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ABSTRACT

Automatic diabetic retinopathy diagnostic methods are proposed to facilitate the examination process and act as
the physician’s helper. Most of the traditional convolution neural network (CNN) algorithms use only spatial fea-
tures for image category recognition. This approach may not be optimal for the screening diabetic retinopathy
because the retinal images have generally the same feature maps with minor differences in spatial domain. We
propose a new high level image understanding using a modified CNN architecture mixed with modified support
vector domain description (SVDD) as a classifier. This new innovative architecture uses two pathways extracting
features of the retinal images in both spatial and spectral domains. The standard pre-trained AlexNet is chosen
for modification to avoid the time complexity of the training algorithms. In spite the advantages of the modified
AlexNet with two pathways configuration and standard SVDD classification, the different SVDD kernel functions
affect the performance of the proposed algorithm. By using the appropriate transformed data into two or three di-
mensional feature spaces, the proposed SVDD can obtain more flexible and more accurate image descriptions.
Also, we compared the performance of our approach with that of the commonly used as classification methods
such as K-Means, subtractive and FCM clustering. Our proposed architecture achieves more than 98% precision

and sensitivity for two class classification.

© 20XX

1. Introduction

Diabetic retinopathy (DR) is an eye disease that damages the retina of
patients with long-standing diabetes. By the year 2030, the number of
people diagnosed with DR will increase from 126.6 million in 2010 to
191 million, and the number of people with vision-threatening DR
(VTDR) will grow from 37.3 million to 56.3 million by the same time
[1]. Evidence shows that by diagnosing DR in early stages it can be
treated just by diabetes management and can be prevented from further
damages to the retina [2,3]. Ophthalmologist diagnoses the presence
and severity of DR by carefully investigating fundus images and finding
the different symptoms of DR, such as microaneurysms, hemorrhages,
neovascularization, and exudates. Finding DR signs is highly subjective,
which makes it difficult to diagnose in early stages. The high cost of the
physical examination and lack of professional experts are the other ob-
stacles for early DR diagnosis. Therefore, large numbers of early stage
DR cases are missing from early diagnosis and treatment [4].
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We propose a new modified CNN architecture using an improved
support vector machine (SVM) classification for DR screening, making
the following contributions:

e We propose a new CNN architecture to increase the performance
in DR or NoDR classification by using some modifications in both the
type of input data and in the last fully connected layer of the network.
This unique approach distinguishes our work from the full training [5,
6] and even fine-tuning approaches of a pre-trained CNN methods
[7-10].

e Some CNN based approaches use only object features or spatial
features for image category recognition [7,11,12]. In this paper we pro-
pose a new CNN architecture using a modified AlexNet which uses two
pathways extracting retinal image features. These two deep feature ex-
traction (FE) based on a modified standard AlexNet are proposed in two
parallel pathways, to extract both the spatial and spectral features of
the retinal images.

o There are multiple approaches in the literature using various algo-
rithms to implement diabetic retinopathy classification based on seg-
mentation and detection of different exudates, hemorrhage and blood
vessels using some machine learning techniques such as SVM, K-nearest
neighbor (KNN), K-Means (KM) algorithm and fuzzy C-Means (FCM)
methodologies and etc. To our knowledge, the implementation history

Note: Low-resolution images were used to create this PDF. The original images will be used in the final composition.
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of a typical CNN architecture in the field of automatic screening of DR is
less than a decade and has not been well studied [11].

Few efforts have been made to Modified SVMs to cover the specific
requirements of retinal image classification, for example by building
nonlinear transformation and suitable kernel functions. In this paper,
we proposed a modification to the SVDD’s kernel functions that can
take into account the difference between the DR and NoDR retinal im-
ages by imposing a nonlinear transformation in feature space.

The rest of the paper is organized as follows. The related studies on
diabetic retinopathy using state-of-the-art CNN methodologies are de-
scribed in Section 2. A typical CNN architecture is reviewed in Sec-
tion 3. Section 4 explains the implementation of the proposed algo-
rithm. The results of the simulations and the comparative analysis of
the classifiers are demonstrated in Section 5. Finally, the conclusions
and suggestions for future work are mentioned in Section 6.

2. Related works

According to recent studies, DR can be diagnosed accurately and
consistently in early stages by applying automatic screening systems.
The main purpose of these systems is to classify images into DR and
NoDR classes [13]. There are multiple approaches in the literature us-
ing various algorithms to implement automatic screening of DR. Typi-
cally, these methods use hand-crafted features of retinal images for
training their systems and classification. Some of these machine learn-
ing algorithms are artificial neural network (ANN), SVM, KNN, KM al-
gorithm and FCM methodologies [14-17]. Supervised classification
methods such as SVM [18,19], and KNN [20,21] are trained from differ-
ent labeled images for segmentation purpose. Because the supervised
classification methodologies use the prior knowledge about the image
classes, they can improve the classification accuracy. Unsupervised
classification algorithms also known as clustering approaches, train
themselves from some hidden features in the dataset iteratively so they
have this ability to characterize the properties of each class. Unsuper-
vised classification methodologies include KM algorithm [22], expecta-
tion-maximization (EM) [23], subtractive clustering [24] and FCM
methodologies [25]. The subtractive clustering method was first intro-
duced in the field of extracting fuzzy rules [24]. The subtractive cluster-
ing method considers each data point as a potential cluster center and
defines a measure of the potential of a data point to serve as a cluster
center. The potential of data point is a function of its distance to all
other data points. Thus, a high potential data sample would be a data
with many neighboring data samples. By selecting the range of influence,
the data points with the highest potential are determined so that the
feature space is covered. Therefore the alignment parameter for sub-
tractive clustering method is the range of influence in each of the data di-
mensions. Medical images are often corrupted by some environment
noises, artifacts are caused by operator performance [26]. Since the
standard FCM algorithm does not consider local spatial classification, it
is very sensitive to noise. Many researchers have incorporated the local
spatial information into the standard FCM to remove the effects of
noise, such as Wang et al. proposed the FCM distance function as
weight sum of distance influenced by local and nonlocal information
(LNLFCM) [27]. Using local spatial features increases the computa-
tional cost because it needs the computation for each pixel neighbor-
hood. Gong et al. extended fuzzy local information C-Means algorithm
by replacing the Euclidean distance in the object function of the FCM by
kernel distance-based cost function [28]. As an effort in comparing dif-
ferent available techniques, a comparative analysis of nine common
classifier algorithms is implemented in the application of automatic
screening of diabetic retinopathy cases [29].

Therefore, recent studies are using the state-of-the-art convolutional
neural network (CNN) for various fields, especially in medical image
analysis [30]. One of the main reasons for implementing CNN in med-
ical applications is its ability to extract features automatically by using

deep multiple layers [7]. Therefore, there has been an increase in using
CNN in medical diagnosis applications. For instance, CNN was used for
grading brain tumors in magnetic resonance imaging (MRI) scans [5,6,
12]. Another CNN-based method was conducted by [31] for feature ex-
traction and ensemble classification for retinal blood vessel segmenta-
tion and a study related to severity DR diagnosis using CNN was ad-
dressed in [32]. Also, two different comparative studies of two CNN
structures for DR screening have been performed in [8] and [33].

