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ARTICLE INFO ABSTRACT

Handling Editor - Ranvir Singh Accurate crop yield prediction and understanding its underlying factors facilitate better food supply management

and more informed decision-making. To forecast crop yield, the majority of previous studies have utilized

Keywords: vegetation indices and meteorological data. However, other important factors are often overlooked. Moreover,
Crop yield prediction the temporal influence of input variables has been underexplored in prior research. To fill these gaps, we in-
Evapotranspiration

tegrated a diverse range of satellite-based data, including vegetation indices and actual evapotranspiration (ET,),
with climate and soil information. Then, the input variables were narrowed down using a feature selection
approach to provide the most relevant variables for predictive models. Three machine learning algorithms,
Extreme Gradient Boosting (XGBoost), Random Forest (RF), and Linear Regression (LR), were trained to forecast
winter wheat yield across Oklahoma and Kansas counties. The models were trained on 2014-2021 data and
tested on 2022-2023 yields. According to the results, XGBoost emerged as the most accurate algorithm in both
test years. It achieved an R2 of 0.71 (RMSE = 0.46 t ha') in 2022 and an R of 0.63 (RMSE = 0.60 t ha™1) in
2023 when using the selected feature set. For most models, particularly in 2022, using the selected features
instead of the entire set improved the accuracy. We also found that ET, is a promising factor in yield prediction,
as it was selected multiple times across the growing season in the feature selection process. Additionally, cor-
relation analysis showed that April and May, which are two to three months before harvest, were the most

Feature selection
Machine learning
XGBoost

sensitive months in shaping the final yield.

1. Introduction

Food insecurity is a global problem that needs immediate attention
and intervention. The severity of this issue is underscored by the fact
that nearly 733 million people suffered from hunger in 2023. This large
number represents one in eleven individuals across the globe and one in
five in Africa (FAO, 2024). Climate change is making this situation even
worse, especially since extreme events like droughts are happening more
often. Such unfavorable conditions may reduce agricultural productivity
or even destroy crops (Bokusheva et al., 2016). Meanwhile, the world’s
population has more than tripled since the middle of the 20th century,
and it is predicted to increase by almost 2 billion people within the next
30 years (United Nations, 2025). Therefore, providing adequate food for
this increasing population will be challenging and requires a high degree
of agricultural planning and accurate production estimation.

Crop yield is critical for the development of rural areas and a key

metric for assessing food security (Li et al., 2007). Accurate yield pre-
dictions aid authorities in making strategic decisions, managing storage,
allocating resources, and setting prices (Balaghi et al., 2008; Chen et al.,
2019). Moreover, it can help farmers adjust their agronomic manage-
ment before harvest to meet crop demands by applying adequate irri-
gation and fertilizers.

Wheat is the most widely grown food crop in the world. It provides
approximately 18 % of global dietary calorie intake and 19 % of protein
consumption (Reynolds and Braun, 2022). Given wheat’s cardinal role
within the global food system, accurate wheat yield forecasting has
become indispensable to the preservation of nutritional stability. As a
result, this topic has drawn substantial attention from scholars and of-
ficials over the past decades.

In general, the process of agricultural yield prediction consists of two
steps: data acquisition and establishing a predictive model. From the
perspective of data sources, remote sensing images from space are
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becoming a popular source of information for yield and biomass esti-
mation due to their availability, temporal, and spatial resolution. Sat-
ellite imagery spectral bands used for agricultural monitoring include
visible, thermal, and microwave spectra. Vegetation indices (VIs) such
as the normalized difference vegetation index (NDVI) are extensively
used to investigate crop conditions and yield. For example, Petersen
(2018) used monthly anomalies of NDVI, enhanced vegetation index
(EVI), and normalized difference water index (NDWI) to predict corn,
soybean, and sorghum yields in Illinois and successfully applied this
method to each country in Africa. In addition to VIs, land surface tem-
perature (LST) has also been widely used as an indicator to assess canopy
temperature and crop stress. Pede et al. (2019) computed the killing
degree day (KDD) using LST images and compared it to KDD derived
from air temperature (Tair) to predict corn yield. They found that the
LST-based model outperformed the Tair model.

