·)

denotes the usual L2-inner product. We use familiar function spaces H1
0 , H

2.
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We recall the trace Sobolev embedding

H1
Γ0

(Ω) ↪→ Lq(Γ1) for 2 ≤ q <
2(n− 1)
n− 2

,

where
H1

Γ0
(Ω) = {u ∈ H1(Ω) : u|Γ0 = 0}

and the embedding inequality
‖u‖q,Γ1 ≤ Bq‖∇u‖2, (2.1)

where Bq is the optimal constant.
We sometimes use the Poincaré inequality

‖u‖2 ≤ θ2‖∇u‖2, (2.2)

and the Young inequality

a1b ≤ βq + C(β, q)bq
′
, a1, b ≥ 0, β > 0,

1
q

+
1
q′

= 1, (2.3)

where C(β, q) = 1
q′ (βq)−

q′
q are constants.

The following lemma was introduced in [16]; it will be used in Section 4 in order to prove
the blow-up result.

Lemma 2.1 Let κ > 0, c1, c2 ≥ 0 and c1 + c2 > 0. Assume that χ(t) is a twice differentiable
positive function such that

χ′′χ− (1 + κ)[χ′]2 ≥ −2c1χχ′ − c2[χ]2 (2.4)

for all t ≥ 0. If
χ(0) > 0 and χ′(0) + ρ2κ

−1χ(0) > 0, (2.5)

then
χ(t) → +∞ as t→ t1 ≤ t2 =

1
2
√
c21 + κc2

log
ρ1χ(0) + κχ′(0)
ρ2χ(0) + κχ′(0)

. (2.6)

Here
ρ1 = −c1 +

√
c21 + κc2 and ρ2 = −c1 −

√
c21 + κc2.

Adapting the idea of Prilepko et al. [19], the key observation is that the problem (1.1)–(1.4)
is equivalent to the following direct problem:

utt − Δu− div(|∇u|m∇u) +
∫ t

0

g1(t− τ )Δu(τ )dτ + ut + a|u|pu

= h(x, t, u,∇u) + f(t)ω(x), x ∈ Ω, t > 0, (2.7)⎧⎪⎨
⎪⎩

u(x, t) = 0, x ∈ Γ0, t > 0,
∂u

∂n
(x, t) =

∫ t

0

g1(t− τ )
∂u

∂n
(x, τ)dτ − |∇u|m∇u+ αu, x ∈ Γ1, t > 0,

(2.8)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (2.9)

in which the unknown function f(t) is replaced by

f(t) = φ′′(t) + φ′(t) + (∇u,∇ω) + (|∇u|m∇u,∇ω) −
∫ t

0

g1(t− τ )(∇u(τ ),∇ω)dτ
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+ a(|u|pu, ω) − (ĥ(t, u), ω), (2.10)

where
ĥ(t, u) := h(x, t, u,∇u).

We use the following additional conditions on g1(s) = eλsg(s):
(B1)

g(s) ≥ 0, g′(s) ≤ −λg(s);
(B2)

1 −
∫ ∞

0

g1(t)dt = l > 0.

For the sake of simplicity, to prove the asymptotic stability result we suppose that a = 1.
In order to formulate our results, it is convenient to introduce the energy of the problem

(2.7)–(2.9):

E(t) =
1
2
‖ut‖2 +

1
2

(
1 −

∫ t

0

g1(s)ds
)
‖∇u‖2 +

1
2
(g1 ∗ ∇u)(t) +

1
m+ 2

‖∇u‖m+2
m+2

+
1

p+ 2
‖u‖p+2

p+2 −
α

2
‖u‖2

Γ1
, (2.11)

where (g1 ∗ v)(t) =
∫ t

0
g1(t− s)‖v(t) − v(s)‖2ds.

Now, we are in a position to state our asymptotic stability result:

Theorem 2.2 Let the conditions (A1)–(A3) and (B1), (B2) are satisfied and suppose that
φ, φ′, φ′′ are continuous functions defined on [0,∞), such that φ′′ is a bounded function and
φ, φ′ tend to zero as t→ ∞. Also for sufficiently large M,N , we take α, ξ and δ such that

δ < min
{

2,
l

3θ2
,
2N
M

}
, α <

l − 3δθ2

2B2
,

∫ ∞

0

g1(s)ds ≤ 2ξ
1 + 2ξ

.