The CNN is a class of deep learning models that can learn a complex
hierarchy of features by building high-level features from low-level
ones. Also, the validation of the performance of the final trained net-
work on clinical data is an important step in performance analysis of
the work. Requiring a large amount of medical training images, exten-
sive computational and memory devices, complications about training
of a deep CNN such as overfitting and convergence issues made the full
training of a CNN (or training from scratch) tedious and in some cases
impractical [9,34]. For example, the well-known CNN architecture
named AlexNet consists of approximately 60 million parameters within
its structure which was trained using 1.2 million images labeled with
1000 separated classes in the large database called ImageNet. An alter-
native to full training approach is fine-tuning of a pre-trained CNN or
modification and customizing CNN based on specific applications
[5-11,35,36]. There are different CNN architectures for detection and
classification such as CifarNet (Roth et al. 2016; [37], Alexnet [38],
GoogLeNet [39], and VGGNet [40]) with different model training para-
meter values. The GoogLeNet and VGGNet models are significantly
more complex than both CifarNet and AlexNet [41]. Some CNN archi-
tectures such as VGGNet and GoogLeNet are usually counted as “deeper
architectures” [7]. The GoogLeNet model introduces a new module
called Inception, which concatenates filters of different sizes and di-
mensions into a single new filter. In these architecture, Inception layers
are repeated many times, leading to a 22-layer deep model in the case
of the GoogLeNet (when counting only layers with parameters) where
the overall number of layers is about 100 [39].

The main contribution of our work in this paper is the proposal of a
deep learning CNN architecture consisting of both spatial and spectral
domains image feature extraction mixed with a support vector domain
description (SVDD) classification for a retinal image, DR or NoDR
recognition.

Although, deeper architecture have recently shown relatively high
performance for challenging image processing tasks, but we do not an-
ticipate a significant performance gain through the use of deeper archi-
tecture. The objective of our work is to examine the capabilities of two
pathways extracting features algorithm (spatial and spectral domains)
in comparison with the spatial extracting features approach. Whatever
the typical of CNN structure it is necessary to have some modification
for better binary classification.

To this end, in this paper, a pre-trained AlexNet architecture was
employed and enforced to classify fundus images of a clinical dataset
into cases of DR patient or healthy. The first layers of a typical CNN is
mostly related to extracting general information from the images such
as the edges, while their last layers are specifically trained to extract
more detailed features related to the images dataset. Therefore, the
type of the input retinal image and the weights of the last layers of a
CNN can be modified to adapt the networks for our application and in-
crease the performance accuracy. This new innovative architecture uses
two pathways extracting features of the retinal images in both spatial
and spectral domains. In addition, the SVDD is a domain description
method inspired by SVM algorithm that tries to find the sphere with
minimum volume containing almost all objects. By using the appropri-
ate transformed data into two or three dimensional feature space, the
proposed SVDD can obtain more flexible and more accurate image de-
scriptions. For any two or three dimensional feature maps obtained by
the proposed algorithm, the two-pathway architecture performs much
better than individual pathways.
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There are a few number of medical images to train a CNN which has
a lot of weights needed to be trained. This limitation of the image sam-
ples, usually leads to the overfitting problem [12,42]. The objective of
this paper is not to use a full training CNN approach but to modify the
last layer of a standard CNN and the type of input data to achieve the
highest performance for different retinal images.

3. A typical CNN architecture and the standard AlexNet
architecture

CNN is a kind of multilayer neural networks which typically consists
of convolutional, subsampling, and fully connected (FC) layers [41].
CNN uses some of conventional algorithm for training as other tradi-
tional neural networks, i.e. gradient descent approach, backpropaga-
tion (BP) algorithm, and it also uses some concepts rather than those
used by a traditional neural network such as convolution, dropout,
pooling, etc. A complete deep CNN model contains several convolu-
tional layers to form deep architecture. To construct a 3D convolutional
layer, a set of small feature extractors will be established, which sweep
over their input to extract a stack of higher-level representations. These
small feature extractors for convolutional layers usually are known as
convolutional kernels or in some cases, are inspired by neuroscience,
called local receptive fields [43] with the predetermined sizes. The con-
volutional kernel window moves across every feature map of the input
layer to create the activations for the next layer. Fig. 1 shows a simpli-
fied illustration of some layers which are typically involved in a CNN
especially the AlexNet. For simplification we assume that this simpli-
fied example of a CNN accepts a9 X 9 X 3 image patch as input and
with the 3 x 3 kernel.
Typically after each convolutional layer in the standard AlexNet there
are some rectifier linear units (ReLUs) to improve the network perfor-
mance. There are different kinds of ReLUs in CNN literatures available
to apply. The most common type, is the simple nonlinear unit where ac-
cepts the input of a neuron if it is positive, whereas it returns to zero if
the input is negative. It has been shown that the use of the ReLUs after
the convolutional layers can expedite the training of a CNN [38,44].

Pooling layer as a subsampling layer reduces the dimensionality of
each feature map but keeps the most important features. This layer
helps to reduce the amounts of learning parameters and is usually
placed after the convolutional and ReLU layers (for AlexNet,
GoogLeNet and CifarNet). The two most common types of pooling
layer are max-pooling which is used in our paper, and mean-pooling.
Another layer of processing is called local response normalization (Lrn)

| Cony Relu

unit is implemented to enforce competitions between features at the
same spatial location across different feature maps. Neurons in a FC
layer have full connections to all activations in the previous layer, as
seen in a traditional neural network [7,45]. So the FC layer is a com-
mon concept between traditional neural network and CNN, where
every neuron is connected to each neuron in the next layer. But in-
stead of a simple connection between each input neuron to the next
hidden layer in a traditional neural network, a window of neurons in
the input layer are connected to one neuron in the next hidden layer
in CNN. The output layer of a standard AlexNet is the softmax layer,
or the regression layer, to generate the final result.

In order to avoid the overfitting, recently introduced a layer is called
dropout layer, which sets the output of some neurons to zero with proba-
bility 0.5. The dropout method prevents complex co-adaptations [46].
By using ReLUs and dropout layers, the outputs of some hidden neurons
will be zero, can prevent a large network from overfitting.

The standard AlexNet achieved significantly improved performance
over the other non-deep learning methods for ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVRC) 2012 [38]. The standard AlexNet
has approximately 60 million parameters, about 5 million parameters
in its convolution layers and approximately 55 million parameters in
fully connected layers. The AlexNet computes 11x11,5x 5,3 X 3,3X3
and 3 X 3 convolutions within the same layers of the Maxpool and con-
catenates the output of the whole process to pass it to the Softmax layer
as the latest layer of the network. Fig. 2 demonstrates schematic dia-
gram of the standard AlexNet, consists of 5 convolutional layers, 3 pool-
ing layers, 3 fully connected layers and 1 Softmax layer. This model
consists of 12 main layers which includes convolution, pooling, FC and
Softmax layers. In Fig. 2, letters S, P and G stand for stride, padding and
group, respectively. Stride denotes how many steps we are moving in
each steps in convolution. Padding refers to the amount of pixels added
to an image when it is being processed by the kernel of a CNN. Group
controls the connections between inputs and outputs. We use this CNN
architecture with some necessary modifications to obtain the main fea-
tures of retinal images.