In addition to remote sensing data, another frequently used data
source for yield prediction is climate variables. Many studies have
investigated the impact of variables such as precipitation, temperature,
wind, and solar radiation, either as original variables or drought indices,
on crop yield (Baffour-Ata et al., 2021; Sridhara et al., 2020). For
instance, Bazrafshan et al. (2022) employed meteorological and fertil-
izer data to estimate rainfed wheat yields in Iran using multilayer per-
ceptron (MLP). Some previous studies reported that when different
sources (e.g., remote sensing and climate data) are combined, more
accurate predictions are made (Cai et al., 2019; Bouras et al., 2021).
Wang et al. (2020) combined four different sources, including climate
data, satellite images, soil maps, and historical wheat yields across the
CONUS. They stated the efficacy of using multi-source data, especially
soil maps, to improve yield estimation. However, based on prior studies,
little is known about the inclusion of moderate-resolution satellite-based
actual evapotranspiration (ET,) as an input variable in large-scale yield
estimation. To the best of our knowledge, only Naghdyzadegan Jahromi
et al., (2023) incorporated fine-resolution ET, from the METRIC model
for wheat prediction and reported that ET, can provide critical and
supplementary information. In the past, the science of ET estimation was
limited only to field-scale studies. However, due to the advent of satellite
imagery and advances in computing power, ET, modelling and analysis
have become possible on a large scale at moderate resolution.

Statistical and process-based models are two primary methods that
have been employed to forecast crop yields. Process-based models are
designed to mathematically quantify crop growth and yield by consid-
ering the interaction between the crop and its environment. These
models utilize various data, including weather information, soil and
cultivar characteristics, and crop management (Asseng et al., 2014).
However, the difficulty of adopting process-based models is that they
often require a large amount of input data for model parameterization
and calibration, which is unavailable in many regions. In addition, these
models are often regarded as “point-based,” which can make them un-
suitable for application at regional and national scales (Basso et al.,
2013). On the other hand, statistical methods establish a relationship
between historical crop yield records and various predictive variables to
make future predictions. The advantage of these models is that they have
limited, if any, reliance on field calibration. Their model error and un-
certainty assessments are also more straightforward (Lobell and Burke,
2010).

Establishing a model is the second critical component of prediction.
A wide range of machine learning algorithms has been successfully used
in yield prediction. They are powerful, easy-to-use, and efficient tools
for establishing a function between a target variable and its de-
terminants. For example, Zhang et al. (2017) applied stepwise regres-
sion to forecast winter wheat yield in Oklahoma, the U.S., and their
model could account for 70 % of the yield variation (R2 = 0.7). Statis-
tical models are only able to specify a linear function between yield and
its predictors; however, recent machine learning approaches can even
capture nonlinear relationships between variables. Recent studies have
been implementing more than one machine learning model to compare
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their performances and identify the best model. For instance, Tian et al.
(2021) reported that the long short-term memory (LSTM) had a higher
accuracy than the backpropagation neural network (BPNN) and support
vector machine (SVM) in wheat yield estimation in the Guanzhong
Plain, PR China. Another study developed a multiple linear regression
(MLR) model and three nonlinear machine learning models, including
SVM, RF, and XGBoost, to make an early cereal yield forecast in
Morocco, and they reported that the XGBoost algorithm outperformed
the others (Bouras et al., 2021). However, a superior algorithm has not
yet been identified; therefore, further extensive studies are needed to
compare the performances of state-of-the-art algorithms for each case
study.

In data-driven frameworks, identifying key variables is an important
step in establishing a more robust and interpretable model. For this
reason, many yield-prediction studies adopted feature selection ap-
proaches to find optimal feature sets and reduce computation time
(Abdel-salam et al., 2024; Lischeid et al., 2022). Nevertheless, feature
selection techniques need to be further applied and verified across
different regions and environments to reach a consensus about their
efficacy. Beyond the modelling aspect, finding influential factors bene-
fits farmers and decision makers to better monitor and refine crop-ma-
nagement strategies. Many existing studies employed correlation
analysis or mutual information to gauge the relative importance of
variables (Fu et al., 2025; Wang et al., 2020). However, previous ana-
lyses have largely demonstrated the overall significance of variables
rather than the within-growing-season variability in their influence.
Given that crop growth and yield formation are time-dependent pro-
cesses, examining temporal feature importance offers valuable insights.

