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Abstract
This manuscript deals with a thermoelastic laminated Timoshenko beam with a non-
local integral condition on the transversal displacement and thermal dissipation in
the equation that describes the dynamical of rotate angle. Using the Hille–Yosida
Theorem, we prove the existence, uniqueness, and regularity of the solution. For the
asymptotic behavior, we apply the energy method. Using suitable multipliers, we con-
struct a Lyapunov functional, and then we obtain the exponential stability. To the best
of our knowledge, thermoelastic laminated Timoshenko beams with nonlocal time
delay conditions have not been considered previously.
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1 Introduction

A single beam or more than one is present in structures like mechanical engineering,
electrical engineering, civil engineering, and aerospace engineering. S.P. Timoshenko
[46] came up with a pioneer theory for a beam that is better suited for engineering
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Fig. 1 Adhesive application (left) and beam in the press (right)

practice and is nowadays widely used for moderately thick beams. In Timoshenko’s
assumptions, the plane cross sections are perpendicular to the beam centerline and
remain plane. Then, an additional kinematics variable representing the rotation angle of
a filament of the beamψ is added to the displacement assumptions u. Its mathematical
formulation is given by a system of two partial differential equations

ρAutt = Sx and ρ Iψt t = Mx − S, (1)

where M and S represent, respectively, the bending moment and the shear stress. The
corresponding constitutive elastic laws are given by

S = κA(ux + ψ) and M = E Iψx , (2)

where E I represents the flexural rigidity of the material, κ is a shear coefficient, ρ is
the mass density, A and I denote the area and the inertial moment of a cross section.

The proposed linear model is a coupled partial differential equation obtained from
(1) and (2) given by

ρAutt (x, t) − κA(ux − κAψ)x = 0, x ∈ (0, L), t > 0,

ρ Iρϕt t (x, t) − E Iψxx (x, t) − κA(ux − ψ) = 0, x ∈ (0, L), t ≥ 0,

where t > 0 is the time variable, x is the space coordinate along the beam, of length
L , in its equilibrium position. The coefficients Iρ, E , and K are the polar moment
of inertia of a cross section, Young’s modulus of elasticity, and the shear modulus,
respectively.

Hansen and Spies [14, 16] derived fromTimoshenko’s theory, a system of equations
that describes the dynamics of a structure given by two identical Timoshenko beams
with an adhesive layer (of negligible thickness and mass) bonding the two adjoining
surfaces (Fig. 1).

The model derived is

�utt + G(ψ − ux )x = 0, x ∈ (0, L), t ≥ 0,

I�(3Stt − ψt t ) − D(3Sxx − ψxx ) − G(ψ − ux ) = 0, x ∈ (0, L), t ≥ 0,

3I�Stt − 3DSxx + 3G(ψ − ux ) + 4δ0S + 4γ0St = 0, x ∈ (0, L), t ≥ 0,

(3)
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where u = u(x, t) is the transverse displacement, ψ = ψ(x, t) is the rotation angle,
S = S(x, t) is proportional to the amount of slip along the interface. The positive
parameters �, I�,G, D, and 4δ0, are the density, mass moment of inertia, shear stiff-
ness, flexural rigidity, and adhesive stiffness, respectively. The non-negative parameter
4γ0 is called the adhesive damping, and St is the structural damping of the system.
Laminated beams have gained popularity and importance in science and engineering
fields.

When the Timoshenko system has not damped in all components, the system decays
exponentially just under the so-called “equal wave speeds”, see [27]. If the dampings
are added in all equations, the energy of the system decay exponentially without none
assumption over the coefficients relations, see [36]. In recent years, the control of
partial differential equations with time delay effects has aroused the interest of several
researchers. In [15], was studied the stability of Timoshenko’s beam system with
boundary time delay. In [45], the authors considered the interior damping and boundary
delay. For exponential stability of the wave equation with boundary time-varying
delay we cite [32]. In [20], the authors obtained the well-posedness and exponential
stability forTimoshenkobeamwith delay on the frictional dampingunder the condition
μ1 > μ2 > 0 and τ(t) = t . In [19] was extended the result of [20] for τ(t) a time-
varying function. For a transmission problem in the presence of memory and delay
terms, under an appropriate hypothesis on the relaxation function and the relationship
between the weight of the damping and the weight of the delay, in [22] was proved
well-posedness by using the semigroup theory a decay result by introducing a suitable
Lyapunov functional.

Time delays so often arise in many physical, chemical, biological, and economical
phenomena, see [43] and references therein. Timoshenko’s beam system, without
delay, has been extensively studied by several authors. We can cite a few of them, [1,
2, 11, 13, 18, 25, 28, 29, 40, 41]. For Timoshenko system with delay, we cite [3, 12,
35].

From the laminated beammodel introduced by Hansen in 1984, several works were
produced in the last years, see for instance: [7, 10, 23, 24, 34, 38, 39, 44]. In [38],
authors assumed that a container is fastened securely on the left; while on the right,
it is free and has an attached container. Using the semigroup approach and a result of
Borichev and Tomilov, they proved that the solution is polynomially stable. In another
setting in [10], involving a nonlinear foundation, authors established the existence of
smooth finite-dimensional global attractors for the corresponding solution semigroup.

