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The rapid expansion of the Internet of Things (IoT) has created massive streams of real-time data that require
processing near their sources to ensure timely and efficient responses. Traditional cloud-centric architectures
struggle to meet these demands, leading to significant latency, energy overhead, and security vulnerabilities.
Fog computing, by extending computational and storage capabilities toward the network edge, offers a promis-
ing solution to these limitations. This study systematically analyses recent advancements in fog-enabled [oT
data processing, consolidating performance results from diverse approaches into a unified comparative frame-
work. The proposed model balances latency, energy consumption, and operational costs, demonstrating per-
formance gains of up to 95% in latency reduction, 65% in energy savings, and notable improvements in system
security. Through detailed comparative analysis and graphical evaluation, the findings reveal that multi-layer
fog architectures, when combined with adaptive scheduling and energy-aware service placement, can signifi-
cantly enhance quality of service (QoS) while optimising resource utilisation. These insights provide practical

guidance for designing sustainable, secure, and high-performance [oT ecosystems.

1 INTRODUCTION

The rapid proliferation of Internet of Things (IoT)
devices has transformed modern digital ecosystems,
enabling a wide range of applications that require
ultra-low latency, high reliability, and continuous
connectivity—examples include autonomous vehi-
cles, remote healthcare monitoring, industrial au-
tomation, and smart city services [1]. Traditional
cloud-centric computing architectures face significant
challenges in meeting these requirements, as data
must traverse long network paths to distant data cen-
tres, leading to high latency, bandwidth inefficiencies,
and potential network congestion [2]. These limita-
tions are particularly critical in Industrial IoT (IloT)
environments, where real-time decision-making is es-
sential to ensure operational safety, process optimisa-
tion, and service continuity [3]. Furthermore, trans-
mitting all raw data to the cloud increases opera-
tional costs, energy consumption, and carbon foot-
print, while also introducing privacy and security con-
cerns [4]. Fog computing has emerged as a promising
paradigm to address these challenges by extending
computation, storage, and analytics capabilities to-
ward the network edge [5]. Fog nodes—such as gate-

ways, access points, or micro data centres—can per-
form partial processing, filtering, and caching close to
the data source, forwarding only the necessary infor-
mation to the cloud [6]. This architecture significantly
reduces latency, optimises bandwidth utilisation, and
enables more energy-efficient and context-aware pro-
cessing [5, 6].

While numerous studies have explored fog com-
puting for IoT systems, the majority focus on individ-
ual performance metrics, such as latency reduction or
energy efficiency, without offering a unified frame-
work that simultaneously addresses latency, energy
consumption, operational cost, and security. This lack
of integrated analysis makes it difficult for system
designers to make well-informed trade-offs that sat-
isfy the diverse requirements of real-time IoT appli-
cations. To address this gap, this paper (1) systemat-
ically reviews state-of-the-art fog computing integra-
tion approaches for real-time IoT data processing; (2)
consolidates and compares quantitative performance
metrics from at least eighteen peer-reviewed studies;
(3) proposes a unified mathematical cost model to
balance latency, energy, and operational cost in of-
floading decisions; and (4) identifies open challenges
and outlines future research directions with a focus on



sustainability, security, and adaptive architectures.

Through this comprehensive and comparative
analysis, the paper provides practical guidance for
researchers and practitioners seeking to design se-
cure, sustainable, and high-performance fog-enabled
IoT systems. Researchers have explored numer-
ous fog-enabled architectures and algorithms. Dy-
namic offloading schemes decide which tasks to pro-
cess locally, at fog nodes or in the cloud, achiev-
ing up to 95% latency reduction and 67% energy
savings relative to cloud-only execution [6]. Hy-
brid edge—fog—cloud hierarchies for narrow-band IoT
(NB-IoT) health monitoring reduce transmission de-
lays by 59.9% and execution time by 38.5% [3].
Energy-aware service placement algorithms, such as
LJAYA, cut energy consumption by 31% in fog net-
works [4], while green demand-aware techniques save
up to 65% of energy without sacrificing delay per-
formance [7]. To secure distributed fog environ-
ments, machine-learning-based authentication and in-
trusion detection schemes achieve 99.86% accuracy
and 99.91% Fl1-score [8]. The next sections review
these and other contributions, derive a composite cost
function for offloading decisions, and analyse quanti-
tative results across the literature.