Then the solution of the problem (1.1)–(1.4) asymptotically stable and

lim
t→+∞E(t) = 0. (2.12)

Finally, we consider the following problem that is obtained from (1.1)–(1.4) when φ(t) = k

and a = −1, by substituting (similar as in [11]) v(x, t) = e−λtu(x, t):

vtt + (2λ+ 1)vt + λ(λ+ 1)v − Δv − eλmtdiv(|∇v|m∇v) +
∫ t

0

g(t− τ )Δv(τ )dτ

= e−λtĥ(t, eλtv) + eλpt|v|pv + e−λtf(t)ω(x), x ∈ Ω, t > 0, (2.13)⎧⎪⎨
⎪⎩

v(x, t) = 0, x ∈ Γ0, t > 0,
∂v

∂n
=

∫ t

0

g(t− τ )
∂v

∂n
(x, τ)dτ − eλmt|∇v|m∇v + αv, x ∈ Γ1, t > 0,

(2.14)

v(x, 0) = u0(x), vt(x, 0) = u1(x) − λu0(x), x ∈ Ω, (2.15)∫
Ω

v(x, t)ω(x)dx = ke−λt, t > 0. (2.16)

The value of the parameter λ will be prescribed later. Similar to (2.10), we multiply (2.13) by
ω(x) and use (2.16) to express

e−λtf(t) = (∇v,∇ω) + eλmt(∇v|m∇v,∇ω) −
∫ t

0

g(t− τ )(∇v(τ ),∇ω)dτ − eλpt(|v|pv, ω)
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− e−λt(ĥ(t, eλtv), ω). (2.17)

Substitution of (2.17) into (2.13) one obtains a problem which is equivalent to (2.13)–(2.15).
The energy associated with the problem (2.13)–(2.15) is given by

Eλ(t) =
eλpt

p+ 2
‖v‖p+2

p+2 +
α

2
‖v‖2

Γ1
− 1

2
I(v(t)), (2.18)

where

I(v(t)) := ‖vt‖2+λ(λ+1)‖v‖2+
(

1−
∫ t

0

g(s)ds
)
‖∇v‖2+(g∗∇v)(t)+ 2eλmt

m+ 2
‖∇v‖m+2

m+2. (2.19)

We state blow-up result as follows.

Theorem 2.3 Let the conditions (A1)–(A3) and (B1), (B2) are satisfied. Assume

‖u0‖ > 0, Eλ(0) ≥ 2(D1 + λD2)
λ(p+m+ 4)

, (2.20)

where

D1 = k2λ2

(
1
2

+
2

lλ(p+m)

)
‖∇ω‖2+

(
2L2(p+m+ 4)

λ(p−m)

)
‖ω‖2+

km+2λ

(m+ 2)[ (p−m)
8m+8 ]m+1

‖∇ω‖m+2
m+2

+
kp+2λ

(p+ 2)[ (p−m)
8p+8 ]p+1

‖ω‖p+2
p+2, (2.21)

D2 =
k2(1 + 2l(p+m))

4l(p+m)
‖∇ω‖2 +

2L2(p+m+ 4)
p−m

‖ω‖2 +
km+2

(m+ 2)[ (p−m)
4m+4 ]m+1

‖∇ω‖m+2
m+2

+
kp+2

(p+ 2)[ (p−m)
4p+4 ]p+1

‖ω‖p+2
p+2. (2.22)

If λ ≥ max{λ0, λ1,
2(1−l)
p+m }, λ0, λ1 > 0 and for p > m ≥ 2

α ≤ min
{
p+m− 4

2B2
2(p+m)

,
l(p+m+ 4) − 4

2B2
2(p+m)

}
,

∫ +∞

0

g(s)ds ≤ min
{

p+m

p+m+ 4
,
p+m− 4 − 2αB2

2(p+m)
p+m+ 16

}
,

then there exists a finite time t1 such that the solution of the problem (1.1)–(1.4) blows up in a
finite time, that is

‖u(t)‖ → +∞ as t→ t1. (2.23)

3 Asymptotic Stability

As mentioned earlier, this section is devoted to the proof of Theorem 2.2. In order to carry the
proof, we need the following lemmas.

Lemma 3.1 Under the conditions of Theorem 2.2, the energy functional E(t), defined by
(2.11), satisfies

d

dt
E(t) ≤ −‖ut‖2 +

∫
Ω

utĥ(t, u)dx+ f(t)φ′(t). (3.1)

Proof Multiplying (2.7) by ut, performing an integration by parts and using (B1) and (2.11)
our conclusion follows. �
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Lemma 3.2 Under the conditions of Theorem 2.2, the function f(t), defined by (2.10), for
some M,N > 0 and γ0, γ1 > 0 satisfies

|Mφ′(t) +Nφ(t)|f(t) ≤
(
δNθ2

2
+
Mγ0

2
+

1 − l

2

)
‖∇u‖2 +

Mγ0

2
‖∇u‖m+2

m+2 +
Mγ1

2
‖u‖p+2

p+2

+
1 − l

2l
(g1 ∗ ∇u)(t) +H(t), (3.2)

where δ > 0 and

H(t) = |Mφ′(t) +Nφ(t)||φ′′(t) + φ′(t)| + |Mφ′(t) +Nφ(t)|2
2

(
1 +

1
δNθ2

)
‖∇ω‖2

+
|Mφ′(t) +Nφ(t)|m+2

(m+ 2)[Mγ0(m+2)
4m+4 ]m+1

‖∇ω‖m+2
m+2 +

|Mφ′(t) +Nφ(t)|p+2

(p+ 2)[Mγ1(p+2)
4p+4 ]p+1

‖ω‖p+2
p+2

+
L2|Mφ′(t) +Nφ(t)|2

M

(
1
γ0

+
1
γ1

)
‖ω‖2. (3.3)