Wang et al. [47] proved for the system (3) that the frictional damping St created
by the interfacial slip alone is not enough to stabilize the system exponentially to its
equilibrium state. Naturally, the question arises of studying the influence of additional
stabilizing mechanisms on the model and including the situation without St .

The following full damped system, derived of (3), with frictional dissipation in
transversal displacement and in the rotation angle, was considered in [34]

ρ1utt + k(ψ − ux )x + αut = 0,

ρ2(s − ψ)t t − b(s − ψ)xx − k(ψ − ux ) + β(s − ψ)t = 0,

ρ2stt − bsxx + 3k(ψ − ux ) + 4δs + 4γ st = 0,

(4)
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and established the exponential stability.
In [5] was done α = γ = 0 in (4) and considered a single control in the form of a

frictional damping ψt on the rotation angle,

ρwt t + G(ψ − wx )x = 0,

Iρ(3s − ψ)t t − D(3s − ψ)xx − G(ψ − wx ) + δ(3s − ψ)t = 0,

3Iρstt − 3Dsxx + 3G(ψ − wx ) + 4γ s = 0,

(5)

and proved that the unique dissipation through the frictional damping is strong enough
to get exponential stability of the energy.

Whenever energy is transmitted fromoneplace to another, there is a delay associated
with the transmission, see [42]. A very delicate question to consider in the transmission
of energy is that the delay can become a source of instability. A small delay in boundary
control could turn the well-behaved hyperbolic system into a wild one, see [9].

In [4] was considered in the following thermoelastic laminated beam just one dis-
sipation through heat conduction in the interfacial slip equation,

ρwt t + G(ψ − wx )x = 0,

Iρ(3s − ψ)t t − D(3s − ψ)xx − G(ψ − wx ) = 0,

3Iρstt − 3Dsxx + 3G(ψ − wx ) + 4γ s + δθx = 0,

ρ3θt − αθxx + δsxt = 0.

(6)

The author proved that this unique dissipation is strong enough to stabilize expo-
nentially all the system provided the wave speeds of the system are equal. The result
(6), in a way, extends previous works where additional internal or boundary controls
were used together with frictional damping in the interfacial slip.

On the above scenario, the present paper is concerned with a nonlocal time delay,
given by,

ρutt+G(ψ − ux )x+μ1ut+
∫ τ2

τ1

μ2(τ )ut (x, t − τ) dτ =0, (x, t) ∈ (0, L)×(0,∞),

Iρ(3S − ψ)t t−D(3S − ψ)xx − G(ψ − ux )+bθx =0, (x, t) ∈ (0, L)×(0,∞),

3IρStt−3DSxx+3G(ψ − ux )+4δS=0, (x, t) ∈ (0, L)×(0,∞),

kθt−αθxx+b(3S − ψ)xt =0, (x, t) ∈ (0, L)×(0,∞),

(7)

where τ1, τ2 are real numbers such that 0 ≤ τ1 < τ2, with Dirichlet–Neumann bound-
ary conditions

ux (0, t)=ψ(0, t)= S(0, t)=θx (0, t)=u(L, t)=ψx (L, t)= Sx (L, t)=θ(L, t)=0,
(8)
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and initial data

u(x, 0) = u0(x), ut (x, 0) = u1(x), ψ(x, 0) = ψ0(x), ψt (x, 0) = ψ1(x),

S(x, 0) = S0(x), St (x, 0) = S1(x), θ(x, 0) = θ0(x), θt (x, 0) = θ1(x),

ut (x,−τ) = f0(x, τ ), τ ∈ (τ1, τ2),

(9)

with f0 belong to a suitable Sobolev space. The function μ2 : [τ1, τ2] → R are
bounded satisfying

∫ τ2

τ1

|μ2(τ )| dτ < μ1. (10)

We aim to study the well-posedness and take into account the stability number

χ = G

ρ
− D

Iρ
, (11)

we will prove the exponential decay of the system. Note that χ = 0 means that the
wave speeds of the Eqs. of (7)1, (7)2 and (7)3 are equal. Then, there is an effective
transfer of the energy from the damped equation to the undamped one, and the delay
can be a source of instability for all system.

By following [27], we assume that a thermal dissipation is applied on the bending
moment. Note that μ1 = 0 and μ2(τ ) = 0 leads a problem equivalent to (6). The his-
tory of nonlocal problems with integral conditions for partial differential equations is
recent and goes back to [8]. In [6], a review of the progress in the nonlocal models with
integral type was givenwithmany discussions related to physical justifications, advan-
tages, and numerical applications. For a nonlocal problem for a hyperbolic equation
with integral conditions of the 1st kind, we cite [33]. Well-posedness and exponential
stability for a wave equation with nonlocal time-delayed were studied in [31, 37] by
different techniques.

The paper is organized as follows. In the next section, we reformulate the system
(7) introducing the new variable as in [30] and prove that the energy of the system is
dissipative. In the Sect. 3, we present the semigroup configuration and using Hille–
Yosida Theorem, we prove the existence, uniqueness, and regularity of the solution.
In the Sect. 4, we prove the exponential stability. The tool is the energy method that
consists of constructing a Lyapunov functional for the system.

