th

A r . e
International Conference of U";’ u)@ // M ./ W ,f o' ‘
The Iranian Operations Research Society M Sl e % () B
' 30-31 October 2025 (EsEgLTAgs W

MARL-Enhanced Partial Reinforcement Optimizer: A Novel
Evolutionary Algorithm

Seyed Ali Alavizadeh?, Hooman Kaseban?, Omid Solaymani Fard®
Student, Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of
Mashhad, Iran; seyyedali.alavizadeh@studio.unibo.it
2Student, Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of
Mashhad, Iran; hoomankaseban@mail.um.ac.ir
3Associate Professor, Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi
University of Mashhad, Iran; soleimani@um.ac.ir

Abstract

We propose Multi-Agent Reinforcement Learning with Partial Reinforcement Optimizatizer (MARL-PRO), a
novel population-based optimizer that extends the Partial Reinforcement Optimizer (PRO) by incorporating
cooperative multi-agent reinforcement learning. In MARL-PRO, each agent employs tabular Q-learning over a
factorized discrete action space—subspace size, step scale, and direction (attraction or repulsion)—while a
sensitivity vector guides updates toward the most responsive coordinates. A simple two-phase schedule further
balances exploration and exploitation. Agents coordinate indirectly through shared incumbents and peer-based
repulsion, fostering both convergence and diversity. Periodic local refinement and diversity resets enhance
stability and prevent collapse. Evaluations on four benchmark functions (Sphere, Rosenbrock, Schwefel 1.2, and
Schwefel 2.22) demonstrate that MARL-PRO consistently achieves faster and more stable convergence than PRO,
particularly on ill-conditioned and nonseparable landscapes. These results highlight MARL-PRO’s potential as a
scalable and interpretable framework for black-box optimization in distributed and cooperative environments.

Keywords: Multi-Agent Reinforcement Learning; Partial Reinforcement Optimizer; Non-Linear
Optimization.

Introduction

Highly complex optimization problems require algorithms that can balance adaptive exploration with focused
exploitation. The Partial Reinforcement Optimizer (PRO) [1] is a recently proposed evolutionary algorithm
inspired by the psychological theory of the Partial Reinforcement Effect. In PRO, candidate solutions are modeled
as learners, with each behavior represented as a decision variable. Stimulation corresponds to targeted
perturbations of learners’ behavior vectors, while responses—captured through objective-function evaluations—
guide a dynamic scheduling mechanism. This mechanism simulates partial reinforcement by adjusting the priority
of specific behaviors, thereby mimicking positive and negative reinforcement to elicit more effective responses.
Through this process, PRO achieves a balance between exploration and exploitation. The algorithm has been
rigorously validated on diverse benchmark suites and shown to outperform several recent memetic and classical
evolutionary methods, including GA [2], PSO [3], and Grey Wolf Optimization (GWO) [4].

In this study we introduce Multi-Agent Reinforcement Learning PRO (MARL-PRO), a principled extension that
integrates multi-agent reinforcement concepts into PRO’s priority-based framework. In MARL-PRO, a population
of cooperative agents jointly explores the search space while the scheduling mechanism mediates inter-agent credit
assignment and behavior prioritization, thereby enhancing coordination in distributed and federated environments.
We evaluate MARL-PRO on some benchmark functions employing two identical statistical analyses and
comparative baselines to ensure a fair assessment. Results indicate that MARL-PRO retains the strengths of PRO
while providing improved scalability and stability in multi-agent and distributed optimization scenarios.

