
 

 

 

MARL-Enhanced Partial Reinforcement Optimizer: A Novel 

Evolutionary Algorithm  

 
Seyed Ali Alavizadeh¹, Hooman Kaseban², Omid Solaymani Fard3 

1Student, Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of 

Mashhad, Iran; seyyedali.alavizadeh@studio.unibo.it 
2Student, Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of 

Mashhad, Iran; hoomankaseban@mail.um.ac.ir 
3Associate Professor, Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi 

University of Mashhad, Iran; soleimani@um.ac.ir 

 

 

 

Abstract 

We propose Multi-Agent Reinforcement Learning with Partial Reinforcement Optimizatizer (MARL-PRO), a 

novel population-based optimizer that extends the Partial Reinforcement Optimizer (PRO) by incorporating 

cooperative multi-agent reinforcement learning. In MARL-PRO, each agent employs tabular Q-learning over a 

factorized discrete action space—subspace size, step scale, and direction (attraction or repulsion)—while a 

sensitivity vector guides updates toward the most responsive coordinates. A simple two-phase schedule further 

balances exploration and exploitation. Agents coordinate indirectly through shared incumbents and peer-based 

repulsion, fostering both convergence and diversity. Periodic local refinement and diversity resets enhance 

stability and prevent collapse. Evaluations on four benchmark functions (Sphere, Rosenbrock, Schwefel 1.2, and 

Schwefel 2.22) demonstrate that MARL-PRO consistently achieves faster and more stable convergence than PRO, 

particularly on ill-conditioned and nonseparable landscapes. These results highlight MARL-PRO’s potential as a 

scalable and interpretable framework for black-box optimization in distributed and cooperative environments. 

 

Keywords: Multi-Agent Reinforcement Learning; Partial Reinforcement Optimizer; Non-Linear 

Optimization. 
 

Introduction 

 
Highly complex optimization problems require algorithms that can balance adaptive exploration with focused 

exploitation. The Partial Reinforcement Optimizer (PRO) [1] is a recently proposed evolutionary algorithm 

inspired by the psychological theory of the Partial Reinforcement Effect. In PRO, candidate solutions are modeled 

as learners, with each behavior represented as a decision variable. Stimulation corresponds to targeted 

perturbations of learners’ behavior vectors, while responses—captured through objective-function evaluations—

guide a dynamic scheduling mechanism. This mechanism simulates partial reinforcement by adjusting the priority 

of specific behaviors, thereby mimicking positive and negative reinforcement to elicit more effective responses. 

Through this process, PRO achieves a balance between exploration and exploitation. The algorithm has been 

rigorously validated on diverse benchmark suites and shown to outperform several recent memetic and classical 

evolutionary methods, including GA [2], PSO [3], and Grey Wolf Optimization (GWO) [4].  

In this study we introduce Multi-Agent Reinforcement Learning PRO (MARL-PRO), a principled extension that 

integrates multi-agent reinforcement concepts into PRO’s priority-based framework. In MARL-PRO, a population 

of cooperative agents jointly explores the search space while the scheduling mechanism mediates inter-agent credit 

assignment and behavior prioritization, thereby enhancing coordination in distributed and federated environments. 

We evaluate MARL-PRO on some benchmark functions employing two identical statistical analyses and 

comparative baselines to ensure a fair assessment. Results indicate that MARL-PRO retains the strengths of PRO 

while providing improved scalability and stability in multi-agent and distributed optimization scenarios. 



 

Multi-Agent Reinforcement Learning 

Formulation 

A formalization for multi-agent reinforcement learning is as: 

G=(N,S,{𝐴𝑖}i=1
𝑁 , {𝑂𝑖}i=1

𝑁 ,P,{𝑅𝑖}i=1
𝑁 ,γ), 

where 𝑁 is the number of agents, 𝑆 the state space, 𝐴𝑖 and 𝑂𝑖  the action and observation spaces of agent 𝑖, 

𝑃(s' ∨ s,a) the transition kernel for joint action a=(𝑎1, … ,a𝑁), 𝑅𝑖 the per-agent reward, and 𝛾 ∈ (0,1) the 

discount. Each agent chooses actions with a (possibly stochastic) policy 𝜋𝑖(𝑎𝑖 ∨ 𝑜𝑖 ,h𝑖) that can depend on 

current observation 𝑜𝑖  and its local history ℎ𝑖. The learning goal is to optimize a joint policy π=(𝜋1, … ,π𝑁) to 

maximize expected return(s) [5]. 

