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A B S T R A C T

Accurate crop yield prediction and understanding its underlying factors facilitate better food supply management 
and more informed decision-making. To forecast crop yield, the majority of previous studies have utilized 
vegetation indices and meteorological data. However, other important factors are often overlooked. Moreover, 
the temporal influence of input variables has been underexplored in prior research. To fill these gaps, we in
tegrated a diverse range of satellite-based data, including vegetation indices and actual evapotranspiration (ETa), 
with climate and soil information. Then, the input variables were narrowed down using a feature selection 
approach to provide the most relevant variables for predictive models. Three machine learning algorithms, 
Extreme Gradient Boosting (XGBoost), Random Forest (RF), and Linear Regression (LR), were trained to forecast 
winter wheat yield across Oklahoma and Kansas counties. The models were trained on 2014–2021 data and 
tested on 2022–2023 yields. According to the results, XGBoost emerged as the most accurate algorithm in both 
test years. It achieved an R² of 0.71 (RMSE = 0.46 t ha− 1) in 2022 and an R² of 0.63 (RMSE = 0.60 t ha− 1) in 
2023 when using the selected feature set. For most models, particularly in 2022, using the selected features 
instead of the entire set improved the accuracy. We also found that ETa is a promising factor in yield prediction, 
as it was selected multiple times across the growing season in the feature selection process. Additionally, cor
relation analysis showed that April and May, which are two to three months before harvest, were the most 
sensitive months in shaping the final yield.

1. Introduction

Food insecurity is a global problem that needs immediate attention 
and intervention. The severity of this issue is underscored by the fact 
that nearly 733 million people suffered from hunger in 2023. This large 
number represents one in eleven individuals across the globe and one in 
five in Africa (FAO, 2024). Climate change is making this situation even 
worse, especially since extreme events like droughts are happening more 
often. Such unfavorable conditions may reduce agricultural productivity 
or even destroy crops (Bokusheva et al., 2016). Meanwhile, the world’s 
population has more than tripled since the middle of the 20th century, 
and it is predicted to increase by almost 2 billion people within the next 
30 years (United Nations, 2025). Therefore, providing adequate food for 
this increasing population will be challenging and requires a high degree 
of agricultural planning and accurate production estimation.

Crop yield is critical for the development of rural areas and a key 

metric for assessing food security (Li et al., 2007). Accurate yield pre
dictions aid authorities in making strategic decisions, managing storage, 
allocating resources, and setting prices (Balaghi et al., 2008; Chen et al., 
2019). Moreover, it can help farmers adjust their agronomic manage
ment before harvest to meet crop demands by applying adequate irri
gation and fertilizers.

Wheat is the most widely grown food crop in the world. It provides 
approximately 18 % of global dietary calorie intake and 19 % of protein 
consumption (Reynolds and Braun, 2022). Given wheat’s cardinal role 
within the global food system, accurate wheat yield forecasting has 
become indispensable to the preservation of nutritional stability. As a 
result, this topic has drawn substantial attention from scholars and of
ficials over the past decades.

In general, the process of agricultural yield prediction consists of two 
steps: data acquisition and establishing a predictive model. From the 
perspective of data sources, remote sensing images from space are 
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becoming a popular source of information for yield and biomass esti
mation due to their availability, temporal, and spatial resolution. Sat
ellite imagery spectral bands used for agricultural monitoring include 
visible, thermal, and microwave spectra. Vegetation indices (VIs) such 
as the normalized difference vegetation index (NDVI) are extensively 
used to investigate crop conditions and yield. For example, Petersen 
(2018) used monthly anomalies of NDVI, enhanced vegetation index 
(EVI), and normalized difference water index (NDWI) to predict corn, 
soybean, and sorghum yields in Illinois and successfully applied this 
method to each country in Africa. In addition to VIs, land surface tem
perature (LST) has also been widely used as an indicator to assess canopy 
temperature and crop stress. Pede et al. (2019) computed the killing 
degree day (KDD) using LST images and compared it to KDD derived 
from air temperature (Tair) to predict corn yield. They found that the 
LST-based model outperformed the Tair model.

In addition to remote sensing data, another frequently used data 
source for yield prediction is climate variables. Many studies have 
investigated the impact of variables such as precipitation, temperature, 
wind, and solar radiation, either as original variables or drought indices, 
on crop yield (Baffour-Ata et al., 2021; Sridhara et al., 2020). For 
instance, Bazrafshan et al. (2022) employed meteorological and fertil
izer data to estimate rainfed wheat yields in Iran using multilayer per
ceptron (MLP). Some previous studies reported that when different 
sources (e.g., remote sensing and climate data) are combined, more 
accurate predictions are made (Cai et al., 2019; Bouras et al., 2021). 
Wang et al. (2020) combined four different sources, including climate 
data, satellite images, soil maps, and historical wheat yields across the 
CONUS. They stated the efficacy of using multi-source data, especially 
soil maps, to improve yield estimation. However, based on prior studies, 
little is known about the inclusion of moderate-resolution satellite-based 
actual evapotranspiration (ETa) as an input variable in large-scale yield 
estimation. To the best of our knowledge, only Naghdyzadegan Jahromi 
et al., (2023) incorporated fine-resolution ETa from the METRIC model 
for wheat prediction and reported that ETa can provide critical and 
supplementary information. In the past, the science of ET estimation was 
limited only to field-scale studies. However, due to the advent of satellite 
imagery and advances in computing power, ETa modelling and analysis 
have become possible on a large scale at moderate resolution.

Statistical and process-based models are two primary methods that 
have been employed to forecast crop yields. Process-based models are 
designed to mathematically quantify crop growth and yield by consid
ering the interaction between the crop and its environment. These 
models utilize various data, including weather information, soil and 
cultivar characteristics, and crop management (Asseng et al., 2014). 
However, the difficulty of adopting process-based models is that they 
often require a large amount of input data for model parameterization 
and calibration, which is unavailable in many regions. In addition, these 
models are often regarded as “point-based,” which can make them un
suitable for application at regional and national scales (Basso et al., 
2013). On the other hand, statistical methods establish a relationship 
between historical crop yield records and various predictive variables to 
make future predictions. The advantage of these models is that they have 
limited, if any, reliance on field calibration. Their model error and un
certainty assessments are also more straightforward (Lobell and Burke, 
2010).