4. Proposed method

AlexNet architecture [38] with 650.000 neurons has been trained
on ImageNet as a large database that is basically used for . There are
some differences between 1000-class problem and a binary classifica-
tion such as DR or NoDR screening. A difference is about the softmax

Mexpod Lrm Reshape
-

Fig. 1. A simplified illustration of a typical CNN architecture consists of one convolutional layer (conv), one rectifier linear unit (ReLU), one maximum pooling
(Maxpool), one local response normalization (Lrn), reshape layer, one fully connected layer (Fc) and finally one softmax layer.
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Fig. 2. The main layers of the standard AlexNet [41], consists of 5 convolutional layers (colored red), 3 pooling layers (colored blue), 3 fully connected layers (col-

ored green) and finally one Softmax layer (colored brown).

layer in a typical CNN architecture. This final layer acts as a final classi-
fier of a typical CNN. The Softmax for a 1000-class classification prob-
lem is the best solution. Suppose that some vector components could be
negative or greater than one, and might not sum to 1, but after applying
softmax, each component will be in the interval zero to one. On the
other hand we have some stronger classifiers such as SVM. SVM is a
professional binary classifier, maps data samples so that the samples of
the separate categories are divided by a clear gap that is as wide as pos-
sible.

Another difference is about the three FCs in AlexNet architecture. As
mentioned before, neurons in a FC layer of a CNN architecture have full
connections to all activations in the previous layer, as seen in a tradi-
tional neural network. So a FC layer is a common concept between tra-
ditional neural network and CNNs, where every neuron is connected to
each neuron in the next layer. But there is a minor difference, instead of
a simple connection between each input neuron to the next hidden
layer in a traditional neural network, a window of neurons in the input
layer are connected to one neuron in the next hidden layer in CNN.

Just similar to traditional neural networks there are two different
ways of implementation for a specific application. At first, one could
use a multiple layers structure with different number of neurons in each
layer, and second using a traditional neural network with just one hid-
den layer with appropriate number of neurons in that layer. In fact, the
number of hidden layers in a traditional neural network is not an im-
portant point. Our experimental results show that the three fully con-
nected layers (FC6, FC7, FC8) in the AlexNet architecture, act just as
multilayers in a traditional neural network. So, we can reduce the num-
ber of FCs in our modified CNN.

Three main stages constitute our proposed DR detection algorithm:
(1) Image preparation (2) Spatial and spectral features extraction (3)
SVDD classification.

Image preparation section itself consists of rescaling, normalizing
and finally obtaining a 2D color histogram of a given retinal image.
Also, we use the AlexNet in o proposed algorithm as a multi-layer fea-
ture extractor with some modification to obtain more spatial and fre-
quency domain complementary information of a retinal image. The last
section of our proposed scheme is the improved SVDD classification al-
gorithm which determines the image category for a color fundus image.

The overall structure of the proposed scheme is illustrated in Fig. 3.
The input of our system unlike other traditional CNN application, is a
2D histogram of the retinal image, and the output of the system is the

conjunction with classifier such as SVM, FCM or SVDD. For a deep un-
derstanding of the new scheme performance, the performances of the
2D and 3D classification will be calculated separately, which are called
2D classification or 3D classification case studies.

4.1. Image preprocessing

Medical images usually contain noise and shading artifacts due to
interference and other phenomena that affects the process of classifica-
tion in screening systems [47]. Artifacts due to non-uniform illumina-
tion which is a general problem in retinal imaging degrade the effi-
ciency of the image classification as well as the effects of camera varia-
tions. Preprocessing is an essential step to reduce the image variation
by normalizing and equalization of the irregular illuminations of a color
fundus image.

4.1.1. Rescaling the images

To decrease the variation among images due to different camera res-
olutions and settings, an image preprocessing algorithm is applied to
the images. Due to the different retinal picture sizes, the first step of the
algorithm is clipping the black borders of some images on the left and
right sides. The most important point about these different fundus im-
ages are the aspect ratio between the length and width of the retinal cir-
cle that should be quite similar. In the next step, a rescaling procedure
should be done such that all the input images have the same size. Fi-
nally, the color of each pixel is subtracted by the local average, map-
ping the average to 50% gray. Using this approach, the sharpness of the
images will be more unified.

4.1.2. Illumination correction

Several papers have been published in removal of non-uniform of il-
lumination. Nyul [48] compensated the non-uniform illumination by a
polynomial surface fitting algorithm based on considering the intensity
of the input image as a product of the luminosity and reflectance com-
ponent. We only use the red and green channels in our algorithm and
normalize the R and G values (R stands for red and G for green) in order
to reduce the sensitivity to changing light by the following equations
[49]:

DR or NoDR label of the image. After several layers of convolution and r=R/(R+G+B) @
pooling, the 2D histogram of' the inpu? image can‘be converted into a ¢=G/(R+G+B) )
2D or 3D feature vector, which contains the spatial and spectral fea-
tures within the image. These obtained features are ready to be used in
ST I T 1 i ‘.I
- | !
Modified |77 ]
::) . . -:> ' 2} ar 30 '_"} DR
= Modified i grialoryiiy) M L=
.-‘h‘.'.l;'.l'irﬂ L] famedion Chaianfivation : NalDR

Modified SVIND

Fig. 3. Schematic diagram of the proposed modified AlexNet.
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For example consider two pixels A and B with the same color RGBs
but different brightness. Such differences may due to the light bias of
camera for the corner and center of the retina. Because a typical retinal
has a highly curved surface, the variation may be removed by dividing
the three components of a color pixel by its intensity. We can consider
RGB, = YRGBy for some reasonable 7. By using Egs. (1) and (2) we
would have the same brightness for two pixels as follows:

RGBp,pm = [Rg Gy Bp|/(Rg+ Gy +Bg) %255 3)
RGB pnorm = [RA Gy By ] /(Rg+ G4+ By) %255
=[yRz yGp yBg|/(yRs+yGp+yBp)+255
=|Rs Gz Bg|/(Rp+Gp+ Bp)=255
= RGBg,orp

(C))

This gives the normalized intensity pixels for corner and center
ones.

4.1.3. Color histogram

For a given image the color histogram is defined by counting the
number of times each color occurs in the image array. Histograms are
invariant to rotation about an axis perpendicular to the image plane,
and change slowly under change in scale and change of angle of view.

4.2. Spatial and spectral features extraction

4.2.1. Spatial feature extraction

In medical imaging and diagnosis field, it is relatively rare to have
an image dataset of sufficient size to completely train a CNN from
scratch [7]. In addition, the state-of-the-art CNN included in the GitHub
or Keras core library demonstrate a strong ability to be generalized to
images outside the ImageNet dataset via transfer learning, such as fea-
ture extraction and fine-tuning? [40,50]. Therefore, it is very common
to fine-tune a CNN that has been trained using a large labeled dataset
from a different application to avoid training networks for many gen-
eral features [51]. Training a CNN from scratch requires a large amount
of data as well as extensive computational and memory resources [7].
Training a deep network with small dataset often leads to overfitting
and convergence issues. Therefore, in this paper, a pre-trained CNN ar-
chitecture, AlexNet is modified and is used for DR classification.

