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Abstract
Diabetic retinopathy (DR) is the major cause of visual impairment among diabetic patients. Significant works have been

done to hybrid a modified CNN architecture such as AlexNet with some of classifiers such as support vector machines

(SVMs) or fuzzy C-Means (FCM) to improve the DR screening. This new hybrid innovative structure uses more efficient

extracting features of a retinal images in both spatial and spectral domains. In spite the advantages of this innovative

architecture, the different kernel functions affect the performance of the proposed algorithm. Using the appropriate

transformed data into two- or three-dimensional feature maps and using an improved support vector domain description

(ISVDD) can obtain more flexible and more accurate image description. To this end, the optimal degree values of different

kernel functions can be extracted by using a particle swarm optimization (PSO) algorithm. Also, we compared the

performance of our approach (modified-AlexNet-ISVDD) with the results obtained by hybrid modified AlexNet and some

of classifiers such as K-Nearest Neighbors (KNN) and FCM clustering. We achieve the proposed CNN architecture using

ISVDD on the DIARETDB1 and MESSIDOR datasets, with more than 99% sensitivity.

Keywords Diabetic retinopathy screening � Deep learning � Optimal kernel functions � Improved Support vector domain

description (ISVDD) � Particle swarm optimization (PSO) � Clinical study

1 Introduction

Diabetic retinopathy (DR) is the most common cause of

irreversible blindness in working-age populations.

According to studies, by the year 2030, the number of

people diagnosed with DR will increase from 126.6 million

in 2010 to 191 million, and the number of people with

vision-threatening DR (VTDR) will grow from 37.3 mil-

lion to 56.3 million by the same time (Congdon et al.,

2012). Evidence shows that by diagnosing DR in early

stages it can be treated just by diabetes management and

can be prevented from further damages to the retina (Antal

and Hajdu, 2012, Kamadi et al, 2016).

Generally, DR is diagnosed by an experienced oph-

thalmologist using a detailed and highly accurate retinal

fundus image. Ophthalmologist diagnoses the presence and

severity of DR by carefully investigating fundus images

and finding the different symptoms of DR, such as micro-

aneurysms, hemorrhages, neovascularization, and exu-

dates. Finding DR signs is highly subjective, which makes

it difficult to diagnose in early stages. The high cost of the

physical examination and lack of professional experts are

the other obstacles for early DR diagnosis. Therefore, large

numbers of early stage DR cases are missing from early

diagnosis and treatment (Hani and Nugroho, 2010).

The main purpose of a DR diagnostic method is to

classify images into DR and NoDR classes (Niemeijer

et al., 2010). Typically, these methods use hand-crafted

features of retinal images for training their systems and

classification base on machine learning approaches. Some

of these machine learning algorithms are support vector

machine (SVM), artificial neural network (ANN), K-near-

est neighbor (KNN) and fuzzy C-Means (FCM) method-

ologies (Li et al, 2015; Osareh et al., 2009; Bhatkar and

Kharat, 2015; Priya and Aruna, 2013; Saranya et al., 2012).

Supervised classification methods such as SVM (Wang

et al., 2012; Selvaraj et al., 2007), and KNN (Anbeek et al.,
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2005; Cocosco et al., 2003) are trained from different

labeled images for segmentation purpose. Because the

supervised classification methodologies use the prior

knowledge about the image classes, they can improve the

classification accuracy. Some of the most important unsu-

pervised classification methodologies in the field of DR

screening include KM algorithm (Khalid et al., 2014),

expectation–maximization (EM) (Lalaoui et al., 2015) and

FCM methodologies (Bezdek et al., 1984). Medical images

are often corrupted by some environment noises, artifacts

are caused by operator performance (Singh et al., 2016).

Since the standard FCM algorithm does not consider local

spatial classification, it is very sensitive to noise. Many

researchers have incorporated the local spatial information

into the standard FCM to remove the effects of noise, such

as Wang et al. proposed the FCM distance function as

weight sum of distance influenced by local and nonlocal

information (LNLFCM) (Wang et al., 2008). Using local

spatial features increases the computational cost because it

needs the computation for each pixel neighborhood. Gong

et al. extended fuzzy local information C-Means algorithm

by replacing the Euclidean distance in the object function

of the FCM by kernel distance-based cost function (Gong

et al., 2013). As an effort in comparing different available

techniques, a comparative analysis of nine common clas-

sifier algorithms is implemented in the application of

automatic screening of diabetic retinopathy cases

(Mohammadian et al., 2017a).

Generally speaking, feature extraction techniques are

complex tasks and require depth knowledge of the images

and their differences. Therefore, recent studies are using

the state-of-the-art convolutional neural network (CNN) for

various fields, especially in medical image analysis (Hus-

sain et al., 2018). One of the main reasons for imple-

menting CNN in medical applications is its ability to

extract features automatically by using deep multiple layers

(Tajbakhsh et al., 2016). Therefore, there has been an

increase in using CNN in medical diagnosis applications.

For instance, CNNs were used for grading brain tumors in

magnetic resonance imaging (MRI) scans (Pan et al., 2015;

Menze et al., 2015; Nie et al., 2018). Another CNN-based

method was conducted by (Wang et al., 2015) for feature

extraction and ensemble classification for retinal blood

vessel segmentation and a study related to severity DR

diagnosis using CNN was addressed in (Pratt 2016). Also,

two different comparative studies of two CNN structures

for DR screening have been performed in (Vo and Verma,

2016) and (Mohammadian et al., 2017b).

Other examples of CNNs applications in medical image

detection and classification, including correctly detecting

and predicting polyp type during colonoscopy videos

(Tajbakhsh et al., 2015a; Zhang et al., 2017), automatic

detection of pulmonary embolism (PE) in computed

tomography (CT) images (Tajbakhsh and Liang, 2015b),

computer-aided automatic detection of mitotic cells in

histopathology datasets (Cireşan et al. 2013), detection of

lymph nodes in CT images (Roth et al., 2014), namely

thoraco-abdominal lymph node (LN) detection and inter-

stitial lung disease (ILD) classification (Shin et al., 2016a),

and automatic anatomy detection in CT volumes (Zheng

et al., 2015). Applications of CNNs are not only limited to

detection systems but also recently CNNs have been used

for medical image measurement and segmentation such as

pancreas segmentation in CT scans (Roth et al., 2018; Vo

and Lee, 2018), multimodality isointense infant brain

image segmentation (Zhang et al., 2015), neuronal mem-

brane segmentation in electron microscopy images (Cire-

san et al., 2012), knee cartilage segmentation in MRI scans

(Prasoon et al., 2013), and carotid intima-media thickness

measurement in ultrasound images (Shin et al., 2016b).

