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Abstract

This manuscript deals with a thermoelastic laminated Timoshenko beam with a non-
local integral condition on the transversal displacement and thermal dissipation in
the equation that describes the dynamical of rotate angle. Using the Hille—Yosida
Theorem, we prove the existence, uniqueness, and regularity of the solution. For the
asymptotic behavior, we apply the energy method. Using suitable multipliers, we con-
struct a Lyapunov functional, and then we obtain the exponential stability. To the best
of our knowledge, thermoelastic laminated Timoshenko beams with nonlocal time
delay conditions have not been considered previously.
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1 Introduction

A single beam or more than one is present in structures like mechanical engineering,
electrical engineering, civil engineering, and aerospace engineering. S.P. Timoshenko
[46] came up with a pioneer theory for a beam that is better suited for engineering
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B Adhesive layer of negligible thickness and mass Beam

Fig.1 Adhesive application (left) and beam in the press (right)

practice and is nowadays widely used for moderately thick beams. In Timoshenko’s
assumptions, the plane cross sections are perpendicular to the beam centerline and
remain plane. Then, an additional kinematics variable representing the rotation angle of
a filament of the beam 1 is added to the displacement assumptions «. Its mathematical
formulation is given by a system of two partial differential equations

pAuy, =S, and plyy = My —S§, (D

where M and S represent, respectively, the bending moment and the shear stress. The
corresponding constitutive elastic laws are given by

S=xA(uy +v) and M= EIlvy,, 2)

where E represents the flexural rigidity of the material, « is a shear coefficient, p is
the mass density, A and / denote the area and the inertial moment of a cross section.

The proposed linear model is a coupled partial differential equation obtained from
(1) and (2) given by

PAuy(x,t) —kA(uy —kAY)y =0, xe€(0,L), t >0,
plo@u(x, 1) — ElYy(x,0) —xkA(uy —¢) =0, x€(0,L), 1 >0,

where ¢ > 0 is the time variable, x is the space coordinate along the beam, of length
L, in its equilibrium position. The coefficients /,, E, and K are the polar moment
of inertia of a cross section, Young’s modulus of elasticity, and the shear modulus,
respectively.

Hansen and Spies [14, 16] derived from Timoshenko’s theory, a system of equations
that describes the dynamics of a structure given by two identical Timoshenko beams
with an adhesive layer (of negligible thickness and mass) bonding the two adjoining
surfaces (Fig. 1).

The model derived is

Ouyt + G(l/f - Mx)x = 07 X € (Os L)v r = 0,
IoBSit — Y1) = DBSxx — Yux) =G —ux) =0,x€(0,L), 1 =20, (3)
31,8 —3DSxx + 3G —uy) +460S +4y0S; =0, x € (0, L), t >0,
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where u = u(x, t) is the transverse displacement, ¥y = ¥ (x, ¢) is the rotation angle,
S = S(x,t) is proportional to the amount of slip along the interface. The positive
parameters o, I,, G, D, and 4§y, are the density, mass moment of inertia, shear stiff-
ness, flexural rigidity, and adhesive stiffness, respectively. The non-negative parameter
4yp is called the adhesive damping, and S; is the structural damping of the system.
Laminated beams have gained popularity and importance in science and engineering
fields.

When the Timoshenko system has not damped in all components, the system decays
exponentially just under the so-called “equal wave speeds”, see [27]. If the dampings
are added in all equations, the energy of the system decay exponentially without none
assumption over the coefficients relations, see [36]. In recent years, the control of
partial differential equations with time delay effects has aroused the interest of several
researchers. In [15], was studied the stability of Timoshenko’s beam system with
boundary time delay. In [45], the authors considered the interior damping and boundary
delay. For exponential stability of the wave equation with boundary time-varying
delay we cite [32]. In [20], the authors obtained the well-posedness and exponential
stability for Timoshenko beam with delay on the frictional damping under the condition
um1 > 2 > 0and t(¢r) = t. In [19] was extended the result of [20] for (¢) a time-
varying function. For a transmission problem in the presence of memory and delay
terms, under an appropriate hypothesis on the relaxation function and the relationship
between the weight of the damping and the weight of the delay, in [22] was proved
well-posedness by using the semigroup theory a decay result by introducing a suitable
Lyapunov functional.

Time delays so often arise in many physical, chemical, biological, and economical
phenomena, see [43] and references therein. Timoshenko’s beam system, without
delay, has been extensively studied by several authors. We can cite a few of them, [1,
2,11, 13, 18, 25, 28, 29, 40, 41]. For Timoshenko system with delay, we cite [3, 12,
35].