The modification of a pre-trained AlexNet is one of the main parts of
our algorithm. The modification begins with transferring the weights
from a pre-train AlexNet as a part of our final network, the only excep-
tion is that the weights of the last fully connected layer (Fc8) is omitted.
The completely characteristics of our model as shown in Fig. 3, are
listed in Table 1.

Our new scheme begins with producing a 2D histogram 227 x 227,
from the original retinal image, and then proceeds with two pairs of
convolutional, rectifier linear unit, pooling and local response normal-
ization layers i.e. Covl, ReLU1, Pooll, Lrnl, Cov2, ReLU2, Pool2, Lrn2,
respectively. These latter two pairs of modified AlexNet layers, map the
227 x 227 input histogram to 13 x 13 feature maps. The architecture
then proceeds with a sequence of three convolutional and ReLU layers
i.e. Cov3, ReLU3, Cov4, ReLU4, Cov5, ReLUS5. These layers implement
a convolutional layer with 3 x 3 convolutional kernel size. The se-
quence of the modified AlexNet in our scheme is then followed by three
pooling, reshape and ReLU layers i.e. Pool5, Resl and ReLU6. The mod-
ified AlexNet in our algorithm, is completed with only two fully con-
nected layers i.e. Fc6 and Fc7, instead of three FC layers typically used
in the standard AlexNet (so the Fc8 is replaced by a modified Fc8 to be
considered a typical uniform summation). In our study, we deal with 2-
class classification tasks, in two different 2D or 3D feature space. So the
new modified FC layer, in up section (spatial domain pathway as shown
in Fig. 3) has one neuron, and in down section (spectral domain path-

2 1-https://github.com/fchollet/deep-learning-models..

way) has one or two neurons depending on the 2D or 3D scenarios un-
der study. In the spatial domain pathway, only the last layer (Fc8) is
substituted with a typical fully connected summation as an activation
function.

4.2.2. Spectral feature extraction

As mentioned before, the minor differences between DR and NoDR
retinal images are closely related to their frequency domain properties.
Our proposed method processes the data in the frequency domain to at-
tain greater accuracy besides to the spatial feature processing. By sepa-
rating the image feature into different sub-bands, important difference
occurs over varying low to high frequencies. When digital images are
handled at multiple resolutions, the discrete Fourier transformation
(DFT) is viable mathematical tool. So the block diagram DFT in Fig. 3,
returns the discrete Fourier transform of the Fc7 output, computed with
a fast Fourier transform (FFT):

N
X k= Yxgywy 4D ®)

=)
o ]%X (k) w U~ DE=D ©)

Where x (j) is a sequence of N complex numbers for j =1,...,N and

X (k) is another sequence of complex numbers and
w, = e_% @)
In this section of our algorithm, we integrate the spectral and spatial

features together to construct a powerful framework using 2D or 3D
classification.

4.3. SVDD classification

The standard SVM is a supervised learning method that has the aim
of determining the location of decision boundaries or hyperplanes that
provide the optimal separation of the classes based on statistical theory
[52,53]. The SVDD is a domain description method inspired by SVM al-
gorithm that tries to find the sphere with minimum volume containing
almost all objects [54]. Let the X; be a dataset containing N, sample
points as follows:

X = (xl,xz,...,x,-,...,st) (8)

where X is a data matrix with the size of N X N, N represents the
dimension of each ¥; feature vector and N; represents the number of
feature vectors (the output dimension of networks). Since the output
features obtained by the modified CNN architecture are not normally
spherically distributed in the input space of the classifier data, the
SVDD algorithm uses a nonlinear transformation (¢ (.)) to transform the
data from input space to a new high dimensional feature space. The fol-
lowing Wolfe dual form, which is a maximization problem respect to &;
(@; 2 0 is a Lagrange multiplier) will be obtained [55]:

W () = Zai (@ (x:) o (x)) - Zai“/ (o (x)e(x)) 9

Where the (¢ (x;) (){,)) is the inner product can be replaced with
an appropriate kernel function K (x,-,xj) such that satisfies the Mercer’s
theorem [55]. There are different kernel functions; however, the Gauss-
ian kernel function is shown to have better performance than the others
[54]1;
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Table 1

The new proposed scheme based on modified AlexNet architecture used in our experiments, consists of preprocessing layers (the yellow rows), 5 convolutional
layers (the red rows), 3 pooling layers (the blue rows), 2 fully connected layers (the green rows), 7 rectifier linear units (the pink rows), 2 dropout layers (the
gray rows), 2 local response normalization and 1 reshape layers (without color rows) and finally modified FC8 and SVDD layers (the cyan rows).

2
=

K (xivxj) =exp|— > s ceRt (10)
[

The different kernel functions result in different description bound-
aries in the original input space of the SVM. The generic Gaussian ker-
nels in (10), regard each component of X; with equal emphasis in their
effects into feature space. The problem is to find a suitable nonlinear
transformation for each component of ¥; to have a larger effect in fea-
ture space. To this end, the nonlinear transformation ¢ (x;) = x/ corre-
sponding to each modified AlexNet outputs (i.e. spatial and spectral
features) is used to scale each feature before mapping it into feature
space. In our proposed algorithm the Gaussian kernel function with
above nonlinear pre-transformation (¢ (.)) is considered to transform
the data from input space to a new high nonlinear feature space. So we
consider two kernel functions, the first one is a two-dimensional kernel
(2D) and the second one is a three-dimensional kernel function (3D) as
follows:

B H(PZD (xi) — $2p (xj)Hz

o2

Kop (@ (x;) @ (x;)) = exp an

B H(P3D (xi) — ®3p (xj)H2

— (12)

Ksp (@ (x)) @ (x;)) = exp

In this paper, we present a modified AlexNet model with two path-
ways retinal image recognition, which extract both spatial and spectral
features of images respectively. Experiments show that the two kinds of
features contain complementary information for the category recogni-
tion of an image as the two-pathway model always achieve better per-
formance than single pathway models [56]. A neural network that con-
sists of two interconnected pathways (a convolutional pathway and a
deconvolutional pathway) has been successfully implemented on lesion
segmentation in [57].

So each feature space *; has two main parts, spatial feature space
Xispa, obtained by the spatial pathway and spectral feature space Xispe,
obtained by the spectral pathway, respectively (as shown in Fig. 3). The
two kernel functions (11) and (12) are considered with 2D and 3D non-
linear transformations as follows,

$2D (Xi),
———=2 (X
#3D (i),

n
ispa’

(X?;pa: Re(Xispe )2, Im(xigpe )'2)(14)

n
(Xispa, Xispe) xispe| 2 )(13)

(Xispaa Xispe)

where the free parameters /1 and "2 are the degree of the polynomi-
als, and Re (xspe) and Im (xspe) represent the real and imaginary parts of
the spectral feature.