2 Preliminaries

As in [30], we introduce the new variable

z(x, η, t, τ ) = ut (x, t − ητ) in (0, L) × (0, 1) × (0,∞) × (τ1, τ2).
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It is easily verified that the new variable satisfies

τ zt (x, η, t, τ ) + zη(x, η, t, τ ) = 0 in (0, L) × (0, 1) × (0,∞) × (τ1, τ2). (12)

Following the idea of [47], we denote the effective rotation angle by ξ := 3S−ψ . By
(12), the differential equations (7) can be rewritten as follows:

ρutt + G(3Sψ − ux )x + μ1ut +
∫ τ2

τ1

μ2(τ )z(x, 1, t, τ ) dτ = 0,

Iρξt t − Dξxx − G(3Sψ − ux ) + bθx = 0,

3IρStt − 3DSxx + 3G(3Sψ − ux ) + 4δS = 0,

kθt − αθxx + b(3S − ψ)xt = 0,

τ zt + ξxt = 0,

(13)

subject to boundary conditions given in (8), that is,

ux (0, t)=ξ(0, t)= S(0, t)=θx (0, t)=u(L, t)=ξx (L, t)= Sx (L, t)=θ(L, t)=0
(14)

and initial conditions

u(x, 0) = u0(x), ut (x, 0) = u1(x), ξ(x, 0) = ξ0(x), ξt (x, 0) = ξ1(x),

S(x, 0) = S0(x), St (x, 0) = S1(x), θ(x, 0) = θ0(x), θt (x, 0) = θ1(x),

z(x, η, 0, τ ) = f0(x,−ητ) = u2(x, η, τ ).

(15)

We define the energy of the solution of problem (13)-(15) by

E(t) = 1

2

∫ L

0

[
ρu2t + G(3S − ξ − ux )

2 + Iρξ2t + Dξ2x + 3IρS
2
t

+ 3DS2x + 4δS2 + kθ2 +
∫ 1

0

∫ τ2

τ1

τ |μ2(τ )|z2 dτ dη

]
dx .

(16)

Our first result states that the energy is a nonincreasing function and uniformly bounded
above by E(0).

Lemma 2.1 Let (u(t), ut (t), ξ(t), ξt (t), S(t), St (t), θ(t), z(t)) be a solution to the sys-
tem (13)-(15). Then, the energy functional defined by (16) satisfies

d

dt
E(t) ≤ −m0

∫ L

0
u2t dx − α

∫ L

0
θ2x dx ≤ 0, (17)

where m0 = μ1 −
∫ τ2

τ1

|μ2(τ )| dτ > 0.
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Proof Multiplying (13)1,2,3,4 by ut , ξt , St and θ , respectively, integrating by parts
each over (0, L), we get

1

2

d

dt

∫ L

0
ρu2t dx − G

∫ L

0
(3S − ξ − ux )uxt dx

+ μ1

∫ L

0
u2t dx +

∫ L

0

∫ τ2

τ1

|μ2(τ )|z(x, 1, t, τ )ut dx = 0,

(18)

1

2

d

dt

∫ L

0

(
Iρξ2t + Dξ2x

)
dx − G

∫ L

0
(3S − ξ − ux )ξt dx + b

∫ L

0
θx ξt dx = 0, (19)

1

2

d

dt

∫ L

0

(
3Iρ S

2
t + 3DS2x + 4δS2

)
dx + 3G

∫ L

0
(3S − ξ − ux )St dx = 0, (20)

1

2

d

dt

∫ L

0
kθ2 dx + α

∫ L

0
θ2x dx − b

∫ L

0
ξt θx dx = 0. (21)

Now, multiplying (13)5 by |μ2(τ )|z and integrating by parts over (0, L)× (0, 1)×
(τ1, τ2), we obtain

1

2

d

dt

∫ L

0

∫ 1

0

∫ τ2

τ1

τ |μ2(τ )|z2(x, η, t, τ ) dτ dη dx

= −1

2

d

dt

∫ L

0

∫ τ2

τ1

∫ 1

0
|μ2(τ )| ∂

∂η
z2(x, η, t, τ ) dη dτ dx

= −1

2

∫ L

0

∫ τ2

τ1

|μ2(τ )|z2(x, 1, t, τ ) dτ dx + 1

2

∫ L

0

∫ τ2

τ1

|μ2(τ )|u2t dτ dx .

(22)

Combining (18)–(22), we arrive at

d

dt
E(t)=−

(
μ1 − 1

2

∫ τ2

τ1

|μ2(τ )| dτ

)∫ L

0
u2t dx − 1

2

∫ L

0

∫ τ2

τ1

|μ2(τ )|z2(x, 1, t, τ ) dτ dx

−
∫ L

0

∫ τ2

τ1

μ2(τ )z(x, 1, t, τ )ut dτ dx .

(23)

Using Young’s inequality, we see that last term in (23) satisfies

−
∫ L

0

∫ τ2

τ1

μ2(τ )z(x, 1, t, τ )ut dτ dx ≤1

2

∫ τ2

τ1

|μ2(τ )| dτ

∫ L

0
u2t dx

+ 1

2

∫ L

0

∫ τ2

τ1

|μ2(τ )|z2(x, 1, t, τ ) dτ dx .