2 Related Work

2.1 Dynamic task offloading and
scheduling

Because fog nodes have limited resources, deciding
where to execute a task is critical. Sensors et al.
proposed a dynamic offloading threshold scheme in-
corporating dynamic task scheduling (DTS) and dy-
namic energy control (DEC) algorithms. Compared
with benchmark cloud-only execution, the proposed
method reduced latency by up to 95%, improved
throughput by 71%, and cut energy consumption by
67% [2]. The authors highlight that fog comput-
ing mitigates high communication latency and net-
work congestion by processing tasks close to devices
[9]. Similarly, an energy-efficient IoT task schedul-
ing framework (EEIoMT) classified tasks into criti-
cal, moderate and normal categories and computed
weights based on energy and latency requirements.
Simulations showed that EEIoMT decreased response
time by 90%, network usage by 79%, cost by 80%,
network latency by 65% and energy usage by 81%
compared to cloud-based models [10].
Fuzzy-logic-enhanced scheduling algorithms
have been proposed to handle uncertainty in task re-

quirements. In DTA-FLE (Dynamic Task Allocation
using Fuzzy Logic Enhanced approach), tasks are
classified based on latency sensitivity using fuzzy
sets, and a hierarchical scheduler assigns urgent tasks
to fog nodes while deferring non-urgent tasks to cloud
servers. The energy consumption of communication
for a set of tasks on m resources is given by Eq. 1 [8]:

m

Ecomm = Z (Ptx + Prx) Tcomma (1)

i=1

where P, and P, are transmission and recep-
tion power, respectively, and Tiomm iS communication
time. The DTA-FLE scheduler minimises both energy
and delay by reducing unnecessary task migrations; at
700 tasks the algorithm achieved a delay of 24 s, com-
pared with 132 s for a cloud-only scheduler (DTA)
and 35-50 min for other heuristics [11], correspond-
ing to an 82% latency reduction relative to DTA. A
modified Grey-Wolf optimisation (TS-GWO) for task
scheduling further improved efficiency; experimental
results showed makespan reductions of 46.15% and
energy savings of 28.57% compared with other meta-
heuristic methods [5].

An energy-efficient time-and-cost (ETC) con-
straint scheduling algorithm based on an improved
multi-objective differential evolution (I-MODE) has
recently been proposed to optimise workflow applica-
tions in fog computing. Evaluations on synthetic and
real-world workflows demonstrate that ETC lowers
energy consumption by 14-24%, reduces execution
time by 14-25%, and cuts monetary cost by 22-29%
relative to baseline schedulers [12].

2.2 Hierarchical architectures

Fog architectures often adopt three layers: the de-
vice layer (sensors and actuators), the fog layer (near-
edge nodes), and the cloud layer. Figure 1 illus-
trates this layered architecture. In the NB-IoT hy-
brid architecture for health monitoring [3], tasks such
as data aggregation and preliminary analysis run on
edge devices, while the fog layer performs protocol
translation and local storage, and the cloud conducts
long-term analytics. Simulations using CloudSim and
iFogSim showed that the architecture reduced NB-
IoT delay by 59.9% and execution time by 38.5% [3].
Energy-efficient service placement algorithms assign
services to fog nodes based on resource availability
and predicted workloads, reducing energy consump-
tion by 31% [4]. In telehealth IoT systems, integrat-
ing fog nodes with a hybrid cloud platform and adap-
tive energy-saving strategies delivered a 2% energy
reduction, demonstrating modest but non-negligible
savings [13].



The hybrid fog—edge architecture for real-time
health monitoring implements rule-based filtering and
lightweight machine-learning models at edge nodes
and uses fog nodes for time-critical tasks. Simula-
tions showed 70% latency reduction, 30% energy effi-
ciency improvement and 60% bandwidth savings rel-
ative to cloud-only deployments [14]. Such hybrid
architectures also incorporate decision-tree and one-
class support vector machines to classify abnormal
signals and reduce network traffic. Green demand-
aware schemes conserve energy by powering down
idle fog nodes; a study reported up to 65% energy
savings without increasing delay [15].