5. Experimental results and analysis
5.1. Clinical data and methodology
The main problem in the research of DR screening is the non-

availability of a suitable standard datasets for training, testing and eval-
uation of developed algorithm. Every academic research groups uses

their own databases for evaluation and testing with different number of
samples, therefore a general comparison with similar studies would not
be possible. Many papers have widely reported their results based on
retinopathy on-line challenge (ROCh) dataset® [58] which is an interna-
tional competition associated with SPIE medical imaging (MI' 2009)
[59,60]. This database provides 50 images for training and 50 images
for testing. In this database, only the annotations of the training set (mi-
croaneurysms are annotated) are publicly provided. Another well estab-
lished public dataset is DIARETDB1 which is a standard diabetic
retinopathy database* has been used by some papers such as [58,59,
61-63]. This database consists 89 retinal images, of which 84 images
are labeled as DR and remaining 5 images are considered as NoDR.
These images were acquired by using a digital fundus camera with 50°
field of view (FOV). Both the ROCh and the DIARETDB1 public data-
bases are suitable for feature extraction, microaneurysm, exudate, and
macula detection. The publicly available dataset from UCI Diabetic
Retinopathy® has been used by some papers especially in field of classi-
fication [29]. It is important to note that only extracted features are
available within the public UCI dataset. The features of this dataset
have been extracted from the publicly available Messidor database of
1151 fundus images of patients [64].

Our proposed algorithm is evaluated with the fundus images avail-
able in the DIARETDBI dataset as input to our two-pathway modified
AlexNet architecture. Also, our algorithm is applied to diagnose DR
cases from real fundus images that are captured from the Navid-
Didegan ophthalmology clinic, Iran. The labeling was performed by an
experienced independent ophthalmologist. This private dataset con-
tains 94 retinal images, in which 47 of the images are labeled as NoDR
and 47 images are labeled as DR class. To compare the results in both
the DIARETDBI1 and Navid-Didegan datasets, we augmented and ran-
domly missing some NoDR and DR images to the DIARETDB1 dataset,
respectively. Therefore, a balanced DIARETDB1 database of 94 retinal
images is created in which both DR and NoDR classes were represented
equally (47 samples for each class). All images are in different com-
pressed formats such as JPEG, JPG and PNG with two different sizes,
3872 x 2592, 3060 x 2580 pixels for the Navid-Didegan database.
Therefore, by applying the labeled images of these two datasets to the
modified AlexNet-SVDD in the test step, the performance of the net-
work is examined for the test images, in which all the test images are in-
dependent of the train data. We hold out 70% of the dataset for training
in classification procedure, while 30% is used to test the performance of
the methodology.

5.2. Evaluation criterion for performance analysis

To evaluate the performance of a proposed classification or cluster-
ing method for the clinical data, all clustering indices can be used.
These different indices can be used in three different studies: internal,
relative or external studies [55]. The internal study or sensitive analy-
sis uses some metrics to determine how a particular internal variable af-
fect the performance of the proposed classification method under a
given database. The relative study is based on evaluation of the pro-
posed classification results by comparing them with the results of other
methods. The external study uses some metrics to evaluate classifica-
tion performance based on specific reference data. To compare the per-

3 1-http://webeye.ophth.uiowa.edu/ROC/.

4 2-http://www.it.lut.fi/project/imageret/diaretdb]..

5 3-https://archive.ics.uci.edu/ml/datasets/Diabetic + Retinopathy + Debrecen +
Data + Set#.
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https://archive.ics.uci.edu/ml/datasets/Diabetic%2BRetinopathy%2BDebrecen%2BData%2BSet
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formance of the proposed modified AlexNet-SVDD for the clinical data,
these three studies have been considered using different indices.
Table 2 defines these values as being used in this paper. In this table,
TP, FP, TN, and FN represent true positive, false positive, true negative,
and false negative results of the classification algorithm, respectively. P
and N represent the labeled DR and NoDR samples, respectively, and
P+N demonstrates the total number of samples or
P+N=TP+FP+TN+FN.

In a wide range of medical image classification, the free response oper-
ating characteristic (FROC) curve is used [65] as a fundamental index
for diagnostic test evaluation [7]. Also, Kappa coefficient of agreement
has been used in both internal and external studies [66,67]. Kappa error
relations are used to gain insights about who much a clustering method
is better than another on a specific dataset [55,68]. Consider N repre-
sents the number of normal points (or NoDR) and P represents the
number of patient points (or DR) and the contingency table of two clas-
sifiers, C; and C; is as shown in Table 3. Diversity between two classi-
fiers is measured by k represents the Kappa coefficient as

Kk =(04-A4C) /(1 —AC) (15)

Where O4 is the observed agreement or accuracy in Table 2 and AC
is the agreement by chance. 04 shows the probability that the two clas-
sifiers will be both either correct or incorrect when classifying a ran-
domly chosen data point. AC is represented for the probability that the
two classifiers will agree by chance on a randomly chosen sample point.
So the two quantities are as:

Table 2
Performance indices [62].

Accuracy (TP+TN)/(P+N)
Precision or predictive value TP/ (TP + FP)
Sensitivity or Recall TP/ (TP + FN)
Specificity TN/ (TN + FP)

Table 3
The contingency table of two classifiers, €| and C,.
G
Correct Wrong Total
(&} Correct TP FP TP + FP
Wrong FN TN FN + TN
Total TP+ FN =P FP+TN =N P+N

N

Mol

[EY] (k)

04 =(TP+TN)/(P+N) (16)
AC = (TP + FP) (TP + FN) + (FP + TN) (FN + TN) /(P + N)? a7
Substituting (16) and (17) in Eq. (15), the Kappa coefficient obtains:

2(TP x TN — FP X FN)
K =
(TP + FP) (FP + IN) + (IP + FN) (FN + IN)

18)

5.3. Preparing dataset

We perform our analysis in retinal images collected from two data-
bases (Navid-Didegan and DIARETDB1 datasets), where the image la-
beling is provided for the majority of the images. As the train and test
datasets include different fundus images taken with different devices to
remove the variations in images, preprocessing algorithm described in
Section 5.1 is implemented on both train and test points. The result of
image preprocessing steps are demonstrated in Fig. 4(a)-(d). Fig. 4
shows two selected examples of DR (the first row) and NoDR (the sec-
ond row) fundus images and their experimental results of rescaling, il-
lumination normalizing and their obtained 2D histograms from Navid-
Didegan dataset which is a private database.

The image preprocessing level as mentioned before, consists of three
main parts: the image rescaling (Fig. 4(b)), the RGB equalization (Fig. 4
(c)) and the 2D histogram extraction (Fig. 4(d)). The task for image rescal-
ing is performed such that all the input images have the same size of
2592 x 2592 x 3. At the normalization level, the non-uniform bright-
ness of the retinal fundus image will be removed by dividing the three
components of a color pixel by its intensity based on Egs. (1) and (2).
The third step of preprocessing level in our proposed algorithm is the
choosing red and green components of the retinal image, because these
channels contain most information with blood and vessels in a retinal
fundus image. In this stage, the color histogram is obtained by counting
the number of times each red and green colors occur in the image array.
The next step is to apply the preprocessed images to the proposed net-
work that has already been modified and discussed in Sections 5.2 and
5.3.