(24)

We complete the proof of (17) by substituting (24) in (23), and using (10). ��
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3 Well-posedness

In this section, we give an existence and uniqueness result for problem (13)-(15) using
the semigroup theory. Introducing the vector function U = (u, w, ξ, v, S, y, θ, z)T ,
where w = ut , v = ξt and y = St , the system (13)-(15) can be written as

Ut − AU = 0,

U (x, 0) = U0(x) = (u0, u1, ξ0, ξ1, S0, S1, θ0, u2)
T ,

(25)

where A : D(A) ⊂ H → H is a linear operator defined by

AU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w

−ρ−1
[
G(3S − ξ − ux )x + μ1w + ∫ τ2

τ1
μ2(τ )z(x, 1, t, τ ) dτ

]
v

I−1
� [Dξxx + G(3S − ξ − ux ) − bθx ]

y
I−1
�

[
DSxx − G(3S − ξ − ux ) − 4δ

3 S
]

k−1 (αθxx − ξxt )

−τ−1zη

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We consider the following spaces

H1
a := { f ∈ H1(0, L); f (L) = 0},

H1
b := { f ∈ H1(0, L); f (0) = 0},

L2∗ := { f ∈ L2(0, L); f (L) = 0}.

Let

H = H1
a × L2(0, L) ×

[
H1
b × L2(0, L)

]2 × H1
a × L2∗ × L2((0, L) × (0, 1) × (τ1, τ2))

be the Hilbert space equipped with the following inner product

〈U , Ũ 〉H =ρ

∫ L

0
ww̃ dx + D

∫ L

0
ξx ξ̃x dx + I�

∫ L

0
vṽ dx + 3D

∫ L

0
Sx S̃x dx

+ 4δ
∫ L

0
SS̃ dx + 3I�

∫ L

0
y ỹ dx + G

∫ L

0
(3S−ξ−ux )(3S̃−ξ̃ −ũx ) dx

+ k
∫ L

0
θ θ̃ dx +

∫ L

0

∫ 1

0

∫ τ2

τ1

τμ2(τ )zz̃ dτ dη dx,

(26)

for U = (u, w, ξ, v, S, y, θ, z)T and Ũ = (ũ, w̃, ξ̃ , ṽ, S̃, ỹ, θ̃ , z̃)T .
The domain of A is defined by
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D(A)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u, ξ, S ∈ H2(0, L), θ, w ∈ H1
a , ξ, S ∈ H1

b

(u, w, ξ, v, S, y, θ, z) ∈ H z ∈ L2
(
(τ1, τ2); H1((0, L) × (0, 1))

)
z(·, 0, ·) = w in (0, L)

ux (0) = ξ(L) = Sx (L) = θx (0) = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(27)

Note that D(A) is independent of t > 0. Furthermore, clearly D(A) dense inH.
Toprove the existence anduniqueness of solutions, observe that, as E(t) = 1

2‖U‖2H,
for all U ∈ D(A), a simple differentiation gives

〈Ut ,U 〉H = d

dt
E(t) ⇔ 〈AU ,U 〉H = d

dt
E(t). (28)

Then, from (17), we obtain

〈AU ,U 〉H ≤ −m0

∫ L

0
u2t dx − α

∫ L

0
θ2x dx ≤ 0, (29)

where m0 is defined in (2.1). Hence, the operator A is dissipative.
The Hille–Yosida Theorem give us the conditions for a linear (unbounded) operator

A to be generator of a C0-semigroup of contractions S(t) in a Banach space.

Theorem 3.1 (Hille-Yosida) A linear (unbounded) operatorA is the infinitesimal gen-
erator of a C0-semigroup of contractions S(t), t ≥ 0, if and only if,

(i)Ais closed andD(A) = H,

(ii) the resolvent setρ(A)ofAcontainsR+and for everyλ > 0, ||(λ I − A)−1|| ≤ 1

λ
.

Proof See [26, Theorem 3.1, page 8] ��
However, for Hilbert space the Hille–Yosida Theorem leads to the following result,

see [21, Theorem 1.2.2, page 3].

Theorem 3.2 LetA be a densely defined linear operator on a Hilbert spaceH. Then,
A generates a C0-semigroup of contractions S(t) onH if and only ifA is dissipative
and R(I − A) = H.

Using the result above, we prove the following:

Lemma 3.3 A generates a C0-semigroup of contractions S(t) on H.

Proof Since A is dissipative and D(A) is dense in H, to prove that A generates a
C0-semigroup of contractions S(t) on H it is sufficient to show that R(I − A) = H.
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Given

F = ( f1, . . . , f8)
T ∈ H,

we must show that there exists

U = (u, w, ξ, v, S, y, θ, z)T ∈ D(A)

satisfying

(I − A)U = F

which is equivalent to

u − w = f1,

ρw + G(3S − ξ − ux )x + μ1w +
∫ μ2

μ1

μ2(τ )z(x, 1, t, τ ) dτ = ρ f2,

ξ − v = f3,

Iρv − Dξxx − G(3S − ξ − ux ) + bθx = Iρ f4,

S − y = f5,

3Iρ y − 3DSxx + 3G(3S − ξ − ux ) + 4δS = 3Iρ f6,

kθ − αθxx + bvx = k f7,

τ z + zη = τ f8.

(30)

Suppose that we have found u, ξ and S with the appropriated regularity. Therefore,
(30)1,3,5 give

w = u − f1,

v = ξ − f3,

y = S − f5.

