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Abstract

Diabetic retinopathy (DR) is the major cause of visual impairment among diabetic patients. Significant works have been
done to hybrid a modified CNN architecture such as AlexNet with some of classifiers such as support vector machines
(SVMs) or fuzzy C-Means (FCM) to improve the DR screening. This new hybrid innovative structure uses more efficient
extracting features of a retinal images in both spatial and spectral domains. In spite the advantages of this innovative
architecture, the different kernel functions affect the performance of the proposed algorithm. Using the appropriate
transformed data into two- or three-dimensional feature maps and using an improved support vector domain description
(ISVDD) can obtain more flexible and more accurate image description. To this end, the optimal degree values of different
kernel functions can be extracted by using a particle swarm optimization (PSO) algorithm. Also, we compared the
performance of our approach (modified-AlexNet-ISVDD) with the results obtained by hybrid modified AlexNet and some
of classifiers such as K-Nearest Neighbors (KNN) and FCM clustering. We achieve the proposed CNN architecture using
ISVDD on the DIARETDB1 and MESSIDOR datasets, with more than 99% sensitivity.

Keywords Diabetic retinopathy screening - Deep learning - Optimal kernel functions - Improved Support vector domain

description (ISVDD) - Particle swarm optimization (PSO) - Clinical study

1 Introduction

Diabetic retinopathy (DR) is the most common cause of
irreversible blindness in working-age populations.
According to studies, by the year 2030, the number of
people diagnosed with DR will increase from 126.6 million
in 2010 to 191 million, and the number of people with
vision-threatening DR (VTDR) will grow from 37.3 mil-
lion to 56.3 million by the same time (Congdon et al.,
2012). Evidence shows that by diagnosing DR in early
stages it can be treated just by diabetes management and
can be prevented from further damages to the retina (Antal
and Hajdu, 2012, Kamadi et al, 2016).

Generally, DR is diagnosed by an experienced oph-
thalmologist using a detailed and highly accurate retinal
fundus image. Ophthalmologist diagnoses the presence and
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severity of DR by carefully investigating fundus images
and finding the different symptoms of DR, such as micro-
aneurysms, hemorrhages, neovascularization, and exu-
dates. Finding DR signs is highly subjective, which makes
it difficult to diagnose in early stages. The high cost of the
physical examination and lack of professional experts are
the other obstacles for early DR diagnosis. Therefore, large
numbers of early stage DR cases are missing from early
diagnosis and treatment (Hani and Nugroho, 2010).

The main purpose of a DR diagnostic method is to
classify images into DR and NoDR classes (Niemeijer
et al.,, 2010). Typically, these methods use hand-crafted
features of retinal images for training their systems and
classification base on machine learning approaches. Some
of these machine learning algorithms are support vector
machine (SVM), artificial neural network (ANN), K-near-
est neighbor (KNN) and fuzzy C-Means (FCM) method-
ologies (Li et al, 2015; Osareh et al., 2009; Bhatkar and
Kharat, 2015; Priya and Aruna, 2013; Saranya et al., 2012).
Supervised classification methods such as SVM (Wang
et al., 2012; Selvaraj et al., 2007), and KNN (Anbeek et al.,
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2005; Cocosco et al.,, 2003) are trained from different
labeled images for segmentation purpose. Because the
supervised classification methodologies use the prior
knowledge about the image classes, they can improve the
classification accuracy. Some of the most important unsu-
pervised classification methodologies in the field of DR
screening include KM algorithm (Khalid et al., 2014),
expectation—-maximization (EM) (Lalaoui et al., 2015) and
FCM methodologies (Bezdek et al., 1984). Medical images
are often corrupted by some environment noises, artifacts
are caused by operator performance (Singh et al., 2016).
Since the standard FCM algorithm does not consider local
spatial classification, it is very sensitive to noise. Many
researchers have incorporated the local spatial information
into the standard FCM to remove the effects of noise, such
as Wang et al. proposed the FCM distance function as
weight sum of distance influenced by local and nonlocal
information (LNLFCM) (Wang et al., 2008). Using local
spatial features increases the computational cost because it
needs the computation for each pixel neighborhood. Gong
et al. extended fuzzy local information C-Means algorithm
by replacing the Euclidean distance in the object function
of the FCM by kernel distance-based cost function (Gong
et al., 2013). As an effort in comparing different available
techniques, a comparative analysis of nine common clas-
sifier algorithms is implemented in the application of
automatic screening of diabetic retinopathy cases
(Mohammadian et al., 2017a).

Generally speaking, feature extraction techniques are
complex tasks and require depth knowledge of the images
and their differences. Therefore, recent studies are using
the state-of-the-art convolutional neural network (CNN) for
various fields, especially in medical image analysis (Hus-
sain et al., 2018). One of the main reasons for imple-
menting CNN in medical applications is its ability to
extract features automatically by using deep multiple layers
(Tajbakhsh et al., 2016). Therefore, there has been an
increase in using CNN in medical diagnosis applications.
For instance, CNNs were used for grading brain tumors in
magnetic resonance imaging (MRI) scans (Pan et al., 2015;
Menze et al., 2015; Nie et al., 2018). Another CNN-based
method was conducted by (Wang et al., 2015) for feature
extraction and ensemble classification for retinal blood
vessel segmentation and a study related to severity DR
diagnosis using CNN was addressed in (Pratt 2016). Also,
two different comparative studies of two CNN structures
for DR screening have been performed in (Vo and Verma,
2016) and (Mohammadian et al., 2017b).