The CNNs are a class of deep learning models that can

learn a complex hierarchy of features by building high-

level features from low-level ones. Also, the validation of

the performance of the final trained network on clinical

data is an important step in performance analysis of the

work. Requiring a large amount of medical training ima-

ges, extensive computational and memory devices, com-

plications about training of a deep CNN such as overfitting

and convergence issues made the full training of a CNN (or

training from scratch) tedious and in some cases imprac-

tical (Erhan et al., 2009; Razavian et al., 2014). In medical

imaging and diagnosis field, it is relatively rare to have an

image dataset of sufficient size to completely train a CNN

from scratch (Tajbakhsh et al., 2016). In addition, the state-

of-the-art CNNs included in the GitHub or Keras core

library demonstrate a strong ability to be generalized to

images outside the ImageNet dataset via transfer learning,

such as feature extraction and fine-tuning1 (Simonyan and

Zisserman, 2014; Motamedi et al., 2016). Therefore, it is

very common to fine-tune a CNN that has been trained

using a large labeled dataset from a different application to

avoid training networks for many general features (Zhang

et al., 2015). For example, Kaggle dataset is one of the

largest diabetic retinopathy database which consists of only

35,126 retina images with different various qualities.2

Various qualities of the images in the dataset make the

feature extraction approaches more difficult to implement.

Each image is rated by a clinician for the presence of

diabetic retinopathy on a scale of 0 to 4. The scales of 0, 1,

2, 3, and 4 correspond to NoDR, mild, moderate, severe,

and proliferative DR, respectively. A novel automatic

recognition system for the five severity level of diabetic

retinopathy (SLDR) was developed through learning of

1 https://github.com/fchollet/deep-learning-models.
2 https://www.kaggle.com/diabeticretinopathy-detection.
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deep visual features (DVFs) (Abbas et al., 2017). To test

and evaluate the performance of the SLDR system, the 750

digital images were collected from three online public and

one private sources.

The main contribution of our work in this paper is to

improve the performance of the previous proposed archi-

tecture where a modified AlexNet structure consisting of

both spatial and spectral domains image feature extraction

mixed with a support vector domain description (SVDD)

(modified AlexNet-SVDD) for a retinal image DR or

NoDR recognition. In modified-AlexNet-SVDD algorithm,

a pre-trained AlexNet architecture employed and enforced

to classify fundus images of a clinical dataset into cases of

DR patient or healthy. The first layers of the typical CNNs

are mostly related to extracting general information from

the images such as the edges, while their last layers are

specifically trained to extract more detailed features related

to the images dataset specifically. Therefore, the type of the

input retinal image and the weights of the last layers of

CNNs can be modified to adapt the networks for our

application and increase the performance accuracy. This

new innovative architecture uses two pathways extracting

features of the retinal images in both spatial and spectral

domains. In addition, the SVDD is a domain description

method inspired by SVM algorithm that tries to find the

sphere with minimum volume containing almost all

objects.

The rest of the paper is organized as follows. Section 2

briefly explains some contributions of our work. A standard

AlexNet architecture and the respective concepts of the

FCM and the SVM algorithms are explained in Sect. 3.

The proposed modified AlexNet-ISVDD architecture is

presented in Sect. 4. The results of the simulations and the

comparative analysis of the other classifiers are presented

in Sect. 5, while Sect. 6 concludes the paper.

2 Contributions

There are a few number of medical images to train a CNN

which has a lot of weights needed to be trained. This

limitation of the image samples, usually leads to the

overfitting problem (Bar et al., 2015; Nie et al., 2018). We

propose a new modified CNN architecture using an

improved support vector machine classification (ISVDD)

for DR screening, making the following contributions:

• In this paper, we proposed a modification to the

standard SVDD to achieve optimum kernels using

metaheuristic approaches such as particle swarm opti-

mization algorithm that can obtain more flexible and

more accurate differences between the DR and NoDR

retinal images.

• Traditional CNN-based approaches use only object

features or spatial features for image category recog-

nition (Tajbakhsh et al., 2016; Doshi et al., 2016; Nie

et al., 2018). Our proposed structure is based on a

modified AlexNet which uses two pathways extracting

retinal image features.

• We demonstrated how optimization of a pre-trained

AlexNet with metaheuristic algorithm without any fine-

tuning, leads to incremental performance improvement

in DR or NoDR classification. This unique approach

distinguishes our work from the full training (Pan et al.,

2015; Menze et al., 2015) and even fine-tuning

approaches of a pre-trained CNN methods (Tajbakhsh

et al., 2016; Vo and Verma, 2016; Razavian et al., 2014;

Margeta et al., 2015).

• We present our results with consistent advantages

especially for retinal image classification, but almost all

above mentioned works in Sect. 1, were focused on

other different medical or nonmedical imaging modal-

ities involving classification, detection and segmenta-

tion in the field of CNN application.

• There are multiple approaches in the literature using

various algorithms to implement diabetic retinopathy

classification based on segmentation and detection of

different exudates, hemorrhage and blood vessels using

some CNN architectures. To our knowledge, the

implementation of a typical CNN architecture with an

improved SVDD (ISVDD) as a classifier does not have

history in the field of automatic screening of DR.

3 Standard alexnet architecture
and classification algorithms

The standard AlexNet achieved significantly improved

performance over the other non-deep learning methods for

ImageNet Large-Scale Visual Recognition Challenge

(ILSVRC) 2012 (Krizhevsky et al., 2012). ImageNet is a

large database (over 1.2 million images) that is used for

visual object recognition (1000 separate object categories).