" R TN
International Conference of W “ : ;/ / [/ r’ ﬁ ‘
. . .), Yo J / W
The Iranian Operations Research Society % w Y uks A5 i R
Ty

30-31 October 2025 1o glTagA

Multi-Agent Reinforcement Learning

Formulation

A formalization for multi-agent reinforcement learning is as:
G:(Nss’{Ai}iIilv {Ol}fil »Pa{Ri}{il »Y);

where N is the number of agents, S the state space, A; and O; the action and observation spaces of agent i,
P(s'V s,a) the transition kernel for joint action a:(al, ,aN), R; the per-agent reward, and y € (0,1) the
discount. Each agent chooses actions with a (possibly stochastic) policy Tri(ai v oi,hl.) that can depend on
current observation o; and its local history h;. The learning goal is to optimize a joint policy n=(n1, ,nN) to
maximize expected return(s) [5].

A widely used paradigm is Centralized Training, Decentralized Execution (CTDE). During training, agents
may access global information (e.g., state s or other agents’ actions) through a centralized critic, yet the learned
policies execute with only local observations [5]. CTDE mitigates non-stationarity (each agent sees others
learning) while preserving decentralization at test time.

We consider black-box, derivative-free minimization min,¢(; . f(x). A MARL view treats search as sequential
decision making [5]:

. Parallel exploration: many agents concurrently probe different regions, increasing the chance of
finding good basins in rugged landscapes.

. Diversity by design: heterogeneity in policies/actions acts like an implicit ensemble, reducing
premature convergence.

o Credit assignment over moves, not points: MARL can learn which kinds of moves (step sizes,
directions, subspace choices) produce consistent improvement.

. Anytime performance: population methods yield useful intermediate solutions; RL can adapt
exploration — exploitation over time.

Canonical MARL Strategies

Value-based (discrete actions).

Independent Q-Learning (IQL) learns Qi(Oi,ai) per agent; value decomposition (VDN) and QMIX learn factored
joint Q with mixing networks for cooperation. Pros: sample-efficient for small discrete action spaces. Cons:
scaling to large/continuous action spaces is hard [5].

Policy-based.

REINFORCE and PPO-style methods directly optimize m, with likelihood-ratio gradients and entropy bonuses
(often under CTDE with centralized critics). Pros: handle stochastic policies and constraints; good with large
action spaces. Cons: higher variance; need careful tuning.

Actor—Critic.

MADDPG (continuous) and multi-agent PPO variants use centralized critics Q;(s,a) with decentralized actors
;(0;). Pros: stabilizes training with critics; supports continuous actions. Cons: critics must generalize across
joint actions.

Exploration strategies.

e-greedy, Boltzmann/softmax over action-values, entropy regularization, Gaussian parameter noise,
optimism/UCB-like bonuses.

th

N’ o ! y . .'/ /AP,
International Conference of U";’ u)@ // W u/’/z./,/ ,f o' ‘
The Iranian Operations Research Society % w0 o % i k
TVTJVJ‘

30-31 October 2025 1o glTagA

Coordination and credit assignment.

Team rewards vs. per-agent rewards; difference rewards and counterfactual baselines reduce spurious credit
assignment; value factorization enables cooperative behaviors while training per-agent policies [5].

Stabilizers.

Target networks, replay buffers (for off-policy), recurrent policies for partial observability, and curriculum/phase
schedules to anneal exploration.

In this article, MARL-PRO adopts a value-based multi-agent strategy with independent tabular Q-learning per
agent. Each agent maintains three small Q-tables for factorized discrete decisions—subspace size A € A, step
scale B € B, and direction dir € {0,1}—and selects actions via e-greedy. The update is standard TD(0):

Q(S:a) « Q(Saa) + a(r +y maZ?XQ(S',a‘) - Q(s,a)) 0= _(f(xnew) - f(x))l

with a two-state phase variable s € {0,1} (early vs. late iterations).

In this work, our action space is intentionally discrete and compact (interpretable knobs on the move operator),
which makes tabular Q stable and sample-efficient. The objective is black-box and potentially non-smooth;
tabular value-learning avoids score-function or critic approximation. Factorization over (A,B,dir) keeps the tables
tiny (no curse of dimensionality from joint actions) while preserving expressive combinations [5].