Other examples of CNNs applications in medical image
detection and classification, including correctly detecting
and predicting polyp type during colonoscopy videos
(Tajbakhsh et al., 2015a; Zhang et al., 2017), automatic
detection of pulmonary embolism (PE) in computed
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tomography (CT) images (Tajbakhsh and Liang, 2015b),
computer-aided automatic detection of mitotic cells in
histopathology datasets (Ciresan et al. 2013), detection of
lymph nodes in CT images (Roth et al., 2014), namely
thoraco-abdominal lymph node (LN) detection and inter-
stitial lung disease (ILD) classification (Shin et al., 2016a),
and automatic anatomy detection in CT volumes (Zheng
et al., 2015). Applications of CNNs are not only limited to
detection systems but also recently CNNs have been used
for medical image measurement and segmentation such as
pancreas segmentation in CT scans (Roth et al., 2018; Vo
and Lee, 2018), multimodality isointense infant brain
image segmentation (Zhang et al., 2015), neuronal mem-
brane segmentation in electron microscopy images (Cire-
san et al., 2012), knee cartilage segmentation in MRI scans
(Prasoon et al., 2013), and carotid intima-media thickness
measurement in ultrasound images (Shin et al., 2016b).
The CNNs are a class of deep learning models that can
learn a complex hierarchy of features by building high-
level features from low-level ones. Also, the validation of
the performance of the final trained network on clinical
data is an important step in performance analysis of the
work. Requiring a large amount of medical training ima-
ges, extensive computational and memory devices, com-
plications about training of a deep CNN such as overfitting
and convergence issues made the full training of a CNN (or
training from scratch) tedious and in some cases imprac-
tical (Erhan et al., 2009; Razavian et al., 2014). In medical
imaging and diagnosis field, it is relatively rare to have an
image dataset of sufficient size to completely train a CNN
from scratch (Tajbakhsh et al., 2016). In addition, the state-
of-the-art CNNs included in the GitHub or Keras core
library demonstrate a strong ability to be generalized to
images outside the ImageNet dataset via transfer learning,
such as feature extraction and fine-tuning' (Simonyan and
Zisserman, 2014; Motamedi et al., 2016). Therefore, it is
very common to fine-tune a CNN that has been trained
using a large labeled dataset from a different application to
avoid training networks for many general features (Zhang
et al., 2015). For example, Kaggle dataset is one of the
largest diabetic retinopathy database which consists of only
35,126 retina images with different various qualities.’
Various qualities of the images in the dataset make the
feature extraction approaches more difficult to implement.
Each image is rated by a clinician for the presence of
diabetic retinopathy on a scale of 0 to 4. The scales of 0, 1,
2, 3, and 4 correspond to NoDR, mild, moderate, severe,
and proliferative DR, respectively. A novel automatic
recognition system for the five severity level of diabetic
retinopathy (SLDR) was developed through learning of

! https://github.com/fchollet/deep-learning-models.
2 https://www kaggle.com/diabeticretinopathy-detection.
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deep visual features (DVFs) (Abbas et al., 2017). To test
and evaluate the performance of the SLDR system, the 750
digital images were collected from three online public and
one private sources.

The main contribution of our work in this paper is to
improve the performance of the previous proposed archi-
tecture where a modified AlexNet structure consisting of
both spatial and spectral domains image feature extraction
mixed with a support vector domain description (SVDD)
(modified AlexNet-SVDD) for a retinal image DR or
NoDR recognition. In modified-AlexNet-SVDD algorithm,
a pre-trained AlexNet architecture employed and enforced
to classify fundus images of a clinical dataset into cases of
DR patient or healthy. The first layers of the typical CNNs
are mostly related to extracting general information from
the images such as the edges, while their last layers are
specifically trained to extract more detailed features related
to the images dataset specifically. Therefore, the type of the
input retinal image and the weights of the last layers of
CNNs can be modified to adapt the networks for our
application and increase the performance accuracy. This
new innovative architecture uses two pathways extracting
features of the retinal images in both spatial and spectral
domains. In addition, the SVDD is a domain description
method inspired by SVM algorithm that tries to find the
sphere with minimum volume containing almost all
objects.

The rest of the paper is organized as follows. Section 2
briefly explains some contributions of our work. A standard
AlexNet architecture and the respective concepts of the
FCM and the SVM algorithms are explained in Sect. 3.
The proposed modified AlexNet-ISVDD architecture is
presented in Sect. 4. The results of the simulations and the
comparative analysis of the other classifiers are presented
in Sect. 5, while Sect. 6 concludes the paper.

2 Contributions

There are a few number of medical images to train a CNN
which has a lot of weights needed to be trained. This
limitation of the image samples, usually leads to the
overfitting problem (Bar et al., 2015; Nie et al., 2018). We
propose a new modified CNN architecture using an
improved support vector machine classification (ISVDD)
for DR screening, making the following contributions:

e In this paper, we proposed a modification to the
standard SVDD to achieve optimum kernels using
metaheuristic approaches such as particle swarm opti-
mization algorithm that can obtain more flexible and
more accurate differences between the DR and NoDR
retinal images.

e Traditional CNN-based approaches use only object
features or spatial features for image category recog-
nition (Tajbakhsh et al., 2016; Doshi et al., 2016; Nie
et al., 2018). Our proposed structure is based on a
modified AlexNet which uses two pathways extracting
retinal image features.

e We demonstrated how optimization of a pre-trained
AlexNet with metaheuristic algorithm without any fine-
tuning, leads to incremental performance improvement
in DR or NoDR classification. This unique approach
distinguishes our work from the full training (Pan et al.,
2015; Menze et al.,, 2015) and even fine-tuning
approaches of a pre-trained CNN methods (Tajbakhsh
et al., 2016; Vo and Verma, 2016; Razavian et al., 2014;
Margeta et al., 2015).

e We present our results with consistent advantages
especially for retinal image classification, but almost all
above mentioned works in Sect. 1, were focused on
other different medical or nonmedical imaging modal-
ities involving classification, detection and segmenta-
tion in the field of CNN application.

e There are multiple approaches in the literature using
various algorithms to implement diabetic retinopathy
classification based on segmentation and detection of
different exudates, hemorrhage and blood vessels using
some CNN architectures. To our knowledge, the
implementation of a typical CNN architecture with an
improved SVDD (ISVDD) as a classifier does not have
history in the field of automatic screening of DR.