Proof We have from the definition of f(t) that

|Mφ′(t) +Nφ(t)|f(t)

= |Mφ′(t) +Nφ(t)|(φ′′(t) + φ′(t)) + |Mφ′(t) +Nφ(t)|(|∇u|m∇u,∇ω)

− |Mφ′(t) +Nφ(t)|
∫ t

0

g1(t− τ )(∇u(τ ),∇ω)dτ − |Mφ′(t) +Nφ(t)|(ĥ(t, u), ω)

+ |Mφ′(t) +Nφ(t)|(|u|pu, ω) + |Mφ′(t) +Nφ(t)|(∇u,∇ω). (3.4)

By using the Young inequality (2.3) and (A3), the last five terms on the right-hand side of (3.4)
can be estimated as follows, for any δ > 0 and γ0, γ1 > 0, taking a1 = ‖∇u‖, b = |Mφ′(t) +
Nφ(t)|‖∇ω‖, q = q′ = 2 and β = δNθ2

2 , we deduce that

|Mφ′(t) +Nφ(t)|(∇u,∇ω) ≤ δNθ2

2
‖∇u‖2 +

|Mφ′(t) +Nφ(t)|2
2δNθ2

‖∇ω‖2, (3.5)

and taking

a1 = ‖u‖p+1
p+2, b = |Mφ′(t) +Nφ(t)|‖ω‖p+2, q =

p+ 2
p+ 1

, q′ = p+ 2,

with β = Mγ1
4 , we deduce that

|Mφ′(t) +Nφ(t)|(|u|pu, ω) ≤ Mγ1

4
‖u‖p+2

p+2 +
|Mφ′(t) +Nφ(t)|p+2

(p+ 2)[Mγ1(p+2)
4p+4 ]p+1

‖ω‖p+2
p+2. (3.6)

Similarly, we can derive

|Mφ′(t) +Nφ(t)|(|∇u|m∇u,∇ω)

≤ Mγ0

4
‖∇u‖m+2

m+2 +
|Mφ′(t) +Nφ(t)|m+2

(m+ 2)[Mγ0(m+2)
4m+4 ]m+1

‖∇ω‖m+2
m+2, (3.7)

|Mφ′(t) +Nφ(t)|(ĥ(t, u), ω)

≤ Mγ0

4
‖∇u‖m+2

m+2 +
Mγ1

4
‖u‖p+2

p+2 +
L2|Mφ′(t) +Nφ(t)|2

M

(
1
γ0

+
1
γ1

)
‖ω‖2, (3.8)

where the additional condition (A3) has been used in (3.8).
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We now estimate the integral term on the right-hand side of (3.4) as follows:

|Mφ′(t) +Nφ(t)|
∫ t

0

g1(t− τ )(∇u(τ ),∇ω)dτ

≤ |Mφ′(t) +Nφ(t)|2
2

‖∇ω‖2 +
1
2

∫
Ω

( ∫ t

0

g1(t− τ )|∇u(τ )|dτ
)2

dx

≤ M |φ′(t) +Nφ(t)|2
2

‖∇ω‖2 +
1
2

∫
Ω

( ∫ t

0

g1(t− τ )(|∇u(τ ) −∇u(t)| + |∇u(t)|)dτ
)2

dx.

Using Schwarz and Young’s inequality, and
∫ t

0
g1(s)ds ≤

∫ ∞
0
g1(s)ds = 1 − l, we obtain

∫
Ω

( ∫ t

0

g1(t− τ )(|∇u(τ )−∇u(t)| + |∇u(t)|)dτ
)2

dx

≤
∫

Ω

( ∫ t

0

g1(t− τ )|∇u(τ ) −∇u(t)|dτ
)2

dx+
∫

Ω

( ∫ t

0

g1(t− τ )|∇u(t)|dτ
)2

dx

+ 2
∫

Ω

( ∫ t

0

g1(t− τ )|∇u(τ ) −∇u(t)|dτ
)(∫ t

0

g1(t− τ )|∇u(t)|dτ
)
dx

≤ 1
1 − l

∫
Ω

( ∫ t

0

g1(t− τ )|∇u(t)|dτ
)2

dx+
1
l

∫
Ω

( ∫ t

0

g1(t− τ )|∇u(τ ) −∇u(t)|dτ
)2

dx

≤ 1
l

∫
Ω

∫ t

0

g(s)ds
∫ t

0

g1(t− τ )|∇u(τ ) −∇u(t)|2dτdx+
1

1 − l

∫
Ω

|∇u(t)|2
( ∫ t

0

g1(s)ds
)2

dx

≤ (1 − l)‖∇u‖2 +
1 − l

l
(g1 ∗ ∇u)(t). (3.9)