The standard AlexNet has approximately 60 million

parameters (about 5 million parameters in its convolution

layers and approximately 55 million parameters in fully

connected layers). So we use this CNN architecture with

some necessary modifications to obtain the main features

of retinal images. The AlexNet computes 11 9 11, 5 9 5,

3 9 3, 3 9 3 and 3 9 3 convolutions within the same

layers of the Maxpool and concatenates the output of the

whole process to pass it to the Softmax layer as the latest

layer of the network. Figure 1 demonstrates schematic

diagram of the standard AlexNet consists of 12 main layers
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(5 convolutional layers, 3 pooling layers, 3 fully connected

layers and 1 Softmax layer).

3.1 Standard fuzzy C-means

FCM as an unsupervised classification approach also

known as clustering algorithm, first introduced in (Dunn,

1973) and extended by (Bezdek et al., 1984) which is an

improvement of KM classification algorithm. It can group

image features xi into Cfcm clusters where xi is a n-di-

mensional feature vector,

X ¼ x1; x2; . . .; xi; . . .; xNs
ð Þ ð1Þ

where X is a data matrix with the size of n �Ns, n repre-

sents the dimension of each xi feature vector and Ns rep-

resents the number of feature vectors (the output dimension

of networks). For a training dataset of Ns data objects and

by minimizing the Jm as the following quadratic objective

function,

Jmðu; vÞ ¼
XNs

i¼1

XCfcm

j¼1

umij kxi; vjk2 ð2Þ

where

XCfcm

j¼1

uij ¼ 1; i ¼ 1; 2; . . .;Ns ð3Þ

And uij is the membership of ith data point in the jth

cluster vj. m is the weighting exponent or the index of

fuzziness. When the high values for the m are selected, the

membership functions tend to be equal, whereas for m ¼ 1,

the FCM transferred to the KM algorithm, where the

memberships are crisp (in our study, we explore for the

best m). kxi; vjk2 is the L2 or Euclidean norm similarity

measured between a feature vector xi and the cluster center

vj in the feature space. When the data points are located

close to the centroid of their clusters, high membership

values are assigned for them, and low membership values

are assigned to those are located farther from the centroid.

By using the first derivative of Jmðu; vÞ with respect to u

and v equal to zero yields the two following necessary

conditions for minimizing Jmðu; vÞ:

uij ¼
XCfcm

k¼1

kxi; vjk2
kxi; vkk2

� � 2
m�1

 !�1

ð4Þ

and

vj ¼
PNs

i¼1 u
m
ij xiPNs

i¼1 u
m
ij

ð5Þ

The FCM algorithm is based on an iteratively process

where the cluster centers vj and the membership values uij
will be updating to minimizing the cost function Jmðu; vÞ
(Wang et al., 2008).

3.2 Standard support vector machine

The standard SVM is a supervised learning method that has

the aim of determining the location of decision boundaries

or hyperplanes that provide the optimal separation of the

classes based on statistical theory (Cortes and Vapnik,

1995; Vapnik, 1995). In the case of a two-class image

classification, the SVM selects the hyperplane that has the

greatest margin between the two classes. The maximization

problem of the margin is usually solved using the quadratic

programming optimization algorithm. The margin is

defined as the distance between the hyperplane and the

nearest data sample point on each side of the classes. The

sample points that are located in the nearest distance of the

each hyperplane are named as support vectors. For our

two-class classification problem and for a training dataset

of Ns points of the form ðxi; yiÞ, where the yi is either 1 or

- 1, indicates the DR or NoDR classes, respectively. Any

hyperplane can be written as the set of point xi satisfying,

Fig. 1 Schematic diagram of the standard AlexNet (Shin el al., 2016a)

10088 A. Karsaz

123



Wxi � b ¼ 0 ð6Þ

where the W is the normal vector to the hyperplane and

determines the orientation of the discrimination plane. The

parameter b
kWk determines the distance of the hyperplane

from the origin along the normal vector W . The SVM tries

to maximize the perpendicular distance between two

hyperplanes by solving the following constrained problem,

Jm W ; bð Þ ¼ min
W ;b

1

2
kWk2 ð7Þ

The trade-off between maximization of the margin and

the number of misclassification errors can be controlled by

a constant parameter Csvm,

Jm W ; b; nið Þ ¼ min
W;b;n1;...;nNs

1

2
kWk2 þ Csvm

XNs

i¼1

ni

 !
ð8Þ

where 0\Csvm\1, the variable ni � 0 is a slack variable

that allows some data samples out of the sphere.

4 Proposed method

Three main stages constitute our proposed DR detection

algorithm: (1) Image preparation (2) Spatial and spectral

features extraction (3) improved SVDD classification.

Image preparation section itself consists of rescaling,

normalizing and finally obtaining a 2D color histogram of a

given retinal image. Also, we use the AlexNet in our

proposed algorithm as a multi-layer feature extractor with

some modification to obtain more spatial and frequency

domain complementary information of a retinal image. The

last section of our proposed scheme is the improved SVDD

classification algorithm which determines the image cate-

gory for a color fundus image.

The overall structure of the proposed scheme is shown

in Fig. 2. After the modification, the obtained features can

be used in conjunction with classifier such as SVM, FCM

or ISVDD. The input of our system unlike other traditional

CNNs application is a 2D histogram of the retinal image,

and the output of the system is the DR or NoDR label of the

image. After several layers of convolution and pooling, the

2D histogram of the input image can be converted into a

2D or 3D feature vector, which contains the spatial and

spectral features within the image. For a deep under-

standing of the new scheme performance, the performances

of the 2D and 3D classification will be calculated sepa-

rately, which are called 2D classification or 3D classifi-

cation case studies.