3 Standard alexnet architecture
and classification algorithms

The standard AlexNet achieved significantly improved
performance over the other non-deep learning methods for
ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) 2012 (Krizhevsky et al., 2012). ImageNet is a
large database (over 1.2 million images) that is used for
visual object recognition (1000 separate object categories).
The standard AlexNet has approximately 60 million
parameters (about 5 million parameters in its convolution
layers and approximately 55 million parameters in fully
connected layers). So we use this CNN architecture with
some necessary modifications to obtain the main features
of retinal images. The AlexNet computes 11 x 11,5 x 5,
3 x 3,3 x3 and 3 x 3 convolutions within the same
layers of the Maxpool and concatenates the output of the
whole process to pass it to the Softmax layer as the latest
layer of the network. Figure 1 demonstrates schematic
diagram of the standard AlexNet consists of 12 main layers
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Fig. 1 Schematic diagram of the standard AlexNet (Shin el al., 2016a)

(5 convolutional layers, 3 pooling layers, 3 fully connected
layers and 1 Softmax layer).

3.1 Standard fuzzy C-means

FCM as an unsupervised classification approach also
known as clustering algorithm, first introduced in (Dunn,
1973) and extended by (Bezdek et al., 1984) which is an
improvement of KM classification algorithm. It can group
image features x; into Cp.,, clusters where x; is a n-di-
mensional feature vector,

S XN,) (1)

where X is a data matrix with the size of n XNy, n repre-
sents the dimension of each x; feature vector and N, rep-
resents the number of feature vectors (the output dimension
of networks). For a training dataset of N, data objects and
by minimizing the J,, as the following quadratic objective
function,

X = (X1,%2, ., Xi, -«

Ns Cfcm

Im(u,v) :Zzug‘q"xiavjnz (2)
i=1 j=1

where

Crem

Zul»j:l,izlﬂ,...,Nx (3)
Jj=1

And u;; is the membership of i data point in the ;"
cluster v;. m is the weighting exponent or the index of
fuzziness. When the high values for the m are selected, the
membership functions tend to be equal, whereas for m = 1,
the FCM transferred to the KM algorithm, where the
memberships are crisp (in our study, we explore for the
best m). ||x;,vj||, is the L, or Euclidean norm similarity
measured between a feature vector x; and the cluster center
vj in the feature space. When the data points are located
close to the centroid of their clusters, high membership
values are assigned for them, and low membership values
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are assigned to those are located farther from the centroid.
By using the first derivative of J,,(u,v) with respect to u
and v equal to zero yields the two following necessary
conditions for minimizing J,, (u, v):

TN = A
Mij: Z<|x17vj||2> (4)
k=1 ||.X,',Vk||2

and

N;s
2ict Ui X

N
Doty u

The FCM algorithm is based on an iteratively process
where the cluster centers v; and the membership values u;;

will be updating to minimizing the cost function J,,(u,v)
(Wang et al., 2008).

(5)

Vi =

3.2 Standard support vector machine

The standard SVM is a supervised learning method that has
the aim of determining the location of decision boundaries
or hyperplanes that provide the optimal separation of the
classes based on statistical theory (Cortes and Vapnik,
1995; Vapnik, 1995). In the case of a two-class image
classification, the SVM selects the hyperplane that has the
greatest margin between the two classes. The maximization
problem of the margin is usually solved using the quadratic
programming optimization algorithm. The margin is
defined as the distance between the hyperplane and the
nearest data sample point on each side of the classes. The
sample points that are located in the nearest distance of the
each hyperplane are named as support vectors. For our
two-class classification problem and for a training dataset
of N, points of the form (x;,y;), where the y; is either 1 or
— 1, indicates the DR or NoDR classes, respectively. Any
hyperplane can be written as the set of point x; satisfying,



Diabetic retinopathy screening using improved support vector domain description: a clinical study

10089

Wx; —b =0 (6)

where the W is the normal vector to the hyperplane and
determines the orientation of the discrimination plane. The

parameter HhVH determines the distance of the hyperplane

from the origin along the normal vector W. The SVM tries
to maximize the perpendicular distance between two
hyperplanes by solving the following constrained problem,

S I
Tn(W, b) = min~ [|W]| (7)

The trade-off between maximization of the margin and
the number of misclassification errors can be controlled by
a constant parameter Cyp,

. 1 5 Ny
Wb‘?m i <§|W| "‘Csvmzéi) (8)

W05C1 556N i—1

Jm(W7b7 éz) =

where 0 < Cg,m <00, the variable &; >0 is a slack variable
that allows some data samples out of the sphere.

4 Proposed method

Three main stages constitute our proposed DR detection
algorithm: (1) Image preparation (2) Spatial and spectral
features extraction (3) improved SVDD classification.

Image preparation section itself consists of rescaling,
normalizing and finally obtaining a 2D color histogram of a
given retinal image. Also, we use the AlexNet in our
proposed algorithm as a multi-layer feature extractor with
some modification to obtain more spatial and frequency
domain complementary information of a retinal image. The
last section of our proposed scheme is the improved SVDD
classification algorithm which determines the image cate-
gory for a color fundus image.

The overall structure of the proposed scheme is shown
in Fig. 2. After the modification, the obtained features can

be used in conjunction with classifier such as SVM, FCM
or ISVDD. The input of our system unlike other traditional
CNNs application is a 2D histogram of the retinal image,
and the output of the system is the DR or NoDR label of the
image. After several layers of convolution and pooling, the
2D histogram of the input image can be converted into a
2D or 3D feature vector, which contains the spatial and
spectral features within the image. For a deep under-
standing of the new scheme performance, the performances
of the 2D and 3D classification will be calculated sepa-
rately, which are called 2D classification or 3D classifi-
cation case studies.