Therefore, we have

|Mφ′(t) +Nφ(t)|
∫ t

0

g1(t− τ )(∇u(s),∇ω)dτ ≤ |Mφ′(t) +Nφ(t)|2
2

‖∇ω‖2

+
1 − l

2
‖∇u‖2 +

1 − l

2l
(g1 ∗ ∇u)(t). (3.10)

Applying estimations (3.5)–(3.8) and (3.10) in (3.4) yields the desired result. �

Proof of Theorem 2.2 Inspired by the idea in [24], we define

F (t) = ME(t) +N(ψ1(t) + ξψ2(t)), (3.11)

where

ψ1(t) =
∫

Ω

uutdx+
1
2
‖u‖2, ψ2(t) = −

∫ t

0

∫ s

0

g1(s− τ )‖∇u(s) −∇u(τ )‖2dτds (3.12)

for some ξ > 0 such that
∫ ∞
0
g1(s)ds ≤ 2ξ

1+2ξ .
We differentiate (3.12) and use (3.1) to obtain

F ′(t) ≤ (N −M)‖ut‖2 −Nξ(g1 ∗ ∇u)(t)

+N

∫
Ω

uutdx+N(utt, u) +M(ĥ(t, u), ut) +Mφ′(t)f(t). (3.13)

It follows from (2.7) and (2.8) that

(utt, u) = −‖∇u‖2 − ‖∇u‖m+2
m+2 + α‖u‖2

Γ1
− ‖u‖p+2

p+2 −
∫

Ω

utudx
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+
∫ t

0

g1(t− τ )(∇u,∇u(τ ))dτ + (ĥ(t, u), u) + φ(t)f(t). (3.14)

Combining (3.13), (3.14) and (3.11) yields

F ′(t) + δF (t)

≤ δME(t) + δN

∫
Ω

uutdx+
δN

2
‖u‖2 − ξδN

∫ t

0

∫ s

0

g1(s− τ )‖∇u(s) −∇u(τ )‖2dτds

− (M −N)‖ut‖2 −Nξ(g1 ∗ ∇u)(t) +M(ĥ(t, u), ut) −N‖∇u‖2 −N‖∇u‖m+2
m+2

+Nα‖u‖2
Γ1

−N‖u‖p+2
p+2 +N

∫ t

0

g1(t− τ )(∇u,∇u(τ ))dτ

+N(ĥ(t, u), u) + |Mφ′(t) +Nφ(t)|f(t). (3.15)

Applying (2.11) into (3.15), we get

F ′(t) + δF (t) ≤ −
(
M − δM

2
−N

)
‖ut‖2 −

(
N − δM

2

)
‖∇u‖2 −

(
Nξ − δM

2

)
(g1 ∗ ∇u)(t)

+M(ĥ(t, u), ut) −
(
N − δM

m+ 2

)
‖∇u‖m+2

m+2 +
(
δM

p+ 2
−N

)
‖u‖p+2

p+2

+
(
αN − αδM

2

)
‖u‖2

Γ1
+N(ĥ(t, u), u) +N

∫ t

0

g1(t− τ )(∇u,∇u(τ ))dτ

+ δN

∫
Ω

uutdx+ |Mφ′(t) +Nφ(t)|f(t), (3.16)

where 1 − ∫ t

0
g1(s)ds ≤ 1 has been used.

Now, by using the Young inequality (2.3) and (A3), the terms on the right-hand side of (3.16)
can be estimated as follows:

δN

∫
Ω

uutdx ≤ δN

2
‖ut‖2 +

δNθ2

2
‖∇u‖2, (3.17)

M |(ĥ(t, u), ut)| ≤ Mγ0

2
‖∇u‖m+2

m+2 +
Mγ1

2
‖u‖p+2

p+2 +
L2

2M

(
1
γ0

+
1
γ1

)
‖ut‖2, (3.18)

N |(ĥ(t, u), u)| ≤ Nγ0

2
‖∇u‖m+2

m+2 +
Nγ1

2
‖u‖p+2

p+2 +
L2θ2

2N

(
1
γ0

+
1
γ1

)
‖∇u‖2, (3.19)

N

∫ t

0

g1(t− τ )|(∇u,∇u(τ ))|dτ ≤ N

(
1 − l

2

)
‖∇u‖2 +N

(
1 − l

2l

)
(g1 ∗ ∇u)(t). (3.20)

Utilizing estimations (3.17)–(3.20) and Lemma 3.2 into (3.16), we get

F ′(t) + δF (t)