From the laminated beam model introduced by Hansen in 1984, several works were
produced in the last years, see for instance: [7, 10, 23, 24, 34, 38, 39, 44]. In [38],
authors assumed that a container is fastened securely on the left; while on the right,
it is free and has an attached container. Using the semigroup approach and a result of
Borichev and Tomilov, they proved that the solution is polynomially stable. In another
setting in [10], involving a nonlinear foundation, authors established the existence of
smooth finite-dimensional global attractors for the corresponding solution semigroup.

Wang et al. [47] proved for the system (3) that the frictional damping S; created
by the interfacial slip alone is not enough to stabilize the system exponentially to its
equilibrium state. Naturally, the question arises of studying the influence of additional
stabilizing mechanisms on the model and including the situation without S;.

The following full damped system, derived of (3), with frictional dissipation in
transversal displacement and in the rotation angle, was considered in [34]

Py + k(Y —uy)y +au, =0,
P2(s = V)i —b(s — Y)ax — k(Y —uy) + B(s —¥); =0, “4)
P28t — bsxx + 3k(f — uy) +48s +4ys, =0,
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and established the exponential stability.
In [5] was done ¢ = y = 0 in (4) and considered a single control in the form of a
frictional damping /; on the rotation angle,

pwi + G —wy)y =0,
I,3s =¥y — DBs — Y)xx — G —wy) +83Bs — ¥), =0, (5)
31,8 —3Dsyy +3G(¥ —wy) +4ys =0,

and proved that the unique dissipation through the frictional damping is strong enough
to get exponential stability of the energy.

Whenever energy is transmitted from one place to another, there is a delay associated
with the transmission, see [42]. A very delicate question to consider in the transmission
of energy is that the delay can become a source of instability. A small delay in boundary
control could turn the well-behaved hyperbolic system into a wild one, see [9].

In [4] was considered in the following thermoelastic laminated beam just one dis-
sipation through heat conduction in the interfacial slip equation,

pwy + G —wy)x =0,

I,3s =)y — DBs — Y)xx — G —wy) =0,
31,51 — 3Dsxx + 3G (Y — wy) +4ys + 86, =0,
030 — abyx + 855 = 0.

(6)

The author proved that this unique dissipation is strong enough to stabilize expo-
nentially all the system provided the wave speeds of the system are equal. The result
(6), in a way, extends previous works where additional internal or boundary controls
were used together with frictional damping in the interfacial slip.

On the above scenario, the present paper is concerned with a nonlocal time delay,
given by,

1)
pun+G W — ”x)x+ﬂlut+/ﬂ2(f)ut(x»t —1)dt=0, (x,1) € (0, L)x(0, 00),

71

L3S =) =DBS = P)ax — G —ux)+b6 =0, (x, 1) € (0, L)x(0, 00),(7)
31,811 =3DSxx+3G (Y — uy)+48S=0, (x,1) € (0, L)x(0, 00),
k6 — b +b(3S — ) =0, (x,1) € (0, L)x(0, 00),

where 7, 17 are real numbers such that 0 < 7; < 13, with Dirichlet~Neumann bound-
ary conditions

ux(0,)=v(0,1)=5(0,1)=6,(0,t)=u(L,t) =y (L, t)=Sx(L,t)=6(L,1)=0,
®)
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and initial data

u(x,0) =uox), ur(x,0) =ui(x), ¥x,0) = Yox), ¥:(x,0) = (x),
S(x,0) = So(x), Si(x,0) =S1(x), 0(x,0) =6p(x), 6,(x,0) =61(x), (9)

ut(x7 _T) = fo(xv T)7 T E ('L'l, TZ)’

with fy belong to a suitable Sobolev space. The function uy : [71, 2] — R are
bounded satisfying

12}
/ lu2(T)dT < p. (10)

We aim to study the well-posedness and take into account the stability number

X:

> Q

b (11)
1,

we will prove the exponential decay of the system. Note that x = 0 means that the
wave speeds of the Egs. of (7)1, (7)2 and (7)3 are equal. Then, there is an effective
transfer of the energy from the damped equation to the undamped one, and the delay
can be a source of instability for all system.