In this study, we integrated satellite-based variables, including NDVI,
LST, and ET,, with climate, soil properties, and soil moisture data to
develop models for predicting winter wheat yields at the county level.
For this purpose, we adopted various machine learning algorithms such
as LR, XGBoost, and RF, and compared their performances. In addition,
the temporal importance of each variable has been discussed. The spe-
cific aims of this study are to: 1) develop a robust and accurate frame-
work for wheat yield prediction; 2) examine the performances of
different machine learning models and identify the most accurate
model; 3) evaluate the importance of each variable during the crop
growth period; 4) identify the best subset of features and investigate
how feature selection affects model performance; 5) examine the
adaptability and spatial errors of models. This study introduces two key
novelties. We combined remote sensing-based actual evapotranspiration
data at the spatial resolution of Landsat imagery with other relevant
variables to predict wheat yields. Additionally, we applied a feature
selection method, used for the first time in a crop yield forecasting
application, to identify the most critical variables and improve the ac-
curacy of models.

2. Materials and methods
2.1. Study area

Kansas and Oklahoma, two dominant wheat-producing states in the
U.S., were chosen as the study area for crop yield modeling. The Na-
tional Agricultural Statistics Service (NASS) reported that in 2023,
Kansas and Oklahoma produced about 5.5 and 1.9 million tons of winter
wheat, respectively. Thus, they accounted for 22 % of the total U.S.
production in that year (USDA NASS, 2024). In terms of administrative
divisions, Kansas has 105 counties, whereas Oklahoma contains 77
counties. However, only 161 counties were selected as the focus of this
study, 102 from the former and 59 from the latter state, as these selected
counties constituted nearly 98 % of this region’s total winter wheat
production from 2014 to 2023. In this study period, the sample size for
county-level yield data is 1268.

To understand the monthly variation in weather conditions, the
average temperature and precipitation in different months from 2014 to
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Fig. 1. Average precipitation and temperature of Kansas and Oklahoma from 2014 to 2023.
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Fig. 2. Kansas and Oklahoma: (a) Average annual precipitation (mm/year) during 2014-2023, and (b) winter wheat distribution in 2023 derived from Cropland

Data Layer (CDL).

2023 are shown in Fig. 1. In the study area, monthly precipitation
ranged from 17 to 160 cm, peaking in May in both states. From a tem-
perature standpoint, Oklahoma consistently had higher average tem-
peratures than Kansas throughout every month.

The geographical distribution of precipitation clearly shows a west-
to-east gradient (Fig. 2(a)). Western regions of both states receive
lower precipitation, with annual amounts as low as 380 mm. Moving
eastward, precipitation increases steadily and reaches up to 1700 mm in
the eastern edge of the study area. This distinct spatial pattern portrays
the transition from semi-arid in the west to a more humid condition in
the east.

According to NASS, between 2000 and 2019, Kansas’s irrigated
winter wheat production represented 7.3-12.5 % of the total output.
Similarly, in Oklahoma, from 2000 to 2009, it ranged between 3.5 and 9

% of the total production. These numbers show that irrigation has a very
small effect on the total output.

In Kansas and Oklahoma, winter wheat is usually planted from mid-
September to early October. It emerges in late fall and then undergoes
vernalization in the winter. As the soil warms in spring, the wheat re-
sumes growth, continuing until it is harvested between June and July.
Planting, growth stages, and harvesting schedules vary from county to
county and year to year in these states. However, for consistency in
research, the growing season is defined from the previous October to the
end of July. Winter wheat is mostly planted in the western two-thirds of
these states, as shown in Fig. 2(b).
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Fig. 3. The distribution of winter wheat yield from 2014 to 2023.

2.2. Data

2.2.1. Crop data

The annual county-level winter wheat yield records were collected
from the USDA NASS database (USDA NASS, 2023). NASS provides
comprehensive and reliable yield data from the county to the national
level through surveys and censuses. Our study period was a 10-year span
from 2014 to 2023. During this timeframe, yields widely ranged from
approximately 0.7-5.4 t ha™*.

The yearly yield distribution is shown in Fig. 3, indicating a high
variability among different years. For example, in 2014, winter wheat
yields dropped to exceptionally low levels, the lowest in Kansas since
1995, and in Oklahoma since 1967, mainly because of drought and
freeze damage. In contrast, due to favorable weather conditions, Kansas
experienced an all-time high yield in 2016, averaging over 3.8 t ha™!
across this state. The high temporal and spatial yield variability in these
years poses a challenge in yield modeling and prediction.

Some studies have detrended crop yield in order to remove the effect
of technological advances on the yield trend and only considered the
climate effects. However, because the span of 10 years is not long
enough for any major changes in agronomical technology and practices,
detrending has not been investigated in this study.