Establishing a model is the second critical component of prediction. 
A wide range of machine learning algorithms has been successfully used 
in yield prediction. They are powerful, easy-to-use, and efficient tools 
for establishing a function between a target variable and its de
terminants. For example, Zhang et al. (2017) applied stepwise regres
sion to forecast winter wheat yield in Oklahoma, the U.S., and their 
model could account for 70 % of the yield variation (R2 = 0.7). Statis
tical models are only able to specify a linear function between yield and 
its predictors; however, recent machine learning approaches can even 
capture nonlinear relationships between variables. Recent studies have 
been implementing more than one machine learning model to compare 

their performances and identify the best model. For instance, Tian et al. 
(2021) reported that the long short-term memory (LSTM) had a higher 
accuracy than the backpropagation neural network (BPNN) and support 
vector machine (SVM) in wheat yield estimation in the Guanzhong 
Plain, PR China. Another study developed a multiple linear regression 
(MLR) model and three nonlinear machine learning models, including 
SVM, RF, and XGBoost, to make an early cereal yield forecast in 
Morocco, and they reported that the XGBoost algorithm outperformed 
the others (Bouras et al., 2021). However, a superior algorithm has not 
yet been identified; therefore, further extensive studies are needed to 
compare the performances of state-of-the-art algorithms for each case 
study.

In data-driven frameworks, identifying key variables is an important 
step in establishing a more robust and interpretable model. For this 
reason, many yield-prediction studies adopted feature selection ap
proaches to find optimal feature sets and reduce computation time 
(Abdel-salam et al., 2024; Lischeid et al., 2022). Nevertheless, feature 
selection techniques need to be further applied and verified across 
different regions and environments to reach a consensus about their 
efficacy. Beyond the modelling aspect, finding influential factors bene
fits farmers and decision makers to better monitor and refine crop‑ma
nagement strategies. Many existing studies employed correlation 
analysis or mutual information to gauge the relative importance of 
variables (Fu et al., 2025; Wang et al., 2020). However, previous ana
lyses have largely demonstrated the overall significance of variables 
rather than the within-growing-season variability in their influence. 
Given that crop growth and yield formation are time-dependent pro
cesses, examining temporal feature importance offers valuable insights.

In this study, we integrated satellite-based variables, including NDVI, 
LST, and ETa, with climate, soil properties, and soil moisture data to 
develop models for predicting winter wheat yields at the county level. 
For this purpose, we adopted various machine learning algorithms such 
as LR, XGBoost, and RF, and compared their performances. In addition, 
the temporal importance of each variable has been discussed. The spe
cific aims of this study are to: 1) develop a robust and accurate frame
work for wheat yield prediction; 2) examine the performances of 
different machine learning models and identify the most accurate 
model; 3) evaluate the importance of each variable during the crop 
growth period; 4) identify the best subset of features and investigate 
how feature selection affects model performance; 5) examine the 
adaptability and spatial errors of models. This study introduces two key 
novelties. We combined remote sensing-based actual evapotranspiration 
data at the spatial resolution of Landsat imagery with other relevant 
variables to predict wheat yields. Additionally, we applied a feature 
selection method, used for the first time in a crop yield forecasting 
application, to identify the most critical variables and improve the ac
curacy of models.

2. Materials and methods

2.1. Study area

Kansas and Oklahoma, two dominant wheat-producing states in the 
U.S., were chosen as the study area for crop yield modeling. The Na
tional Agricultural Statistics Service (NASS) reported that in 2023, 
Kansas and Oklahoma produced about 5.5 and 1.9 million tons of winter 
wheat, respectively. Thus, they accounted for 22 % of the total U.S. 
production in that year (USDA NASS, 2024). In terms of administrative 
divisions, Kansas has 105 counties, whereas Oklahoma contains 77 
counties. However, only 161 counties were selected as the focus of this 
study, 102 from the former and 59 from the latter state, as these selected 
counties constituted nearly 98 % of this region’s total winter wheat 
production from 2014 to 2023. In this study period, the sample size for 
county-level yield data is 1268.

To understand the monthly variation in weather conditions, the 
average temperature and precipitation in different months from 2014 to 
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2023 are shown in Fig. 1. In the study area, monthly precipitation 
ranged from 17 to 160 cm, peaking in May in both states. From a tem
perature standpoint, Oklahoma consistently had higher average tem
peratures than Kansas throughout every month.

The geographical distribution of precipitation clearly shows a west- 
to-east gradient (Fig. 2(a)). Western regions of both states receive 
lower precipitation, with annual amounts as low as 380 mm. Moving 
eastward, precipitation increases steadily and reaches up to 1700 mm in 
the eastern edge of the study area. This distinct spatial pattern portrays 
the transition from semi-arid in the west to a more humid condition in 
the east.

According to NASS, between 2000 and 2019, Kansas’s irrigated 
winter wheat production represented 7.3–12.5 % of the total output. 
Similarly, in Oklahoma, from 2000 to 2009, it ranged between 3.5 and 9 

% of the total production. These numbers show that irrigation has a very 
small effect on the total output.

In Kansas and Oklahoma, winter wheat is usually planted from mid- 
September to early October. It emerges in late fall and then undergoes 
vernalization in the winter. As the soil warms in spring, the wheat re
sumes growth, continuing until it is harvested between June and July. 
Planting, growth stages, and harvesting schedules vary from county to 
county and year to year in these states. However, for consistency in 
research, the growing season is defined from the previous October to the 
end of July. Winter wheat is mostly planted in the western two-thirds of 
these states, as shown in Fig. 2(b).

Fig. 1. Average precipitation and temperature of Kansas and Oklahoma from 2014 to 2023.

Fig. 2. Kansas and Oklahoma: (a) Average annual precipitation (mm/year) during 2014–2023, and (b) winter wheat distribution in 2023 derived from Cropland 
Data Layer (CDL).
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2.2. Data

2.2.1. Crop data
The annual county-level winter wheat yield records were collected 

from the USDA NASS database (USDA NASS, 2023). NASS provides 
comprehensive and reliable yield data from the county to the national 
level through surveys and censuses. Our study period was a 10-year span 
from 2014 to 2023. During this timeframe, yields widely ranged from 
approximately 0.7–5.4 t ha− 1.