A widely used paradigm is Centralized Training, Decentralized Execution (CTDE). During training, agents 

may access global information (e.g., state 𝑠 or other agents’ actions) through a centralized critic, yet the learned 

policies execute with only local observations [5]. CTDE mitigates non-stationarity (each agent sees others 

learning) while preserving decentralization at test time. 

We consider black-box, derivative-free minimization min𝑥∈[l,u]𝑓(𝑥). A MARL view treats search as sequential 

decision making [5]: 

 Parallel exploration: many agents concurrently probe different regions, increasing the chance of 

finding good basins in rugged landscapes. 

 Diversity by design: heterogeneity in policies/actions acts like an implicit ensemble, reducing 

premature convergence. 

 Credit assignment over moves, not points: MARL can learn which kinds of moves (step sizes, 

directions, subspace choices) produce consistent improvement. 

 Anytime performance: population methods yield useful intermediate solutions; RL can adapt 

exploration → exploitation over time. 

Canonical MARL Strategies 

Value-based (discrete actions). 

Independent Q-Learning (IQL) learns 𝑄𝑖(𝑜𝑖 ,a𝑖) per agent; value decomposition (VDN) and QMIX learn factored 

joint 𝑄 with mixing networks for cooperation. Pros: sample-efficient for small discrete action spaces. Cons: 

scaling to large/continuous action spaces is hard [5]. 

Policy-based. 

REINFORCE and PPO-style methods directly optimize 𝜋𝜃  with likelihood-ratio gradients and entropy bonuses 

(often under CTDE with centralized critics). Pros: handle stochastic policies and constraints; good with large 

action spaces. Cons: higher variance; need careful tuning. 

Actor–Critic. 

MADDPG (continuous) and multi-agent PPO variants use centralized critics 𝑄𝑖(s,a) with decentralized actors 

𝜋𝑖(𝑜𝑖). Pros: stabilizes training with critics; supports continuous actions. Cons: critics must generalize across 

joint actions. 

Exploration strategies. 

𝜀-greedy, Boltzmann/softmax over action-values, entropy regularization, Gaussian parameter noise, 

optimism/UCB-like bonuses. 



 

Coordination and credit assignment. 

Team rewards vs. per-agent rewards; difference rewards and counterfactual baselines reduce spurious credit 

assignment; value factorization enables cooperative behaviors while training per-agent policies [5]. 

Stabilizers. 

Target networks, replay buffers (for off-policy), recurrent policies for partial observability, and curriculum/phase 

schedules to anneal exploration. 

In this article, MARL-PRO adopts a value-based multi-agent strategy with independent tabular Q-learning per 

agent. Each agent maintains three small Q-tables for factorized discrete decisions—subspace size 𝜆 ∈ 𝛬, step 

scale 𝛽 ∈ 𝐵, and direction dir ∈ {0,1}—and selects actions via 𝜀-greedy. The update is standard TD(0): 

𝑄(s,a) ← 𝑄(s,a) + 𝛼(𝑟 + 𝛾 max
a'

𝑄(s',a') − 𝑄(s,a))        ,r: = −(𝑓(𝑥new) − 𝑓(𝑥)), 

with a two-state phase variable 𝑠 ∈ {0,1} (early vs. late iterations). 

 

In this work, our action space is intentionally discrete and compact (interpretable knobs on the move operator), 

which makes tabular Q stable and sample-efficient. The objective is black-box and potentially non-smooth; 

tabular value-learning avoids score-function or critic approximation. Factorization over (λ,β,dir) keeps the tables 

tiny (no curse of dimensionality from joint actions) while preserving expressive combinations [5].  

Although there is no centralized critic (hence not CTDE in the strict sense), agents share global cues: the current 

incumbent best 𝑥⋆ and a partner 𝑥(𝑝) sampled from strictly-better peers. These signals stabilize learning and 

reduce non-stationarity by aligning improvements toward common objectives. 

For derivative-free optimization, encode actions as move operators over 𝑥 (e.g., step size, subspace size, 

direction). Use a scalar team reward r= − (𝑓(𝑥new) − 𝑓(𝑥)) so improvements are positive. Keep the action space 

compact and interpretable (discrete bins) to allow tabular/value methods or lightweight function approximation. 