4.1 Image preprocessing

Medical images usually contain noise and shading artifacts
due to interference and other phenomena that affect the
process of classification in screening systems (Reddy et al.,
2017). Artifacts due to non-uniform illumination which is a
general problem in retinal imaging degrade the efficiency
of image classification as well as the effects of camera
variations. Preprocessing is an essential step to reduce the
image variation by normalizing and equalization of the
irregular illuminations of a color fundus image. To
decrease the variation among images due to different
camera resolutions and settings, an image preprocessing
algorithm is applied to the images. The first step of the
algorithm is rescaling the images such that all the input
images have the same size. In the next step, the color of
each pixel is subtracted by the local average, mapping the
average to 50% gray. Using this approach, the sharpness of
the images will be more unified. Finally, for a given image
the color histogram is extracted by counting the number of
times each color occurs in the image array. Histograms are
invariant to rotation about an axis perpendicular to the
image plane, and change slowly under change in scale and
change of angle of view. Adaptive histogram equalization

Input CONV1
CONV2
CONV3 CONV4 CONV5 FC6 FC7
& Kernel ISVDD
27 Dense Dense = —= === =n .
13 13 13 1 i
| 2D :
227 > S ? 3 = 3 - - ) AN : —3_.
T ) 13 ] 13 13 : - ;
5V 3V 3 v 3 ; :
55 384 384 256 : - ]
266 Max 4096 4096 \?m}i?e}\j}{nlﬁ\ E)[:)tu:ufuno:] )
96 Max pooling
pooling
227 M
pooling

Fig. 2 Schematic diagram of the proposed modified AlexNet and ISVDD
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(AHE) can be used to improve the contrast on retinal
images (Andonova et al. 2017).

4.2 Spatial and spectral features extraction

The modification begins with transferring the weights from
a pre-train AlexNet as a part of our final network, and is
completed with only two fully connected layers, i.e., Fc6
and Fc7, instead of three FC layers typically used in the
standard AlexNet (so the Fc8 is replaced by a modified
Fc8). In our study, we deal with 2-class classification tasks,
in two different 2D or 3D feature space (spatial and
spectral domain pathways as shown in Fig. 2). In the
spatial domain pathway, only the last layer (Fc8) is sub-
stituted with a typical fully connected summation as an
activation function. Our proposed method processes the
data in the frequency domain to attain greater accuracy
besides to the spatial feature processing. By separating the
image feature into different sub-bands, important differ-
ence occurs over varying low to high frequencies. When
digital images are handled at multiple resolutions, the
discrete Fourier transformation (DFT) is viable mathe-
matical tool. So the spectral pathway in Fig. 2, returns the
discrete Fourier transform of the Fc7 output, computed
with a fast Fourier transform (FFT). In this section of our
algorithm, we integrate the spectral and spatial features
together to construct a powerful framework using 2D or 3D
classification.

4.3 Improved SVDD classification

Improvement of a standard SVDD is the main part of our
algorithm. The SVDD is a domain description method
inspired by SVM algorithm that tries to find the sphere with
minimum volume containing almost all objects (Tax and
Duin, 1999). Since the output features obtained by the
modified CNN architecture are not normally spherically
distributed in the input space of the classifier data, the
SVDD algorithm uses a nonlinear transformation (¢(.)) to
transform the data from input space to a new high
dimensional feature space. Let the x; be a dataset con-
taining N sample points as mentioned in (1). For a sphere,
described by center a and radius R, the SVDD minimizes
the following equation:

F(R,a,&) =R+ Cou Y _ & 9)

where the variable Cgqq gives the trade-off between the
volume of the sphere and the number of target objects
rejected. This equation should be minimized under the
following constraints:

lo(x; —a)|> <R*+¢& Vi &>0 (10)
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Incorporating this constrain in (9),
Lagrangian can be introduced

L(Raaa o, 51) = R2 + Csvdd Zé - ZOC,{RZ + gl

—all b= Zvl (11)

where o; >0 and y; >0 are two Lagrange multipliers. The
following constraints can be obtained by setting the partial
derivatives of the Lagrangian (40) with respect to R, o and
&, to zero, new constraints are obtained:

Zal—la Z% Zoc(p (12)

o —y; =0 Vi (13)

the following

— llo(x

Csvdd -

be obtained. By resubstituting (13) in Lagrangian, the
following Wolfe dual form, which is a maximization
problem respect to o; will be obtained:

W) =D ailo(x) o(x)) = Y o5(p(x), 0 (x)))

l

By remove the y; from (13), the 0 < o; < Cyyag, Vi, will

(14)
where the (¢(x;), @(x;)) is the inner product can be
replaced with an appropriate kernel function K (x;,x;) such

that satisfies the Mercer’s theorem (Niazmardi et al., 2013).
There are different kernel functions; however, the Gaus-
sian kernel function is shown to have better performance
than the others (Tax and Duin, 1999);

2
K(x;,xj) = exp (— w> ,0eR T (15)

The different kernel functions result in different
description boundaries in the original input space of the
SVM. The generic Gaussian kernels in (44) regard each
component of x; with equal emphasis in their effects into
feature space. The problem is to find a suitable nonlinear
transformation for each component of x; to have a larger
effect in feature space. To this end, the nonlinear trans-
formation ¢(x;) = x! corresponding to each modified
AlexNet outputs (i.e., spatial and spectral features) is used
to scale each feature before mapping it into feature space.
In our proposed algorithm, the Gaussian kernel function
with above nonlinear pre-transformation (¢(.)) is consid-
ered to transform the data from input space to a new high
nonlinear feature space. So we consider two kernel func-
tions, the first one is a two-dimensional kernel (2D) and the
second one is a three-dimensional kernel function (3D) as
follows:
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o2

N2
Kan(o(x)0x) — exp (_ [ 920(x:) = @2 ()] > 16)

Kan(o(x)s 5)) — exp (_ l230(x) = P3p(5)| > (17

o2

In this paper, we present a modified AlexNet model with
two pathways retinal image recognition, which extract both
spatial and spectral features of images respectively.
Experiments show that the two kinds of features contain
complementary information for the category recognition of
an image as the two-pathway model always achieve better
performance than single pathway models. So each feature
space x; has two main parts, spatial feature space X;gq,
obtained by the spatial pathway and spectral feature space
Xispe» Obtained by the spectral pathway, respectively (as
shown in Fig. 2). The two kernel functions (16) and (17)
are considered with 2D and 3D nonlinear transformations
as follows:

(xiflma Xispe ) (pzi(;[) (xtr‘fv]/)a ’ ‘xi-vl’e |"2 ) ( 1 8)
(i i) 20 (i Re(ipe) ™ Iz (19)

where the free parameters n; and n, are the degree of the
polynomials, and Re(xse) and Im(xgpe) represent the real
and imaginary parts of the spectral feature. Tax and Duin
(1999) consider L1 loss in the formulation of SVDD as in
(38). In SVDD, L2 loss is a common alternative to L1 loss
(Fan et al., 2005). The performance of L2 loss SVDD
(ISVDD) can outweigh L1 loss SVDD in some circum-
stances and has some subtle differences. The ISVDD
minimizes the following equation:

F(R,a,&) =R + Coaa » & (20)
subject to:
lo(xi —a)l* <R*+¢&; Vi (21)

Note that the constraint , £; > 0; Vi is not necessary for
L2 loss SVDD, because if at an optimum &; <0 for somei,
we can then replace &; with zero so that,

(i —a)|> <R* + & <R*+0 (22)

5 Experimental results and analysis
5.1 Evaluation criterion for performance analysis
To estimate the accuracy of classification or clustering for

the clinical data, all clustering validity criterion can be
used. These indices are divided into three categories: (1)

internal criteria, (2) relative criteria (3) external criteria
(Niazmardi et al., 2013). The internal index uses some
metrics that are based on the database and clustering
methodology. To compare the performance of the proposed
modified AlexNet-SVDD for the clinical data, four per-
formance indices are calculated. These indices are accu-
racy, precision or prediction value, sensitivity or recall,
specificity (Franklin and Rajan, 2014; Olson and Delen,
2008). The precision or predictive value is the probability
of the retinal image that has been classified as DR is really
DR itself (Franklin and Rajan, 2014). Sensitivity (Zhoul
et al., 2017) or recall is the true positive rate (TPR) and
specificity is the true negative rate (TNR) (Liu and Tang,
2014). The precision criterion, keeps the balance between
the sensitivity and specificity to evaluate the effectiveness
of the proposed algorithm (Zhoul et al., 2017). P and N
represent the labeled DR and NoDR samples, respectively,
and P + N demonstrates the total number of samples or
P+N=TP+FP+ TN +FN.

The relative criteria are based on evaluation of cluster-
ing results by comparing them with other clustering
methods. In a wide range of medical image classification,
the free response operating characteristic (FROC) curve is
used (Edwards et al., 2002) as a fundamental index for
diagnostic test evaluation (Tajbakhsh et al., 2016). In a
FROC curve the true positive rate is plotted in function of
the false positive rate for different threshold parameter.
Sensitivity shows the probability that a test will be positive
when the disease is present. Therefore, each point on
FROC represents a sensitivity—specificity pair corre-
sponding to a particular decision cut-off point.

To evaluate our proposed scheme, Kappa coefficient of
agreement has been used as an external criterion (Kunch-
eva, 2011; Cohen, 1960). Kappa error relations are used to
gain insights about who much a clustering method is better
than another on a specific dataset (Niazmardi et al., 2013;
Pasolli et al., 2014). Diversity between two classifiers is
measured by x represents the Kappa coefficient as

k= (0A —AC)/(1 — AC) (23)

where OA is the observed agreement or accuracy and AC is
the agreement by chance.

5.2 Preparing dataset

The main problem in the research of DR screening is the
non-availability of a suitable standard datasets for training,
testing and evaluation of a developed algorithm. Every
academic research groups uses their own databases for
evaluation and testing with different number of samples;
therefore, a general comparison with similar studies would
not be possible. The well establish public dataset DIA-
RETDBI1 consists 89 retinal images, of which 84 images
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are labeled as DR and remaining five images are consid-
ered as NoDR, has been used by some papers such as
(Kauppi, 2007; Franklin and Rajan, 2014). These images
were acquired by using a digital fundus camera with 50°
field of view (FOV). Our proposed algorithm is evaluated
with the fundus images available in the DIARETDBI1
dataset as input to our two-pathway modified AlexNet
architecture. We further augmented some NoDR images to
this dataset to create a balanced database of 168 retinal
images in which both DR and NoDR classes were repre-
sented equally (84 samples for each class). Also, our
algorithm is applied to diagnose DR cases from real fundus
images that are captured from the Navid-Didegan oph-
thalmology clinic, Iran. The labeling was performed by an
experienced independent ophthalmologist. All images are
in different compressed formats such as JPEG, JPG and
PNG with two different sizes 3872 x 2592, 3060 x 2580
pixels for the Navid-Didegan database. This private dataset
contains 94 retinal images, in which 47 of the images are
labeled as NoDR and 47 images are labeled as DR class.
Finally, our proposed algorithm is applied to the free
dataset MESSIDOR, where 1200 images are collected
(Patry et al., 2016). Therefore, by applying the labeled
images of these three datasets to the modified AlexNet-
ISVDD in the test step, the performance of the network is
examined for the test images, in which all the test images
are independent of the train data. We hold out 70% of the
dataset for training in classification procedure, while 30%
is used to test the performance of the methodology. As the
train and test datasets include different fundus images
taken with different devices to remove the variations in
images, preprocessing algorithm described in Sect. 4.1 is
implemented on both train and test points.

The result of image preprocessing steps are shown in
Fig. 3a—c. Figure 3 shows two selected examples of DR
(the left column) and NoDR (the right column) fundus
images and their experimental results of rescaling, illumi-
nation and normalizing. Figure 4 shows the obtained 2D
histograms for these DR and NoDR samples.