The yearly yield distribution is shown in Fig. 3, indicating a high 
variability among different years. For example, in 2014, winter wheat 
yields dropped to exceptionally low levels, the lowest in Kansas since 
1995, and in Oklahoma since 1967, mainly because of drought and 
freeze damage. In contrast, due to favorable weather conditions, Kansas 
experienced an all-time high yield in 2016, averaging over 3.8 t ha− 1 

across this state. The high temporal and spatial yield variability in these 
years poses a challenge in yield modeling and prediction.

Some studies have detrended crop yield in order to remove the effect 
of technological advances on the yield trend and only considered the 
climate effects. However, because the span of 10 years is not long 
enough for any major changes in agronomical technology and practices, 
detrending has not been investigated in this study.

The NASS Cropland Data Layer (CDL) was obtained to distinguish 
winter wheat planting pixels. CDL is an annual crop-specific classifica
tion map of the entire continental United States in raster format. This 
product, which has been extensively used in agricultural studies, is 
generated by satellite imagery and ground truth data that are collected 
during the growing season, and is available at 30-m spatial resolution 
since 2008 (Boryan et al., 2011). In our study, this crop layer was used to 
create annual winter wheat masks, which were applied to spatial data
sets to isolate winter wheat pixels when averaging variables at the 
county level.

2.2.2. Climate data
The meteorological data within the growing seasons were retrieved 

from the Parameter-elevation Regressions on Independent Slopes Model 
(PRISM) dataset, which is freely available on the Oregon State Univer
sity PRISM Climate Group website (http://www.prism.oregonstate. 
edu). This daily gridded dataset is available at 4 km spatial resolution 
since 1981. The meteorological data extracted from this dataset include 
minimum temperature, mean temperature, maximum temperature, 
minimum vapor pressure deficit and maximum vapor pressure deficit 

(hereafter referred to as Tmin, Tmean, Tmax, VPDmin, and VPDmax, 
respectively). These variables were aggregated to a monthly time scale 
before being fed to the models. Furthermore, to reflect both the short- 
term and mid-term effects of precipitation throughout the growing 
season on wheat yield, the standardized precipitation index (SPI) 
(McKee et al., 1993) was calculated at three different time scales: the 
one, two and six-month intervals (SPI1, SPI2 and SPI6). Accordingly, to 
calculate SPI, a commonly used drought monitoring index, 43 years of 
monthly precipitation records (1981–2023) were collected from the 
PRISM dataset and then fitted to a gamma distribution function, which 
was subsequently transformed into a normal distribution with a mean of 
zero.

We collected soil moisture data from the Global Land Data Assimi
lation System Version 2 (GLDAS-2.1), which provides soil moisture data 
at various depths with a spatial resolution of 0.25 ◦ × 0.25 ◦ from 2000 
to the present. The GLDAS soil moisture was evaluated in many studies 
and demonstrated to be in good agreement when compared with in situ 
measurements (Bi et al., 2016; Yang et al., 2022). Soil moisture has been 
found to exhibit a high correlation with crop yields in previous studies 
and serves as an indicator for monitoring agricultural drought. In this 
study, the root-zone soil moisture was used and aggregated to a monthly 
scale.

2.2.3. Satellite and modelled data
In this study, satellite images were used to approximate plant 

biomass and monitor vegetation health. We derived the conventional 
normalized difference vegetation index (NDVI) from the near-infrared 
and red bands of the MODIS MCD43A4 daily product. This index is a 
crop monitoring tool that ranges between − 1 and 1. Healthy vegetation 
reflects near-infrared radiation more than red radiation; therefore, 
higher NDVI values indicate healthier and greener plants. NDVI proved 
to be highly efficient in estimating vegetation density and crop yields in 
many studies (Becker-Reshef et al., 2010; Schwalbert et al., 2020). From 
the same MCD43A4 dataset, we also extracted the enhanced vegetation 
index (EVI), which has higher sensitivity in areas with dense vegetation, 
and the normalized difference water index (NDWI) as a metric of 
vegetation water status. Along with these indices, leaf area index (LAI), a 
measure of green leaf area per unit ground surface, was obtained from 
MCD15A3H.

Additionally, daytime land surface temperature (LST) has been 
retrieved from the MODIS MOD11A1, which is a daily product with a 
1 km spatial resolution. LST can provide information on canopy 

Fig. 3. The distribution of winter wheat yield from 2014 to 2023.
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temperature and surface-energy balance for assessing crop water stress. 
For all these MODIS products, a quality filter was applied using the QA 
or QC bands to ensure that only high-quality pixels were included in the 
analysis.

We also incorporated actual evapotranspiration (ETa) as a satellite- 
based input in our prediction models. Many studies demonstrated the 
role of ETa in agricultural water planning and management applications 
(Ji et al., 2021), yet it has not been thoroughly investigated as an 
explanatory variable in yield prediction. To fill this gap, we chose the 
Operational Simplified Surface Energy Balance (SSEBop) model to 
obtain gridded ETa. SSEBop is a simplified thermal-based surface energy 
balance approach to estimate actual evapotranspiration (ETa) without 
solving the full surface energy balance equations. Its primary inputs 
include satellite-derived land surface temperature, daily maximum air 
temperature, and reference evapotranspiration. A detailed description of 
this model can be found in Senay et al. (2022), (2013).

The ETa data for this study were obtained from the OpenET monthly 
product, accessed via the Google Earth Engine platform. OpenET im
plements satellite-based ET models, including SSEBop, on the GEE cloud 
computing platform to provide historical and near real-time ET products 
at fine spatial resolution (30 m). This offers unprecedented and consis
tent access to 30 m resolution ETa that is applicable to agricultural and 
water resources management purposes.

Regarding the OpenET calculation of ETₐ, the primary satellite input 
is Landsat imagery, which typically acquires data every 8 days, 
depending on cloud cover. On each valid overpass date, OpenET com
putes the fraction of reference evapotranspiration by dividing the 
satellite-derived ET by reference ET sourced from gridded weather 
datasets. These per-pixel ET fractions are then linearly interpolated 
across the days between clear-sky overpasses. The interpolated fractions 
are multiplied by daily reference ET values, creating a continuous daily 

time series of ETa at 30 m resolution per pixel. Finally, these daily pixel- 
level ETₐ values are aggregated into monthly and annual totals (Melton 
et al., 2022).