4.1 Image preprocessing

Medical images usually contain noise and shading artifacts

due to interference and other phenomena that affect the

process of classification in screening systems (Reddy et al.,

2017). Artifacts due to non-uniform illumination which is a

general problem in retinal imaging degrade the efficiency

of image classification as well as the effects of camera

variations. Preprocessing is an essential step to reduce the

image variation by normalizing and equalization of the

irregular illuminations of a color fundus image. To

decrease the variation among images due to different

camera resolutions and settings, an image preprocessing

algorithm is applied to the images. The first step of the

algorithm is rescaling the images such that all the input

images have the same size. In the next step, the color of

each pixel is subtracted by the local average, mapping the

average to 50% gray. Using this approach, the sharpness of

the images will be more unified. Finally, for a given image

the color histogram is extracted by counting the number of

times each color occurs in the image array. Histograms are

invariant to rotation about an axis perpendicular to the

image plane, and change slowly under change in scale and

change of angle of view. Adaptive histogram equalization

Fig. 2 Schematic diagram of the proposed modified AlexNet and ISVDD
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(AHE) can be used to improve the contrast on retinal

images (Andonová et al. 2017).

4.2 Spatial and spectral features extraction

The modification begins with transferring the weights from

a pre-train AlexNet as a part of our final network, and is

completed with only two fully connected layers, i.e., Fc6

and Fc7, instead of three FC layers typically used in the

standard AlexNet (so the Fc8 is replaced by a modified

Fc8). In our study, we deal with 2-class classification tasks,

in two different 2D or 3D feature space (spatial and

spectral domain pathways as shown in Fig. 2). In the

spatial domain pathway, only the last layer (Fc8) is sub-

stituted with a typical fully connected summation as an

activation function. Our proposed method processes the

data in the frequency domain to attain greater accuracy

besides to the spatial feature processing. By separating the

image feature into different sub-bands, important differ-

ence occurs over varying low to high frequencies. When

digital images are handled at multiple resolutions, the

discrete Fourier transformation (DFT) is viable mathe-

matical tool. So the spectral pathway in Fig. 2, returns the

discrete Fourier transform of the Fc7 output, computed

with a fast Fourier transform (FFT). In this section of our

algorithm, we integrate the spectral and spatial features

together to construct a powerful framework using 2D or 3D

classification.

4.3 Improved SVDD classification

Improvement of a standard SVDD is the main part of our

algorithm. The SVDD is a domain description method

inspired by SVM algorithm that tries to find the sphere with

minimum volume containing almost all objects (Tax and

Duin, 1999). Since the output features obtained by the

modified CNN architecture are not normally spherically

distributed in the input space of the classifier data, the

SVDD algorithm uses a nonlinear transformation (uð:Þ) to
transform the data from input space to a new high

dimensional feature space. Let the xi be a dataset con-

taining Ns sample points as mentioned in (1). For a sphere,

described by center a and radius R, the SVDD minimizes

the following equation:

F R; a; nið Þ ¼ R2 þ Csvdd

X

i

ni ð9Þ

where the variable Csvdd gives the trade-off between the

volume of the sphere and the number of target objects

rejected. This equation should be minimized under the

following constraints:

kuðxi � aÞk2 �R2 þ ni 8i; ni � 0 ð10Þ

Incorporating this constrain in (9), the following

Lagrangian can be introduced

L R; a; ai; nið Þ ¼ R2 þ Csvdd

X

i

ni �
X

i

aifR2 þ ni

� kuðxi � aÞk2g �
X

i

cini ð11Þ

where ai � 0 and ci � 0 are two Lagrange multipliers. The

following constraints can be obtained by setting the partial

derivatives of the Lagrangian (40) with respect to R, a and

ni to zero, new constraints are obtained:

X

i

ai ¼ 1; a ¼
P

i aiuðxiÞP
i ai

¼
X

i

aiuðxiÞ ð12Þ

Csvdd � ai � ci ¼ 0 8i ð13Þ

By remove the ci from (13), the 0� ai �Csvdd; 8i, will
be obtained. By resubstituting (13) in Lagrangian, the

following Wolfe dual form, which is a maximization

problem respect to ai will be obtained:

W aið Þ ¼
X

i

aihuðxiÞ;uðxiÞi �
X

i;j

aiajhuðxiÞ;uðxjÞi

ð14Þ

where the huðxiÞ;uðxjÞi is the inner product can be

replaced with an appropriate kernel function Kðxi; xjÞ such
that satisfies theMercer’s theorem (Niazmardi et al., 2013).

There are different kernel functions; however, the Gaus-

sian kernel function is shown to have better performance

than the others (Tax and Duin, 1999);

Kðxi; xjÞ ¼ exp �kxi � xjk2

r2

 !
; r�Rþ ð15Þ

The different kernel functions result in different

description boundaries in the original input space of the

SVM. The generic Gaussian kernels in (44) regard each

component of xi with equal emphasis in their effects into

feature space. The problem is to find a suitable nonlinear

transformation for each component of xi to have a larger

effect in feature space. To this end, the nonlinear trans-

formation u xið Þ ¼ xni corresponding to each modified

AlexNet outputs (i.e., spatial and spectral features) is used

to scale each feature before mapping it into feature space.

In our proposed algorithm, the Gaussian kernel function

with above nonlinear pre-transformation (uð:Þ) is consid-

ered to transform the data from input space to a new high

nonlinear feature space. So we consider two kernel func-

tions, the first one is a two-dimensional kernel (2D) and the

second one is a three-dimensional kernel function (3D) as

follows:
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K2DðuðxiÞ;uðxjÞÞ ¼ exp �ku2DðxiÞ � u2DðxjÞk2

r2

 !
ð16Þ

K3DðuðxiÞ;uðxjÞÞ ¼ exp �ku3DðxiÞ � u3DðxjÞk2

r2

 !
ð17Þ

In this paper, we present a modified AlexNet model with

two pathways retinal image recognition, which extract both

spatial and spectral features of images respectively.