The NASS Cropland Data Layer (CDL) was obtained to distinguish
winter wheat planting pixels. CDL is an annual crop-specific classifica-
tion map of the entire continental United States in raster format. This
product, which has been extensively used in agricultural studies, is
generated by satellite imagery and ground truth data that are collected
during the growing season, and is available at 30-m spatial resolution
since 2008 (Boryan et al., 2011). In our study, this crop layer was used to
create annual winter wheat masks, which were applied to spatial data-
sets to isolate winter wheat pixels when averaging variables at the
county level.

2.2.2. Climate data

The meteorological data within the growing seasons were retrieved
from the Parameter-elevation Regressions on Independent Slopes Model
(PRISM) dataset, which is freely available on the Oregon State Univer-
sity PRISM Climate Group website (http://www.prism.oregonstate.
edu). This daily gridded dataset is available at 4 km spatial resolution
since 1981. The meteorological data extracted from this dataset include
minimum temperature, mean temperature, maximum temperature,
minimum vapor pressure deficit and maximum vapor pressure deficit

(hereafter referred to as Tmin, Tmeans, Tmax, VPDmin, and VPDpax,
respectively). These variables were aggregated to a monthly time scale
before being fed to the models. Furthermore, to reflect both the short-
term and mid-term effects of precipitation throughout the growing
season on wheat yield, the standardized precipitation index (SPI)
(McKee et al., 1993) was calculated at three different time scales: the
one, two and six-month intervals (SPI1, SPI2 and SPI6). Accordingly, to
calculate SPI, a commonly used drought monitoring index, 43 years of
monthly precipitation records (1981-2023) were collected from the
PRISM dataset and then fitted to a gamma distribution function, which
was subsequently transformed into a normal distribution with a mean of
zero.

We collected soil moisture data from the Global Land Data Assimi-
lation System Version 2 (GLDAS-2.1), which provides soil moisture data
at various depths with a spatial resolution of 0.25 ° x 0.25 ° from 2000
to the present. The GLDAS soil moisture was evaluated in many studies
and demonstrated to be in good agreement when compared with in situ
measurements (Bi et al., 2016; Yang et al., 2022). Soil moisture has been
found to exhibit a high correlation with crop yields in previous studies
and serves as an indicator for monitoring agricultural drought. In this
study, the root-zone soil moisture was used and aggregated to a monthly
scale.

2.2.3. Satellite and modelled data

In this study, satellite images were used to approximate plant
biomass and monitor vegetation health. We derived the conventional
normalized difference vegetation index (NDVI) from the near-infrared
and red bands of the MODIS MCD43A4 daily product. This index is a
crop monitoring tool that ranges between —1 and 1. Healthy vegetation
reflects near-infrared radiation more than red radiation; therefore,
higher NDVI values indicate healthier and greener plants. NDVI proved
to be highly efficient in estimating vegetation density and crop yields in
many studies (Becker-Reshef et al., 2010; Schwalbert et al., 2020). From
the same MCD43A4 dataset, we also extracted the enhanced vegetation
index (EVI), which has higher sensitivity in areas with dense vegetation,
and the normalized difference water index (NDWI) as a metric of
vegetation water status. Along with these indices, leaf area index (LAI), a
measure of green leaf area per unit ground surface, was obtained from
MCD15A3H.

Additionally, daytime land surface temperature (LST) has been
retrieved from the MODIS MOD11A1, which is a daily product with a
1 km spatial resolution. LST can provide information on canopy
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Table 1
A summary of input variables.
Category Variable name Data source Spatial Temporal
resolution resolution
Crop data Winter Wheat USDA NASS ( County- Yearly
yield USDA NASS, level
2023)
Crop map USDA NASS ( 30 m Yearly
Boryan et al.,
2011)
Climate Tmin, Tmean, Prism (Daly 4 km Daily
Tmax et al., 2008)
VPDmin, Daily
VPDmax
Precipitation Monthly
(SPI1, SP2,
SPI6)
Root zone Soil GLDAS ( 0.25° 3h
Moisture (SM) Beaudoing and
Rodell, 2020)
Satellite- NDVI MCD43A4 ( 500 m Daily
based EVI Schaaf and
NDWI Wang, 2021)
LST MOD11A1 (Wan 1 km Daily
et al., 2021)
LAI MCD15A3H ( 500 m 4-day
Myneni et al.,
2021)
ET, (SSEBop) OpenET (Melton 30 m Monthly
et al., 2022)
Soil Clay Content OpenLand Map (250 m Static

properties (CO)
Sand Content

Hengl, 2018a)
OpenLand Map (

(SC) Hengl, 2018b)

Soil Organic OpenLand Map (

Carbon Content Hengl and

(SOC) Wheeler, 2018)

PH OpenLand Map (
Hengl, 2018c)

temperature and surface-energy balance for assessing crop water stress.
For all these MODIS products, a quality filter was applied using the QA
or QC bands to ensure that only high-quality pixels were included in the
analysis.