2.2.4. Soil properties
The variation of soil characteristics across fields affects crop growth 

and development, which ultimately impacts the final yield even under 
uniform environmental and management conditions (Adhikari et al., 
2023). In this study, four soil variables—clay content (CC), sand content 
(SC), soil organic carbon content (SOC), and pH—were collected from 
global soil layers in OpenLandMap. OpenLandMap provided 250 m 
raster maps at different depths, which were built using machine-learning 
models trained on a global compilation of soil profiles. Wheat roots can 
grow beyond 1 m deep, with 95 % of them found in the top 104 cm of 
the soil (Fan et al., 2016). Therefore, we considered these soil properties 
at six depths (0, 10, 30, 60, 100, and 200 cm) to ensure that both surface 
and deep soil characteristics are included.

A summary of all input variables is shown in Table 1.

2.3. Wheat yield prediction framework

The overall workflow of this study is shown in Fig. 4. The first step of 
this study was data acquisition, which is described in detail in Section 
2.2. In the next step, all spatial data were filtered through crop masks to 
identify wheat areas. Then, sequential data were upscaled to a monthly 
timescale, as the monthly interval was chosen to simplify our data 
structure and to unify it. These inputs were then spatially aggregated at 
the county level to ensure consistency with the scale of yield statistics. 
The Google Earth Engine (GEE) platform was used for data extraction 
and preprocessing.

Since the growing season lasts ten months, starting from early 
October to the end of July, each sequential variable consists of 10 
temporal records. In this study, the independent variables included 150 
sequential features (fifteen variables over ten months) alongside 24 
static variables (four soil measurements at six depths). We also added 
the average wheat yield in each county from 2000 to 2021, which 
brought the total number of predictive features to 175. These explana
tory variables were concatenated with 1269 wheat yield samples to 
compile the final dataset for model development.

This final dataset was divided into two periods: one from 2014 to 
2021 for training and model optimization, and the other from 2022 to 
2023 for performance. Meanwhile, the Pearson correlation was used to 
investigate the relationship between crop yield and predictive variables. 
Prior to the training and testing stages of machine learning models, we 
applied a feature selection method to eliminate irrelevant features and 
identify the effective ones. This step was performed to address the 
overfitting and multicollinearity issues.

The hyperparameters of three widely known machine learning 
algorithms—XGBoost, RF, and LR—were tuned using a grid search and 
five-fold cross-validation on the training dataset.

Following hyperparameter tuning, we conducted two evaluation 
experiments. In the first one, each model was trained using all explan
atory features to establish a baseline. In the second experiment, the 
models were only fed the selected features from the feature selection 
process. Next, we used three metrics to assess the accuracy of models in 
both test years: coefficient of determination (R2), root mean squared 
error (RMSE), and mean absolute error (MAE). This two-year evaluation 
method enabled us to test the robustness and stability of models across 
two different years and experimental scenarios. Therefore, the perfor
mance of the three machine learning models was compared across both 
test years and the two experiments.

2.4. Machine learning algorithms

We used both linear and nonlinear machine learning algorithms for 
wheat yield prediction in this study. Linear Regression served as a 

Table 1 
A summary of input variables.

Category Variable name Data source Spatial 
resolution

Temporal 
resolution

Crop data Winter Wheat 
yield

USDA NASS (
USDA NASS, 
2023)

County- 
level

Yearly

Crop map USDA NASS (
Boryan et al., 
2011)

30 m Yearly

Climate Tmin, Tmean, 
Tmax

Prism (Daly 
et al., 2008)

4 km Daily

VPDmin, 
VPDmax

Daily

Precipitation 
(SPI1, SP2, 
SPI6)

Monthly

Root zone Soil 
Moisture (SM)

GLDAS (
Beaudoing and 
Rodell, 2020)

0.25◦ 3 h

Satellite- 
based

NDVI 
EVI 
NDWI

MCD43A4 (
Schaaf and 
Wang, 2021)

500 m Daily

LST MOD11A1 (Wan 
et al., 2021)

1 km Daily

LAI MCD15A3H (
Myneni et al., 
2021)

500 m 4-day

ETa (SSEBop) OpenET (Melton 
et al., 2022)

30 m Monthly

Soil 
properties

Clay Content 
(CC)

OpenLand Map (
Hengl, 2018a)

250 m Static

Sand Content 
(SC)

OpenLand Map (
Hengl, 2018b)

Soil Organic 
Carbon Content 
(SOC)

OpenLand Map (
Hengl and 
Wheeler, 2018)

PH OpenLand Map (
Hengl, 2018c)
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benchmark linear model, whereas RF and XGBoost, two tree-based 
ensemble algorithms, were applied to model nonlinear relationships in 
the data.

2.4.1. Random forest (RF)
RF is an ensemble machine learning technique that combines mul

tiple decision tree predictors. It can be used for both classification and 
regression tasks (Breiman, 2001). In the RF regression, each tree is 
constructed by picking a random subset of variables and samples from 
the dataset. Subsequently, each decision tree, representing a 
sub-regression model, develops a regression model and makes a pre
diction. Lastly, the final prediction is made by averaging all of the pre
dictions from the individual decision trees.

In our study, we tuned four hyperparameters in the RF algorithm, 
which were the number of trees in the forest, the maximum depth of 
each tree, the minimum number of samples required at a leaf node, and 
the minimum number of samples required to split a node. These pa
rameters were set to 200, 14, 2, and 2, respectively.

2.4.2. Extreme gradient boosting (XGBoost)
XGBoost is a decision-tree ensemble algorithm that was developed 

based on the gradient boosting framework. In XGBoost, decision trees 
are trained at each step to reduce the errors of the previous ensemble. 
Additionally, the objective function includes a regularization compo
nent to manage model complexity and overfitting. This algorithm was 
introduced by Tianqi Chen at the University of Washington (Chen and 
Guestrin, 2016). It is necessary to adjust the hyperparameters of this 
algorithm in order to build an optimal XGBoost model. We set up the 
XGBoost model for this study with a learning rate of 0.1, maximum tree 

depth of 4, and 200 boosting rounds (n_estimators = 200) to optimize 
performance while maintaining generalizability.