By following [27], we assume that a thermal dissipation is applied on the bending
moment. Note that ;1 = 0 and u(7) = 0 leads a problem equivalent to (6). The his-
tory of nonlocal problems with integral conditions for partial differential equations is
recent and goes back to [8]. In [6], a review of the progress in the nonlocal models with
integral type was given with many discussions related to physical justifications, advan-
tages, and numerical applications. For a nonlocal problem for a hyperbolic equation
with integral conditions of the 1st kind, we cite [33]. Well-posedness and exponential
stability for a wave equation with nonlocal time-delayed were studied in [31, 37] by
different techniques.

The paper is organized as follows. In the next section, we reformulate the system
(7) introducing the new variable as in [30] and prove that the energy of the system is
dissipative. In the Sect. 3, we present the semigroup configuration and using Hille—
Yosida Theorem, we prove the existence, uniqueness, and regularity of the solution.
In the Sect. 4, we prove the exponential stability. The tool is the energy method that
consists of constructing a Lyapunov functional for the system.

2 Preliminaries
As in [30], we introduce the new variable

z(x,n,t,t) =us(x,t —nt) in (0, L) x (0, 1) x (0, 00) x (71, 72).

) Birkhauser
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It is easily verified that the new variable satisfies
Tz (x, 1,1, T) + 2p(x, 1, 1, 7) = 01in (0, L) x (0, 1) x (0, 00) x (11, 72). (12)

Following the idea of [47], we denote the effective rotation angle by & := 35 — . By
(12), the differential equations (7) can be rewritten as follows:

©

puse + GBSY — ux)y + w1y +/ m2(t)z(x, 1,1, 7)dr =0,

7
1yé — D&vx — G(3SY — uy) + b0, =0,
31,8 —3DSyx +3GBSY —uy) +45S =0,
k6 — abyx +b(3S —¥) . =0,
12 + & =0,

13)

subject to boundary conditions given in (8), that is,

ur(0,1)=£(0, 1) =S(0, 1) =6, (0, 1) =u(L, t) =& (L, t) =Sy (L, ) =6(L, t) =0
(14)

and initial conditions

u(x,0) = up(x), u(x,0) =ui(x), £(x,0) =& ), &(x,0) =& (x),
S(x,0) = So(x), S;(x,0) = S1(x), 6(x,0) =6y(x), 6;(x,0) =01(x), (15)
2(x,n,0,7) = folx, —n7t) = u2(x, 1, 7).

We define the energy of the solution of problem (13)-(15) by

1 L 2 2 2 2 2

E() =3 pu? + GBS — & —uy)? + 1,2 + DE2 4 31,5

0 - (16)

+3DS§+4552+1<92+[ / Tlua ()| dr dn:| dx.
0 Jr

Our firstresult states that the energy is a nonincreasing function and uniformly bounded
above by E(0).

Lemma 2.1 Let (u(t), us(¢), (1), & (1), S(t), S;(¢), 0(t), z(t)) be a solution to the sys-
tem (13)-(15). Then, the energy functional defined by (16) satisfies

d L L
—E@) < —m()/ uldx —a/ 02dx <0, (17)
dt 0 0

1]

where mg = |1 —f [ua(T)|dr > 0.

71

W Birkhauser



Thermoelastic laminated... Page 7 of 23 56

Proof Multiplying (13);2.3.4 by u;, &, S; and 6, respectively, integrating by parts
each over (0, L), we get

1d L 5 L
7—‘/. puy dx —G/ (3S — & —uy)uyr dx
2.dt Jo 0 18
L L 1) ( )
+ / utzdx +/ f o (0)|z(x, 1, ¢, Tus dx =0,
0 0 J
1d L 2 2 L L
747/ (%§-+Dg)dx—G/q6S—$—uﬁ&dx+b/ Oc&r dx =0, (19)
2dt Jo
li/ (31 52 +31:>52+4as2) a’x+3G/ (3S — & — uy)Sp dx =0, (20)
2dt Jy Pt
1d
m,/ w%u+a/ 62dx — b / £0, dx = 0. 21
2dt Jy 0

Now, multiplying (13)s by |u2(7)|z and integrating by parts over (0, L) x (0, 1) x
(11, T2), we obtain

2dt/ // rmz(r)lz (x,n,t,t)ydtdndx

=‘§E// /qu(f)l—z Gt 0 dnd dx 22)

:——// w2 (D)% (x, 1,2, T) dt dx + = // qu(t)lu, dtdx.