Although there is no centralized critic (hence not CTDE in the strict sense), agents share global cues: the current

incumbent best x* and a partner x® sampled from strictly-better peers. These signals stabilize learning and
reduce non-stationarity by aligning improvements toward common objectives.

For derivative-free optimization, encode actions as move operators over x (e.g., step size, subspace size,
direction). Use a scalar team reward r= — (f (") —f (x)) so improvements are positive. Keep the action space
compact and interpretable (discrete bins) to allow tabular/value methods or lightweight function approximation.
Use CTDE-inspired cues (e.g., a shared best incumbent) to reduce non-stationarity and align agents [5].

MARL-PRO: Multi-Agent RL with Partial Reinforcement Optimization
Problem Setup
We seek

min f(x) s.t. f<x<u 1)
xeR4

MARL-PRO maintains a population of agents {L,}f_,; each agent learns which partial move to take at each step
through tabular Q-learning over a small, factorized action space.

Agent Anatomy and Factorized Actions

Each agent stores: current position x, fitness f(x), and a sensitivity vector s € R$ measuring coordinate-wise
responsiveness to past updates [5]. The discrete (factorized) action heads are:

1. Subspace size A € A (how many coordinates to update; we pick the top-A indices of s).
1. Stepscale 8 € B (a multiplicative step magnitude).
2. Direction flag dir € {0,1}:

- dir=0: attraction toward the current global best x* (exploitation).

- dir=1: repulsion away from a better partner x® (diversification).

th

N’ o ! y . .'/ /AP,
International Conference of U";’ u)@ // W u/’/z./,/ ,f o' ‘
The Iranian Operations Research Society % w0 o % i k
TVTJVJ‘

30-31 October 2025 1o glTagA

Actions are selected with e-greedy from three tabular Q-functions (QA,Q B’Q dir). A simple two-state schedule

(s € {0,1} for early/late phases) conditions the Q-tables: early phase favors larger A / bolder steps; late phase
shrinks moves.

In this method, We factorize the action space because a full joint action over (A,B,dir) scales multiplicatively;
factorization preserves expressivity while keeping learning stable and sample-efficient.

MARL Strategy Suite Used in MARL-PRO

MARL-PRO adopts a cooperative, value-based scheme with three discrete, factorized action heads per agent:
subspace size 1 € A, step scale 8 € B, and direction dir € {0,1} (attract/repel). Each design choice is purposeful

[5]:

1. Factorized discrete actions (value-based). Tabular Q-learning over small action sets is stable and
sample-efficient. Factorization avoids the combinatorial blow-up of a joint table while permitting
expressive combinations (A,B,dir).

1. Sensitivity-guided subspace selection. A dimension-wise sensitivity vector s encodes credit for
coordinates that historically reduced f. At each step, the agent updates only the top-A indices B by s;.
This combats the curse of dimensionality and channels computation to promising subspaces.

2. Attract & repel directions. dir=0 (attraction) moves toward x* for exploitation; dir=1 (repulsion)
moves away from x® for diversity and local-minima escape. A single bit gives a powerful
exploration—exploitation lever.

3. Phase-aware scheduling (two macro-states). A coarse state s € {0,1} (early vs. late iterations)
conditions the three Q-heads: early favors larger A and bolder 8; late favors smaller A and conservative
B. This CTDE-inspired cue reduces non-stationarity without a centralized critic.

4. Diversity maintenance. If std(s) = 0 and the agent is not the incumbent best, re-seed (x,s) from the
bounds. This prevents population collapse and keeps search radiating.

5. Global-local hybridization. Periodically (every K iterations), a bounded local solver refines x*.
Exploration discovers basins; local search polishes—improving anytime performance with negligible
algorithmic overhead.