The image preprocessing level as mentioned before,
consists of three main parts: the image rescaling (Fig. 3b),
the RGB equalization (Fig. 3c) and the 2D histogram
extraction (Fig. 4). The task for image rescaling is per-
formed such that all the input images have the same size of
2592 x 2592 x 3. At the normalization level, the non-
uniform brightness of the retinal fundus image will be
removed by dividing the three components of a color pixel
by its intensity. The third step of preprocessing level in our
proposed algorithm is the choosing red and green compo-
nents of the retinal image, because these channels contain
most information with blood and vessels in a retinal fundus
image. In this stage, the color histogram is obtained by
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counting the number of times each red and green colors
occur in the image array.

The next step is to apply the preprocessed images to the
proposed network that has already been modified and dis-
cussed in Sects. 4.2 and 4.3. Figure 5 shows spatial and
spectral feature maps obtained by the modified AlexNet
containing 47 x 2 retinal images from Navid-Didegan
dataset (47 as DR and 47 as NoDR images). Figure 5a
shows the spatial feature maps (i.e., xf’s‘pa in (18)) obtained
by the modified AlexNet, Fig. 5b shows the spectral fea-
Xispe| " in (18)) and finally Fig. Sc, shows the

tures (i.e.,
real and imaginary parts of the spectral feature maps (i.e.,
(Re(xispe)™ and Im(x;spe )™ mentioned in (19).

5.3 Optimum degree values of ISVDD’s kernels

As mentioned in Sect. 4.3, the different kernel functions
result in different description boundaries in the original
input space of the SVDD. These kernels map the features
into the high nonlinear features space (Niazmardi et al.,
2013). To find the optimal values of the kernel parameters
(Wen et al., 2008), the particle swarm optimization (PSO)
has been used. The PSO approach has the advantage of
being less computationally expensive compared with other
well-known evolutionary algorithms such as genetic algo-
rithm (GA), firefly algorithm (FFA), gray wolf optimiza-
tion (GWO). After 300 iterations, the applied PSO found
the best values for n; = 0.81,n, = 4.2 involved in the
kernel functions. By setting n; = 0.81,n, = 4.2, as shown
in Fig. 6, the location of the feature maps in input space
will be changed in order that the ISVDD can easily classify
them. Navid-Didegan dataset is used in this scenario to
evaluate the proposed modified AlexNet-ISVDD algo-
rithm. The effects of these optimum kernel values are
shown in Fig. 6 with both 2D and 3D feature maps
obtained by the modified AlexNet-ISVDD containing 47 x
2 retinal images from Navid-Didegan dataset (47 as DR
and 47 as NoDR images). The first row of this figure shows
the results obtained by using the 2D kernel function, so the
inputs of the ISVDD algorithm would be the nonlinear

transformation over the spatial pathway (i.e.,x;;'pa) and

spectral pathway (i.e., x,;ype|n2) as mentioned in (18),

respectively. In Fig. 6a, the spatial pathway outputs respect
to spectral pathway outputs are illustrated. Figure 6b shows
the classification results obtained by ISVDD with 2D
pathway. The second row of Fig. 6 shows the results
obtained by using 3D kernel function, where the inputs of
the ISVDD algorithm would be xj,, from spatial pathway
and Re(xigpe)" and Im(x;g. )™ from the spectral pathway as
in (19), respectively. Figure 6d shows the classification
results obtained by ISVDD with 3D pathway. Unlike the

traditional SVDD algorithms that the predetermined kernel
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(b)

(©)

DR sample image

NoDR sample image

Fig. 3 Image preprocessing level of our proposed algorithm (Sect. 4.1) a the original DR (the left column) and NoDR (the right column) retinal
fundus images b rescaled images (2592 x 2592 patches) ¢ RGB normalized images

function acts as a measure to optimize the Lagrange cost
function, we find the optimal kernel values by PSO algo-
rithm on some nonlinear transformation directly on input
features in (18) and (19). Therefore, a simple kernel
function can be replaced by a kernel function with an
optimum nonlinear pre-transformation into 2D or 3D fea-
ture spaces. Our experimental results, show that the Cy,uy
parameter in (9) does not significant impact on the ISVDD
performance as reported in (Niazmardi et al., 2013), thus
throughout this paper Cy,5y = 1.2 is considered. The opti-
mum kernels and Cy,4; parameters are obtained by PSO
algorithm n; =0.81 and n; =4.2 and Cyyy = 1.2 for

Navid-Didegan dataset and n; = 1.2 and n, =4 and
Cyvaa = 1.2 for the DIARETDBI1 dataset.

5.4 Comparison to other clustering algorithms

In this section, the results of the proposed algorithm are
compared with the KNN, K-Means, subtractive clustering
and FCM algorithms as the most frequently used clustering
algorithms for DIARETDB1 and MESSIDOR datasets.
Therefore, we evaluate and compare the performance of
the proposed modified AlexNet with five different classi-
fication algorithms and with both 2D and 3D proposed
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(b)

Fig. 4 Two-dimensional histograms (227 x 227 patches), a DR image sample, b NoDR image sample
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Fig. 5 Spatial and spectral feature maps obtained by the modified AlexNet containing 47 DR sample data (the red stars) and 47 sample data as
NoDR (the blue circle), a spatial features b spectral features ¢ the real and imaginary parts of the spectral features

nonlinear transformation over the input space (i.e., Modi-
fied AlexNet-K-Means, Modified AlexNet-KNN, Modified
AlexNet-Subtractive, Modified AlexNet-FCM, Modified
AlexNet-ISVDD). In this experimental scenario, all the
available samples are split in two training and test sets. Our
experimental results show that the modified AlexNet using
the FCM as a classifier (Modified AlexNet-FCM) has the
comparable performance. Thus, for keeping the results
comparable, the optimum parameters for the FCM classi-
fication algorithm should be obtained. The modified
AlexNet-FCM has two different parameters which affect
the classification results, the number of training samples
and the fuzzifier parameter (m). Since the parameter m in
(4) and (5) affects the fuzziness of the standard FCM
classification algorithm, so the best value for this parameter
should be selected based on PSO algorithm. In some paper,
the different initial cluster centers of FCM are considered
to be study (Niazmardi et al., 2013), but we let that the
initial cluster centers are chosen in a completely random
way, and the best initial values for the cluster centers are
considered. As mentioned before, choosing the high values
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for m as the fuzzifier parameter, the FCM classifier repre-
sents an increased sharing of the samples among the
clusters, whereas for m = 1, the FCM transferred to the K-
Means algorithm. To show the effects of this parameter in
our experiment, the algorithm is run with five different
values for m. For our dataset with more similar classes,
increasing in the fuzzifier value will cause a decrease in
classification result. As Fig. 7a shows, the value m = 5 for
this parameter seems to be an appropriate value in our
proposed methodology.