(31)

It is clear that w ∈ H1
a and v, y ∈ H1

b . Furthermore, following the same approach as
in [31], we obtain that

z(x, η, τ ) = w(x)e−ητ + τe−ητ

∫ η

0
eστ f8(x, σ, τ ) dσ

is solution of the (30)8 satisfying

z(x, 0, τ ) = w(x), for x ∈ (0, L), τ ∈ (τ1, τ2). (32)

So, from (31)1,

z(x, η, τ ) = u(x)e−ητ − f1(x)e
−ητ + τe−ητ

∫ τ2

τ1

eστ f8(x, σ, τ ) dσ,
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and, in particular,

z(x, 1, τ ) = u(x)e−τ + z0(x, τ ), (33)

where z0(x, τ ) ∈ L2((0, L) × (τ1, τ2)) defined by

z0(x, τ ) = − f1(x)e
−τ + τe−τ

∫ 1

0
eστ f8(x, σ, τ ) dσ.

By (30) and (31), we see that the functions u, ξ , S and θ satisfy the following system

ςu + G(3S − ξ − ux )x = h1,

Iρξ − Dξxx − G(3S − ξ − ux ) + bθx = h2,

γ S − 3DSxx + 3G(3S − ξ − ux ) = h3,

kθx − αθxx + bξx = h4,

(34)

where

ς = ρ + μ1 +
∫ τ2

τ1

μ2(τ )e−τ dτ, γ = 3Iρ + 4δ,

h1 = (ρ − μ1) f1 + ρ f2 −
∫ τ2

τ1

μ2(τ )z0(x, τ ) dτ, h2 = Iρ f3 + Iρ f4,

h3 = 3Iρ f5 + 3Iρ f6 and h4 = b f3,x + k f7.

Solving the system (34) is equivalent to finding

(u, ξ, S, θ) ∈ H2(0, L) ∩ H1
a ×

(
H2(0, L) ∩ H1

b

)2 × H1
a ,

such that

ς

∫ L

0
uũ dx − G

∫ L

0
(3S − ξ − ux )ũx dx =

∫ L

0
h1ũ dx,

Iρ

∫ L

0
ξ ξ̃ dx + D

∫ L

0
ξx ξ̃x dx − G

∫ L

0
(3S − ξ − ux )ξ̃ dx + b

∫ L

0
θx ξ̃ dx =

∫ L

0
h2 ξ̃ dx,

γ

∫ L

0
SS̃ dx + 3D

∫ L

0
Sx S̃x dx + 3G

∫ L

0
(3S − ξ − ux )S̃ dx =

∫ L

0
h3 S̃ dx,

k
∫ L

0
θ θ̃ dx + α

∫ L

0
θx θ̃x dx + b

∫ L

0
ξx θ̃ dx =

∫ L

0
h4θ̃ dx,

(35)

for all
(
ũ, ξ̃ , S̃, θ̃

)
∈ H1

a × H1
b × H1

b × L2∗.
Now, we observe that solving the system (35) is equivalent to solve the problem

ϒ
(
(u, ξ, S, θ), (ũ, ξ̃ , S̃, θ̃ )

)
= L(ũ, ξ̃ , S̃, θ̃ ), (36)
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where the bilinear form

ϒ : [H1
a × H1

b × H1
b × L2∗]2 → R

and the linear form

L : H1
a × H1

b × H1
b × L2∗ → R

are defined by

ϒ
(
(u, ξ, S, θ), (ũ, ξ̃ , S̃, θ̃ )

)
= ς

∫ L

0
uũ dx + G

∫ L

0
(3S − ξ − ux )(3S̃ − ξ̃ − ũx ) dx

+ Iρ

∫ L

0
ξ ξ̃ dx + D

∫ L

0
ξx ξ̃x dx + b

∫ L

0
θx ξ̃ dx

+ γ

∫ L

0
SS̃ dx + 3D

∫ L

0
Sx S̃x dx + k

∫ L

0
θ θ̃ dx

+ α

∫ L

0
θx θ̃x dx + b

∫ L

0
ξx θ̃ dx

and

L
(
ũ, ξ̃ , S̃, θ̃

)
=

∫ L

0
h1ũ dx +

∫ L

0
h2ξ̃ dx +

∫ L

0
h3 S̃ dx +

∫ L

0
h4θ̃ dx

=
(
(h1, h2, h3, h4), (ũ, ξ̃ , S̃, θ̃ )

)
.

Now, we introduce the Hilbert space V = H1
a × H1

b × H1
b × L2∗ equipped with the

norm

‖(u, ξ, S, θ)‖2V =‖u‖2L2(0,L)
+ ‖3S − ξ − ux‖2L2(0,L)

+ ‖ξx‖2L2(0,L)

+‖Sx‖2L2(0,L)
+ ‖θx‖2L2(0,L)

.

It is clear that ϒ and L are bounded. Furthermore, using integration by parts, we can
obtain that there exists a positive constant m such that

ϒ ((u, ξ, S, θ) , (u, ξ, S, θ)) = ς

∫ L

0
u2 dx + G

∫ L

0
(3S − ξ − ux )

2 dx + Iρ

∫ L

0
ξ2 dx

+ D
∫ L

0
ξ2x dx + γ

∫ L

0
S2 dx + 3D

∫ L

0
S2x dx

+ k
∫ L

0
θ2 dx + α

∫ L

0
θ2x dx

≥ m ‖(u, ξ, S, θ)‖2V ,
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which implies that ϒ is V -elliptic.
Hence, we assert that ϒ is continuous and V -elliptic bilinear form on V × V , and

L is continuous form on V . We are in conditions of the Lax-Milgram Theorem, [17,
Theorem 3.1.4, page 115].