Use CTDE-inspired cues (e.g., a shared best incumbent) to reduce non-stationarity and align agents [5]. 

MARL-PRO: Multi-Agent RL with Partial Reinforcement Optimization 

Problem Setup 

We seek 

min
𝑥∈ℝ𝑑

𝑓(𝑥)         𝑠.𝑡.           ℓ ≤ 𝑥 ≤ 𝑢. (1) 

MARL-PRO maintains a population of agents {𝐿𝑘}k=1
𝑃 ; each agent learns which partial move to take at each step 

through tabular Q-learning over a small, factorized action space. 

Agent Anatomy and Factorized Actions 

Each agent stores: current position 𝑥, fitness 𝑓(𝑥), and a sensitivity vector 𝑠 ∈ 𝑅0
𝑑 measuring coordinate-wise 

responsiveness to past updates [5]. The discrete (factorized) action heads are: 

1. Subspace size 𝜆 ∈ 𝛬 (how many coordinates to update; we pick the top-𝜆 indices of 𝑠). 

1. Step scale 𝛽 ∈ 𝐵 (a multiplicative step magnitude). 

2. Direction flag dir ∈ {0,1}: 

 dir=0: attraction toward the current global best 𝑥⋆ (exploitation). 

 dir=1: repulsion away from a better partner 𝑥(𝑝) (diversification). 



 

Actions are selected with 𝜀-greedy from three tabular 𝑄-functions (𝑄𝜆,Q𝛽,Q
dir

). A simple two-state schedule 

(𝑠 ∈ {0,1} for early/late phases) conditions the 𝑄-tables: early phase favors larger 𝜆 / bolder steps; late phase 

shrinks moves. 

In this method, We factorize the action space because a full joint action over (λ,β,dir) scales multiplicatively; 

factorization preserves expressivity while keeping learning stable and sample-efficient. 

MARL Strategy Suite Used in MARL-PRO 

MARL-PRO adopts a cooperative, value-based scheme with three discrete, factorized action heads per agent: 

subspace size 𝜆 ∈ 𝛬, step scale 𝛽 ∈ 𝐵, and direction dir ∈ {0,1} (attract/repel). Each design choice is purposeful 

[5]: 

1. Factorized discrete actions (value-based). Tabular Q-learning over small action sets is stable and 

sample-efficient. Factorization avoids the combinatorial blow-up of a joint table while permitting 

expressive combinations (λ,β,dir). 

1. Sensitivity-guided subspace selection. A dimension-wise sensitivity vector 𝑠 encodes credit for 

coordinates that historically reduced 𝑓. At each step, the agent updates only the top-𝜆 indices 𝐵 by 𝑠𝑖. 

This combats the curse of dimensionality and channels computation to promising subspaces. 

2. Attract & repel directions. dir=0 (attraction) moves toward 𝑥⋆ for exploitation; dir=1 (repulsion) 

moves away from 𝑥(𝑝) for diversity and local-minima escape. A single bit gives a powerful 

exploration–exploitation lever. 

3. Phase-aware scheduling (two macro-states). A coarse state 𝑠 ∈ {0,1} (early vs. late iterations) 

conditions the three Q-heads: early favors larger 𝜆 and bolder 𝛽; late favors smaller 𝜆 and conservative 

𝛽. This CTDE-inspired cue reduces non-stationarity without a centralized critic. 

4. Diversity maintenance. If std(𝑠) ≈ 0 and the agent is not the incumbent best, re-seed (x,s) from the 

bounds. This prevents population collapse and keeps search radiating. 

5. Global–local hybridization. Periodically (every 𝐾 iterations), a bounded local solver refines 𝑥⋆. 

Exploration discovers basins; local search polishes—improving anytime performance with negligible 

algorithmic overhead. 

Reward System and Credit Assignment 

The objective function is the environment. After proposing 𝑥new and evaluating 𝑓(𝑥new), agents receive a 

shaped, bounded, immediate reward: 

𝑟𝑡=clip ( 
𝑓(𝑥𝑡)− 𝑓(𝑥𝑡+1)

|𝑓(𝑥𝑡)|+ ℰ
−  𝜆𝑐𝑜𝑠𝑡 .