≤ −
[
N − δM

2
− 3δNθ2

2
−N

(
1 − l

2

)
− 1 − l

2
− L2θ2

2N

(
1
γ0

+
1
γ1

)]
‖∇u‖2

+ α

(
N − δM

2

)
‖u‖2

Γ1
−

[
M − δ(M +N)

2
−N − L2

2M

(
1
γ0

+
1
γ1

)]
‖ut‖2

−
(
Nξ − δM

2
− (N + 1)

(
1 − l

2l

))
(g1 ∗ ∇u)(t)−

(
N − δM

m+ 2
−Mγ0 − Nγ0

2

)
‖∇u‖m+2

m+2

−
(
N − δM

p+ 2
−Mγ1 − Nγ1

2

)
‖u‖p+2

p+2 +H(t), (3.21)
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where H(t) satisfies (3.3).
By virtue of the trace embedding inequality (2.1) and for δ < 2N

M , we deduce

F ′(t) + δF (t)

≤ − 1
2M

[
2
(

1 − δ

2

)
M2 − 2

(
N +

δN

2

)
M − L2

(
1
γ0

+
1
γ1

)]
‖ut‖2 −

(
Nξ − δM

2

− (N + 1)
(

1 − l

2l

))
(g1 ∗ ∇u)(t)− 1

2N

[
(l − 2αB2

2 − 3δθ2)N2+(αδMb22 + l − 1 − δM)N

− L2θ2

(
1
γ0

+
1
γ1

)]
‖∇u‖2 −

(
N − δM

m+ 2
−Mγ0 − Nγ0

2

)
‖∇u‖m+2

m+2

−
(
N − δM

p+ 2
−Mγ1 − Nγ1

2

)
‖u‖p+2

p+2 +H(t). (3.22)

At this point if we choose γ0 = γ1 = 1 and

δ < min
{

2,
l

3θ2
,
2N
M

}
, α <

l − 3δθ2

2B2
2

,

∫ ∞

0

g1(s)ds ≤ 2ξ
1 + 2ξ

,

N > max
{

2M(δ + p+ 2)
p+ 2

,
2M(δ +m+ 2)

m+ 2
,
δMl − l + 1
2ξl + l − 1

, N0

}
, M > M0,

such that N0,M0 are the maximum root of the following equations

(l − 2αB2
2 − 3δθ2)N2 + (αδMb22 + l − 1 − δM)N − 2L2θ2 = 0,

2
(

1 − δ

2

)
M2 − 2

(
N +

δN

2

)
M − 2L2 = 0,

respectively, then we easily derive

F ′(t) + δF (t) ≤ H(t). (3.23)

Thanks to the assumptions on φ(t), φ′(t) and φ′′(t). Indeed, φ(t), φ′(t) tends to zero as t tends
to infinity and φ′′(t) is a bounded function, so we get

H(t) → 0 as t→ ∞.

Thus for some positive constant C, the result (2.12) follows from

E(t) ≤ CF (t),

and the proof of Theorem 2.2 is complete.

4 Blow Up

In this section, we are going to prove that for sufficiently large initial data some of the solutions
blow up in a finite time. To prove the blow-up result (Theorem 2.3) for certain solutions with
positive initial energy, we need the following lemma for the problem (2.13)–(2.15).

Lemma 4.1 Let the conditions (A1)–(A3) and (B1), (B2) be satisfied and

α ≤ l(p+m+ 4) − 4
2B2

2(p+m)
,

∫ ∞

0

g(s)ds ≤ p+m

p+m+ 4
.

Then
Eλ(t) ≥ Eλ(0) − 2D1

λ(p+m+ 4)
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for λ ≥ max{λ0,
2(1−l)
p+m } such that λ0 is the maximum root of the following equation :

(p−m)(p+m+ 8)λ2 + 4(p−m)λ− 4L2(p+m+ 4) = 0.

Proof A multiplication of (2.13) by vt and integrating over Ω gives

d

dt
Eλ(t) ≥ (2λ+ 1)‖vt‖2 +

λp

p+ 2
eλpt‖v‖p+2

p+2 −
λm

m+ 2
eλmt‖v‖m+2

m+2 − e−λt(ĥ(t, eλtv), vt)

+ kλe−2λtf(t), (4.1)

where the condition (B1) has been used.
Plugging definition of f(t), (2.17), into (4.1), we obtain

d

dt
Eλ(t) ≥ (2λ+ 1)‖vt‖2 +

λp

p+ 2
eλpt‖v‖p+2

p+2 −
λm

m+ 2
eλmt‖v‖m+2

m+2 − e−λt(ĥ(t, eλtv), vt)

+ kλe−λt(∇v,∇ω) + kλeλ(m−1)t(|∇v|m∇v,∇ω) − kλeλ(p−1)t(|v|pv, ω)