Combining (18)—(22), we arrive at

d 1 [9) L2 1 L, )
—E®)=—|u1—z [ |lu(0)ldr /uldx - —f [2()|z"(x, 1, ¢, T) dr dx
dt 2 7 0 2 Jo 1 23)

// u2(t)z(x, 1,¢, Dus dr dx.

Using Young’s inequality, we see that last term in (23) satisfies

L 1) 1 [9) L
—/ / ua(t)z(x, 1,t, Du, dr dx 5—/ qu(f)ldf/ u? dx
0 71 T 0

1

(24)

/ / w2 (D)2 (x, 1,1, T) dT dx.

We complete the proof of (17) by substituting (24) in (23), and using (10). O

) Birkhauser
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3 Well-posedness

In this section, we give an existence and uniqueness result for problem (13)-(15) using
the semigroup theory. Introducing the vector function U = (u, w, &, v, S, y, 0, )7,
where w = u;, v =& and y = §;, the system (13)-(15) can be written as

U, — AU =0,

T (25)
U(x,0) = Up(x) = (uo, u1, 0, &1, So, S1, 6, u2)" ,

where A : D(A) C H — 'H is a linear operator defined by

w
—p! [G(3S — & —uy)x +puw+ frtlz wo(Mz(x, 1,1, 1) dt]
v
AU = 17V [DEry + G(3S — & —uy) — bo, ]
y
I;1[DSer — GBS — & —uy) — 4S]
k! (@Oxx — &xr)

-1z,
We consider the following spaces

H!:={(f e H' (0, L); f(L) =0},
H} :={f e H'(0,L); f(0) =0},
L2 :={f € L*0.L); f(L) = 0}.

Let
1 2 1 2 2 1 2 2
H=H'x L*0,L) x [Hb % L (O,L)] x HY x L2 x L*((0, L) x (0, 1) x (11, 72))

be the Hilbert space equipped with the following inner product

L L L L
(U, Uy :p/wd)dx+D/§x§xdx+IQ/vﬁdx+3D/Sx§xdx
0 0 0 0

L L L
+45/S§dx+3lg/yydx+c; (3S—&—uy)(3S—E —iiy) dx (26)
0 0 0

L L rl
—l—k/ 99dx+/ / / tua(t)zzdr dndx,
0 o Jo Jg

forU = (u,w,&,v,8,y,0,2T andU = (i1, w, &, 9, 5,7,0,2)7.
The domain of A is defined by

W Birkhauser



Thermoelastic laminated... Page 9 of 23 56

u,£,Se H*(0, L), 0, w e H}, &£,S € H)
(. 6,0, 5, 7,6,2) € H| 2 € L2((x1, 1205 H'((0, L) x (0, 1))

z(-,0,) =win (0, L)
ux(0) =8(L) = Sx(L) =6x(0) =0

D(A)=

27)

Note that D(.A) is independent of # > 0. Furthermore, clearly D(.4) dense in H.
To prove the existence and uniqueness of solutions, observe that, as E(¢) = % U ||%_[,
for all U € D(A), a simple differentiation gives

WU U = LEW) & (AU, Uy = LE@). (28)
dt dt

Then, from (17), we obtain
L L
(AU, U)yy < —mO/ uldx —oz/ 62 dx <0, (29)
0 0

where m is defined in (2.1). Hence, the operator A is dissipative.
The Hille—Yosida Theorem give us the conditions for a linear (unbounded) operator
A to be generator of a Cy-semigroup of contractions S(¢) in a Banach space.

Theorem 3.1 (Hille-Yosida) A linear (unbounded) operator A is the infinitesimal gen-
erator of a Co-semigroup of contractions S(t), t > 0, if and only if,

(i)Ais closed andD(A) = H,
1
(ii) the resolvent setp (A)of AcontainsR* and for everyir > 0, |0 I — A)7Y| < T
Proof See [26, Theorem 3.1, page 8] O

However, for Hilbert space the Hille—Yosida Theorem leads to the following result,
see [21, Theorem 1.2.2, page 3].

Theorem 3.2 Let A be a densely defined linear operator on a Hilbert space H. Then,
A generates a Cy-semigroup of contractions S(t) on H if and only if A is dissipative
and R(I — A) = H.

Using the result above, we prove the following:
Lemma 3.3 A generates a Cy-semigroup of contractions S(t) on H.

Proof Since A is dissipative and D(A) is dense in H, to prove that A generates a
Co-semigroup of contractions S(¢) on H it is sufficient to show that R(I — A) = H.