𝜆

𝑑
− 𝑠𝑡𝑒𝑝𝑝𝑒𝑛 .

‖𝑥𝑡+1− 𝑥𝑡‖2

‖𝑢−ℓ‖2
, 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥)  (2) 

where the first term is normalized improvement (scale-free), the second discourages wasteful large subspaces, 

and the third dampens overshooting. 𝜖 avoids division by zero and (𝑟min,r
max

) bound the signal for stable 

learning (e.g., [−1,1]). In practice, a minimal, very stable variant suffices: 

𝑟𝑡 = −(𝑓(𝑥new) − 𝑓(𝑥))  (used in our implementation). 

We apply credit at two levels: 

 Action-level (Q-learning). For each head 𝑄 ∈ {𝑄𝜆,Q𝛽 ,Q
dir

}, 𝑄(s,a) ← 𝑄(s,a)+α (𝑟𝑡+γmax
a'

𝑄(s,a') −

𝑄(s,a)), with 𝜀-greedy selection and a small floor 𝜀min. 

 Dimension-level (sensitivities). If 𝑓 improves, 𝑠𝑖 ← 𝑠𝑖(1 +rr 2⁄ ) for 𝑖 ∈ 𝐵; else 𝑠𝑖 ← 𝑠𝑖(1 − rr). 



 

Stages of PRO (Partial Reinforcement Optimization Operator) 

Given actions (λ,β,dir) and state (x,s): 

P1. Select subspace. 𝐵 ← Top-𝜆 indices of 𝒔. 

P2. Form a stimulus. 

𝛥𝐵 = {
𝑥𝐵

⋆ − 𝑥𝐵 , dir=0(attractive)

𝑥𝐵 − 𝑥𝐵
(𝑝)

, dir=1(repulsive)
} ,Δ𝐵̅ = 0, 

 where 𝐵̅ denotes the complement of 𝐵. 

P3. Compute step factor. With phase τ=t 𝑇⁄ , 

η = 𝜏 + β .  (
𝑠𝐵

max
𝑗

𝑠𝑗

)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

, 

 i.e., anneal by time and amplify by the (normalized) responsiveness of the active subspace. 

P4. Projected proposal. 

𝑥new=Π[ℓ,u](x+ηΔ). 

P5. Evaluate and accept. If 𝑓(𝑥new)<f(𝑥), accept and boost 𝑠𝐵; otherwise penalize 𝑠𝐵. 

Stages of MARL (Control Loop Around PRO) 

For t=1, … ,T: 

1. Phase and exploration. Set 𝑠 ∈ {0,1} (early/late), decay 𝜀 ← max(𝜀min, 0.995𝜀). 

2. Partnering. Sample 𝑥(𝑝) from agents with strictly better fitness (fallback to self). 

3. Action selection. Each head chooses 𝑎 via 𝜀-greedy over its 𝑄-row for state 𝑠; decode (λ,β,dir). 

4. Apply PRO. Run (P1)–(P5) to obtain 𝑥new. 

5. Reward and updates. Compute 𝑟𝑡 (Eq. 2 or the minimal variant) and update 𝑄𝜆,Q𝛽 ,Q
dir

; update 𝑠 on 

𝐵. 

6. Incumbent & diversity. Update 𝑥⋆ if improved; if std(𝑠) ≈ 0 and not best, re-seed (x,s). 

7. Local polish (periodic). If 𝐾|𝑡, run a bounded local solver from 𝑥⋆ and adopt improvements. 

How MARL Settles the Actions of PRO 

MARL-PRO learns which PRO moves work where by repeatedly applying TD updates to three small Q-heads: 

 Convergence of preferences. Because rewards are immediate and shaped by actual improvement, Q-

values for beneficial choices (e.g., small 𝜆 late in training, moderate 𝛽, dir=0 near optima) steadily 

dominate. 

 Phase conditioning. Separate rows for s=0 and s=1 encode different regimes: early rows learn 

exploratory settings; late rows learn exploitative settings without interfering with early behavior. 

 Population effect. All agents share 𝑥⋆ and draw 𝑥(𝑝) from better peers. This aligns incentives toward 

the same objective and implicitly coordinates the learned preferences, yielding a soft consensus on 

effective (λ,β,dir) patterns. 