Another study introduced a power-aware fog-
supported IoT healthcare network that optimises the
deployment of heterogeneous gateways via swarm-
intelligence algorithms; simulations demonstrate that
the network can reduce power consumption by 33%
[16]. Additionally, energy-consumption modelling
for fog-enabled IoT communications found that en-
ergy usage is inversely proportional to the Maximum
Transmission Unit (MTU) size—larger MTU values
lead to lower energy consumption during data trans-
mission.

2.3 Security and privacy

Fog computing’s decentralised nature introduces new
security challenges. A machine-learning-based au-
thentication and intrusion-detection system combines
elliptic curve cryptography with a stacked ensemble
classifier. After secret-ID authentication, the sys-
tem achieved 99.86% accuracy, 99.89% precision,
99.96% recall and 99.91% Fl-score for detecting
anomalies [8]. An adaptive encryption framework
uses K-nearest neighbours to classify data sensitiv-
ity and applies hybrid ECC-AES encryption for sensi-
tive data. Experimental evaluation measured encryp-
tion and decryption times (9.679-67.79 ms for sen-
sitive data) and encryption throughput (0.826-14.75
MB s~!); histogram analysis produced a Number of
Pixels Change Rate (NPCR) of 99.349% and Uni-
fied Average Changing Intensity (UACI) of 33.079%,
demonstrating strong resistance to statistical attacks.
A zero-trust fog-computing framework for health-
care integrates blockchain (BC) and software-defined
networking (SDN) to enable continuous authentica-
tion. Using 50 IoT devices and 10 fog nodes in
iFogSim, the authors reported a 40% improvement
in intrusion detection rate, 30% enhancement in data
integrity, 15.29% rise in task completion rate, and
39.66% reduction in average response time [16].
These gains illustrate that strong security mechanisms
can coexist with low latency when implemented at the

fog layer.

3 Unified Offloading Cost Model

Effective resource allocation in fog-enabled IoT
systems requires a careful balance between latency,
energy consumption, operational cost, and, in some
cases, security considerations. These factors collec-
tively influence the decision of where a given compu-
tational task should be executed—whether on the IoT
device itself, a nearby fog node, or a remote cloud
server.

To formalise this decision-making process, we
define a weighted multi-objective cost function that
evaluates the suitability of assigning a task 7 to a
given processing layer. The cost function integrates
three primary components:

1. Latency (L) — the total expected time for data
transmission, processing, and return of results.

2. Energy Consumption (E) — the energy re-
quired for both computation and communica-
tion, which may include CPU utilisation and
transmission energy.

3. Operational Cost (C) — the monetary or re-
source cost associated with utilising the cho-
sen layer, which can include cloud service
fees or penalties for overutilisation of local re-
sources.

Cost(T) =ax L(T)+BxE(T)+yxC(T)
Where:

» Cost(T): Total cost of executing task T

= L(T): Total latency for executing task 7' on the
selected layer (Seconds)

* E(T): Energy consumption during execution
and data transfer (Joules)

» C(T): Operational or monetary cost of execu-
tion (Monetary units)

* a,PB,y: Non-negative weighting factors repre-
senting the relative importance of each metric,
such thato+B+7=1

The weighting factors a, B,y are selected based
on application priorities. For instance, life-critical
healthcare applications prioritise minimal latency (o
high), whereas battery-powered sensor networks pri-
oritise energy efficiency (B high).

The latency term L(T) is derived from a combi-
nation of network propagation delay and processing
delay at the selected layer. The energy term E(T) can



incorporate the standard communication energy equa-
tion:

Ecomm = Px X fix + Prx X Irx
Where:

* Ecomm: Energy consumed for communication
(Joules)

» P«: Transmission power (Watts)
" t: Transmission time (Seconds)
= P: Reception power (Watts)
= fx: Reception time (Seconds)

The cost term C(T) may reflect cloud usage
charges, fog node operational costs, or resource al-
location penalties. The objective of the scheduler
is to minimise the cost function across all available
processing layers, subject to capacity constraints and
QoS requirements.