Reward System and Credit Assignment

The objective function is the environment. After proposing x"" and evaluating f (x""), agents receive a
shaped, bounded, immediate reward:

.o Fe)— f(xet1) A lloxg 41— xell
ry=clip (W — Acost i stePpen- lell_—ﬂl:z; Tmins Tmax) 2

where the first term is normalized improvement (scale-free), the second discourages wasteful large subspaces,
and the third dampens overshooting. e avoids division by zero and (rmm,rmax) bound the signal for stable
learning (e.g., [—1,1]). In practice, a minimal, very stable variant suffices:

1 = —(f(x™") — f(x)) (used in our implementation).

We apply credit at two levels:

. Action-level (Q-learning). For each head Q € {Ql,Qﬁ,Qdir}, Q(s,a) « Q(s,a)+a (rt-i-ymaxa.Q(s,a') —

Q(s,a)), with e-greedy selection and a small floor &,;,.

. Dimension-level (sensitivities). If f improves, s; « s;(1+rr/2) fori € B; else s; < s;(1 — r1).

: EETRE N
International Conference of W “) [/ ﬁ ‘
. : . A OSSP
The Iranian Operations Research Society % w Y uks A5 i R
: BF

30-31 October 2025 1o glTagA

Stages of PRO (Partial Reinforcement Optimization Operator)
Given actions (A,B,dir) and state (x,s):

P1. Select subspace. B « Top-A indices of s.
P2. Form a stimulus.

xp — xg, dir=0(attractive)
48 =15, — P dir=1(repulsive) | B =
B —Xg epulsive)

where B denotes the complement of B.
P3. Compute step factor. With phase 1=t/T,

Sp

maxs, |’
]

n=t+p.

i.e., anneal by time and amplify by the (normalized) responsiveness of the active subspace.
P4, Projected proposal.
x"V=TIpp) (xA).
P5. Evaluate and accept. If f(x"")<f(x), accept and boost sz ; otherwise penalize sg.
Stages of MARL (Control Loop Around PRO)
For t=1, ...,T:
1. Phase and exploration. Set s € {0,1} (early/late), decay € « max (e, 0.995¢).
2. Partnering. Sample x® from agents with strictly better fitness (fallback to self).
3. Action selection. Each head chooses a via e-greedy over its Q-row for state s; decode (A,B,dir).
4. Apply PRO. Run (P1)—(P5) to obtain x™".

5. Reward and updates. Compute r; (Eq. 2 or the minimal variant) and update QA’Qﬁ ,Qy;,s Update s on
B.

6. Incumbent & diversity. Update x* if improved; if std(s) =~ 0 and not best, re-seed (x,s).

7. Local polish (periodic). If K|t, run a bounded local solver from x* and adopt improvements.

How MARL Settles the Actions of PRO
MARL-PRO learns which PRO moves work where by repeatedly applying TD updates to three small Q-heads:

. Convergence of preferences. Because rewards are immediate and shaped by actual improvement, Q-
values for beneficial choices (e.g., small A late in training, moderate g, dir=0 near optima) steadily
dominate.

o Phase conditioning. Separate rows for s=0 and s=1 encode different regimes: early rows learn
exploratory settings; late rows learn exploitative settings without interfering with early behavior.

. Population effect. All agents share x* and draw x® from better peers. This aligns incentives toward
the same objective and implicitly coordinates the learned preferences, yielding a soft consensus on
effective (A,B,dir) patterns.

o -“-/ “ i ; . :'/ g ’
International Conference of W “ / / [/ ﬁ ‘
fan Operat | LB oAV o s
The Iranian Operations Research Society % w Y uks A5 i R
TVTVTVJ'

30-31 October 2025 1Eok gLTagA

. Stability. Bounded rewards, ¢ floors, and occasional re-seeding prevent value blow-ups and mode
collapse, so the settled policies remain useful throughout the run.