Experiments show that the two kinds of features contain

complementary information for the category recognition of

an image as the two-pathway model always achieve better

performance than single pathway models. So each feature

space xi has two main parts, spatial feature space xispa,

obtained by the spatial pathway and spectral feature space

xispe, obtained by the spectral pathway, respectively (as

shown in Fig. 2). The two kernel functions (16) and (17)

are considered with 2D and 3D nonlinear transformations

as follows:

ðxispa; xispeÞu2D xið Þ
) ðxn1ispa; xispe

�� ��n2Þ ð18Þ

ðxispa; xispeÞu3D xið Þ
) ðxn1ispa;ReðxispeÞ

n2 ; ImðxispeÞn2Þ ð19Þ

where the free parameters n1 and n2 are the degree of the

polynomials, and ReðxspeÞ and ImðxspeÞ represent the real

and imaginary parts of the spectral feature. Tax and Duin

(1999) consider L1 loss in the formulation of SVDD as in

(38). In SVDD, L2 loss is a common alternative to L1 loss

(Fan et al., 2005). The performance of L2 loss SVDD

(ISVDD) can outweigh L1 loss SVDD in some circum-

stances and has some subtle differences. The ISVDD

minimizes the following equation:

F R; a; nið Þ ¼ R2 þ Csvdd

X

i

ni
2 ð20Þ

subject to:

kuðxi � aÞk2 �R2 þ ni; 8i ð21Þ

Note that the constraint ; ni � 0; 8i is not necessary for

L2 loss SVDD, because if at an optimum ni\0 for somei,

we can then replace ni with zero so that,

kuðxi � aÞk2 �R2 þ ni\R2 þ 0 ð22Þ

5 Experimental results and analysis

5.1 Evaluation criterion for performance analysis

To estimate the accuracy of classification or clustering for

the clinical data, all clustering validity criterion can be

used. These indices are divided into three categories: (1)

internal criteria, (2) relative criteria (3) external criteria

(Niazmardi et al., 2013). The internal index uses some

metrics that are based on the database and clustering

methodology. To compare the performance of the proposed

modified AlexNet-SVDD for the clinical data, four per-

formance indices are calculated. These indices are accu-

racy, precision or prediction value, sensitivity or recall,

specificity (Franklin and Rajan, 2014; Olson and Delen,

2008). The precision or predictive value is the probability

of the retinal image that has been classified as DR is really

DR itself (Franklin and Rajan, 2014). Sensitivity (Zhoul

et al., 2017) or recall is the true positive rate (TPR) and

specificity is the true negative rate (TNR) (Liu and Tang,

2014). The precision criterion, keeps the balance between

the sensitivity and specificity to evaluate the effectiveness

of the proposed algorithm (Zhoul et al., 2017). P and N

represent the labeled DR and NoDR samples, respectively,

and P ? N demonstrates the total number of samples or

Pþ N ¼ TPþ FPþ TN þ FN.

The relative criteria are based on evaluation of cluster-

ing results by comparing them with other clustering

methods. In a wide range of medical image classification,

the free response operating characteristic (FROC) curve is

used (Edwards et al., 2002) as a fundamental index for

diagnostic test evaluation (Tajbakhsh et al., 2016). In a

FROC curve the true positive rate is plotted in function of

the false positive rate for different threshold parameter.

Sensitivity shows the probability that a test will be positive

when the disease is present. Therefore, each point on

FROC represents a sensitivity–specificity pair corre-

sponding to a particular decision cut-off point.

To evaluate our proposed scheme, Kappa coefficient of

agreement has been used as an external criterion (Kunch-

eva, 2011; Cohen, 1960). Kappa error relations are used to

gain insights about who much a clustering method is better

than another on a specific dataset (Niazmardi et al., 2013;

Pasolli et al., 2014). Diversity between two classifiers is

measured by j represents the Kappa coefficient as

j ¼ ðOA� ACÞ=ð1� ACÞ ð23Þ

where OA is the observed agreement or accuracy and AC is

the agreement by chance.

5.2 Preparing dataset

The main problem in the research of DR screening is the

non-availability of a suitable standard datasets for training,

testing and evaluation of a developed algorithm. Every

academic research groups uses their own databases for

evaluation and testing with different number of samples;

therefore, a general comparison with similar studies would

not be possible. The well establish public dataset DIA-

RETDB1 consists 89 retinal images, of which 84 images
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are labeled as DR and remaining five images are consid-

ered as NoDR, has been used by some papers such as

(Kauppi, 2007; Franklin and Rajan, 2014). These images

were acquired by using a digital fundus camera with 50�
field of view (FOV). Our proposed algorithm is evaluated

with the fundus images available in the DIARETDB1

dataset as input to our two-pathway modified AlexNet

architecture. We further augmented some NoDR images to

this dataset to create a balanced database of 168 retinal

images in which both DR and NoDR classes were repre-

sented equally (84 samples for each class). Also, our

algorithm is applied to diagnose DR cases from real fundus

images that are captured from the Navid-Didegan oph-

thalmology clinic, Iran. The labeling was performed by an

experienced independent ophthalmologist. All images are

in different compressed formats such as JPEG, JPG and

PNG with two different sizes 3872� 2592, 3060� 2580

pixels for the Navid-Didegan database. This private dataset

contains 94 retinal images, in which 47 of the images are

labeled as NoDR and 47 images are labeled as DR class.

Finally, our proposed algorithm is applied to the free

dataset MESSIDOR, where 1200 images are collected

(Patry et al., 2016). Therefore, by applying the labeled

images of these three datasets to the modified AlexNet-

ISVDD in the test step, the performance of the network is

examined for the test images, in which all the test images

are independent of the train data. We hold out 70% of the

dataset for training in classification procedure, while 30%

is used to test the performance of the methodology. As the

train and test datasets include different fundus images

taken with different devices to remove the variations in

images, preprocessing algorithm described in Sect. 4.1 is

implemented on both train and test points.

The result of image preprocessing steps are shown in

Fig. 3a–c. Figure 3 shows two selected examples of DR

(the left column) and NoDR (the right column) fundus

images and their experimental results of rescaling, illumi-

nation and normalizing. Figure 4 shows the obtained 2D

histograms for these DR and NoDR samples.

The image preprocessing level as mentioned before,

consists of three main parts: the image rescaling (Fig. 3b),

the RGB equalization (Fig. 3c) and the 2D histogram

extraction (Fig. 4). The task for image rescaling is per-

formed such that all the input images have the same size of

2592� 2592� 3. At the normalization level, the non-

uniform brightness of the retinal fundus image will be

removed by dividing the three components of a color pixel

by its intensity. The third step of preprocessing level in our

proposed algorithm is the choosing red and green compo-

nents of the retinal image, because these channels contain

most information with blood and vessels in a retinal fundus

image. In this stage, the color histogram is obtained by

counting the number of times each red and green colors

occur in the image array.