) Birkhauser
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Given

F=(f....f)0 eH,

we must show that there exists

U=@uw§v,S,y6,2" € DA

satisfying
I-AU =F
which is equivalent to
u—w=fi,
n2
pw+GGS — € —us b+ [ pa@ze L v de = pfo
o
§—v=f3,
Ipv — Dy — GBS —§ —uy) + b0 =1, fa,  (30)
S - y = f57

31,y —3DS,x +3G(3S — & —uy,) +48S =31, f,
k6 — abyx + bvy = kfy,
TZ+27; =71 fs.

Suppose that we have found u, & and S with the appropriated regularity. Therefore,
(30)1,3,5 give

w=u— fi,
v=E§— f3, (31)
y=58—171s.

Itis clear that w € Ha1 andv, y € Hbl. Furthermore, following the same approach as
in [31], we obtain that

n
z2(x,n, 7)) = wx)e " + re_”’/ " fg(x,0,T)do
0

is solution of the (30)g satisfying
72(x,0,7) = w(x), forx e (0,L), T € (11, 12). (32)

So, from (31),
)

z(x,n, 7)) =u(x)e " — fi(x)e " + 1" / et fy(x, 0, 1) do,

71
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and, in particular,
z(x, 1, 7) = ux)e” " +z0(x, 1), (33)

where zo(x, ) € L%((0, L) x (11, 12)) defined by

1
20(x, ) =—fix)e " + Ie_t/ e’ fg(x,0,7)do.
0

By (30) and (31), we see that the functions u, &, S and 6 satisfy the following system

§M+G(3S_%_ _ux)x =h1,
1p6 — D&y — GBS — & —uy) + b0y = ho,

(34)
yS —3DSyy +3G(3S — & — uy) = h3,
kOy — abxx + béx = hy,
where
1)
c=p+ @ ~I—/ p2(t)e tdr, y =31, + 46,
T
(%) 1
= -ufi+efe- [ @t ndn b= Lf+ 1
7]
hy =31,fs +31,fs and hg4 =bf3, +kf7.
Solving the system (34) is equivalent to finding
2 1 2 1\2 1
(u.£,5.0) € HX0, L) N H' x (H (o,L)me) x H,
such that
L L L
gf uftdx—G/ (3S—S—ux)u~xdx:/ hiudx,
0 0 0
L L L 5 L L
Ip/ Egdx+Df stxdx—G/ (3S—$—ux)§dx+b/ GXde:/ ho& dx,
0 0 0 0 0 (35)

L L 5 L 5 L 5
y/ Sde+3D/ SxSxdx+3G/ (3S—§—ux)de=/ h3Sdx,
0 0 0 0

L L 5 L N L N
k/ 99dx+a/ Qxexderb/ ExOdx =/ ha6dx,
0 0 0 0

for all (it§ S, 5) € H! x H! x H} x L2
Now, we observe that solving the system (35) is equivalent to solve the problem

T <(u, £.5.6), @ E 3, é)) — L@,E 5, 0), (36)

) Birkhauser
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where the bilinear form
Y:[H!' x H x H! x 2> - R
and the linear form
L:HaleblebleiaR
are defined by

L

L
T((u,s,s,e),(zz,é,i,é))=gf uﬁdx—i—G/ (S —& —u)(3S —F —iiy)dx
0

0

L L L
+Ip/ Sde—i—D/ éxgxdx—i—b/ 0 & dx
0 0 0
L L L
+)// Sde+3D/ SxSxdx+k/ 00 dx
0 0 0
L L
+oz/ 9x9xdx+b/ &EOdx
0 0

and

o L L 5 L 5 L B
L(ﬁ,s,s,e) = | hyidx+ hzsdx+/ thdx—i-/ haf dx
0 0 0 0
= (1 2o h3 hy), @8, 5,8)).

Now, we introduce the Hilbert space V = Ha1 X Hb1 X Hb1 X Li equipped with the
norm

G, &, S, G =llulF 2 1, + 135 = & = uxllF a1, + 16720 1)

HUSc 2 50 7+ 1612200 ;-
L%0,L) L%0,L)

It is clear that Y and L are bounded. Furthermore, using integration by parts, we can
obtain that there exists a positive constant m such that

L L L
T((u,g,s,e),(u,g,s,e))=g/ uzdx—i—G/ (3S—§—ux)2dx+lp/ £%dx
0 0 0

L L L
+D/ gfdx+yf S2dx+3D/ S2dx
0 0 0

L L
+kf szx+a/ 02 dx
0 0

>m|(u, &, 8,03,

W Birkhauser
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which implies that Y is V-elliptic.