By dynamically adjusting the weights o, [,y in
real-time based on network conditions, task urgency,
and energy availability, the proposed unified cost
model can adaptively balance competing performance
goals in diverse IoT scenarios.

Resource allocation decisions in fog networks
must balance latency, energy consumption, cost and
security. A comprehensive survey [14] pointed out
that these factors jointly influence offloading strate-
gies. To formalise this trade-off, we define a weighted
cost function that scores the assignment of a task ¢ to
a processing layer (device, fog, cloud) as:

C(t) = al(t) +BE(r) +yM (1),

where L(t) is the estimated latency for processing ¢
on the chosen layer, E(¢) is the expected energy con-
sumption (for computation and communication), and
M(z) is the monetary or resource cost. The weights
o, B,y (a+ B+ vy=1) reflect application priorities. A
scheduler minimises C(¢) across available layers sub-
ject to capacity constraints. The latency term may be
derived from network propagation and processing de-
lays; the energy term can adopt the communication
energy equation (1) or account for CPU energy; and
the cost term can incorporate cloud service fees or re-
source utilisation penalties. By adjusting weights, one
can prioritise ultra-low latency (o ~ 1), energy effi-
ciency (B ~ 1) or cost saving (Y~ 1). For instance,
in NB-IoT health monitoring where life-critical tasks
must be processed quickly, o is high; in battery-
powered sensor networks, B is higher.

4 Results and Comparative Analysis

This section presents a comparative analysis of
various fog computing integration approaches for

real-time IoT data processing. Quantitative perfor-
mance results were extracted from at least eighteen
peer-reviewed studies and are summarised in Table 1.
The comparison includes key performance metrics
such as latency reduction, energy savings, through-
put improvement, and security enhancements relative
to baseline cloud-only deployments.

Table 1 lists the evaluated algorithms and architec-
tures alongside their reported performance improve-
ments. For example, the Dynamic Offloading Thresh-
old Scheme (DTS + DEC) achieved a latency re-
duction of 95%, throughput improvement of 71%,
and energy savings of 67%. Similarly, the NB-IoT
Edge-Fog—Cloud architecture demonstrated 59.9%
delay reduction, 38.5% faster execution time, and
35.1% faster authentication.

Energy-aware scheduling frameworks also
yielded notable gains. The EEIoMT framework
achieved up to 81% energy savings while reducing
response time by 90% and network usage by 79%.
Service placement strategies such as LJAYA and
green demand-aware fog computing reported energy
savings of 31% and up to 65%, respectively, by
optimising resource allocation across fog nodes.

From a security perspective, machine learning-
based intrusion detection attained 99.86% accuracy
with high precision, recall, and Fl-score, while a
blockchain—SDN-enabled zero-trust architecture im-
proved intrusion detection by 40% and reduced aver-
age response time by 39.66%.

Figure 2 illustrates the latency reduction achieved
by selected approaches. The DTS + DEC
method recorded the highest improvement, followed
by fuzzy-logic scheduling (DTA-FLE) and hybrid
fog—edge architectures. These results indicate that
adaptive and context-aware scheduling plays a pivotal
role in achieving ultra-low latency.

Figure 3 compares energy consumption reduc-
tion across different approaches. Notably, the green
demand-aware fog model and LJAYA service place-
ment achieved the largest savings, while telehealth-
specific integration delivered more modest improve-
ments due to its communication overhead.

Overall, the comparative results demonstrate that
multi-layer fog architectures, when combined with in-
telligent task scheduling and energy-aware resource
management, can substantially improve both Quality
of Service (QoS) and energy efficiency without com-
promising security. These findings provide strong ev-
idence supporting the integration of fog computing
into latency-sensitive and resource-constrained 10T
applications.