The next step is to apply the preprocessed images to the

proposed network that has already been modified and dis-

cussed in Sects. 4.2 and 4.3. Figure 5 shows spatial and

spectral feature maps obtained by the modified AlexNet

containing 47� 2 retinal images from Navid-Didegan

dataset (47 as DR and 47 as NoDR images). Figure 5a

shows the spatial feature maps (i.e., xn1ispa in (18)) obtained

by the modified AlexNet, Fig. 5b shows the spectral fea-

tures (i.e., xispe
�� ��n2 in (18)) and finally Fig. 5c, shows the

real and imaginary parts of the spectral feature maps (i.e.,

(ReðxispeÞn2 and ImðxispeÞn2 mentioned in (19).

5.3 Optimum degree values of ISVDD’s kernels

As mentioned in Sect. 4.3, the different kernel functions

result in different description boundaries in the original

input space of the SVDD. These kernels map the features

into the high nonlinear features space (Niazmardi et al.,

2013). To find the optimal values of the kernel parameters

(Wen et al., 2008), the particle swarm optimization (PSO)

has been used. The PSO approach has the advantage of

being less computationally expensive compared with other

well-known evolutionary algorithms such as genetic algo-

rithm (GA), firefly algorithm (FFA), gray wolf optimiza-

tion (GWO). After 300 iterations, the applied PSO found

the best values for n1 ¼ 0:81; n2 ¼ 4:2 involved in the

kernel functions. By setting n1 ¼ 0:81; n2 ¼ 4:2, as shown

in Fig. 6, the location of the feature maps in input space

will be changed in order that the ISVDD can easily classify

them. Navid-Didegan dataset is used in this scenario to

evaluate the proposed modified AlexNet-ISVDD algo-

rithm. The effects of these optimum kernel values are

shown in Fig. 6 with both 2D and 3D feature maps

obtained by the modified AlexNet-ISVDD containing 47�
2 retinal images from Navid-Didegan dataset (47 as DR

and 47 as NoDR images). The first row of this figure shows

the results obtained by using the 2D kernel function, so the

inputs of the ISVDD algorithm would be the nonlinear

transformation over the spatial pathway (i.e.,xn1ispa) and

spectral pathway (i.e., xispe
�� ��n2 ) as mentioned in (18),

respectively. In Fig. 6a, the spatial pathway outputs respect

to spectral pathway outputs are illustrated. Figure 6b shows

the classification results obtained by ISVDD with 2D

pathway. The second row of Fig. 6 shows the results

obtained by using 3D kernel function, where the inputs of

the ISVDD algorithm would be xn1ispa from spatial pathway

and ReðxispeÞn2 and ImðxispeÞn2 from the spectral pathway as

in (19), respectively. Figure 6d shows the classification

results obtained by ISVDD with 3D pathway. Unlike the

traditional SVDD algorithms that the predetermined kernel
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function acts as a measure to optimize the Lagrange cost

function, we find the optimal kernel values by PSO algo-

rithm on some nonlinear transformation directly on input

features in (18) and (19). Therefore, a simple kernel

function can be replaced by a kernel function with an

optimum nonlinear pre-transformation into 2D or 3D fea-

ture spaces. Our experimental results, show that the Csvdd

parameter in (9) does not significant impact on the ISVDD

performance as reported in (Niazmardi et al., 2013), thus

throughout this paper Csvdd ¼ 1:2 is considered. The opti-

mum kernels and Csvdd parameters are obtained by PSO

algorithm n1 ¼ 0:81 and n2 ¼ 4:2 and Csvdd ¼ 1:2 for

Navid-Didegan dataset and n1 ¼ 1:2 and n2 ¼ 4 and

Csvdd ¼ 1:2 for the DIARETDB1 dataset.

5.4 Comparison to other clustering algorithms

In this section, the results of the proposed algorithm are

compared with the KNN, K-Means, subtractive clustering

and FCM algorithms as the most frequently used clustering

algorithms for DIARETDB1 and MESSIDOR datasets.

Therefore, we evaluate and compare the performance of

the proposed modified AlexNet with five different classi-

fication algorithms and with both 2D and 3D proposed

Fig. 3 Image preprocessing level of our proposed algorithm (Sect. 4.1) a the original DR (the left column) and NoDR (the right column) retinal

fundus images b rescaled images (2592� 2592 patches) c RGB normalized images

Diabetic retinopathy screening using improved support vector domain description: a clinical study 10093

123



nonlinear transformation over the input space (i.e., Modi-

fied AlexNet-K-Means, Modified AlexNet-KNN, Modified

AlexNet-Subtractive, Modified AlexNet-FCM, Modified

AlexNet-ISVDD). In this experimental scenario, all the

available samples are split in two training and test sets. Our

experimental results show that the modified AlexNet using

the FCM as a classifier (Modified AlexNet-FCM) has the

comparable performance. Thus, for keeping the results

comparable, the optimum parameters for the FCM classi-

fication algorithm should be obtained. The modified

AlexNet-FCM has two different parameters which affect

the classification results, the number of training samples

and the fuzzifier parameter (m). Since the parameter m in

(4) and (5) affects the fuzziness of the standard FCM

classification algorithm, so the best value for this parameter

should be selected based on PSO algorithm. In some paper,

the different initial cluster centers of FCM are considered

to be study (Niazmardi et al., 2013), but we let that the

initial cluster centers are chosen in a completely random

way, and the best initial values for the cluster centers are

considered. As mentioned before, choosing the high values

for m as the fuzzifier parameter, the FCM classifier repre-

sents an increased sharing of the samples among the

clusters, whereas for m ¼ 1, the FCM transferred to the K-

Means algorithm. To show the effects of this parameter in

our experiment, the algorithm is run with five different

values for m. For our dataset with more similar classes,

increasing in the fuzzifier value will cause a decrease in

classification result. As Fig. 7a shows, the value m ¼ 5 for

this parameter seems to be an appropriate value in our

proposed methodology.