Hence, we assert that Y is continuous and V -elliptic bilinear form on V x V, and
L is continuous form on V. We are in conditions of the Lax-Milgram Theorem, [17,
Theorem 3.1.4, page 115].

Theorem 3.4 (Lax-Milgram) Let V be a Hilbert space and Y (-, -) a continuous and
V-elliptic bilinear form on 'V x V. Then, given f € V, there exists a unique u € V
such that Y (u, v) =(f,v), YveV.

So, applying the Lax—Milgram Theorem, we deduce that for all
(ﬁ,é,i,é) € H' x H! x H! x L2,
the problem (36) admits a unique solution
(u,€,8,0) € H' x H} x H! x L2.
Applying the classical elliptic regularity, it follows from (35) that
(u,£,5,0) € H*(0,L)> x H].

On the other hand, (35); also holds true for any ¢ € C1(0, L) with ¢(L) = 0, then

L L L L
g/ ugodx+3G/ ngodx—Gf u”(pdx=/ hipdx,
0 0 0 0

which, using integration by parts, implies
Gux(0)¢(0) = 0.
Hence,
1 (0) = 0.
Similarly, we can get
§x(L) = Sx(L) = 6x(0) = 0.
Therefore, the operator I — A is surjective, that is, R(I —.A) = H and then A generates

a Cp-semigroup of contractions S(t) = e on H. O
Thus, we have the following result of existence and uniqueness:

Theorem 3.5 Let Uy € H, then there exists a unique weak solution U of (25) satisfying
U € C([0,c0); H). 37

) Birkhauser
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Moreover, if Uy € D(A), then
U € C([0, 00); D(A)) N C([0, 00); H). (38)

In this case, it is called a strong solution.

Proof From semigroup theory, U (¢) = e’ AUy is the unique solution of (25) satisfying
(37) and (38). The proof is complete. O

4 Asymptotic behavior

In this section, our objective is to show the exponential stability of the system (13)-(15).
For our goal, we need to use the stability number (11).

4.1 Technical lemmas

Lemma 4.1 Consider

L
Ii(t) = Ip/O E& dx. 39)
Let
U(t) = (u(®), u (), 5(), § (1), S(), $:(1), 0(2), z(1))
be a solution of (13)—(15). Then the functional I, satisfies the estimative
d D [t 2 L 2 L 2
— 11 (1) 5——/ Sxdx+1p/ & dx+01/ (3S —& —uy)“dx
dt 2 0 0 0
L
+c / 62 dx, (40)
0

for any constant ¢1 > 0.

Proof Differentiating 7 (¢), using (13) and integration by parts, we arrive at
d Lo b
— () =1, & dx—D & dx
dt 0 0
L L
+G/ E(3S—%‘—ux)dx—b/ £0, dx
0 0

Estimate (40) follows thanks to Young’s and Poincaré’s inequalities. O
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Now, let us introduce the functional

L
ht) = 31p/0 S8, dx. (1)

Lemma4.2 Let

Ut) = (u(@), ui (1), £(1), §(1), S), $; (1), 0(1), z(1))
be a solution of (13)-(15). Then the functional I, satisfies the following estimative
d L L
— L) < —5/ S%dx —30/ S2 dx
dt 0 0

L L
+Ip/ 5,2 dx + 62/ (3S — & —uy) dx, (42)
0 0

for any constant ¢ > 0.
Proof By differentiating I5(¢), using (13) together with integration by parts, we obtain

L L L L
—IQ(I)ZIP/ S,de—w/ Sfdx—3G/ (3S—“§—ux)de—48f S?dx.
dt 0 0 0 0

We then use Young’s inequality to obtain (42). O
Now, we introduce another functional

L X
I(t) = %/0 5,/0 O(r)drdx. 43)

Lemma4.3 Let

Ut) = (u(t), ui (1), §(1), & (1), $(1), $: (1), 0(1), (1))

be a solution of (13)-(15). Then the functional I3, satisfies

d I L L
—3(t)§——pf sfdx+egf (3S — & —uy)*dx
dt 2 Jo 0

) N\ L (44)
+83/ sfdx+c3<1+—)/ 02 dx
0 &3 0

for any constants €3 > 0 and c3 > 0.