− kλe−2λt(ĥ(t, eλtv), ω) − kλe−λt

∫
Ω

∇ω(x)
∫ t

0

g(t− τ )∇v(τ )dτdx. (4.2)

It is easy to verify that

e−λt|(ĥ(t, v), vt)| ≤ ε0
2

eλmt‖∇v‖m+2
m+2 +

ε1
2

eλpt‖v‖p+2
p+2 +

L2

2

(
1
ε0

+
1
ε1

)
‖vt‖2, (4.3)

where (A3) and Young’s inequality (2.1) have been used.
Combining (4.3) with (4.2), we obtain

d

dt
Eλ(t) ≥

(
2λ− L2

2

(
1
ε0

+
1
ε1

)
+ 1

)
‖vt‖2 +

(
λp

p+ 2
− ε1

2

)
eλpt‖v‖p+2

p+2−
(

λm

m+ 2
+
ε0
2

)
eλmt

· ‖∇v‖m+2
m+2 + kλe−λt(∇v,∇ω) + kλeλ(m−1)t(|∇v|m∇v,∇ω) − kλeλ(p−1)t(|v|pv, ω)

− kλe−2λt(ĥ(t, eλtv), ω) − kλe−λt

∫
Ω

∇ω(x)
∫ t

0

g(t− τ )∇v(τ )dτdx. (4.4)

Employing the last inequality, we obtain from (2.18) the following inequality:

d

dt
Eλ(t) − (λp− ε1(p+ 2))Eλ(t)

≥
(

λp

p+ 2
− λp− ε1(p+ 2)

p+ 2
− ε1

2

)
eλpt‖v‖p+2

p+2 −
α

2
(λp− ε1(p+ 2))‖v‖2

Γ1

+
(
λp− ε1(p+ 2)

m+ 2
− λm

m+ 2
− ε0

2

)
eλmt‖∇v‖m+2

m+2 +
(

2λ+
λp− ε1(p+ 2)

2

− L2

2

(
1
ε0

+
1
ε1

)
+ 1

)
‖vt‖2 +

λp− ε1(p+ 2)
2

(g ∗ ∇v)(t) +
λ(λ+ 1)(λp− ε1(p+ 2))

2
‖v‖2

+
λp− ε1(p+ 2)

2

(
1 −

∫ t

0

g(s)ds
)
‖∇v‖2 + kλe−λt(∇v,∇ω) + kλeλ(m−1)t(|∇v|m∇v,∇ω)

− kλeλ(p−1)t(|v|pv, ω) − kλe−2λt(ĥ(t, eλtv), ω)

− kλe−λt

∫
Ω

∇ω(x)
∫ t

0

g(t− τ )∇v(τ )dτdx. (4.5)

Now, the five terms on the right-hand side of (4.5) can be estimated as follows:

kλe−λt|(∇v,∇ω)|
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≤ l(λp− ε1(p+ 2))
4

‖∇v‖2 +
λ2(M1 +M2)

4
‖v‖2 +

k2λ2e−2λt

l(λp− ε1(p+ 2))
‖∇ω‖, (4.6)

kλeλ(m−1)t|(|∇v|m∇v,∇ω)| ≤ ε0
4

eλmt‖∇v‖m+2
m+2 +

km+2λm+2e−2λt

(m+ 2)[ ε0(m+2)
4m+4 ]m+1

‖∇ω‖m+2
m+2, (4.7)

kλe−2λt|(ĥ(t, eλtv), ω)| ≤ ε0
4

eλmt‖∇v‖m+2
m+2 +

ε1
4

eλpt‖v‖p+2
p+2 + L2(

1
ε0

+
1
ε1

)e−2λt‖ω‖2, (4.8)

kλe−λt

∫
Ω

ω(x)
∫ t

0

g(t− τ )Δv(τ )dτdx

≤ K2λ2e−2λt

2
‖∇ω‖2 +

1 − l

2
‖∇v‖2 +

1 − l

2l
(g ∗ ∇v)(t), (4.9)

kλeλ(p−1)t|(|v|pv, ω)| ≤ ε1
4

eλpt‖v‖p+2
p+2 +

kp+2λp+2e−2λt

(p+ 2)[ ε1(p+2)
4p+4 ]p+1

‖ω‖p+2
p+2. (4.10)

Taking into account estimates (4.6)–(4.10) and trace embedding inequality (2.1) in relation
with (4.5), we get

d

dt
Eλ(t) − (λp− ε1(p+ 2))Eλ(t)

≥ +
(

2λ+
λp− ε1(p+ 2)

2
− L2

2

(
1
ε0

+
1
ε1

)
+ 1

)
‖vt‖2

+
(
λ(p−m) − ε1(p+ 2)

m+ 2
− ε0

)
eλmt‖∇v‖m+2

m+2

+
(
l

4
(λp− ε1(p+ 2)) − αB2

2

2
(λp− ε1(p+ 2)) − 1 − l

2

)
‖∇v‖2

+
λ(λ+ 1)(λp− ε1(p+ 2))