To study the effects of the number of training data

sample on the results, the algorithm is run with six different

number of training sets. In this scenario, the selected value

for the fuzzifier parameter is set to m ¼ 5 as the best value

estimated from the previous practice. Based on this sce-

nario, the proposed methodology seems to be sensitive to

the number of training data. An incremental performance

improvement is observed when the algorithm included

more training data samples, as seen in Fig. 7b.

The subtractive clustering method was first introduced

in the field of extracting fuzzy rules (Chiu 1994). The

Fig. 4 Two-dimensional histograms (227� 227 patches), a DR image sample, b NoDR image sample

Fig. 5 Spatial and spectral feature maps obtained by the modified AlexNet containing 47 DR sample data (the red stars) and 47 sample data as

NoDR (the blue circle), a spatial features b spectral features c the real and imaginary parts of the spectral features
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subtractive clustering method considers each data point as

a potential cluster center and defines a measure of the

potential of a data point to serve as a cluster center. The

potential of data point is a function of its distance to all

other data points. Thus, a high potential data sample would

be a data with many neighboring data samples. By

selecting the range of influence, the data points with the

highest potential are determined so that the feature space is

covered. Therefore, the alignment parameter for subtrac-

tive clustering method is the range of influence in each of

the data dimensions. In this scenario, the optimum range of

influence for subtractive clustering algorithm has been

obtained and implemented. The initial training samples are

selected randomly from the available sets and the number

of training data is set to 70% (i.e., 33 samples per class for

each DR and NoDR classes for the Navid-Didegan dataset)

and 30% of the remained data are selected as the test

dataset. The testing and training sets are kept the same for

all methods, keeping the results comparable. Since the

clustering algorithms are sensitive to the initial clusters, the

best initial conditions are considered for all methodologies.

Figure 8 shows the classification results obtained by the

modified AlexNet using K-Means, KNN, subtractive and

FCM with 3D kernel functions.

To show the performance of the different classification

methods, the performance indices mentioned in Sect. 5.1

are used. Table 1 exhibits the numerical results of TP, FP,

TN, FN, accuracy, precision, sensitivity, specificity and

Kappa coefficient criterions for DIARETDB1 dataset. To

compare the results in both the DIARETDB1 and Navid-

Fig. 6 Classification results obtained by proposed modified-ISVDD

using the 2D (upper row) and 3D (lower row) kernel functions a the

spatial features respect to spectral features b the classification result

with optimal degrees n1 ¼ 0:81; n2 ¼ 4:2 obtained by PSO (2D

pathway) c the spatial features respect to the real and imaginary parts

of spectral features d the classification result obtained by ISVDD (3D

pathway)
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Fig. 7 FROC analysis for retinal DR or NoDR detection by the modified AlexNet-2D with FCM classification algorithm a with different values

of the fuzzifier parameter m b with different numbers of training data

Fig. 8 Classification results obtained in 3D feature maps in Navid-Didegan dataset by the modified AlexNet using a K-Means, b KNN,

c Subtractive and d FCM
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Didegan datasets, we augmented and randomly missing

some NoDR and DR images to the DIARETDB1 dataset,

respectively. Therefore, a balanced DIARETDB1 database

of 94 retinal images is created in which both DR and NoDR

classes were represented equally (47 samples for each

class). One feature of the modified AlexNet-ISVDD

structure is that the Fc7 of the standard AlexNet is for-

warded to two separate pathways for better classification.

Similar methodology was used in GoogleNet where the

auxiliary classifiers connected to intermediate layers. To

have a deep understanding of the performance of the

modified AlexNet-ISVDD due to its two-pathway struc-

ture, we also measured the performance of the two path-

ways model separately (i.e., the spatial and spectral

pathway models). So the last two rows of Table 1 show the

numerical results of modified AlexNet-ISVDD in spatial

and spectral pathway structures. Since the two pathways

contain complementary information of a retinal fundus

image, the two-pathway structure performs much better

than the individual pathways. Table 1 exhibits the rounded

mean values of accuracy, precision, sensitivity, specificity

and Kappa coefficient criterions and their standard devia-

tions in parentheses.

We have obtained a mean accuracy 98.94%, a mean

precision 97.92%, a mean sensitivity 100%, a mean

specificity 97.87% and Kappa coefficient 0.97 by using the

proposed modified AlexNet-ISVDD classification method.

The sensitivity and specificity values obtained by the pro-

posed algorithm are very high. Therefore, the modified

AlexNet-ISVDD classification method states that our pro-

posed algorithm does not misclassify a DR as NoDR

image. Also, the proposed ISVDD algorithm in both 2D

and 3D kernels has the same results and does not affect all

performance metrics results.

5.5 Comparison with the most related works

In Table 2, we compare the proposed method performance

with the most related works in the literature. There are the

works of Andonová et al., (2017), Qureshi et al., (2021),

Franklin and Rajan (2014), Ghosh et al., (2017) and

Kwasigroch et al., (2018). To compare the results in both

Table 1 Performance indices for DIARETDB1 dataset obtained by using different 2D, 3D kernel functions and different classification methods

Method Feature space TP FP TN FN Accuracy

(%)

Precision

(%)

Sensitivity

(%)

Specificity

(%)

j (%)

Modified AlexNet-K means 2D 46 21 26 1 76.60

(5.95)

68.66

(7.45)

97.87

(3.45)

55.32

(6.12)

53.19

(5.02)

Modified AlexNet-KNN 2D 46 2 45 1 91.00

(2.95)

95.83

(2.45)

97.87

(1.45)

95.74

(2.12)

93.61

(2.02)

Modified AlexNet-

Subtractive

2D 47 17 30 0 81.91

(3.4)

73.44

(2.09)

100.00

(0)

63.8

(3.20)

63.83

(5.96)

Modified AlexNet-FCM 2D 42 7 40 5 87.23

(1.74)

85.71

(1.63)

89.36

(1.36)

85.11

(2.03)

74.47

(2.48)

Modified AlexNet-ISVDD 2D 47 1 46 0 98.94

(1.31)

97.92

(1.21)

100.00

(0)

97.87

(1.41)