We also incorporated actual evapotranspiration (ET,) as a satellite-
based input in our prediction models. Many studies demonstrated the
role of ET, in agricultural water planning and management applications
(Ji et al., 2021), yet it has not been thoroughly investigated as an
explanatory variable in yield prediction. To fill this gap, we chose the
Operational Simplified Surface Energy Balance (SSEBop) model to
obtain gridded ET,. SSEBop is a simplified thermal-based surface energy
balance approach to estimate actual evapotranspiration (ET,) without
solving the full surface energy balance equations. Its primary inputs
include satellite-derived land surface temperature, daily maximum air
temperature, and reference evapotranspiration. A detailed description of
this model can be found in Senay et al. (2022), (2013).

The ET, data for this study were obtained from the OpenET monthly
product, accessed via the Google Earth Engine platform. OpenET im-
plements satellite-based ET models, including SSEBop, on the GEE cloud
computing platform to provide historical and near real-time ET products
at fine spatial resolution (30 m). This offers unprecedented and consis-
tent access to 30 m resolution ET, that is applicable to agricultural and
water resources management purposes.

Regarding the OpenET calculation of ETa, the primary satellite input
is Landsat imagery, which typically acquires data every 8 days,
depending on cloud cover. On each valid overpass date, OpenET com-
putes the fraction of reference evapotranspiration by dividing the
satellite-derived ET by reference ET sourced from gridded weather
datasets. These per-pixel ET fractions are then linearly interpolated
across the days between clear-sky overpasses. The interpolated fractions
are multiplied by daily reference ET values, creating a continuous daily
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time series of ET, at 30 m resolution per pixel. Finally, these daily pixel-
level ETa values are aggregated into monthly and annual totals (Melton
et al., 2022).

2.2.4. Soil properties

The variation of soil characteristics across fields affects crop growth
and development, which ultimately impacts the final yield even under
uniform environmental and management conditions (Adhikari et al.,
2023). In this study, four soil variables—clay content (CC), sand content
(SC), soil organic carbon content (SOC), and pH—were collected from
global soil layers in OpenLandMap. OpenLandMap provided 250 m
raster maps at different depths, which were built using machine-learning
models trained on a global compilation of soil profiles. Wheat roots can
grow beyond 1 m deep, with 95 % of them found in the top 104 cm of
the soil (Fan et al., 2016). Therefore, we considered these soil properties
at six depths (0, 10, 30, 60, 100, and 200 cm) to ensure that both surface
and deep soil characteristics are included.

A summary of all input variables is shown in Table 1.

2.3. Wheat yield prediction framework

The overall workflow of this study is shown in Fig. 4. The first step of
this study was data acquisition, which is described in detail in Section
2.2. In the next step, all spatial data were filtered through crop masks to
identify wheat areas. Then, sequential data were upscaled to a monthly
timescale, as the monthly interval was chosen to simplify our data
structure and to unify it. These inputs were then spatially aggregated at
the county level to ensure consistency with the scale of yield statistics.
The Google Earth Engine (GEE) platform was used for data extraction
and preprocessing.

Since the growing season lasts ten months, starting from early
October to the end of July, each sequential variable consists of 10
temporal records. In this study, the independent variables included 150
sequential features (fifteen variables over ten months) alongside 24
static variables (four soil measurements at six depths). We also added
the average wheat yield in each county from 2000 to 2021, which
brought the total number of predictive features to 175. These explana-
tory variables were concatenated with 1269 wheat yield samples to
compile the final dataset for model development.

This final dataset was divided into two periods: one from 2014 to
2021 for training and model optimization, and the other from 2022 to
2023 for performance. Meanwhile, the Pearson correlation was used to
investigate the relationship between crop yield and predictive variables.
Prior to the training and testing stages of machine learning models, we
applied a feature selection method to eliminate irrelevant features and
identify the effective ones. This step was performed to address the
overfitting and multicollinearity issues.