Proof We differentiate I3(¢), use (13) and integrating by parts, yield
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d kD (L kG [L x
—R(t)=— — ExOdx + — BS —& —uy) O(r)drdx
dt b Jo b Jo 0
Lo al, (* Lo
+k 0°dx + —— &by dx —1p & dx.
0 b Jo 0

Exploiting Young’s, Poincaré’s, and Cauchy-Schwarz inequalities, we have the
estimates (44) and conclude the prove. O

Now, let us consider the following functional

L ,OD L
Iy(t) = —Ip/ EBS—& —uy)dx + F/ u€y dx. (45)
0 0
Lemma 4.4 Assume that x = 0 holds. Let

Ut) = (), us (1), 5@), 5 (1), S(1), $: (1), 0(1), 2(1))

be a solution of (13)-(15). Then, the functional 14, satisfies the estimative

d G L L L
—4(t)§——/ (3S—§—ux)2dx+84/ gfdx+e4/ 52 dx
dt 2 0 0 0

L L ro
+= udeZ_“f f w2022 (x, L, Ty drdx  (46)
4 J0 T

€4 Jo
L L
2 1 2
+cy 0 dx +cy (14 — & d
0 &4 0
for any constants €4 > 0 and cq4 > 0.
Proof Derivative of 14(¢), using (13) and integrating by parts, yields

d L L L
—I4(t) = — Gf 3S5-§ —ux)2dx +bf 0x(3S —& —uy)dx — Ip/ Ery dx
dt 0 0 0

u1D

L D L rm
-~ uEpdx — —/ / ua(t)z(x, 1,¢, v)éc drdx
7]

<— — Ip) / Exﬂ/l[ dx.
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Since x = 0, coupled with the fact that ¢, = —&, 4+ 3S;, we have that

d L L L
514@):—0/ (3S—$—ux)2dx+bf 9x(3S—$—ux)dx+Ip/ £2dx
0 0

D L
_3[ / EISZ dx — G M[éx dx

— _/ / ma(t)z(x, 1, ¢, v)é  dx.

Estimate (46) follows thanks to Young’s inequality. O
Now, we introduce another functional

L

L
Is(t) = =31, / Si(3S — & —uy)dx 431, / U, Sy dx. A7)
0 0

Lemma 4.5 Assume that x = 0 holds. Let

Ut) = (), us (1), §(), & (1), S(1), $: (1), 0(1), 2(1))

be a solution of (13)-(15). Then, the functional I5 satisfies the estimative

d 9] L L L
—5(t)§——p/ Stzdx—i-es/ Sfdx%—cs/ g2 dx
dt 2 0 0 0

cs L ) cs L (%) 5
+ —= u; dx+8— a2 (t)|z7(x, 1, ¢, T)dt dx (48)
5J0 T]

&5 Jo

1 L
+cs <1+—>/ (35 — & — uy)*dx,
es/) Jo

for any constants €5 > 0 and c5 > 0.
Proof Taking derivative of Is, use (13), integrating by parts, coupled with fact that
vy = —& + 3S;, we obtain

L L
115(1‘) =3< —%>/ Sx(3S—"§—ux)dx+3G/ (3S—§—ux)2dx
dt P 0 0

L L L
+45/ S(3S—E—ux)dx+31p/ S,g,dx—w,,/ S? dx
0 0 0

3url
—m/ usSy dx——/ / ur(t)z(x, 1,¢,t)Sy dt dx.
Y 0

Since x = 0 and using Young’s, Poincaré’s inequalities to obtain (48). O
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Finally, we define the functional

L 1 (%)
Io(t) = / f / re Mua(1)22(x, n, 7) d dn dx. (49)
0 0 7]

Lemma 4.6 Let

U(t) = (u(t), us (1), §(1), & (1), S(1), S; (1), 0(1), 2(1))

be a solution of (13)-(15). Then, the functional Is, satisfies

d L 1 1%}
Elﬁ(t) <- C6/ / f |2 (D)% (x, n, T) dr dndx
0 0 T (50)

L () L
—06/ / 12 ()12 (x, 1,t)dfd17dx+m/ uldx,
0 T 0

for some constant ce > 0.

Proof Taking derivative of Ig(¢), using (13) and the fact that z(x, 0, 7, 1) = u;(x,t)
as follows

T L
_,6(,)_ / / L ()le T2, 1, r)drdx~|—/2|u2(r)|dr/ u? dx
7 0

(51)
/ // e Mo ()22 (x, n, T) dT dn dx.