97.87

(1.82)

Modified AlexNet-K means 3D 45 16 31 2 80.85

(5.23)

73.77

(7.12)

95.74

(5.34)

65.96

(6.12)

61.70

(4.95)

Modified AlexNet-KNN 3D 46 1 45 2 91.00

(2.95)

97.87

(1.45)

95.83

(2.12)

97.82

(1.67)

93.61

(2.02)

Modified AlexNet-

Subtractive

3D 41 23 24 6 69.15

(3.2)

64.06

(2.54)

87.23

(2.98)

51.06

(3.12)

38.30

(4.32)

Modified AlexNet-FCM 3D 46 12 35 1 86.17

(1.23)

79.31

(2.12)

97.87

(2.17)

74.47

(3.12)

72.34

2.78)

Modified AlexNet—ISVDD 3D 47 1 46 0 98.94

(1.31)

97.92

(1.21)

100.00

(0)

97.87

(1.41)

97.87

(1.82)

Modified AlexNet—ISVDD (Spatial pathway) 43 15 32 4 79.79

(2.18)

74.14

(3.16)

91.49

(2.98)

68.09

(2.89)

72.13

(3.08)

Modified AlexNet—ISVDD (Spectral

pathway)

45 3 44 2 94.68

(2.28)

93.75

(3.89)

95.74

(3.19)

93.62

(2.08)

93.62

(3.98)

Diabetic retinopathy screening using improved support vector domain description: a clinical study 10097

123



DIARETDB1 and MESSIDOR datasets, also we use a

balanced MESSIDOR dataset of 94 retinal images (47

samples for each class) as shown in Table 2.

In Andonová et al., (2017), the retinal images have been

used from the publicly available database, MESSIDOR.

The accuracy criteria 79.92% and the cross-validation

criteria 82.51% were reported in this work to evaluate the

classification efficiency. As mentioned before, every aca-

demic research groups uses their own databases for eval-

uation and testing with different number of samples and

different classification in two or more classes. In Franklin

and Rajan (2014) an algorithm to detect the presence of

exudates by using an artificial neural network has been

presented. The proposed approach was based on feature

extraction and clustering technique. They have evaluated

their works by using 57 color retinal images of DIA-

RETDB1 which contains 5137 objects for training and

testing the neural network. As summarized in Table 2,

Franklin and Rajan reported a mean accuracy 99.7, mean

sensitivity 96.3 and mean specificity 99.8. As during the

screening stage, the goal is to save time for the physician

while reducing the number of test images and labeling the

ones which are suspicious of DR as well as the ones which

are close. Having a high recall or sensitivity score means

that most of the patients will be screened correctly and

their images will be labeled for ophthalmologist consider-

ation. Although Franklin and Rajan have obtained a better

performance indices in terms of accuracy and specificity

than the performance of our methodology, the sensitivity

performance index of our algorithm is higher than their

results.

Ghosh et al., (2017) reported 95% accuracy for two class

classification and 85% accuracy for five class classification

on around 3000 validation images of Kaggle dataset. In

Kwasigroch et al., (2018), a special class coding technique

was proposed to include the information about relation

between predicted and true level of disease. The utilized

models were trained using dataset containing over 88,000

retina photographs, and the best tested model achieved an

accuracy of about 82% in detecting the retinopathy and

51% in assessing its stage for five class classification.

Utilizing a modified pre-trained CNNs for classification

makes Graphics Processing Unit (GPU) and external

memories unnecessary. The software package that was

used in this paper was MATLAB 2017b. All the steps of

the proposed method were done by an Intel i7 core CPU,

with 8 GB memory, which is considerably advantageous

comparing to common CNN training hardware

requirements.

6 Conclusion and further work

In this paper, a modified AlexNet improved SVDD opti-

mized by PSO was proposed in the diagnosis of DR and

NoDR retinal images. The reasoning behind modification

of a pre-trained CNN network is to avoid the time com-

plexity of the training process for the convolutional sys-

tems. The algorithm uses the ISVDD algorithm with

suitable kernel functions to classify the CNN data. A

comparative study on different kernel parameters and dif-

ferent classifiers were presented. The comparative study

was performed to demonstrate the effect of different

degrees of kernel functions on the performance in diag-

nosing screening diabetic retinopathy cases.

To demonstrate the performance of the proposed mod-

ified and AlexNet-ISVDD in clinical applications, Navid-

Didegan, DIARETDB1 and MESSIDOR datasets were

applied and evaluated. The results of the study can be

helpful to determine the proposed architecture for screen-

ing diabetic retinopathy cases in real clinical cases.

As shown in Table 1, the modified AlexNet-ISVDD had

the best performance results among the other classification

methods, considering all performance indices. Also, the

Table 2 Performance comparisons with state-of-the-art binary and five-level of DR algorithms

Research study Dataset Images method Accuracy (%) Sensitivity (%) Specificity (%)

Andonová et al., (2017) MESSIDOR 29 Binary 82.51 – –

Qureshi et al., (2021) EyePACS 54,000 Five-level DR 98 92.2 95.1

Franklin and Rajan, (2014) DIARETDB1 57 Binary 99.7 96.3 99.8

Ghosh et al., (2017) Kaggle 3000 Binary 95 – –

Five-level DR 85 – –

Kwasigroch et al., (2018) EyePACS 88,000 Binary 82 – –

Five-level DR 51 – –

Proposed Modified AlexNet- ISVVD MESSIDOR 94 Binary 85 93 85

Proposed Modified AlexNet- ISVVD DIARETDB1 94 Binary 98.94 100 97.87
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proposed ISVDD algorithm in both 2D and 3D kernels has

the same results and does not affect all performance met-

rics results.

In Table 2, we compare the performance of the proposed

method with other state-of-the-art methods. From the

clinical usage perspective of the automatic DR screening

approach, the sensitivity or recall, which demonstrates the

correctness of DR diagnosis, is the most important factors.

Our proposed algorithm outperforms other methodologies

by considering sensitivity performance index.

The proposed scheme in this paper is not limited to the

PSO optimization algorithm, so the other existing meta-

heuristic algorithms can be used.
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