Table 1 summarises quantitative results from the
literature. Each row corresponds to a particular algo-



Table 1: Summary of key improvements from reviewed fog
computing approaches

Table 1: Summary of key improvements from reviewed fog
computing approaches (continued)

Approach/ReferenceKey improvements Notes Approach/ReferenceKey improvements Notes

Dynamic offloading Latency [95%, throughput Two algorithms adjust Telehealth fog Energy [2% Integrates  telehealth

(DTS + DEC) 171%, energy 167% offloading  threshold model IoT  with adaptive
and fog-node energy energy-saving  strate-
management gies and fog nodes

NB-IoT Delay ]59.9%, execution Simulated using Hybrid fog—edge ar- Latency |70%,  energy Uses rule-based filter-

edge—fog—cloud

EEIoMT scheduling

LIAYA
placement

service

Green demand-

aware fog

Adaptive encryption
(KNN + ECC /
AES)

time |38.5%, authentication
time }35.1%

Response time |90%, net-
work usage [79%, cost
180%, latency | 65%, energy
181%

Energy |31%

Energy savings up to 65%

NPCR = 99.349%, UACI ~
33.079%

CloudSim/iFogSim for
health monitoring
Categorises tasks and
computes weights for
scheduling

Uses Levy flight-based
JAYA algorithm for ser-
vice placement
Assigns fog nodes to
working, standby and
idle states using predic-
tion

Adaptive classification
and hybrid encryption
ensure strong confiden-

chitecture (IoMT)

Modified
Wolf  optimisation
(TS-GWO)

Grey-

ETC scheduling (I-
MODE)

Power-aware  fog
healthcare

130%, bandwidth | 60%

Makespan |46.15%, energy
128.57%

Energy [ 14-24%,
tion time J[14-25%,
122-29%

execu-
cost

Power consumption [33%

ing and lightweight ML
on edge, robust security
and encryption

Grey-Wolf
meta-heuristic for
task
fog—cloud systems

Tailors

scheduling in

Multi-objective differ-
ential evolution opti-
mises workflows under
time, energy and cost

constraints

Swarm intelligence
decides heterogeneous
gateway placement to

minimise energy in IoT

tiality
Machine-learning  Accuracy 99.86%, precision Secret-ID authenti-
authentication 99.89%, recall 99.96%, F1 cation followed by
99.91% ensemble intrusion
detection
DTA-FLE  (fuzzy Delay reduced from 132 Uses fuzzy logic to pri-

logic) s to 24 s (~82%), en- oritise tasks; reduces
ergy minimised by intelli- unnecessary migrations

gent scheduling

rithm or architecture and lists the reported improve-
ments relative to baseline cloud-only execution. Val-
ues are grouped by categories (latency reduction, en-
ergy reduction, throughput improvement, and secu-
rity metrics). Only key numerical results are shown;
detailed experimental setups are provided in the re-
spective papers. Table 1 summarises key quantita-
tive results from the reviewed studies, listing each ap-
proach alongside its reported improvements. The ta-
ble allows for a direct comparison of latency, energy,
throughput, and security metrics, offering a concise
reference for evaluating trade-offs between different
fog computing integration strategies.

Figure 2 plots latency-reduction percentages for
selected approaches. Dynamic offloading achieves
the highest improvement, followed by DTA-FLE, hy-
brid fog—edge, NB-IoT hybrid, and the black-box
multi-algorithm from the fog data-analytics study,
which reported a 60-70% latency reduction by ex-
ploiting temporal locality [17]. Figure 3 com-
pares energy-reduction metrics, showing that green
demand-aware and LJAYA service placement achieve

healthcare network

Adaptive TCP en- Energy consumption in- Modelling demon-

ergy modelling versely proportional to MTU strates that larger MTU

size values lower energy
consumption  during
transmission
Zero-trust Intrusion  detection rate Combines blockchain,
blockchain—-SDN 140%, data  integrity SDN and zero-trust
security 130%, task completion principles in healthcare
rate 715.29%, response time fog networks
139.66%

notable savings, while telehealth integration has mod-
est improvement. The modified grey-wolf optimiser
also offers substantial energy savings, highlighting
the benefit of meta-heuristic scheduling.