2
‖v‖2

+
(
λp− ε1(p+ 2)

2
− 1 − l

2l

)
(g ∗ ∇v)(t) − e−2λtD1, (4.11)

where D1 satisfies (2.21).
At this point if we choose ε0 = λ(p−m)

2m+4 and ε1 = λ(p−m)
2p+4 , then we obtain

d

dt
Eλ(t) − λ(p+m)

2
Eλ(t) ≥ ((p−m)(p+m+ 8)λ2 + 4(p−m)λ− 4L2(p+m+ 4))‖vt‖2

+
(
p+m

8
(l − 2αB2) − 1 − l

2

)
‖∇v‖2

+
(
λ

4
(p+m) − 1 − l

2l

)
(g ∗ ∇v)(t) − e−2λtD1. (4.12)

At this point if we choose

λ ≥ max
{
λ0,

2(1 − l)
p+m

}
, α ≤ l(p+m+ 4) − 4

2B2
2(p+m)

,

∫ ∞

0

g(s)ds ≤ p+m

p+m+ 4
,

where λ0 is the maximum root of the following equation:

(p−m)(p+m+ 8)λ2 + 4(p−m)λ− 4L2(p+m+ 4) = 0.

Then we deduce
d

dt
Eλ(t) − λ(p+m)

2
Eλ(t) ≥ −e−2λtD1. (4.13)
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Finally, we end up by integrating (4.13) between 0 and t:

Eλ(t) ≥ Eλ(0) − 2D1

λ(p+m+ 4)
, ∀t ≥ 0, (4.14)

and the proof of Lemma 4.1 is complete. �

Proof of Theorem 2.3 To obtain the blow-up result, the choice of the following functional is
standard

χ(t) = ‖v(t)‖2. (4.15)

Then

χ′(t) = 2(v, vt), (4.16)

χ′′(t) = 2(v, vtt) + 2‖vt‖2. (4.17)

A multiplication of (2.13) by v and integrating over Ω gives

(vtt, v) = −2(λ+ 1)(vt, v) − λ(λ+ 1)‖v‖2 − ‖∇v‖2 + α‖v‖2
Γ1

− eλmt‖∇v‖m+2
m+2

+
∫ t

0

g(t− τ )(∇v,∇v(τ ))dτ + eλpt‖v‖p+2
p+2 + e−λt(ĥ(t, eλtv), v) + ke−2λtf(t). (4.18)

Taking into account definition of unknown function (2.17), we obtain

(vtt, v) = −2(λ+ 1)(vt, v) − λ(λ+ 1)‖v‖2 − ‖∇v‖2 + α‖v‖2
Γ1

− eλmt‖∇v‖m+2
m+2

+
∫ t

0

g(t− τ )(∇v,∇v(τ ))dτ + eλpt‖v‖p+2
p+2 + e−λt(ĥ(t, eλtv), v) + ke−2λt

+ ke−λt(∇v,∇ω) − ke−2λt(ĥ(t, eλtv), ω) + keλ(m−1)t(∇v|m∇v,∇ω)

− ke−λt

∫ t

0

g(t− τ )(∇v(τ ),∇ω)dτ − keλ(p−1)t(|v|pv, ω). (4.19)

Again by exploiting the condition (A3), Young’s inequality (2.1), we can obtain the following
estimations for the terms on the right-hand side of (4.19):∫ t

0

g(t− τ )|(∇v(τ ),∇v)|dτ ≤
(

1 − l

2

)
‖∇v‖2 +

1 − l

2l
(g ∗ ∇v)(t), (4.20)

e−λt|(ĥ(t, v), v)| ≤ μ0

4
eλmt‖∇v‖m+2

m+2 +
μ1

4
eλpt‖v‖p+2

p+2 + L2

(
1
μ0

+
1
μ1

)
‖v‖2, (4.21)

ke−λt|(∇v,∇ω)| ≤ (p+m)l
8

‖∇v‖2 +
k2e−2λt

4l(p+m)
‖∇ω‖2, (4.22)

keλ(m−1)t|(|∇v|m∇v,∇ω)| ≤ μ0

2
eλmt‖∇v‖m+2

m+2 +
km+2e−2λt

(m+ 2)[μ0(m+2)
2m+2 ]m+1

‖∇ω‖m+2
m+2, (4.23)

ke−2λt|(ĥ(t, eλtv), ω)| ≤ μ0

4
eλmt‖∇v‖m+2

m+2 +
μ1

4
eλpt‖v‖p+2

p+2 + L2

(
1
μ0

+
1
μ1

)
‖ω‖2, (4.24)

ke−λt

∫ t

0

g(t− τ )|(∇v(τ ),∇ω)|dτ

≤
(

1 − l

2

)
‖∇v‖2 +

1 − l

2l
(g ∗ ∇v)(t) +

k2e−2λt

2
‖∇ω‖2, (4.25)

keλ(p−1)t|(|v|pv, ω)| ≤ μ1

2
eλpt‖v‖p+2

p+2 +
kp+2e−2λt

(p+ 2)[μ1(p+2)
2p+2 ]p+1

‖ω‖p+2
p+2. (4.26)
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Combining estimations (4.20)–(4.26) with (4.19), we obtain