5.4. Performance analysis of SVDD’s parameters on Navid-Didegan dataset
As mentioned in Section 5.3 the different kernel functions result in

different description boundaries in the original input space of the SVM.
These kernels map the features into the high nonlinear features space

=
>

€] (d)

Fig. 4. The image preprocessing level of our proposed algorithm (Section 5.1) (a) The DR (the upper row) and NoDR (the bottom row) retinal fundus images (b)
rescaled images (2592 X 2592 patches) (c) RGB Normalized images and (d) 2D histograms (227 x 227 patches), (images from Navid-Didegan dataset).
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[55]. Due to the computational cost of the meta heuristic algorithms,
such as particle swarm optimization (PSO) or genetic algorithm (GA),
an exhaustive search method is used in this paper to find the optimum
values of the kernel parameters [69]. So the best values of 71 and 72 in-
volved in the kernel functions for a number of trial runs are selected.
Navid-Didegan dataset is used in this scenario to evaluate the proposed
modified AlexNet-SVDD algorithm. The effects of some different ker-
nels with different degrees are shown in Fig. 5 with both 2D and 3D fea-
ture maps obtained by the modified AlexNet-SVDD containing 47 X 2
retinal images from Navid-Didegan dataset (47 as DR and 47 as NoDR
images). Unlike the traditional SVDD algorithms that the predeter-
mined kernel function acts as a measure to optimize the Lagrange cost
function, we use the different kernel functions with some nonlinear
transformation directly on input features as mentioned in (13) and (14).
Therefore, a simple kernel function can be replaced by a kernel function
with a nonlinear pre-transformation into 2D or 3D feature spaces. When
a suitable degree of this transformation is chosen, a better and more
tighter description can be obtained. In this scenario, two different value
of degrees i.e. ny =1,ny =1 and n; =2,n, =4 are separately studied
and the sphere descriptions are computed. Fig. 5 shows the location of
the feature maps in input space with the degrees 7, = 1 of the spatial
kernel and 7, = 1 for the spectral kernel. The left column of this figure
shows the results obtained by using the 2D kernel function, so the in-
puts of the SVDD algorithm would be the nonlinear transformation over

"2)’ re-
spectively. The right column of Fig. 5, shows the results obtained by us-
ing 3D kernel function, where the inputs of the SVDD algorithm would

xixpe

the spatial pathway (i.e. x,’«?pa) and spectral pathway (i.e.

be X:-;'pa from spatial pathway and Re(x,-spe)”2 and Im ()c,-spe)"2 from the
spectral pathway, respectively. Fig. 5(a) shows the spatial pathway out-
puts (see Fig. 3) with 2D kernel function in the left column and 3D ker-
nel function in the right column (are the same for the both) where the
retinal images are 47 as DR (the red stars) and 47 as NoDR (the blue
stars), respectively. Also, Fig. 5(b) shows the spectral pathway outputs
with the 2D and 3D kernel functions in the left and right columns, re-
spectively. And finally, in Fig. 5(c) the spatial pathway outputs respect
to spectral pathway outputs are illustrated. Fig. 5(d) shows the classifi-
cation results obtained by improved SVDD with 2D and 3D in the left
and right columns, respectively. In Fig. 5(d) with only 2D kernel func-
tion, the sphere description and support vectors are also plotted. As
shown in this figure, these degrees of the kernel functions for 71 and "2
(i.e. n; = ny = 1) with both 2D and 3D feature space, do not have the
good classification results. Based-on trial and error methodology and
over numerous independent trials and observing the performance of the
algorithm, the best values for 7; = 0.8,n, = 4 are selected. By setting
n; = 0.8,n, =4, as shown in Fig. 6 the location of the feature maps in in-
put space will be changed in order that the SVDD can easily classify
them. Also, in Fig. 6(d) with only 2D kernel function, the sphere de-
scription and support vectors are plotted.

5.5. Sensitivity analysis of SVDD’s parameters on DIARETDB1 dataset

In order to study the impacts of the degree of nonlinear transforma-
tion in the kernel functions (i.e., ”1-2) on the results of the proposed al-
gorithm, different degrees of kernel function are considered. DIARET-
DB1 dataset is used in this scenario to evaluate the proposed modified
AlexNet-SVDD algorithm. Fig. 7 depicts the accuracy of the algorithm
for different degree values of kernel functions. Fig. 7(a)-(b) shows the
obtained results for different values of 71, while the degree of the spec-
tral kernel is assumed to be constant (i.e. 7, =4). And Fig. 7(c)—~(d)
shows the obtained results for different values of 72, while the degree of
the spatial kernel is assumed to be constant (i.e. 7; = 0.8). Fig. 7(a) and
(c) compares the FROC curves of our approach with different values of
"1 and "2. To avoid clutter in this figure, only a selected set of represen-
tative FROC curves has been shown. Since For small values of 72, two

classes of DR and NoDR images could not efficiently separated in spec-
tral feature space (also shown in Fig. 5(d)), so the SVDD results are not
very good (Fig. 7(c—d)). For large values of the 72 up to 4 (also shown in
Fig. 6(d)) the separation between two classes can easily performed by
the SVDD. For the 74 values greater than 4 the Kappa coefficient is
started to decrease. Based on this graph, the maximum Kappa coeffi-
cient of clustering for DIARETDBI dataset is about 0.83 with 2D kernel
function (Fig. 7(b)) and about 1 for 3D kernel function (Fig. 7(d)).

The proposed modified AlexNet with 3D kernel function has a little
better performance than the 2D kernel function in FROC criterion. This
result is because the SVDD with 3D kernel function (for #; = 0.1, n; =2
and 1, = 0.5) can efficiently use the information of the input feature
space to remove the false-positive candidates. Also, the optimum ker-
nels are obtained as 7; = 0.8 and 7, = 4 for the Navid-Didegan as well as
DIARETDBI.