The hyperparameters of three widely known machine learning
algorithms—XGBoost, RF, and LR—were tuned using a grid search and
five-fold cross-validation on the training dataset.

Following hyperparameter tuning, we conducted two evaluation
experiments. In the first one, each model was trained using all explan-
atory features to establish a baseline. In the second experiment, the
models were only fed the selected features from the feature selection
process. Next, we used three metrics to assess the accuracy of models in
both test years: coefficient of determination (Rz), root mean squared
error (RMSE), and mean absolute error (MAE). This two-year evaluation
method enabled us to test the robustness and stability of models across
two different years and experimental scenarios. Therefore, the perfor-
mance of the three machine learning models was compared across both
test years and the two experiments.

2.4. Machine learning algorithms

We used both linear and nonlinear machine learning algorithms for
wheat yield prediction in this study. Linear Regression served as a



S.A. Khosravani Shariati and A. Abbasi

Agricultural Water Management 322 (2025) 109951

Model Inputs Climate data Satellite-based g
Tmean, Tmax, Tmin, data Sl da Crop map Crop yield
L L o | I sttisties
Model Optimization,
Yield Prediction, and Pearsop
Analvsis Correlation N Dataset
Y Coefficient
2014-2021 2022-2023
- 2022
Predictive Models
Training Set XGBoost, RF, Optimized Model [—| Predict >
LR
2023
A
i Hyperparameter E
i Optimization i
B |
i | Repeated Elastic i
E Net Feature !
1 Selection i
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benchmark linear model, whereas RF and XGBoost, two tree-based
ensemble algorithms, were applied to model nonlinear relationships in
the data.

2.4.1. Random forest (RF)

RF is an ensemble machine learning technique that combines mul-
tiple decision tree predictors. It can be used for both classification and
regression tasks (Breiman, 2001). In the RF regression, each tree is
constructed by picking a random subset of variables and samples from
the dataset. Subsequently, each decision tree, representing a
sub-regression model, develops a regression model and makes a pre-
diction. Lastly, the final prediction is made by averaging all of the pre-
dictions from the individual decision trees.

In our study, we tuned four hyperparameters in the RF algorithm,
which were the number of trees in the forest, the maximum depth of
each tree, the minimum number of samples required at a leaf node, and
the minimum number of samples required to split a node. These pa-
rameters were set to 200, 14, 2, and 2, respectively.

2.4.2. Extreme gradient boosting (XGBoost)

XGBoost is a decision-tree ensemble algorithm that was developed
based on the gradient boosting framework. In XGBoost, decision trees
are trained at each step to reduce the errors of the previous ensemble.
Additionally, the objective function includes a regularization compo-
nent to manage model complexity and overfitting. This algorithm was
introduced by Tianqi Chen at the University of Washington (Chen and
Guestrin, 2016). It is necessary to adjust the hyperparameters of this
algorithm in order to build an optimal XGBoost model. We set up the
XGBoost model for this study with a learning rate of 0.1, maximum tree

depth of 4, and 200 boosting rounds (n_estimators = 200) to optimize
performance while maintaining generalizability.

2.5. Feature importance

2.5.1. Pearson correlation

The Pearson correlation coefficient quantifies the linear association
between two variables. It ranges from -1 to —1. When it equals 1, one
variable changes in exact proportion to the other, whereas a value of -1
shows that they vary proportionally but in opposite directions. If it is
zero, there is no linear correlation. The formula for the Pearson corre-
lation coefficient between two variables, X and Y, denoted as py y, is:

_ cov(X,Y)

=77 1
Pxy Ox07 @

where cov (X, Y) signifies the covariance between X and Y, and ox and oy
are their respective standard deviations.

2.6. Feature selection

In this study, the Repeated Elastic Net Technique (RENT) was
employed to find the best subset of input variables. This approach is
introduced by Jenul et al. (2021). Contrary to the majority of feature
techniques that only focus on optimizing model performance, this
approach also considers the stability and robustness of the feature se-
lection process. This technique begins by randomly sampling K inde-
pendent subsets from the training dataset. Then, a linear model with
elastic net regularization is fitted to each subset to obtain feature
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Fig. 5. RENT feature selection pipeline adopted from Jenul et al. (2021).
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Fig. 6. The correlation heatmap of variables: (a) the average correlation value of climate data during the growing season, (b) the average correlation value of
satellite-based data during the growing season, (c) the average correlation value of soil property data across different depths.

weights (B, n), where k represents the training subset and n the feature.
These feature weights are compiled into a matrix and evaluated based on
three criteria to ensure the stability and robustness of the final model.
The three criteria are as follows:

1 X
71(B) = X kg:, 1 [Pea0] 2
1| &
T2(ﬁn) = E ZSign(ﬂk,n) (3)
k=1
73(fn) =tk (%) (©)]
K

where u($,) and ¢%(f,) are the mean and variance of feature weights,
and tx_1(.) represents the cumulative distribution function of Student’s
t-distribution with K —1 degrees of freedom.