(vtt, v) ≥ −(2λ+ 1)(vt, v) −
(
λ2 + λ+ L2

(
1
μ0

+
1
μ1

))
‖v‖2 −

(
(p+m)l

8
+

5
2
− l

)
‖∇v‖2

+ α‖v‖2
Γ1

− (μ0 + 1)eλmt‖∇v‖m+2
m+2 −

1 − l

l
(g ∗ ∇v)(t)

− (μ1 − 1)eλpt‖v‖p+2
p+2 −D2, (4.27)

where D2 satisfies (2.22).
Applying (2.18) into (4.27), yields

(vtt, v) ≥ p+m+ 4
2

Eλ(t) − (2λ+ 1)(vt, v) −
(
λ2 + λ+ L2

(
1
μ0

+
1
μ1

)

− λ(λ+ 1)(p+m+ 4)
4

)
‖v‖2 −

(
(p+m)l

8
+

5
2
− l

)
‖∇v‖2 − α(p+m)

4
‖v‖2

Γ1

−
(
μ0 + 1 − p+m+ 4

2m+ 4

)
eλmt‖∇v‖m+2

m+2 +
(
p+m+ 4

2
− 1 − l

l

)
(g ∗ ∇v)(t)

−
(
μ1 +

p+m+ 4
2p+ 4

− 1
)

eλpt‖v‖p+2
p+2 +

p+m+ 4
2

‖vt‖2 −D2, (4.28)

and by using trace embedding inequality (2.1), we obtain

(vtt, v) ≥ p+m+ 4
2

Eλ(t) − (2λ+ 1)(vt, v) −
(
λ2 + λ+ L2

(
1
μ0

+
1
μ1

)

− λ(λ+ 1)(p+m+ 4)
4

)
‖v‖2 −

(
αB2

2(p+m)
4

− (p+m)l
8

+
5
2
− 2l

)
‖∇v‖2

−
(
μ0 + 1 − p+m+ 4

2m+ 4

)
eλmt‖∇v‖m+2

m+2 +
(
p+m+ 4

2
− 1 − l

l

)
(g ∗ ∇v)(t)

−
(
μ1 +

p+m+ 4
2p+ 4

− 1
)

eλpt‖v‖p+2
p+2 +

p+m+ 4
2

‖vt‖2 −D2, (4.29)

where the inequality p+m+4
4 (1 − ∫ t

0
g(s)ds) > l has been used.

At this point, we choose μ0 = p−m
2m+4 and μ1 = p−m

2p+4 and p > m ≥ 2. Also suppose that

λ ≥ λ1, α ≤ p+m− 4
2B2(p+m)

,

∫ +∞

0

g(s)ds ≤ min
{
p+m+ 4
p+m+ 6

,
p+m− 4 − 2αB2

2(p+m)
p+m+ 16

}
,

where λ1 is the maximum root of the following equation(
p+m− 4

4

)
λ2 +

p+m− 4
4

λ− 2L2

p−m
(p+m+ 4) = 0.

Therefore, we deduce the following inequality:

(vtt, v) ≥ p+m+ 4
2

Eλ(t) +
p+m+ 4

2
‖vt‖2 − (2λ+ 1)(vt, v) −D2. (4.30)

Then by using (2.20) and Lemma 4.1, we obtain, from (4.30),

(vtt, v) ≥ p+m+ 4
2

‖vt‖2 − (2λ+ 1)(vt, v). (4.31)

To this end, by substituting (4.15)–(4.17) in (4.31), we arrive at

χ′′(t) ≥ 4
(

1 +
p+m

8

)
‖vt‖2 − (2λ+ 1)χ′(t),
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thus
χ′′(t)χ(t) ≥ (1 +

p+m

8
)[χ′(t)]2 − (2λ+ 1)χ′(t)χ(t), (4.32)

where
[χ′(t)]2 ≤ 4‖vt‖2‖v‖2

has been used.
Hence we see that the hypotheses of Lemma 2.1 are fulfilled with

κ =
p+m

8
, c1 =

1 + 2λ
2

, c2 = 0,

and the conclusion of Lemma 2.1 gives us that some solutions of problem (2.13)–(2.16) blow up
in a finite time and since this system is equivalent to (1.1)–(1.4), the proof is complete.
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