Since e " < e~ ™ < 1forall n € (0, 1) and from (10), we obtain

d L () L
—Is(t) 5—/ / lna(t)le™"z 2(x,1,r)drdx+m/ uidx
dt 0o Ju 0

L 1 19
—f / / te T ua ()22 (x, . ) dT dndx.
0 0 T

Since —e ™" is an increasing function, —e~ " < —e™ forall T € [tq, 72], we can choose
¢ > 0 such that ¢ = ¢™ and, hence, we arrive at (50). O

(52)

4.2 Exponential stability
We define the Lyapunov functional £(¢) as follows:
L) :=NE@)+ Y _Nilj(t), Vi>0, (53)
i=1
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where N; (i = 1,...,6) are positive constants to be fixed later. The functionals
11, ..., I¢ satisfy the Lemmas 4.1-4.6, respectively. First of all, we prove that £(¢)
and E(t) are equivalent.

Proposition 4.1 There exist positive constants y1 and y» such that
nE@® = L) =yE®), Vi=0. (54)

Proof By definition of L(t), we have

6
IL() = NE@®)| <Y NilLi(0)]. (55)

i=1

It follows from (16), Young’s, Poincaré’s, and Holder’s inequalities, and from the fact
that e~ < 1 for all n € (0, 1), for some constant y3 > 0, we deduce that

|L(1) = NE@®)| < y3E(1). (56)

So, we can choose N large enough that y; := N — y3 and y1 := N + y3, then (54)
holds. O

Now, we are in a position to prove our main result.

Theorem 4.7 Let U(t) = (u(t), us(¢), £(t), & (1), S(t), S; (1), 0(¢), z(¢)) be a solution
of (13)-(15) with initial data Uy € D(A). Then, there exists positive constants M and
y such that

E(t) < ME0)e ™", ¥t >0. (57)

Proof Taking derivative £(t), substituting the estimates (17), (40), (42), (44), (46),
(48), (50), and setting

D
Ni=Ny=1, e3=—, & =— and &5=—,
b= STRN:T YT 8N, >~ 2Ns
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we obtain

D D

8 L
— (OlN —c]—c3 <1 + BN3) N3 — C4N4> / 93 dx
0
D (*, Lo 5D (*
- — Efdx — 6 S“dx — — Stdx
4 Jo 0 2 Jo
1, 8 )
— |\ =N3—1,—cs| 1+ —=Ns)Nsy—c5N5 & dx
2 D 0
SN b 1+2N N. /L(3S £ Y d
—|=N4—c1—cr———c¢ — —&E—u x
sNe—c1—aa—o—c ps)Ns )| x

91 D L
— —pNs—Ip—— / Slzdx
2 8/ )

8 2 Lorm
- (CGNG XNz ﬁNSZ)/ / |2 (0)|22(x, 1, T) dT dx
D D 0 Jo

L 1 (%)
—cﬁNﬁf /f tlua (D)2 (x, n, 1) d dpdix.
0 0 T

d 8 2 L
EE(I) < - (moN — ﬁNf — ﬁst — M1N6> / utz dx
0

First, let us choose N5 large enough such that

91,

D
N5 — I, — = > 0.

Once Ns is fixed, we proceed to choose N4 large enough such that

N. 1+2N Ns >0
— — — _—— = — > .
3 4 —C —C2 ) c5 D 5 5

Now, once N4 and Ns are fixed, we select N3 and Ng large enough so that

1 8 8 2
EpN:,‘ -1, —c4 (1 + 5N4> N4 —csNs >0 and cgNg — %Nf — %st > 0.

Lastly, choosing N sufficiently large enough and applying Poincaré’s inequality, we
obtain

d L
E,C(t)f—y()/ [u$+(35—g—ux)2+§,2+§§+s,2+55+52+92
0

15 I ro
+f |m(r>|z2<x,1,r>dr+/f Tluz(f)lzz(x,n,f)dfdn]dx
7] 0Jr
= —nEQ@),
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for some positive constant yy. Moreover, from the equivalence between £(¢) and E ()
according to inequality (54), we obtain

E(t) < MEQ)e "', Vt>0,
where M > 1 and y := yy/y1. O

Final comment

™

In this manuscript, we use a nonlocal delay condition / w2 (Dus(x,t — t)dt and
7

additionally, we are considering the non-constant delay coefficient u; (7), which makes

the result more comprehensive and realistic. Combining the semigroup technique with

the energy method, we obtain the existence and uniqueness of a strong solution and

the exponential decay of the solution.
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