Eq. (2) measures how often the feature weight (f; ,) is non-zero
across K models. Eq. (3) examines the consistency of the sign (positive
or negative) of feature weights across models. The last one evaluates,
using Student’s t-test, whether the mean coefficient for a feature across
models is significantly different from zero. In the feature process, a
feature is kept if it satisfies all three criteria 71(8,), 72(f,), and 73(4,)
with respect to their corresponding user-defined cutoff values t;, to,
and t3. The overall RENT pipeline in shown in Fig. 5. The full details of
this approach can be found in Jenul et al. (2021).
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3. Results
3.1. Correlation analysis

The Pearson correlation coefficients between input variables and
yield are shown in Fig. 6. They are divided into three groups according
to the data sources: climate, satellite-based, and soil properties features.
All variables (except SPI and soil properties) were standardized on a
county basis to reduce the regional effects of soil, different growing
conditions and agronomic practices prior to correlation analysis.

In the climate group, SPI indices and soil moisture showed consistent
positive relationships with yield and with each other. On the other hand,
temperature-related variables (Tmin, Tmean @and Tmax) and vapor pressure
deficits (VPDpjn and VPDp ) were strongly intercorrelated, but their
correlations with yield were weak or near zero. These weak correlations
suggest that averaging correlations over the growing season may hide
the actual effects of temperature and vapor pressure deficit on yield.
Thus, we need a more in-depth temporal analysis, which is presented in
Fig. 7.

In the second group of Fig. 6, the vegetation indices EVI, LAI, and
NDVI were strongly and positively linked to each other and to actual
evapotranspiration (ETa). This means that they are similarly sensitive to
crop conditions. NDWI, however, displayed strong but negative corre-
lations with the vegetation indices. This opposite pattern is due to how
NDWI is calculated; unlike the other indices, it incorporates a negative
element of near-infrared (NIR) reflectance. Additionally, LST showed
weak correlations with the other remote sensing variables in this cate-
gory, implying that it provides unique thermal-related information.

Within the soil-related group, correlations were averaged at different
depths. Variables displayed a mix of relationships with yield. The
strongest associations with yield were found for SOC (r = 0.35) and SC
(r =-0.36), while CC and pH demonstrated weaker relationships.

In the next step, to examine the temporal dynamics throughout the
growing season, Fig. 7 presents the monthly correlation coefficients
between monthly features and yield. This figure illustrates that each
variable has distinct periods of influence on yield. For instance, vege-
tation indices like EVI, LAI and NDVI had strong positive correlations
with yield from March to May, with the highest value in May. NDWI
showed a similar trend, but the correlation values were negative. ET,
was negatively related to yield in October, but it changed to a positive

March April May June July

variables and wheat yield throughout the growing season.

relationship during the rest of the growing season.

The temperature variables (Tpin, Tmax, and Tmean) showed varied
correlations with yield during the growing season. From November to
March, they exhibited moderate positive correlations, but this turned
negative in April and May, which is during the reproductive stage and a
time when heat stress is critical. LST had a moderate negative correla-
tion from January to May, peaking in April and May. This confirms the
negative consequences of heat stress during this period. Water-related
variables, such as soil moisture, SPI1, SPI2 and SPI6, showed positive
correlations from winter through the spring, with the highest correlation
of SM, SPI2 and SPI6 occurring in April. It’s interesting to note that in
the last two months of the growing season (June and July), we found a
negative correlation between SPI1, SPI2, and yield. This is probably due
to the possible negative effects of heavy rainfall during this time.