Theorem 3.4 (Lax-Milgram) Let V be a Hilbert space and ϒ (· , ·) a continuous and
V -elliptic bilinear form on V × V . Then, given f ∈ V , there exists a unique u ∈ V
such that ϒ (u , v) = ( f , v) , ∀ v ∈ V .

So, applying the Lax–Milgram Theorem, we deduce that for all

(
ũ, ξ̃ , S̃, θ̃

)
∈ H1

a × H1
b × H1

b × L2∗,

the problem (36) admits a unique solution

(u, ξ, S, θ) ∈ H1
a × H1

b × H1
b × L2∗.

Applying the classical elliptic regularity, it follows from (35) that

(u, ξ, S, θ) ∈ H2(0, L)3 × H1
a .

On the other hand, (35)1 also holds true for any ϕ ∈ C1(0, L) with ϕ(L) = 0, then

ς

∫ L

0
uϕ dx + 3G

∫ L

0
Sxϕ dx − G

∫ L

0
uxxϕ dx =

∫ L

0
h1ϕ dx,

which, using integration by parts, implies

Gux (0)ϕ(0) = 0.

Hence,

ux (0) = 0.

Similarly, we can get

ξx (L) = Sx (L) = θx (0) = 0.

Therefore, the operator I−A is surjective, that is, R(I−A) = H and thenA generates
a C0-semigroup of contractions S(t) = etA onH. ��

Thus, we have the following result of existence and uniqueness:

Theorem 3.5 LetU0 ∈ H, then there exists a uniqueweak solutionU of (25) satisfying

U ∈ C([0,∞);H). (37)
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Moreover, if U0 ∈ D(A), then

U ∈ C([0,∞); D(A)) ∩ C1([0,∞);H). (38)

In this case, it is called a strong solution.

Proof From semigroup theory,U (t) = etAU0 is the unique solution of (25) satisfying
(37) and (38). The proof is complete. ��

4 Asymptotic behavior

In this section, our objective is to show the exponential stability of the system (13)-(15).
For our goal, we need to use the stability number (11).

4.1 Technical lemmas

Lemma 4.1 Consider

I1(t) = Iρ

∫ L

0
ξξt dx . (39)

Let

U (t) = (u(t), ut (t), ξ(t), ξt (t), S(t), St (t), θ(t), z(t))

be a solution of (13)–(15). Then the functional I1, satisfies the estimative

d

dt
I1(t) ≤ −D

2

∫ L

0
ξ2x dx + Iρ

∫ L

0
ξ2t dx + c1

∫ L

0
(3S − ξ − ux )

2 dx

+c1

∫ L

0
θ2x dx, (40)

for any constant c1 > 0.

Proof Differentiating I1(t), using (13) and integration by parts, we arrive at

d

dt
I1(t) = Iρ

∫ L

0
ξ2t dx − D

∫ L

0
ξ2x dx

+ G
∫ L

0
ξ(3S − ξ − ux ) dx − b

∫ L

0
ξθx dx

Estimate (40) follows thanks to Young’s and Poincaré’s inequalities. ��
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Now, let us introduce the functional

I2(t) = 3Iρ

∫ L

0
SSt dx . (41)

Lemma 4.2 Let

U (t) = (u(t), ut (t), ξ(t), ξt (t), S(t), St (t), θ(t), z(t))

be a solution of (13)-(15). Then the functional I2, satisfies the following estimative

d

dt
I2(t) ≤ −δ

∫ L

0
S2 dx − 3D

∫ L

0
S2x dx

+Iρ

∫ L

0
S2t dx + c2

∫ L

0
(3S − ξ − ux )

2 dx, (42)

for any constant c2 > 0.

Proof By differentiating I2(t), using (13) together with integration by parts, we obtain

d

dt
I2(t) = Iρ

∫ L

0
S2t dx − 3D

∫ L

0
S2x dx − 3G

∫ L

0
(3S − ξ − ux )S dx − 4δ

∫ L

0
S2 dx .

We then use Young’s inequality to obtain (42). ��
Now, we introduce another functional

I3(t) = k Iρ
b

∫ L

0
ξt

∫ x

0
θ(r) dr dx . (43)

Lemma 4.3 Let

U (t) = (u(t), ut (t), ξ(t), ξt (t), S(t), St (t), θ(t), z(t))

be a solution of (13)-(15). Then the functional I3, satisfies

d

dt
I3(t) ≤ − Iρ

2

∫ L

0
ξ2t dx + ε3

∫ L

0
(3S − ξ − ux )

2 dx

+ ε3

∫ L

0
ξ2x dx + c3

(
1 + 1

ε3

) ∫ L

0
θ2x dx

(44)

for any constants ε3 > 0 and c3 > 0.

Proof We differentiate I3(t), use (13) and integrating by parts, yield
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d

dt
I3(t) = − kD

b

∫ L

0
ξx θ dx + kG

b

∫ L

0
(3S − ξ − ux )

∫ x

0
θ(r) dr dx

+ k
∫ L

0
θ2 dx + α Iρ

b

∫ L

0
ξt θx dx − Iρ

∫ L

0
ξ2t dx .