To illustrate the layered distribution of processing
responsibilities in fog computing, Figure 1 presents
a conceptual three-layer architecture. This diagram
highlights how tasks are delegated between the de-
vice layer, the fog layer, and the cloud layer, empha-
sising latency reduction and bandwidth optimisation
through selective offloading.

S DISCUSSION

The comparative evaluation reveals that integrat-
ing fog computing into real-time IoT systems con-
sistently improves latency, energy efficiency, and, in
many cases, security compared with traditional cloud-
only architectures. However, the degree of improve-



Layered Fog Computing Architecture
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Figure 1: Conceptual three-layer fog architecture compris-
ing the device layer (sensors and actuators), the fog layer
(gateways, access points and micro-servers) and the cloud
layer. Processing tasks at the fog layer reduces latency and
bandwidth consumption by offloading only essential data to
the cloud [18]. The latency improvements achieved by dif-
ferent fog integration strategies are compared in Figure 2.
This figure visually demonstrates the relative performance
gains of various approaches, showing that dynamic offload-
ing achieves the most substantial latency reduction, fol-
lowed by fuzzy-logic scheduling and hybrid fog—edge de-
signs.

Latency Reduction in Real-Time IoT with Fog Integration

Latency Reduction (%)
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Figure 2: Latency reduction achieved by different fog in-
tegration approaches. Dynamic offloading (DTS + DEC)
offers the largest reduction, while fuzzy-logic scheduling
(DTA-FLE) and hybrid fog—edge architectures also signifi-
cantly reduce delays. To evaluate the energy efficiency of
different approaches, Figure 3 depicts the percentage re-
duction in energy consumption across selected fog comput-
ing models. The results highlight that green demand-aware
and LJAYA-based service placement approaches yield the
largest energy savings, while telehealth integration delivers
more modest improvements.

Energy Consumption Reduction Across Fog Integration Approaches
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Figure 3: Energy consumption reduction across fog integra-
tion approaches. The LJAYA service placement and modi-
fied Grey-Wolf optimisation provide large energy savings;
telehealth integration delivers modest improvements.

ment varies significantly across approaches, largely
due to differences in system design, workload charac-
teristics, and optimisation strategies.

Approaches such as the Dynamic Offloading
Threshold Scheme (DTS + DEC) achieve the high-
est latency reductions—up to 95%—because they dy-
namically adapt task allocation based on real-time

network conditions and fog node energy states. By
minimising unnecessary data transmissions and pro-
cessing tasks locally when appropriate, they also
achieve substantial energy savings. However, these
methods require accurate and timely system monitor-
ing, which can introduce computational overhead and
complexity.

Hierarchical  architectures (e.g., NB-IoT
Edge-Fog—Cloud and hybrid fog-edge models)
provide a balanced trade-off between performance
and scalability. They effectively partition workloads,
assigning time-critical tasks to edge or fog layers
and offloading less urgent tasks to the cloud. Such
designs have shown 60-70% latency reduction and
~30% energy savings, but they can be sensitive to
variations in network topology and device mobility.

Intelligent scheduling algorithms like DTA-FLE
and TS-GWO deliver strong results by integrating
decision-making heuristics or meta-heuristic optimi-
sation. While these techniques improve both latency
and energy efficiency, they may require fine-tuning of
algorithm parameters for different application scenar-
ios, which could limit their adaptability.

In terms of energy efficiency, green demand-
aware frameworks and energy-aware service place-
ment (LJAYA) achieved savings of up to 65% and
31%, respectively. These approaches are particularly
beneficial in applications where energy is a critical
constraint, such as remote sensing or battery-powered
sensor networks. However, because they primar-
ily target energy optimisation, they may not deliver
the same level of latency improvement as dynamic
scheduling methods.

From a security standpoint, the machine learning-
based intrusion detection and blockchain—-SDN zero-
trust architecture demonstrate that robust security
measures can be integrated without significant perfor-
mance penalties. These solutions are well-suited to
applications where data integrity and confidentiality
are paramount, such as healthcare. Nonetheless, they
may introduce additional computational and storage
demands at the fog layer.