2.5. Feature importance

2.5.1. Pearson correlation
The Pearson correlation coefficient quantifies the linear association 

between two variables. It ranges from -1 to –1. When it equals 1, one 
variable changes in exact proportion to the other, whereas a value of -1 
shows that they vary proportionally but in opposite directions. If it is 
zero, there is no linear correlation. The formula for the Pearson corre
lation coefficient between two variables, X and Y, denoted as ρX,Y , is: 

ρX,Y =
cov(X,Y)

σXσY
(1) 

where cov (X, Y) signifies the covariance between X and Y, and σX and σY 
are their respective standard deviations.

2.6. Feature selection

In this study, the Repeated Elastic Net Technique (RENT) was 
employed to find the best subset of input variables. This approach is 
introduced by Jenul et al. (2021). Contrary to the majority of feature 
techniques that only focus on optimizing model performance, this 
approach also considers the stability and robustness of the feature se
lection process. This technique begins by randomly sampling K inde
pendent subsets from the training dataset. Then, a linear model with 
elastic net regularization is fitted to each subset to obtain feature 

Fig. 4. Flowchart of wheat yield prediction framework.
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weights (βk, n), where k represents the training subset and n the feature. 
These feature weights are compiled into a matrix and evaluated based on 
three criteria to ensure the stability and robustness of the final model. 
The three criteria are as follows: 

τ1(βn) =
1
K
∑K

k=1

1[βk,n∕=0] (2) 

τ2(βn) =
1
K

⃒
⃒
⃒
⃒
⃒

∑K

k=1
sign(βk,n)

⃒
⃒
⃒
⃒
⃒

(3) 

τ3(βn) = tK− 1(
|μ(βn)|̅̅̅̅̅̅̅̅̅

σ2(βn)
K

√ ) (4) 

where μ(βn) and σ2(βn) are the mean and variance of feature weights, 
and tK− 1(.) represents the cumulative distribution function of Student’s 
t-distribution with K − 1 degrees of freedom.

Eq. (2) measures how often the feature weight (βk, n) is non-zero 
across K models. Eq. (3) examines the consistency of the sign (positive 
or negative) of feature weights across models. The last one evaluates, 
using Student’s t-test, whether the mean coefficient for a feature across 
models is significantly different from zero. In the feature process, a 
feature is kept if it satisfies all three criteria τ1(βn), τ2(βn), and τ3(βn)

with respect to their corresponding user-defined cutoff values t1, t2,
and t3. The overall RENT pipeline in shown in Fig. 5. The full details of 
this approach can be found in Jenul et al. (2021).

Fig. 5. RENT feature selection pipeline adopted from Jenul et al. (2021).

Fig. 6. The correlation heatmap of variables: (a) the average correlation value of climate data during the growing season, (b) the average correlation value of 
satellite-based data during the growing season, (c) the average correlation value of soil property data across different depths.
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3. Results

3.1. Correlation analysis

The Pearson correlation coefficients between input variables and 
yield are shown in Fig. 6. They are divided into three groups according 
to the data sources: climate, satellite-based, and soil properties features. 
All variables (except SPI and soil properties) were standardized on a 
county basis to reduce the regional effects of soil, different growing 
conditions and agronomic practices prior to correlation analysis.

In the climate group, SPI indices and soil moisture showed consistent 
positive relationships with yield and with each other. On the other hand, 
temperature-related variables (Tmin, Tmean and Tmax) and vapor pressure 
deficits (VPDmin and VPDmax) were strongly intercorrelated, but their 
correlations with yield were weak or near zero. These weak correlations 
suggest that averaging correlations over the growing season may hide 
the actual effects of temperature and vapor pressure deficit on yield. 
Thus, we need a more in-depth temporal analysis, which is presented in 
Fig. 7.

In the second group of Fig. 6, the vegetation indices EVI, LAI, and 
NDVI were strongly and positively linked to each other and to actual 
evapotranspiration (ETₐ). This means that they are similarly sensitive to 
crop conditions. NDWI, however, displayed strong but negative corre
lations with the vegetation indices. This opposite pattern is due to how 
NDWI is calculated; unlike the other indices, it incorporates a negative 
element of near-infrared (NIR) reflectance. Additionally, LST showed 
weak correlations with the other remote sensing variables in this cate
gory, implying that it provides unique thermal-related information.

Within the soil-related group, correlations were averaged at different 
depths. Variables displayed a mix of relationships with yield. The 
strongest associations with yield were found for SOC (r = 0.35) and SC 
(r = –0.36), while CC and pH demonstrated weaker relationships.

In the next step, to examine the temporal dynamics throughout the 
growing season, Fig. 7 presents the monthly correlation coefficients 
between monthly features and yield. This figure illustrates that each 
variable has distinct periods of influence on yield. For instance, vege
tation indices like EVI, LAI and NDVI had strong positive correlations 
with yield from March to May, with the highest value in May. NDWI 
showed a similar trend, but the correlation values were negative. ETa 
was negatively related to yield in October, but it changed to a positive 

relationship during the rest of the growing season.
The temperature variables (Tmin, Tmax, and Tmean) showed varied 

correlations with yield during the growing season. From November to 
March, they exhibited moderate positive correlations, but this turned 
negative in April and May, which is during the reproductive stage and a 
time when heat stress is critical. LST had a moderate negative correla
tion from January to May, peaking in April and May. This confirms the 
negative consequences of heat stress during this period. Water-related 
variables, such as soil moisture, SPI1, SPI2 and SPI6, showed positive 
correlations from winter through the spring, with the highest correlation 
of SM, SPI2 and SPI6 occurring in April. It’s interesting to note that in 
the last two months of the growing season (June and July), we found a 
negative correlation between SPI1, SPI2, and yield. This is probably due 
to the possible negative effects of heavy rainfall during this time.

3.2. Feature selection

In this study, we randomly sampled 100 subsets from the training 
dataset, each having 70 percent of the total training size. In order to 
ensure reproducibility, different random seeds ranging from 0 to 99 
were used during the sampling process. Subsequently, a grid search was 
performed to find the best combination of elastic net hyperparameters 
and cutoff values. In our implementation of RENT, we adapted the 
original two-stage grid search procedure described by Jenul et al. 
(2021) into a single step for simplicity and visualization purposes. 
Additionally, elastic net hyperparameter names were changed to match 
scikit-learn nomenclature (Pedregosa et al., 2011).