Exploiting Young’s, Poincaré’s, and Cauchy-Schwarz inequalities, we have the
estimates (44) and conclude the prove. ��

Now, let us consider the following functional

I4(t) = −Iρ

∫ L

0
ξt (3S − ξ − ux ) dx + ρD

G

∫ L

0
utξx dx . (45)

Lemma 4.4 Assume that χ = 0 holds. Let

U (t) = (u(t), ut (t), ξ(t), ξt (t), S(t), St (t), θ(t), z(t))

be a solution of (13)-(15). Then, the functional I4, satisfies the estimative

d

dt
I4(t) ≤ − G

2

∫ L

0
(3S − ξ − ux )

2 dx + ε4

∫ L

0
ξ2x dx + ε4

∫ L

0
S2t dx

+ c4
ε4

∫ L

0
u2t dx + c4

ε4

∫ L

0

∫ τ2

τ1

|μ2(τ )|z2(x, 1, t, τ ) dτ dx

+ c4

∫ L

0
θ2x dx + c4

(
1 + 1

ε4

) ∫ L

0
ξ2t dx .

(46)

for any constants ε4 > 0 and c4 > 0.

Proof Derivative of I4(t), using (13) and integrating by parts, yields

d

dt
I4(t) = − G

∫ L

0
(3S − ξ − ux )

2 dx + b
∫ L

0
θx (3S − ξ − ux ) dx − Iρ

∫ L

0
ξtψt dx

− μ1D

G

∫ L

0
utξx dx − D

G

∫ L

0

∫ τ2

τ1

μ2(τ )z(x, 1, t, τ )ξx dτ dx

+
(

ρD

G
− Iρ

) ∫ L

0
ξxt ut dx .
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Since χ = 0, coupled with the fact that ψt = −ξt + 3St , we have that

d

dt
I4(t) = − G

∫ L

0
(3S − ξ − ux )

2 dx + b
∫ L

0
θx (3S − ξ − ux ) dx + Iρ

∫ L

0
ξ2t dx

− 3Iρ

∫ L

0
ξt St dx − μ1D

G

∫ L

0
utξx dx

− D

G

∫ L

0

∫ τ2

τ1

μ2(τ )z(x, 1, t, τ )ξx dx .

Estimate (46) follows thanks to Young’s inequality. ��
Now, we introduce another functional

I5(t) = −3Iρ

∫ L

0
St (3S − ξ − ux ) dx + 3Iρ

∫ L

0
ut Sx dx . (47)

Lemma 4.5 Assume that χ = 0 holds. Let

U (t) = (u(t), ut (t), ξ(t), ξt (t), S(t), St (t), θ(t), z(t))

be a solution of (13)-(15). Then, the functional I5 satisfies the estimative

d

dt
I5(t) ≤ − 9Iρ

2

∫ L

0
S2t dx + ε5

∫ L

0
S2x dx + c5

∫ L

0
ξ2t dx

+ c5
ε5

∫ L

0
u2t dx + c5

ε5

∫ L

0

∫ τ2

τ1

|μ2(τ )|z2(x, 1, t, τ ) dτ dx

+ c5

(
1 + 1

ε5

) ∫ L

0
(3S − ξ − ux )

2 dx,

(48)

for any constants ε5 > 0 and c5 > 0.

Proof Taking derivative of I5, use (13), integrating by parts, coupled with fact that
ψt = −ξt + 3St , we obtain

d

dt
I5(t) =3

(
D − GIρ

ρ

)∫ L

0
Sx (3S − ξ − ux ) dx + 3G

∫ L

0
(3S − ξ − ux )

2 dx

+ 4δ
∫ L

0
S(3S − ξ − ux ) dx + 3Iρ

∫ L

0
Stξt dx − 9Iρ

∫ L

0
S2t dx

− 3μ1 Iρ
ρ

∫ L

0
ut Sx dx − 3Iρ

ρ

∫ L

0

∫ τ2

τ1

μ2(τ )z(x, 1, t, τ )Sx dτ dx .

Since χ = 0 and using Young’s, Poincaré’s inequalities to obtain (48). ��
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Finally, we define the functional

I6(t) =
∫ L

0

∫ 1

0

∫ τ2

τ1

τe−τη|μ2(τ )|z2(x, η, τ ) dτ dη dx . (49)

Lemma 4.6 Let

U (t) = (u(t), ut (t), ξ(t), ξt (t), S(t), St (t), θ(t), z(t))

be a solution of (13)-(15). Then, the functional I6, satisfies

d

dt
I6(t) ≤ − c6

∫ L

0

∫ 1

0

∫ τ2

τ1

τ |μ2(τ )|z2(x, η, τ ) dτ dη dx

− c6

∫ L

0

∫ τ2

τ1

|μ2(τ )|z2(x, 1, τ ) dτ dη dx + μ1

∫ L

0
u2t dx,

(50)

for some constant c6 > 0.

Proof Taking derivative of I6(t), using (13) and the fact that z(x, 0, τ, t) = ut (x, t)
as follows

d

dt
I6(t) = −

∫ L

0

∫ τ2

τ1

|μ2(τ )|e−τ z2(x, 1, τ ) dτ dx +
∫ τ2

τ1

|μ2(τ )| dτ

∫ L

0
u2t dx

−
∫ L

0

∫ 1

0

∫ τ2

τ1

τe−τη|μ2(τ )|z2(x, η, τ ) dτ dη dx .