PRO Operator: Partial, Sensitivity-Weighted Moves

At iteration t (budget T), define ==t/T. Select B = indices of the A largest entries of s. Form a stimulus vector

xp —xg, dir=0(attractive)
Ap = xg — xP, dir=1(repulsi Ap =0,
B B pulsive)

then compute a step factor

Sp

maxs, |’
]

n:=t+94.

where the bar denotes the mean over B. The proposal is projected to the box:
x"V=I1 g (xA).

Why these design choices?
. Partial moves (A « d) concentrate effort on the most promising coordinates, combating the curse of
dimensionality.

. Sensitivities s provide dimension-wise credit: coordinates that historically yielded improvement
become more likely to be chosen again.

o Attract/repel gives a minimal yet powerful coordination mechanism: attraction accelerates
convergence, repulsion preserves diversity and helps escape local minima.

. Phase factor 7 anneals step sizes automatically (explore — exploit).
Credit Assignment and Learning Updates
After evaluating f (x""):
(i) Sensitivity update (local credit).
For updated indices i € B,

. {si (1 +rr/2), iff(x“ew)<f(x)}
i s;(1 —rr), otherwise

(and s; unchanged for i ¢ B).
(ii) Q-learning (action credit).

Define reward r: = —(f (x™") — £ (x)) (positive when we improve). For each head Q € {Q/1>QB>Qdir} with
learning rate a and discount y,

Q(s,a) « Q(s,a) + a(r +y maxQ(s'a) — Q(s,a)),
with phase state s'=s (two-phase schedule), and e-greedy selection with a small floor &,;,,.

Diversity reset.

If std(s) = 0 and the agent is not the incumbent best, re-seed (x,s) uniformly to avoid collapse.

th

h-“/ “ s . . '/ ﬁ’
- . / / 9 4
it ionpos SR Wﬂuﬁ!?ﬁd&wf&? @

—
_W”v’./\).‘.'v".'

30-31 October 2025 1Eok gLTagA

Partner Selection and Local Refinement

A partner x® is sampled from agents with strictly better fitness (fallback to self if none); this provides a
directional signal even far from the incumbent best. Every K iterations, MARL-PRO runs a bounded local
optimizer from x* to polish the best solution and tighten convergence.

Complexity and Defaults

Selecting B via sorting costs 0(d log d) (or 0(d) via partial selection); per-iteration cost is O(P d log d).
Memory is 0 (Pd) plus three small tabular heads for the two phases. Stable defaults: P=30-50, T=300-1000,
0=0.05-0.2, y=0.9, ¢, = 0.1-0.3, rr=0.5-0.8, K=20-50.

Algorithm 1 MARL-PRO (Multi-Agent RL with Partial Reinforcement Opti-
mization)

Require: f, bounds [£,], dimension d, population P, iterations T', e, 7y, £g, T,
local period K
1: Initialize agents {L,}_, with =, ~ U([6,u]), s ~ U(0.9,1.0), and
Qx: Qp, Qair =0
x* argming, f(x)
fort=1toT do
T t/T; s+ 1t =T/2] > phase: early vs. late
for cach agent I do
€ « max(eyin, €-0.995)
Choose ay ~ s-greedy(Qi[s,]). ag ~ e-greedy(Qs[s,]), adgir ~ &-
greedY((‘gdir [Su]}

8: Decode (X, 3,dir) « (ax, ag, aqir)

9: B + Top-\ indices of s

10: Select partner ") from strictly-better agents (fallback to self)

11: Form A (attract to o* if dir = 0; repel from x®) if dir = 1)

12: ne 7+ 8-(sp/max;s;); @Y g, (xz+nA)

13: FreY e fa™e™)

14: if frv < f(x) then

15: x—x"v, f(x) "V sp+sp-(1+11/2)

16: if f(x) < f(z*) then z* « x

17: end if

18: else

19: sp+sp-(1—rr)

20: end if

21: T —(f" — f(z)); update Qx, Qp, Qair with learning rate « and
discount

22: if std(s) ~ 0 and L # x* then re-seed (x, s)