The grid search was carried out over the following parameter space: 
for the elastic net hyperparameters, α ranged from 10− 4 to 10 in six 
logarithmic steps, and l 1ratio ∈ [0,1] with a step size of 0.1. For the 
stability cutoff values, t1 and t2 were bounded by [0.5,1] with the same 
step size as l 1ratio, while t3 was selected from {0.95,0.975,0.99} as 
these values correspond to different significance levels in the t-test. For 
each hyperparameter combination, elastic net models were fitted to all 
subsets to obtain feature weights, and features meeting the three sta
bility criteria were kept. A linear regression model was then trained on 
the training dataset, using the retained features, and evaluated via 
Bayesian information criterion (BIC). The optimal configuration, along 
with its corresponding selected features, was determined based on the 
lowest BIC observed among all combinations.

Fig. 7. The correlation coefficients between monthly variables and wheat yield throughout the growing season.
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As depicted in Fig. 8, the minimum BIC value occurs when there are 
40 features. In the minimum BIC, the values of α, l 1ratio, t1, t2 and t3 are 
0.01, 0.4, 0.9, 0.7 and 0.975, respectively. In this figure, for some values 
of the number of features, the figure includes more than one BIC per
formance value. This is because, when tuning hyperparameters and 
cutoff values, different models sometimes chose different sets of fea
tures, even though the total number of selected features was the same.

In Table 2, the selected features are presented. These features are 
divided into two categories: monthly and static features. Examining the 
monthly features, early in the growing season (October to December), 
variables related to water and temperature, such as SM, NDWI, LST, and 
VPD, stand out as the key features. This shows their important role in 
crop establishment. In spring (February to April), we observed a 
phenological change as EVI joined the influential variables, while water- 
related variables such as SM, SPI, and VPD remain important in affecting 
yield outcomes. In particular, SPI6 in March tracked cumulative pre
cipitation from growing season onset up to March. In the late growing 
season (May-July), which corresponds to the heading to maturity stages, 
LAI emerges as a key feature in May and June. Additionally, satellite- 
derived ETa is selected for all late-season months. The inclusion of 
these features, alongside SM, temperature, SPI, and NDWI, points to the 
crops’ sensitivity to water stress and heat during grain development.

Regarding static features, the average historical yields, clay content, 
pH, and soil organic carbon content are selected to represent the 
county’s yield level and the soil’s physical structure and properties. 
These static features describe location-specific characteristics, while 

monthly features display environmental and vegetative conditions over 
the growing season.

Collectively, this pattern of selected features highlights the need for 
integrating multi-source and multi-temporal data to capture specific 
factors influencing yield outcomes.

3.3. Winter wheat prediction results

The performance results of three machine learning algorithms for 
winter wheat prediction are reported in Table 3. The evaluation of re
sults is conducted under two scenarios: using all available features and 
feature-selected inputs. These results are categorized separately based 
on our test years, 2022 and 2023. Across all models and feature sets, the 
R² values ranged from − 0.70–0.71, the RMSE from 0.46 to 1.11 t ha− 1, 
and the MAE from 0.37 to 0.94 t ha− 1.

Feature selection had a clear positive impact, particularly in 2022, 
with models using the subset of features mostly leading to better or at 
least comparable results. In 2022, for example, with the selected fea
tures, XGBoost’s R2 improved from 0.65 to 0.71 and its RMSE dropped 
from 0.51 to 0.46 t ha− 1. This demonstrates how well the feature se
lection technique works in reducing the redundancy in the dataset, 
which raises model accuracy and lowers the risk of overfitting.

Across both years and feature sets, XGBoost outperformed the other 
algorithms, with the lowest RMSE and MAE, as well as the highest R2 

values. Remarkably, both RF and XGBoost showed minimal changes in 
performance when using the full set of features or the selected features, 
which indicated their inherent ability to handle feature redundancy. On 
the other hand, LR models had the lowest R² and the highest RMSE. 
Thus, we concluded that non-linear models, namely RF and XGBoost, are 
more accurate than LR in terms of accuracy.

The 2023 prediction results for XGBoost and RF were mostly worse 
than those of the previous year, which can be explained by the drought 
across the U.S. winter wheat belt during the 2022–2023 growing season. 

Fig. 8. The optimal number of selected features according to BIC when tuning 
Elastic Net hyperparameters and cutoff values.

Table 2 
Selected variables (Numbers in parentheses indicate the soil depth in centimeters for the corresponding variables e.g., PH(0) denotes pH at 0 cm depth).

Oct Nov Dec Jan Feb Mar Apr May Jun Jul

EVI ​ ​ ​ ​ ​ ✓ ​ ​ ​ ​
LAI ​ ​ ​ ​ ​ ​ ​ ✓ ✓ ​
NDVI ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
NDWI ✓ ​ ​ ​ ​ ​ ​ ✓ ​ ​
ETa ​ ​ ​ ✓ ​ ​ ​ ✓ ✓ ✓
LST ✓ ​ ​ ​ ​ ✓ ​ ​ ​ ​
Tmin ​ ​ ✓ ​ ​ ​ ​ ​ ✓ ✓
Tmean ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
Tmax ​ ✓ ​ ​ ​ ​ ✓ ✓ ​ ✓
VPDmax ​ ✓ ✓ ​ ​ ​ ​ ✓ ​ ​
VPDmin ​ ✓ ✓ ​ ✓ ✓ ​ ​ ​ ​
SM ​ ​ ✓ ​ ​ ​ ✓ ​ ​ ✓
SPI1 ​ ​ ✓ ✓ ✓ ​ ​ ​ ✓ ​
SPI2 ​ ​ ​ ​ ​ ​ ​ ​ ✓ ​
SPI6 ​ ​ ​ ​ ​ ✓ ​ ​ ​ ​
Static features Average Yield, CC (30), PH (0), PH (10), SOC (10), SOC (200)

Table 3 
Performance comparison of LR, RF and XGBoost using both all features and 
selected features.