 

 Stability. Bounded rewards, 𝜀 floors, and occasional re-seeding prevent value blow-ups and mode 

collapse, so the settled policies remain useful throughout the run. 

PRO Operator: Partial, Sensitivity-Weighted Moves 

At iteration 𝑡 (budget 𝑇), define τ=t 𝑇⁄ . Select 𝐵 = indices of the 𝜆 largest entries of 𝑠. Form a stimulus vector 

𝛥𝐵 = {
𝑥𝐵

⋆ − 𝑥𝐵 , dir=0(attractive)

𝑥𝐵 − 𝑥𝐵
(𝑝)

, dir=1(repulsive)
} ,Δ𝐵̅ = 0, 

then compute a step factor 

η ∶= 𝜏 + β .  (
𝑠𝐵

max
𝑗

𝑠𝑗

)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

, 

where the bar denotes the mean over 𝐵. The proposal is projected to the box: 

𝑥new=Π[ℓ,u](x+ηΔ). 

Why these design choices? 

 Partial moves (λ ≪ d) concentrate effort on the most promising coordinates, combating the curse of 

dimensionality. 

 Sensitivities 𝑠 provide dimension-wise credit: coordinates that historically yielded improvement 

become more likely to be chosen again. 

 Attract/repel gives a minimal yet powerful coordination mechanism: attraction accelerates 

convergence, repulsion preserves diversity and helps escape local minima. 

 Phase factor 𝜏 anneals step sizes automatically (explore → exploit). 

Credit Assignment and Learning Updates 

After evaluating 𝑓(𝑥new): 

(i) Sensitivity update (local credit). 

For updated indices 𝑖 ∈ 𝐵, 

𝑠𝑖 ← {
𝑠𝑖(1 +rr 2⁄ ), if𝑓(𝑥new)<f(𝑥)

𝑠𝑖(1 − rr), otherwise
} 

(and 𝑠𝑖 unchanged for 𝑖 ∉ 𝐵). 

(ii) Q-learning (action credit). 

Define reward 𝑟: = −(𝑓(𝑥new) − 𝑓(𝑥)) (positive when we improve). For each head 𝑄 ∈ {𝑄𝜆 ,Q
𝛽

,Q
dir

} with 

learning rate 𝛼 and discount 𝛾, 

𝑄(s,a) ← 𝑄(s,a) + 𝛼(𝑟 + 𝛾 max
a'

𝑄(s',a') − 𝑄(s,a)), 

with phase state s'=s (two-phase schedule), and 𝜀-greedy selection with a small floor 𝜀min. 

Diversity reset. 

If std(𝑠) ≈ 0 and the agent is not the incumbent best, re-seed (x,s) uniformly to avoid collapse. 



 

Partner Selection and Local Refinement 

A partner 𝑥(𝑝) is sampled from agents with strictly better fitness (fallback to self if none); this provides a 

directional signal even far from the incumbent best. Every 𝐾 iterations, MARL-PRO runs a bounded local 

optimizer from 𝑥⋆ to polish the best solution and tighten convergence. 

Complexity and Defaults 

Selecting 𝐵 via sorting costs 𝑂(𝑑 log 𝑑) (or 𝑂(𝑑) via partial selection); per-iteration cost is 𝑂(P d log 𝑑). 

Memory is 𝑂(Pd) plus three small tabular heads for the two phases. Stable defaults: P=30–50, T=300–1000, 

α=0.05–0.2, γ=0.9, 𝜀0 = 0.1–0.3, rr=0.5–0.8, K=20–50. 

 

 

 



 

Results and Analysis 

We compare MARL-PRO against the baseline PRO on four standard real-parameter test functions under 

identical box constraints and comparable evaluation budgets. Our aim is to assess: 

 Convergence speed (best-so-far objective vs. evaluations), 

 Robustness across landscape types (separable/nonseparable, conditioning), 

 Stability (smoothness of descent, absence of collapse). 