23: end for

24: if K|t then

25: 2'°¢ « LocalRefine(f,z*); if f(x'°°) < f(z*) then z* + x'°°

26: end if

27: end for

28: return x*

th —_— O
International Conference of u,f AU),) ﬁ ‘
- - LB oAV o s
The Iranian Operations Research Society " o Wkt A, i -
: By

30-31 October 2025 1o glTagA

Results and Analysis

We compare MARL-PRO against the baseline PRO on four standard real-parameter test functions under
identical box constraints and comparable evaluation budgets. Our aim is to assess:

. Convergence speed (best-so-far objective vs. evaluations),
. Robustness across landscape types (separable/nonseparable, conditioning),

o Stability (smoothness of descent, absence of collapse).

We use four well-known benchmarks:

Sphere: flx) = Z‘iiz) x? (convex, well-conditioned, separable)

Rosenbrock: f(x) = Zfl:_ll[loo(xiJr1 —x2)? + (1 — x;)?] (ill-conditioned, nonseparable)

d .
Schwefel 1.2: f(x) = Z (Z;_l xj)2 (strongly nonseparable, cumulative coupling)
i=1 -

Schwefel 2.22: f(x) = Y&, |x;| + [I%,1x;| (nonseparable due to product term, valley to origin)

Table 1. Landscape characteristics relevant to search operators.

Function Separable Conditioning Notes
Sphere Yes Easy Smooth convex bowl
Rosenbrock No Hard Narrow, curved
valley
Schwefel 1.2 No Hard Strong coordinate
coupling
Schwefel 2.22 No Moderate L 4 product
(ridge/valley)

th Ly »)
— . 0'/ ﬁ’
International Conf £ » 540 / o
18 ematon Conerercet WA e N

= 7 -7;51,[1
30-31 October 2025 1Eol LT 49 A g eca

Table 2. Final best objective at the evaluation budget, aggregated over R independent runs. Each function has
two sub-rows: Mean and Std.

Function Metric PRO MARL-PRO
Mean 1.824 x 10e—-11 2.495 x 10e—26
Sphere
Std 1.631 x 10e—11 4.589 x 10e—26
Mean 2.389 x 10e01 7.973 x 10e—-11
Rosenbrock
Std 2.448 x 10e01 1.681 x 10e-11
Mean 2.985 x 10e00 9.950 x 10e—-01
Schwefel 1.2
Std 1.216 x 10e00 5.138 x 10e00
Mean 1.827 x 10e01 7.973 x 10e—-10

Schwefel 2.22
Std 2.437 x 10e01 1.681 x 10e—-10

Sphere - MARL-PRO vs PRO

—\l === MARL-PRO
PRO

10°
10" 4
10724
1077 -

107 ®231e11

10—15 .

1071‘3 .

-23 |
10 2.18e-25

0 2000 4000 6000 8000 10000 12000 14000
Function evaluations

Figure 1: MARL-PRO vs. PRO on Sphere. Best-so-far objective vs. evaluations

th

“V » “‘ : . o'/ ’
International Conf f WAL / vL
e | @Y ometiona comterenceot Wi s @R

- P
30-31 October 2025 1ol glol 9 g A LR L

Rosenbrock - MARL-PRO vs PRO

. s MARL-PRO
10°1 e PRO
106 .
103 p
i @,
10° (2.57e+00
1073 -
10—6 4
10—9 m
.|1.87e-11
|
0 2000 4000 6000 8000 10000 12000 14000
Function evaluations
Figure 2: MARL-PRO vs. PRO on Rosenbrock. Best-so-far objective vs. evaluations
Schwefel 1.2 - MARL-PRO vs PRO
== MARL-PRO
104 4 w= PRO
103 4
102 4
101 n
L 2.98e+00
.95e-
100 4
T T T T T T T T ‘
0 2000 4000 6000 8000 10000 12000 14000