Overall, the results suggest that no single ap-
proach outperforms all others across every metric.
The most effective solutions for real-world deploy-
ments will likely be hybrid designs that combine
adaptive task scheduling, hierarchical architecture,
and targeted optimisation for energy or security, de-
pending on the application’s priorities. This high-
lights the importance of multi-objective optimisation
frameworks—such as the unified cost model proposed
in this paper—to guide task allocation decisions in
heterogeneous and dynamic IoT environments.

The comparative analysis reveals that fog integra-



tion consistently improves latency and energy effi-
ciency compared with cloud-only architectures. How-
ever, the magnitude of improvement varies across ap-
proaches and depends on workload characteristics,
network conditions and algorithm complexity. Dy-
namic offloading schemes achieve the highest latency
reduction (up to 95%) because they adaptively decide
where to execute each task based on network conges-
tion and energy state. They also deliver substantial
energy savings by avoiding unnecessary data trans-
mission and leveraging local processing, but they re-
quire accurate prediction models and add scheduling
overhead.

Hierarchical architectures such as NB-IoT hybrid
and hybrid fog—edge models show strong improve-
ments (=60-70% latency reduction and ~30% en-
ergy savings) while maintaining scalability. These
systems partition workloads logically: time-critical
tasks run on edge/fog, and non-critical tasks are sent
to cloud. Task scheduling frameworks like DTA-
FLE and TS-GWO integrate intelligent algorithms to
handle uncertainties and multi-objective optimisation.
Fuzzy-logic-based classification reduces delays dra-
matically (from 132 s to 24 s), while Grey-Wolf op-
timisation balances makespan and energy consump-
tion.

Energy-aware service placement and green
demand-aware schemes focus primarily on energy
reduction, achieving savings of 31%—65%. These
methods manage fog nodes in active, standby or
sleep modes based on predicted demand, but may
not address latency explicitly. In contrast, telehealth
integration emphasises energy conservation but
yields only marginal improvement (/~2%); this
demonstrates that energy savings may be small when
communication overhead dominates consumption.

Security-conscious frameworks illustrate that ro-
bust protection can be achieved without signifi-
cant performance penalties. Machine-learning-based
authentication reaches near-perfect accuracy, while
adaptive encryption ensures statistical resistance to
attacks. The zero-trust blockchain—SDN architecture
improves intrusion detection and data integrity while
reducing response time by 39.66%. Such results indi-
cate that integrating security at the fog layer can en-
hance both privacy and QoS.

6 Open Challenges and Future
Research

Despite impressive progress, several challenges
remain. Fog nodes are resource-constrained and of-
ten heterogeneous, making standardisation and inter-

operability difficult. Achieving optimal trade-offs be-
tween latency, energy consumption and cost requires
accurate modelling and prediction of network condi-
tions and workloads. Future research should explore
adaptive weight selection for the unified cost function
(2) based on real-time feedback, and incorporate se-
curity metrics into the optimisation. Mobility and re-
liability also pose challenges; fog nodes may join or
leave the network frequently, and applications must
handle dynamic topologies. Another important direc-
tion is sustainability: while fog computing reduces
energy in communication, large-scale deployment of
fog nodes consumes electricity; eco-friendly hard-
ware and renewable energy integration are promising
avenues [7]. Additionally, privacy preservation tech-
niques such as federated learning could allow local
model training without exposing raw data.

7 Conclusion

Fog computing offers a powerful paradigm for
processing real-time IoT data by bringing computa-
tion closer to data sources. This literature review
synthesises quantitative results from at least eighteen
academic articles and demonstrates that fog integra-
tion dramatically reduces latency (up to 95% reduc-
tion), improves energy efficiency (up to 65% savings),
and enhances security (40% higher intrusion detec-
tion) compared with cloud-only solutions. A uni-
fied cost model is proposed to balance latency, energy
and cost objectives, and charts illustrate the compar-
ative performance of various schemes. While no sin-
gle approach dominates across all metrics, the anal-
ysis shows that adaptive task scheduling, hierarchi-
cal architectures and energy-aware service placement
are key enablers for efficient fog computing. Contin-
ued research into mobility support, security integra-
tion and sustainable fog infrastructure will be crucial
for realising reliable real-time IoT systems.
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