 

We use four well-known benchmarks: 

Sphere:  𝑓(𝑥) = ∑ 𝑥𝑖
2𝑑

𝑖=1
  (convex, well-conditioned, separable) 

Rosenbrock: 𝑓(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (1 − 𝑥𝑖)

2]
𝑑−1

𝑖=1
  (ill-conditioned, nonseparable) 

Schwefel 1.2: 𝑓(𝑥) = ∑ (∑ 𝑥𝑗
𝑖

𝑗=1
)2

𝑑

𝑖=1
   (strongly nonseparable, cumulative coupling) 

Schwefel 2.22: 𝑓(𝑥) = ∑ |𝑥𝑖|
𝑑
𝑖=1 + ∏ |𝑥𝑖|

𝑑
𝑖=1   (nonseparable due to product term, valley to origin) 

 

 

 

Function Separable Conditioning Notes 

Sphere Yes Easy Smooth convex bowl 

Rosenbrock No Hard Narrow, curved 

valley 

Schwefel 1.2 No Hard Strong coordinate 

coupling 

Schwefel 2.22 No Moderate L
1  + product 

(ridge/valley) 

 

 

 

 

 

 

Table 1. Landscape characteristics relevant to search operators. 



 

 

 

Table 2. Final best objective at the evaluation budget, aggregated over R independent runs. Each function has 

two sub-rows: Mean and Std. 

Function Metric PRO MARL-PRO 

Sphere 
Mean 1.824 × 10e−11 2.495 × 10e−26 

Std 1.631 × 10e−11 4.589 × 10e−26 

Rosenbrock 
Mean 2.389 × 10e01 7.973 × 10e−11 

Std 2.448 × 10e01 1.681 × 10e−11 

Schwefel 1.2 
Mean 2.985 × 10e00 9.950 × 10e−01 

Std 1.216 × 10e00 5.138 × 10e00 

Schwefel 2.22 
Mean 1.827 × 10e01 7.973 × 10e−10 

Std 2.437 × 10e01 1.681 × 10e−10 

 

 

 

 

 

 

 

Figure 1: MARL-PRO vs. PRO on Sphere. Best-so-far objective vs. evaluations 



 

 

 

 

 

 

 

 

Figure 2: MARL-PRO vs. PRO on Rosenbrock. Best-so-far objective vs. evaluations 

Figure 3: MARL-PRO vs. PRO on Schwefel 1.2. Best-so-far objective vs. evaluations 

 



 

 

 

 

 

Overall Analysis and Advantages of MARL-PRO 

Across all four landscapes, three patterns recur: 

1. Learned move selection (factorized Q). By learning preferences over subspace size λ , step scale β , 

and direction (attract/repel), MARL-PRO tailors its operator to the local landscape. Small λ  emerges 

late on ill-conditioned valleys (Rosenbrock) while larger λ  is favored early on smooth bowls (Sphere). 

2. Sensitivity-guided partial updates. The per-coordinate sensitivity vector concentrates effort on the 

most responsive coordinates, reducing waste in high dimensions and improving nonseparable cases 

(Schwefel 1.2). 

3. Population coordination with diversity. Sharing the incumbent best x
⋆

 (attraction) aligns 

exploitation, while repulsion from a better peer x
( p )

 injects directionally meaningful diversity—useful 

on ridged or deceptive regions (Schwefel 2.22) and for escaping poor basins. 

Conclusion 

We introduced MARL-PRO, a population-based optimizer that couples independent, value-based multi-agent 

reinforcement learning with a partial reinforcement operator. Each agent learns factorized, discrete preferences 

over subspace size, step scale, and attract/repel direction, while a sensitivity vector focuses updates on 

responsive coordinates and a simple two-phase schedule anneals exploration to exploitation. Periodic local 

polishing and a lightweight diversity reset complete the loop. This design keeps the control policy compact and 

interpretable while allowing the move operator to adapt to the local geometry of the objective. 

Across four standard benchmarks under matched evaluation budgets, MARL-PRO demonstrates faster and more 

stable convergence than PRO, particularly on ill-conditioned and nonseparable landscapes (e.g., Rosenbrock and 

Figure 4: MARL-PRO vs. PRO on Schwefel 2.22. Best-so-far objective vs. evaluations 



 

Schwefel 2.22). The gains arise from (i) learned move selection that shrinks the active subspace late and 

moderates step scales near optima, (ii) sensitivity-guided partial updates that reduce wasted effort in high 

dimensions, and (iii) coordinated population signals (attraction to the incumbent best and repulsion from better 

peers) that balance exploitation with meaningful diversity. 
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