To study the effects of the number of training data
sample on the results, the algorithm is run with six different
number of training sets. In this scenario, the selected value
for the fuzzifier parameter is set to m = 5 as the best value
estimated from the previous practice. Based on this sce-
nario, the proposed methodology seems to be sensitive to
the number of training data. An incremental performance
improvement is observed when the algorithm included
more training data samples, as seen in Fig. 7b.

The subtractive clustering method was first introduced
in the field of extracting fuzzy rules (Chiu 1994). The
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Fig. 6 Classification results obtained by proposed modified-ISVDD
using the 2D (upper row) and 3D (lower row) kernel functions a the
spatial features respect to spectral features b the classification result
with optimal degrees n; = 0.81,n, = 4.2 obtained by PSO (2D

subtractive clustering method considers each data point as
a potential cluster center and defines a measure of the
potential of a data point to serve as a cluster center. The
potential of data point is a function of its distance to all
other data points. Thus, a high potential data sample would
be a data with many neighboring data samples. By
selecting the range of influence, the data points with the
highest potential are determined so that the feature space is
covered. Therefore, the alignment parameter for subtrac-
tive clustering method is the range of influence in each of
the data dimensions. In this scenario, the optimum range of
influence for subtractive clustering algorithm has been
obtained and implemented. The initial training samples are
selected randomly from the available sets and the number
of training data is set to 70% (i.e., 33 samples per class for

05 05

(@)

real of spectral feature spatial feature

pathway) c the spatial features respect to the real and imaginary parts
of spectral features d the classification result obtained by ISVDD (3D
pathway)

each DR and NoDR classes for the Navid-Didegan dataset)
and 30% of the remained data are selected as the test
dataset. The testing and training sets are kept the same for
all methods, keeping the results comparable. Since the
clustering algorithms are sensitive to the initial clusters, the
best initial conditions are considered for all methodologies.
Figure 8 shows the classification results obtained by the
modified AlexNet using K-Means, KNN, subtractive and
FCM with 3D kernel functions.

To show the performance of the different classification
methods, the performance indices mentioned in Sect. 5.1
are used. Table 1 exhibits the numerical results of TP, FP,
TN, FN, accuracy, precision, sensitivity, specificity and
Kappa coefficient criterions for DIARETDBI1 dataset. To
compare the results in both the DIARETDB1 and Navid-
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Table 1 Performance indices for DIARETDBI1 dataset obtained by using different 2D, 3D kernel functions and different classification methods

Method Feature space TP FP TN FN Accuracy Precision Sensitivity Specificity K (%)
(%) (%) (%) (%)

Modified AlexNet-K means 2D 46 21 26 1 76.60 68.66 97.87 55.32 53.19

(5.95) (7.45) (3.45) (6.12) (5.02)

Modified AlexNet-KNN 2D 46 2 45 1 91.00 95.83 97.87 95.74 93.61

(2.95) (2.45) (1.45) (2.12) (2.02)

Modified AlexNet- 2D 47 17 30 0 8191 73.44 100.00 63.8 63.83

Subtractive (3.4) (2.09) (0) (3.20) (5.96)

Modified AlexNet-FCM 2D 42 7 40 5 8723 85.71 89.36 85.11 74.47

(1.74) (1.63) (1.36) (2.03) (2.48)

Modified AlexNet-ISVDD 2D 47 1 46 0 98.94 97.92 100.00 97.87 97.87

(1.31) 1.21) ) (1.41) (1.82)

Modified AlexNet-K means 3D 45 16 31 2 8085 73.77 95.74 65.96 61.70

(5.23) (7.12) (5.34) (6.12) (4.95)

Modified AlexNet-KNN 3D 46 1 45 2 91.00 97.87 95.83 97.82 93.61

(2.95) (1.45) (2.12) (1.67) (2.02)

Modified AlexNet- 3D 41 23 24 6 69.15 64.06 87.23 51.06 38.30

Subtractive (3.2) (2.54) (2.98) (3.12) (4.32)

Modified AlexNet-FCM 3D 46 12 35 1 8617 79.31 97.87 74.47 72.34

(1.23) (2.12) (2.17) (3.12) 2.78)

Modified AlexNet—ISVDD 3D 47 1 46 0 98.94 97.92 100.00 97.87 97.87

(1.31) 1.21) ) (1.41) (1.82)

Modified AlexNet—ISVDD  (Spatial pathway) 43 15 32 4  79.79 74.14 91.49 68.09 72.13

(2.18) (3.16) (2.98) (2.89) (3.08)

Modified AlexNet—ISVDD  (Spectral 45 3 44 2 9468 93.75 95.74 93.62 93.62

pathway) (2.28) (3.89) (3.19) (2.08) (3.98)

Didegan datasets, we augmented and randomly missing
some NoDR and DR images to the DIARETDB1 dataset,
respectively. Therefore, a balanced DIARETDB1 database
of 94 retinal images is created in which both DR and NoDR
classes were represented equally (47 samples for each
class). One feature of the modified AlexNet-ISVDD
structure is that the Fc7 of the standard AlexNet is for-
warded to two separate pathways for better classification.
Similar methodology was used in GoogleNet where the
auxiliary classifiers connected to intermediate layers. To
have a deep understanding of the performance of the
modified AlexNet-ISVDD due to its two-pathway struc-
ture, we also measured the performance of the two path-
ways model separately (i.e., the spatial and spectral
pathway models). So the last two rows of Table 1 show the
numerical results of modified AlexNet-ISVDD in spatial
and spectral pathway structures. Since the two pathways
contain complementary information of a retinal fundus
image, the two-pathway structure performs much better
than the individual pathways. Table 1 exhibits the rounded
mean values of accuracy, precision, sensitivity, specificity

and Kappa coefficient criterions and their standard devia-
tions in parentheses.