5.6. Comparison to other clustering algorithms (DIARETDBI dataset)

In this section, the results of the proposed algorithm are compared
with the K-Means, subtractive clustering and FCM algorithms as the
most frequently used clustering algorithms for the balanced DIARET-
DB1 dataset as mentioned in Section 5.1. We also use the nonlinear
transformation in (11) for 2D feature maps and (12) for 3D feature
maps for all classification methods, keeping the results comparable.
Therefore, we evaluate and compare the performance of the proposed
modified AlexNet with four different classification algorithms in both
2D or 3D proposed nonlinear transformation over the input space
(i.e. Modified AlexNet-K-Means, Modified AlexNet-Subtractive, Modi-
fied AlexNet-FCM, Modified AlexNet-SVDD). In this scenario, the opti-
mum range of influence for subtractive clustering algorithm has been
obtained and implemented. Our experimental results, show that the
modified AlexNet using the FCM and Subtractive as two classifiers
(Modified AlexNet-FCM, Modified AlexNet-Subtractive) have the com-
parable performance to the proposed algorithm (Modified AlexNet-
SVDD) only in sensitive criterion. Thus, for keeping the results compa-
rable, the optimum parameters for the FCM classification algorithm
would be obtained. The Modified AlexNet-FCM has two different para-
meters which affect the classification results, the number of training
samples and the fuzzifier parameter (m), [70]. For our dataset with
more similar classes, increasing in the fuzzifier value will cause a de-
crease in classification result. Our experimental results show, the value
m =5 for this parameter seems to be an appropriate value in our pro-
posed methodology. In some paper, the different initial cluster centers
of FCM are considered to be study [55], but we let that the initial clus-
ter centers are chosen in a completely random way. In this experimental
scenario, all the available samples are split in two training and test sets.
Number of training data is set to 70% (i.e., 33 samples per class for each
DR and NoDR classes for the balanced DIAREDTB1 dataset) and 30% of
the remained data is selected as the test dataset and a comparison based
on the Monte-Carlo simulation is made to evaluate the proposed
method [71]. In each run, the random testing and training sets are kept
the same for all methods, keeping the results comparable. Fig. 8 shows
the classification results obtained by the modified AlexNet using K-
Means, subtractive, FCM, and SVDD with 2D (the left column) and 3D
(the right column) kernel functions. Since some of the clustering algo-
rithms are sensitive to the initial clusters, the best run or initial condi-
tions are illustrated for all methodologies in Fig. 8. In FCM clustering,
data points can potentially belong to both clusters. As one can see in
Fig. 8(c), the purple stars belong to both clusters DR and NoDR. This
means that a given retinal image can be DR to a certain degree as well
as NoDR to a certain degree. So, the blue stars in Fig. 8 belong com-
pletely to the NoDR, the red pluses belong completely to the DR cluster
and the purple color in Fig. 8(c), shows that a sample point belongs to
both clusters to a certain degree. Because of the binary classification, a
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Fig. 5. (a) The spatial pathway output with 2D (the left column) and 3D (the right column), containing 47 sample data as DR the red stars and 47 sample data as
NoDR the blue stars, (b) The spectral pathway output, (¢) The SVDD input data with degrees 7| = n; = 1 of the kernel functions (d) The classification results ob-

tained by the modified AlexNet-SVDD, (Navid-Didegan dataset).

sample data is only considered as DR or NoDR based on which of its
membership grade (DR or NoDR) is higher. Therefore, in this figure all
the stars belong to NoDR while the pluses belong to DR cluster, what-
ever its color.

In Fig. 9(a)-(b) we show the results in terms of FROC in function of
each classification methods. The Modified AlexNet 2D and 3D with
SVDD classification method proves itself to be more efficient in DR and
NoDR retinal images detection.

To show the performance of the different classification methods, the
performance indices are used based on 250 different runs of Monte-

Carlo simulation for balanced DIARETDB1 dataset as mentioned in Sec-
tion 5.1. Table 4 exhibits the median values of TP, FP, TN, FN (Half of
the answers lie below the median and half lie above the median) and
25th-75th percentile is presented in parentheses. The 25th percentile is
the value at which 25% of the answers lie below that value, and 75% of
the answers lie above that value. Also, the mean values of accuracy,
precision, sensitivity, specificity and Kappa coefficient criterions are re-
ported with their standard deviations in parentheses. One feature of the
modified AlexNet-SVDD structure is that the Fc7 of the standard
AlexNet is forwarded to two separate pathways for better classification.
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tained by the modified AlexNet-SVDD, (Navid-Didegan dataset).

Similar methodology was used in GoogLeNet where the auxiliary classi-
fiers connected to intermediate layers. To have a deep understanding of
the performance of the modified AlexNet-SVDD due to its two-pathway
structure, we also measured the performance of the two pathways
model separately (i.e. the spatial and spectral pathway models).
Table 4 also shows the numerical results of modified AlexNet-SVDD in
spatial and spectral pathway structures. Since the two pathways con-
tain complementary information of a retinal fundus image, the two-
pathway structure performs much better than the individual pathways.
To show that the proposed modified AlexNet-SVDD method substan-
tially improves the automatic screening of DR, the last row of Table 4

shows the numerical results for standard AlexNet structure perfor-
mance without any classifier algorithm. As is evident, the proposed
modified AlexNet-SVDD (2D and 3D feature map) outperforms the stan-
dard AlexNet structure in all terms of accuracies. Based on Monte-Carlo
simulation on 250 different runs (i.e. 250 different initial training and
testing sets), we have obtained a mean accuracy 98.10%, a mean preci-
sion 98.14%, a mean specificity 98.05% and Kappa coefficient 0.96 by
using the modified AlexNet-SVDD (2D) and a mean sensitivity 98.29%
by using the proposed modified AlexNet-SVDD (3D) method. The sensi-
tivity value obtained by the proposed algorithm is comparable with the
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values obtained by Modified AlexNet-FCM and Modified AlexNet-
Subtractive methodologies.

5.7. Comparison with the most related works (based on DIARETDB1
dataset)

Here, we compare the proposed method performance with the most
related works in the literatures. There are the works of Franklin and Ra-
jan [62], Adarsh and Jeyakumari [63], Sinthanayothin et al. [72],
Wang et al. [73], Walter et al. [74], Osareh et al. [14]. Table 5 summa-
rizes all the results in terms of diagnostic accuracies. Multiple ap-
proaches in the literature using various algorithms to implement auto-
matic screening of DR, all of them using only two levels of evaluation
including per-lesion and per-image evaluations. Per-lesion evaluation
means that the method performance was analyzed in detecting every
single lesion such as exudates, microaneurysms or hemorrhages. Typi-
cally, these methods use hand-crafted features of retinal images for
training their systems. When only a diagnosis was provided for each im-
age, the methodology was evaluated a per-image basis which is more
interesting from a screening point of view (discriminating images as DR
or NoDR).

In [62] an algorithm to detect the presence of exudates by using an arti-
ficial neural network has been presented. The proposed approach is
based on feature extraction and clustering technique. The paper is
based on pre-lesion exudates detection as a symptoms of DR, while
there are some other important symptoms of DR. They have evaluated
their works by using 57 color retinal images of DIARETDB1 which con-
tains 5137 objects for training and testing the neural network. As sum-
marized in Table 5, Franklin and Rajan reported a mean accuracy 99.7,
mean sensitivity 96.3 and mean specificity 99.8. As during the screen-

ing stage, the goal is to save time for the physician while reducing the
number of test images and labeling the ones which are suspicious of DR
as well as the ones which are close. Having a high recall or sensitivity
score means that most of the patients will be screened correctly and
their images will be labeled for ophthalmologist consideration. Al-
though, Franklin and Rajan have obtained a better performance indices
in terms of accuracy and specificity than the performance of our
methodology, but the sensitivity performance index of our algorithm is
higher than their results.

Adarsh and Jeyakumari [63] also used feature extraction technique
to produce an automated diagnosis for DR through the detection of reti-
nal blood vessels, exudates and microaneurysms. This method achieved
the mean scores of 95.3% accuracy, 90.6% sensitivity and 93.65%
specificity on the DIARETDB1. Wang et al. reported an image-based ac-
curacy of 100% sensitivity and 70% specificity without any assessment
in terms of lesion-based or pixel-resolution accuracies.

An approach based on multi-scale correlation filtering (MSCF) was
presented which consists on microaneurysm candidate detection and
classification [59]. The experimental results have been evaluated on
only 11 images of DIARETDB1 dataset by FROC plots and sensitivity
measurement. Only numerical score has been reported is the average
false positive per image for DIARETDB1 equal to 0.713.