Function evaluations

Figure 3: MARL-PRO vs. PRO on Schwefel 1.2. Best-so-far objective vs. evaluations

th —_— O
International Conference of W “ / / [/ ﬂ ‘
The Iranian Operations Research Society " w Wkt A, i -
TRAOUA

30-31 October 2025 1Eok gLTagA

Schwefel 2.22 - MARL-PRO vs PRO

. s MARL-PRO
1074 PRO
106 .
103 o
L
10° 1 [6.55e+00
10-3 4
106 4
10-9 4
e 1.87e-11
|

0 2000 4000 6000 8000 10000 12000 14000
Function evaluations

Figure 4: MARL-PRO vs. PRO on Schwefel 2.22. Best-so-far objective vs. evaluations

Overall Analysis and Advantages of MARL-PRO

Across all four landscapes, three patterns recur:

1. Learned move selection (factorized Q). By learning preferences over subspace size A, step scale B,

and direction (attract/repel), MARL-PRO tailors its operator to the local landscape. Small A emerges
late on ill-conditioned valleys (Rosenbrock) while larger A is favored early on smooth bowls (Sphere).

2. Sensitivity-guided partial updates. The per-coordinate sensitivity vector concentrates effort on the
most responsive coordinates, reducing waste in high dimensions and improving nonseparable cases
(Schwefel 1.2).

3. Population coordination with diversity. Sharing the incumbent best X* (attraction) aligns

exploitation, while repulsion from a better peer X injects directionally meaningful diversity—useful
on ridged or deceptive regions (Schwefel 2.22) and for escaping poor basins.

Conclusion

We introduced MARL-PRO, a population-based optimizer that couples independent, value-based multi-agent
reinforcement learning with a partial reinforcement operator. Each agent learns factorized, discrete preferences
over subspace size, step scale, and attract/repel direction, while a sensitivity vector focuses updates on
responsive coordinates and a simple two-phase schedule anneals exploration to exploitation. Periodic local
polishing and a lightweight diversity reset complete the loop. This design keeps the control policy compact and
interpretable while allowing the move operator to adapt to the local geometry of the objective.

Across four standard benchmarks under matched evaluation budgets, MARL-PRO demonstrates faster and more
stable convergence than PRO, particularly on ill-conditioned and nonseparable landscapes (e.g., Rosenbrock and

th —_— O
International Conference of u,f “ / / [/ ﬁ ‘
: : .) d/ ° U‘ (/ / W
The Iranian Operations Research Society " o Wkt A, i -
: By

30-31 October 2025 1Eok gLTagA

Schwefel 2.22). The gains arise from (i) learned move selection that shrinks the active subspace late and
moderates step scales near optima, (ii) sensitivity-guided partial updates that reduce wasted effort in high
dimensions, and (iii) coordinated population signals (attraction to the incumbent best and repulsion from better
peers) that balance exploitation with meaningful diversity.

References:

[1] Taheri, A.; RahimiZadeh, K.; Beheshti, A.; Baumbach, J.; Partial Reinforcement Optimizer: An Evolutionary
Optimization Algorithm, Expert Systems with Applications, Elsevier, 2024.

[2] Holland, J.; Adaptation in Natural and Artificial Systems, MIT Press, Cambridge (MA), 2nd Edition, 1992.
[3] Kennedy, J.; Eberhart, R.; Particle Swarm Optimization, Proceedings of IEEE International Conference on
Neural Networks, Volume 1V, pp. 1942-1948, IEEE, Perth, 1995.

[4] Mirjalili, S.; Mirjalili, S. M.; Lewis, A.; Grey Wolf Optimizer, Advances in Engineering Software, Volume
69, pp. 4661, Elsevier, 2014.

[5] Albrecht, S. V.; Christianos, F.; Schafer, L.; Multi-Agent Reinforcement Learning: Foundations and Modern
Approaches, MIT Press, Cambridge (MA), 2024.