All features Selected features

RMSE 
(t 
ha− 1)

R2 MAE 
(t 
ha− 1)

RMSE 
(t 
ha− 1)

R2 MAE 
(t 
ha− 1)

LR 1.11 − 0.70 0.94 0.70 0.33 0.59
2022 RF 0.49 0.67 0.38 0.49 0.68 0.39

XGBoost 0.51 0.65 0.40 0.46 0.71 0.37
LR 0.73 0.46 0.59 0.69 0.52 0.56

2023 RF 0.67 0.55 0.53 0.68 0.53 0.54
XGBoost 0.59 0.65 0.47 0.60 0.63 0.48
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Kansas was the most affected state and experienced the most severe 
precipitation shortfall since 1896 (Zhang et al., 2024). As a result, 
Kansas’s winter wheat production fell to 5.5 million tons in 2023, the 
lowest since 1966. These extreme weather conditions altered the data 
patterns and broadened the range of yield values that were not seen in 
the training set. As shown in Table 4, the 2023 test has a considerably 
larger interquartile range (1.72–3.37 t ha− 1), although its mean and 
median are similar to the other sets. This higher variability is likely to 
have affected the results, as algorithms perform best when training and 
test data distributions are similar and there is no need to extrapolate 
beyond the range of training data.

Fig. 9 provides a visual comparison of observed and predicted winter 
wheat yields of the models that used only selected factors for the test 
years (2022 and 2023). In each subplot, a red y = x reference line was 
drawn, which represents perfect predictions, alongside a green fitted 
regression line that illustrates the general trend of the predictions. The 
model performs at its best when points closely cluster around the y = x 
line.

Fig. 9 shows that the predicted values for 2022 were mostly close to 
the ideal line y = x. However, in 2023, the points were further away 
from this line. Even though the performance of models varied, XGBoost 

always did better than the other models and had the highest accuracy in 
both years.

The plots in Fig. 9 illustrate that the models tend to overestimate low 
yields and underestimate high ones. This pattern is likely due to the 
limited number of extreme wheat yield samples in the training set. This 
systematic bias suggests a potential need for further data balancing or 
model adjustments to improve performance at the tails of the yield 
distribution.

The comparison of R2 and RMSE for models trained with the selected 
features, during the whole study period is shown in Fig. 10. The per
formance of all models declined considerably from training to test years, 
as R2 values decreased and RMSE rose accordingly. LR had the lowest 
accuracy even when it was tested against the training years, while RF 
and XGBoost maintained high and stable performance during the 
training. XGBoost had the highest R2 and the lowest RMSE in both 
training and test years.

3.4. Spatial distribution of errors in winter wheat forecasts

Fig. 11 displays the observed winter wheat yields and prediction 
errors from three models (LR, XGB, RF) for 2022 and 2023, using 

Table 4 
Statistical summary of wheat yield (t ha− 1) in the training set (2014–2021) and test sets (2022, 2023).

Dataset Years Sample number Mean 
(t ha− 1)

Median 
(t ha− 1)

25th Percentile 
(t ha− 1)

75th Percentile 
(t ha− 1)

Training set 2014–2021 1018 2.72 2.78 2.21 3.25
Test set 1 2022 137 2.60 2.54 2.04 3.21
Test set 2 2023 113 2.61 2.52 1.72 3.37

Fig. 9. Comparison of observed and predicted winter wheat yields using selected features for three machine learning models in 2022 and 2023: (a) LR, (b) RF, and 
(c) XGBoost.
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selected factors as inputs. The observed yield maps (Fig. 11 (a) and (e)) 
show a lack of consistent spatial patterns, although a slight west-to-east 
yield increase is noticeable, particularly in 2023. The wheat yield varied 
greatly, ranging from less than 1 t ha− 1 to about 4 t ha− 1.

Regarding the error values, positive values (red tones) indicated an 
overestimation of yield, while negative values (blue tones) reflect un
derestimation by the models. Generally, lighter colors on the error maps 
mean that the predictions are more accurate. As shown by the lighter 
color tones, XGBoost models had lower error magnitudes in both years 
(Fig. 9(d) and (h)), suggesting superior predictive performance 
compared to the LR and RF models.

A notable observation is that yields were underestimated in the 
central counties, while they were overestimated in the northeastern area 
in 2022 and the eastern region in 2023. In Fig. 11, these geographically 
clustered errors are marked by black ellipses. Such homogeneous error 
patterns suggest that the models have difficulty accounting for the 
spatial variability of yield.

4. Discussion

We adopted multiple sources of data, including VIs, ETa, climate and 
soil data, to predict winter wheat yield at the county scale. Correlation 
analysis in conjunction with a feature‑selection method was employed 
to identify key features and investigate the temporal significance of 
time-series variables. Three machine learning models were implemented 
to perform wheat yield prediction.

4.1. Input variables analysis

We inspected the interaction of input variables with wheat yield 
using two methods, correlation analysis and feature selection. Regarding 
feature importance, most studies have focused on the overall relation
ship between time-series variables and yield. However, our study pre
sents the temporal correlation of individual time-series variables, 

providing deeper insights into agricultural data analysis. The correlation 
analysis revealed that vegetation indices (VIs) are most significant after 
the green-up stage (February to March) and peak during the heading to 
early grain-filling stages (May). In contrast, weaker correlations are 
observed in the early growing season and harvest periods. These results 
are consistent with the findings of prior studies (Joshi et al., 2023; Panek 
et al., 2020). Similarly, Cai et al. (2019) showed that the contribution of 
satellite data saturates at the peak of the growing season. Moreover, 
Actual evapotranspiration showed a moderate positive correlation from 
mid-growing season to the maturity stage, but demonstrated a negative 
correlation in October. This negative relationship can be attributed to 
the fact that, in the early stage of wheat growth, evapotranspiration 
mainly consists of soil evaporation rather than plant transpiration. As a 
result, if ETa is excessively high, soil moisture may be depleted, poten
tially causing water stress that adversely affects germination and root 
establishment.