(51)

Since e−τ ≤ e−τη ≤ 1 for all η ∈ (0, 1) and from (10), we obtain

d

dt
I6(t) ≤ −

∫ L

0

∫ τ2

τ1

|μ2(τ )|e−τ z2(x, 1, τ ) dτ dx + μ1

∫ L

0
u2t dx

−
∫ L

0

∫ 1

0

∫ τ2

τ1

τe−τ |μ2(τ )|z2(x, η, τ ) dτ dη dx .

(52)

Since−e−τ is an increasing function,−e−τ ≤ −eτ2 for all τ ∈ [τ1, τ2], we can choose
c6 > 0 such that c6 = eτ2 and, hence, we arrive at (50). ��

4.2 Exponential stability

We define the Lyapunov functional L(t) as follows:

L(t) := NE(t) +
6∑

i=1

Ni Ii (t), ∀ t ≥ 0, (53)
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where Ni (i = 1, . . . , 6) are positive constants to be fixed later. The functionals
I1, . . . , I6 satisfy the Lemmas 4.1–4.6, respectively. First of all, we prove that L(t)
and E(t) are equivalent.

Proposition 4.1 There exist positive constants γ1 and γ2 such that

γ1E(t) ≤ L(t) ≤ γ2E(t), ∀ t ≥ 0. (54)

Proof By definition of L(t), we have

|L(t) − NE(t)| ≤
6∑

i=1

Ni |Ii (t)|. (55)

It follows from (16), Young’s, Poincaré’s, and Hölder’s inequalities, and from the fact
that e−τη ≤ 1 for all η ∈ (0, 1), for some constant γ3 > 0, we deduce that

|L(t) − NE(t)| ≤ γ3E(t). (56)

So, we can choose N large enough that γ1 := N − γ3 and γ1 := N + γ3, then (54)
holds. ��

Now, we are in a position to prove our main result.

Theorem 4.7 Let U (t) = (u(t), ut (t), ξ(t), ξt (t), S(t), St (t), θ(t), z(t)) be a solution
of (13)-(15) with initial data U0 ∈ D(A). Then, there exists positive constants M and
γ such that

E(t) ≤ ME(0)e−γ t , ∀t ≥ 0. (57)

Proof Taking derivative L(t), substituting the estimates (17), (40), (42), (44), (46),
(48), (50), and setting

N1 = N2 = 1, ε3 = D

8N3
, ε4 = D

8N4
and ε5 = D

2N5
,
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we obtain

d

dt
L(t) ≤ −

(
m0N − 8c4

D
N 2
4 − 2c5

D
N 2
5 − μ1N6

)∫ L

0
u2t dx

−
(

αN − c1 − c3

(
1 + 8

D
N3

)
N3 − c4N4

) ∫ L

0
θ2x dx

− D

4

∫ L

0
ξ2x dx − δ

∫ L

0
S2 dx − 5D

2

∫ L

0
S2x dx

−
(
Iρ
2
N3 − Iρ − c4

(
1 + 8

D
N4

)
N4 − c5N5

)∫ L

0
ξ2t dx

−
(
G

2
N4 − c1 − c2 − D

8
− c5

(
1 + 2

D
N5

)
N5

) ∫ L

0
(3S − ξ − ux )

2 dx

−
(
9Iρ
2

N5 − Iρ − D

8

) ∫ L

0
S2t dx

−
(
c6N6 − 8c4

D
N 2
4 − 2c5

D
N 2
5

)∫ L

0

∫ τ2

τ1

|μ2(τ )|z2(x, 1, τ ) dτ dx

− c6N6

∫ L

0

∫ 1

0

∫ τ2

τ1

τ |μ2(τ )|z2(x, η, τ ) dτ dη dx .

First, let us choose N5 large enough such that

9Iρ
2

N5 − Iρ − D

8
> 0.

Once N5 is fixed, we proceed to choose N4 large enough such that

G

2
N4 − c1 − c2 − D

8
− c5

(
1 + 2

D
N5

)
N5 > 0.

Now, once N4 and N5 are fixed, we select N3 and N6 large enough so that

Iρ
2
N3 − Iρ − c4

(
1 + 8

D
N4

)
N4 − c5N5 > 0 and c6N6 − 8c4

D
N 2
4 − 2c5

D
N 2
5 > 0.

Lastly, choosing N sufficiently large enough and applying Poincaré’s inequality, we
obtain

d

dt
L(t) ≤ −γ0

∫ L

0

[
u2t + (3S − ξ − ux )

2 + ξ2t + ξ2x + S2t + S2x + S2 + θ2

+
∫ τ2

τ1

|μ2(τ )|z2(x, 1, τ ) dτ +
∫ 1

0

∫ τ2

τ1

τ |μ2(τ )|z2(x, η, τ ) dτ dη

]
dx

≤ −γ0E(t),
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for some positive constant γ0. Moreover, from the equivalence betweenL(t) and E(t)
according to inequality (54), we obtain

E(t) ≤ ME(0)e−γ t , ∀t ≥ 0,

where M ≥ 1 and γ := γ0/γ1. ��

Final comment

In this manuscript, we use a nonlocal delay condition
∫ τ2

τ1

μ2(τ )ut (x, t − τ) dτ and

additionally,we are considering the non-constant delay coefficientμ2(τ ),whichmakes
the result more comprehensive and realistic. Combining the semigroup technique with
the energy method, we obtain the existence and uniqueness of a strong solution and
the exponential decay of the solution.
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