Another novel method, called Dynamic Shape Feature (DSF) for au-
tomatic detection of both microaneurysms and hemorrhages has been
evaluated pre-lesion and per-image using six databases including DI-
ARETDBI [58]. Our proposed method with the modified AlexNet-SVDD
classifier trained on the same dataset (DIARETDB1), has achieved bet-
ter FROC performance than the DFS based method in [58].

Utilizing a modified pre-trained CNN for classification makes
Graphics Processing Unit (GPU) and external memories unnecessary.
The software package that was used in this paper was Matlab 2017b. All
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Fig. 8. The classification results obtained by the modified AlexNet using K-Means, Subtractive, FCM, and SVDD with 2D feature maps (the left column) and 3D fea-
ture maps (the right column) in Navid-Didegan dataset (a) K-Means clustering method (b) Subtractive clustering algorithm (c) FCM clustering (d) SVDD classifica-

tion method.

the steps of the proposed method were done by an Intel i7 core CPU,
with 8 GB memory, which is considerably advantageous comparing to
common CNN training hardware requirements.

6. Conclusions and future work

In this paper, a deep modified CNN learning algorithm was pro-
posed in the diagnosis of DR and NoDR retinal images. The reasoning
behind modification of a pre-trained CNN network is to avoid the time
complexity of the training process for the convolutional systems. This
novel algorithm adapts a modified AlexNet with two pathways for reti-

nal image recognition, which extract spatial and spectral features of im-
ages, respectively. These two kind of features contained complemen-
tary information of a specific retinal image. The experimental results
have shown that, the fusion of the obtained frequency domain features
with the spatial features, can introduce an increase in the detection ac-
curacy. For any two or three dimensional feature maps obtained by the
proposed algorithm, the two-pathway architecture performed much
better than individual pathways. Although our multiple simulation re-
sults have shown that the propose methodology is sensitive to the train-
ing and testing sizes, but it is not sensitive to the randomly selected
training and testing sets.
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Table 4

Performance indices for balanced DIARETDB1 dataset obtained for 250 different Monte-Carlo runs, using different 2D, 3D kernel functions and different

classification methods.

Method F:;‘:c‘:e P FP ™~ FN Accuracy | Precision | Sensitivity | Specificity K
Modified D 35 20 27 12 64.03 63.63 73.44 54.61 28.06
AlexNet-K means (32-38) (16-29) (18-31) (9-15) (5.95) (10.03) (9.28) 17.21) (11.91)
Modified D 46 16 31 1 81.64 74.31 96.72 66.57 63.29
AlexNet-Subtractive (46-46) (15-16) (31-32) 1-1) (2.98) (2.09) 4.77) (3.20) (5.96)
Modified D 45 14 33 2 83.15 76.58 95.74 70.74 66.31
AlexNet-FCM (45-45) (13-14) (33-34) (2-2) (1.74) (1.63) (1.36) (2.45) (3.48)
Modified 2D 46 1 46 0 98.10 98.14 98.12 98.05 96.21
AlexNet—SVDD (45-47) (0-1) (46-47) 0-2) (1.31) (2:21) (1.93) (232) (2:63)
Modified 3D 30 9 38 17 65.39 69.26 73.51 57.27 30.87
AlexNet-K means (28-43) (6-39) (8-41) (4-19) (9.2) (14.47) (16.86) (34.02) (18.43)
Modified . 46 16 31 1 78.78 71.28 97.27 60.29 57.57
AlexNet-Subtractive (45-46) (16-20 (27-31) (1-2) (3.84) (3.95) (1.59) (8.59) (7.68)
Modified 3D 45 26 21 2 68.91 62.76 93.40 44.42 37.82
AlexNet-FCM (42-47) (24-29) (18-23) (0-5) (2.54) (1.97) (7.38) (6.66) (5.08)
Modified 3D 46 1 46 1 97.97 96.55 98.29 97.65 94.95
AlexNet—SVDD (46-46.75) | (025-1.75) | (45.25-46.75) | (0.25-1) (1.00) (1.92) (1.27) (2-00) (2:00)
Modified Spatial 35 3 44 12 84.42 91.69 75.82 93.02 68.85
AlexNet—SVDD pathway (35-36) (3-3) (44-44) (11-12) (1.24) (2.02) (3.33) (3.02) (2.49)
Modified Spectral 47 B 39 0 91.37 86.11 98.7 84.04 82.74
AlexNet—SVDD | pathway (46-47) (7-8) (39-40) (0-1) (0.67) (1.17) (1.87) (L.71) (1.34)
Standard AlexNet Bin: 39 1 46 8 88.38 96.46 80.00 96.76 76.76
without classifier ay (38-40) 0-2) (45-47) (7-9) (5.4) (3.72) (11.62) (3.65) (10.81)
Table 5
Comparison of our proposed method against previous techniques based on DIARETDB1 dataset.
Performance indices . .
Mean accuracy Mean sensitivity Mean specificity
Method
Franklin and Rajan 2014 99.7 96.3 99.8
Adarsh et al. 2013 95.3 90.6 93.65
Sinthanayothin 2002 - 88.5 99.7
Wang et al. 2000 - 100 70
Wailter et al. 2002 - 92.8 92.4
Osareh et al. 2009 - 93.5 92.1
Proposed method 98.10 98.12 98.05

In addition, the algorithm uses the SVDD algorithm with suitable
kernel functions to classify the CNN data. A comparative study on dif-
ferent kernel parameters and different classifiers were presented. The
comparative study was performed to demonstrate the effect of different
degrees of kernel functions on the performance in diagnosing screening
diabetic retinopathy cases. Also, to demonstrate the performance of the
proposed modified AlexNet-SVDD in clinical applications, Navid-

Didegan dataset including 94 fundus images and balanced DIARETDB1
database, were applied and evaluated. The results of the study can be
helpful to determine the proposed architecture for screening diabetic
retinopathy cases in real clinical cases.

As shown in Table 4, the modified AlexNet-SVDD had the best per-
formance results among the other classification methods, considering
all performance indices. The key to success of the modified AlexNet-
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SVDD model is the using of the complementary information obtained
by the spectral domain, which represent the significant correlations be-
tween spatial features such as microaneurysms, hemorrhages, neovas-
cularization, and exudates on retinal images. From the clinical usage
perspective of the automatic DR screening approach the sensitivity or
recall, which demonstrates the correctness of DR diagnosis, is the most
important factors. As during the screening stage, the goal is to save time
for the physician while reducing the number of test images and labeling
the ones which are suspicious of DR as well as the ones which are close.
Having a high recall or sensitivity score means that most of the patients
will be screened correctly and their images will be labeled for ophthal-
mologist consideration.

The proposed algorithm can obtain acceptable results and handle
the higher level of dimensionality of the CNN output data by using the
proposed kernel functions. Addition of some retinal image characteris-
tics, along with those from CNN feature maps in this work, is expected
to further improve the proposed structure and is suggested for further
work. The proposed scheme in this paper is not limited to the AlexNet
architecture, so the other existing deep learning CNN can be modified
and used is also part of further extension of this work. The results re-
ported in this paper can be utilized as a starting point for further re-
search and enhance the accuracy of the DR screening approaches using
CNN, while being acceptable from the practical standpoint.
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