Regarding climate and soil data, soil moisture consistently showed a 
positive correlation throughout the growing season to the end of the 
flowering stage. SPI1 also had a similar trend, but, interestingly, showed 
a moderate negative relationship with yield in June. This finding aligns 
with Joshi et al. (2023), who reported that heavy rainfall just before the 
harvest may cause wheat kernels to lose weight, ultimately leading to 
yield loss. Temperature variables mostly had a positive linkage to wheat 
yield before April, whereas a negative correlation was found during the 
heading to grain filling stages. A similar result was reported by Jarlan 
et al. (2014), who found a positive correlation in the early stage and a 
negative one in the grain-filling stage of wheat growth in Morocco. 
Generally, most variables reached their peak correlations with yield 
during April and May. This critical period spans from jointing to 
grain-filling stages. Identifying such a yield‑sensitive window prior to 
harvest could be valuable for both decision‑makers and farmers. 
Monitoring this period not only helps authorities strategically plan for 
supply and demand but also enables farmers to adapt their with
in‑season management practices, such as modifications to fertilization 

Fig. 10. Performance of the models from 2014 to 2023 with selected features as inputs: (A) R2 comparison across models; (B) RMSE comparison across models.
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or irrigation. In future research, incorporating data with higher tem
poral and spatial resolution for this period may lead to more accurate 
predictions of final yield.

The feature selection method used in this study considers both the 
stability of the selected features and model performance to select im
pactful features. This approach distinguishes our study from most pre
vious works, as maximizing model performance has mainly been the 
only criterion in most previous studies. While correlation analysis just 
informs us about how features are related to each other, an efficient 
feature selection technique can hand-pick independent features with the 
strongest influence on the target variable.

Our selected features mostly align with agronomic knowledge. 
Vegetation indices such as EVI, NDWI, and LAI were chosen from mid to 
late growing season, as these features in this period, especially during 
heading to grain filling, proved to be indicators of biomass and canopy 
health in numerous studies. Among selected variables, ETa is chosen in 
four months, January and May to July, demonstrating its significance in 
yield prediction. This is because actual evapotranspiration is a reflection 
of various factors, including temperature, precipitation, solar radiation, 
etc. Likewise, soil moisture and different SPI timescales emerged several 
times as selected variables, together covering almost the entire growing 
season. This illustrates the importance of water availability for crop 
yield.

4.2. Performance

In our framework, we combined various datasets with different 
spatial and temporal resolutions and unified their resolutions to predict 
winter wheat yield at the county scale. These data were filtered out 
using a feature selection method before being fed to the model. Then, the 

machine learning models were trained from 2014 to 2021 and tested in 
two separate years, 2022 and 2023. Based on the results, the best model 
for year 2022 could explain up to 71 % and for year 2023, up to 65 %. 
This variability in the performance of models across different years can 
be attributed to different environmental factors, as well as statistical 
differences in training and test data.

One of the strengths of this study is the feature selection approach 
that led to a noticeable improvement in most models despite using less 
than a fourth of the candidate features. The benefits of dimensionality 
reduction are also discussed in prior studies (Li et al., 2022, 2023). While 
the improvement in the model’s accuracy was subtle for XGBoost and 
RF, it was substantial for LR. Such a result reflects that XGBoost and RF 
are less prone to overfitting. Moreover, our results indicated a distinct 
spatial pattern, with yields being underestimated in several 
high-producing areas and overestimated in some low-yielding regions, 
leading to geographically clustered error trends. Therefore, some 
contiguous counties exhibited similar errors, which are likely due to a 
lack of extreme yield values in the training data as well as the inability of 
traditional machine learning models to capture spatial yield variability, 
as reported in other studies. The underestimation in high-yield regions 
was also observed by Wang et al. (2020). Addressing this issue could 
involve incorporating spatial machine learning models, which may help 
improve the accuracy of predictions across regions with varying 
conditions.

4.3. Study limitations

There are some limitations in this study that hinder the modelling 
ability. One possible source of uncertainty in models can be attributed to 
not including some influential agronomic and environmental factors 

Fig. 11. Spatial representation of prediction errors for 2022 and 2023: (a, e) Observed yield; (b, f) LR prediction errors; (c, g) RF prediction errors; (d, h) XGBoost 
prediction errors. Panels in the top row are for 2022, and those in the bottom row are for 2023.
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such as pests, fertilizers, management practices, irrigation, etc. Further 
studies can incorporate these variables, not only to improve forecasts 
but also as a means of better understanding the final yield dynamics. 
Also, while having a general prediction model can provide broad 
applicability, the relationships between predictive variables and the 
target are not spatially uniform across the geographical area in the two 
states. To address this issue, a spatially-aware machine learning model 
needs to be incorporated to better account for geographical heteroge
neity. The same challenge is also true for the feature selection, as the 
influential variables may differ across regions. Thus, the feature selec
tion process needs to be tailored to agronomically similar areas.

Finally, while aggregating all datasets to a monthly resolution helped 
to reduce data dimensionality, this rather coarse temporal scale restricts 
the capacity to completely capture the dynamics of crop growth. Within 
days or weeks, the wheat phenological stages can change rapidly and 
may be exposed to extreme weather or abnormal conditions. Thus, a 
finer temporal resolution, such as weekly or bi-weekly, would probably 
be more suitable for tracking these changes and may improve the 
sensitivity of the model to short-term variations.

5. Conclusion

In this paper, a framework with integrated soil, satellite-based, and 
climate data was introduced to predict winter wheat yield using ma
chine learning algorithms. One notable finding that emerged is that ETa 
proved to add critical information as it demonstrated a moderate posi
tive relationship to crop yield and was selected multiple times across the 
growing season in the feature selection procedure. Also, the correlation 
results showed that two to three months before harvest are significantly 
important in determining the final yield, as most variables had strong 
correlation with crop yield in April and May compared to other months. 
Moreover, the feature selection technique implemented in this study 
effectively identified key predictors while maintaining and, in most 
cases, enhancing model performance. It also contributed to mitigating 
overfitting and reducing multicollinearity. Importantly, the month-by- 
month analysis of variable importance provides decision-makers with 
more nuanced insights into the temporal dynamics influencing wheat 
yield. In terms of modelling performance, XGBoost outperformed both 
LR and RF in both test years. Also, the spatial analysis of models’ errors 
showed significant geographical clustering, especially in low-yield and 
high-yield regions. This highlights the need for incorporating spatially- 
aware modeling approaches to further improve yield predictions.
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