We have obtained a mean accuracy 98.94%, a mean
precision 97.92%, a mean sensitivity 100%, a mean
specificity 97.87% and Kappa coefficient 0.97 by using the
proposed modified AlexNet-ISVDD classification method.
The sensitivity and specificity values obtained by the pro-
posed algorithm are very high. Therefore, the modified
AlexNet-ISVDD classification method states that our pro-
posed algorithm does not misclassify a DR as NoDR
image. Also, the proposed ISVDD algorithm in both 2D
and 3D kernels has the same results and does not affect all
performance metrics results.

5.5 Comparison with the most related works

In Table 2, we compare the proposed method performance
with the most related works in the literature. There are the
works of Andonova et al., (2017), Qureshi et al., (2021),
Franklin and Rajan (2014), Ghosh et al., (2017) and
Kwasigroch et al., (2018). To compare the results in both
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Table 2 Performance comparisons with state-of-the-art binary and five-level of DR algorithms

Research study Dataset Images method Accuracy (%) Sensitivity (%) Specificity (%)
Andonova et al., (2017) MESSIDOR 29 Binary 82.51 - -
Qureshi et al., (2021) EyePACS 54,000 Five-level DR 98 92.2 95.1
Franklin and Rajan, (2014) DIARETDBI1 57 Binary 99.7 96.3 99.8
Ghosh et al., (2017) Kaggle 3000 Binary 95 - -
Five-level DR 85 - -
Kwasigroch et al., (2018) EyePACS 88,000 Binary 82 - -
Five-level DR 51 - -
Proposed Modified AlexNet- ISVVD MESSIDOR 94 Binary 85 93 85
Proposed Modified AlexNet- ISVVD DIARETDBI1 94 Binary 98.94 100 97.87

DIARETDB1 and MESSIDOR datasets, also we use a
balanced MESSIDOR dataset of 94 retinal images (47
samples for each class) as shown in Table 2.

In Andonova et al., (2017), the retinal images have been
used from the publicly available database, MESSIDOR.
The accuracy criteria 79.92% and the cross-validation
criteria 82.51% were reported in this work to evaluate the
classification efficiency. As mentioned before, every aca-
demic research groups uses their own databases for eval-
uation and testing with different number of samples and
different classification in two or more classes. In Franklin
and Rajan (2014) an algorithm to detect the presence of
exudates by using an artificial neural network has been
presented. The proposed approach was based on feature
extraction and clustering technique. They have evaluated
their works by using 57 color retinal images of DIA-
RETDBI1 which contains 5137 objects for training and
testing the neural network. As summarized in Table 2,
Franklin and Rajan reported a mean accuracy 99.7, mean
sensitivity 96.3 and mean specificity 99.8. As during the
screening stage, the goal is to save time for the physician
while reducing the number of test images and labeling the
ones which are suspicious of DR as well as the ones which
are close. Having a high recall or sensitivity score means
that most of the patients will be screened correctly and
their images will be labeled for ophthalmologist consider-
ation. Although Franklin and Rajan have obtained a better
performance indices in terms of accuracy and specificity
than the performance of our methodology, the sensitivity
performance index of our algorithm is higher than their
results.

Ghosh et al., (2017) reported 95% accuracy for two class
classification and 85% accuracy for five class classification
on around 3000 validation images of Kaggle dataset. In
Kwasigroch et al., (2018), a special class coding technique
was proposed to include the information about relation
between predicted and true level of disease. The utilized
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models were trained using dataset containing over 88,000
retina photographs, and the best tested model achieved an
accuracy of about 82% in detecting the retinopathy and
51% in assessing its stage for five class classification.

Utilizing a modified pre-trained CNNs for classification
makes Graphics Processing Unit (GPU) and external
memories unnecessary. The software package that was
used in this paper was MATLAB 2017b. All the steps of
the proposed method were done by an Intel i7 core CPU,
with 8 GB memory, which is considerably advantageous
comparing to common CNN ftraining hardware
requirements.

6 Conclusion and further work

In this paper, a modified AlexNet improved SVDD opti-
mized by PSO was proposed in the diagnosis of DR and
NoDR retinal images. The reasoning behind modification
of a pre-trained CNN network is to avoid the time com-
plexity of the training process for the convolutional sys-
tems. The algorithm uses the ISVDD algorithm with
suitable kernel functions to classify the CNN data. A
comparative study on different kernel parameters and dif-
ferent classifiers were presented. The comparative study
was performed to demonstrate the effect of different
degrees of kernel functions on the performance in diag-
nosing screening diabetic retinopathy cases.

To demonstrate the performance of the proposed mod-
ified and AlexNet-ISVDD in clinical applications, Navid-
Didegan, DIARETDB1 and MESSIDOR datasets were
applied and evaluated. The results of the study can be
helpful to determine the proposed architecture for screen-
ing diabetic retinopathy cases in real clinical cases.

As shown in Table 1, the modified AlexNet-ISVDD had
the best performance results among the other classification
methods, considering all performance indices. Also, the
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proposed ISVDD algorithm in both 2D and 3D kernels has
the same results and does not affect all performance met-
rics results.

In Table 2, we compare the performance of the proposed
method with other state-of-the-art methods. From the
clinical usage perspective of the automatic DR screening
approach, the sensitivity or recall, which demonstrates the
correctness of DR diagnosis, is the most important factors.
Our proposed algorithm outperforms other methodologies
by considering sensitivity performance index.

The proposed scheme in this paper is not limited to the
PSO optimization algorithm, so the other existing meta-
heuristic algorithms can be used.
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