3.2. Feature selection

In this study, we randomly sampled 100 subsets from the training
dataset, each having 70 percent of the total training size. In order to
ensure reproducibility, different random seeds ranging from 0 to 99
were used during the sampling process. Subsequently, a grid search was
performed to find the best combination of elastic net hyperparameters
and cutoff values. In our implementation of RENT, we adapted the
original two-stage grid search procedure described by Jenul et al.
(2021) into a single step for simplicity and visualization purposes.
Additionally, elastic net hyperparameter names were changed to match
scikit-learn nomenclature (Pedregosa et al., 2011).

The grid search was carried out over the following parameter space:
for the elastic net hyperparameters, o ranged from 10~* to 10 in six
logarithmic steps, and /;ratio € [0,1] with a step size of 0.1. For the
stability cutoff values, t; and t; were bounded by [0.5,1] with the same
step size as /;ratio, while t3 was selected from {0.95,0.975,0.99} as
these values correspond to different significance levels in the t-test. For
each hyperparameter combination, elastic net models were fitted to all
subsets to obtain feature weights, and features meeting the three sta-
bility criteria were kept. A linear regression model was then trained on
the training dataset, using the retained features, and evaluated via
Bayesian information criterion (BIC). The optimal configuration, along
with its corresponding selected features, was determined based on the
lowest BIC observed among all combinations.
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Fig. 8. The optimal number of selected features according to BIC when tuning
Elastic Net hyperparameters and cutoff values.

As depicted in Fig. 8, the minimum BIC value occurs when there are
40 features. In the minimum BIC, the values of a, /ratio, t1, t; and t3 are
0.01, 0.4, 0.9, 0.7 and 0.975, respectively. In this figure, for some values
of the number of features, the figure includes more than one BIC per-
formance value. This is because, when tuning hyperparameters and
cutoff values, different models sometimes chose different sets of fea-
tures, even though the total number of selected features was the same.

In Table 2, the selected features are presented. These features are
divided into two categories: monthly and static features. Examining the
monthly features, early in the growing season (October to December),
variables related to water and temperature, such as SM, NDWI, LST, and
VPD, stand out as the key features. This shows their important role in
crop establishment. In spring (February to April), we observed a
phenological change as EVI joined the influential variables, while water-
related variables such as SM, SPI, and VPD remain important in affecting
yield outcomes. In particular, SPI6 in March tracked cumulative pre-
cipitation from growing season onset up to March. In the late growing
season (May-July), which corresponds to the heading to maturity stages,
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monthly features display environmental and vegetative conditions over
the growing season.

Collectively, this pattern of selected features highlights the need for
integrating multi-source and multi-temporal data to capture specific
factors influencing yield outcomes.

3.3. Winter wheat prediction results

The performance results of three machine learning algorithms for
winter wheat prediction are reported in Table 3. The evaluation of re-
sults is conducted under two scenarios: using all available features and
feature-selected inputs. These results are categorized separately based
on our test years, 2022 and 2023. Across all models and feature sets, the
R? values ranged from —0.70-0.71, the RMSE from 0.46 to 1.11 t ha !,
and the MAE from 0.37 to 0.94 t ha™'.

Feature selection had a clear positive impact, particularly in 2022,
with models using the subset of features mostly leading to better or at
least comparable results. In 2022, for example, with the selected fea-
tures, XGBoost’s R? improved from 0.65 to 0.71 and its RMSE dropped
from 0.51 to 0.46 t ha~!. This demonstrates how well the feature se-
lection technique works in reducing the redundancy in the dataset,
which raises model accuracy and lowers the risk of overfitting.

Across both years and feature sets, XGBoost outperformed the other
algorithms, with the lowest RMSE and MAE, as well as the highest R?
values. Remarkably, both RF and XGBoost showed minimal changes in
performance when using the full set of features or the selected features,
which indicated their inherent ability to handle feature redundancy. On
the other hand, LR models had the lowest R* and the highest RMSE.
Thus, we concluded that non-linear models, namely RF and XGBoost, are
more accurate than LR in terms of accuracy.

The 2023 prediction results for XGBoost and RF were mostly worse
than those of the previous year, which can be explained by the drought
across the U.S. winter wheat belt during the 2022-2023 growing season.

Table 3
Performance comparison of LR, RF and XGBoost using both all features and
selected features.

All features Selected features

LAI emerges as a key feature in May and June. Additionally, satellite- RMSE R? MAE RMSE R? MAE
derived ET, is selected for all late-season months. The inclusion of g 5 ](: 5 ;t 5 ;t 5
. N a a a a
these features, alongside SM, temperature, SPI, and NDWI, points to the
crops’ sensitivity to water stress and heat during grain development. LR 111 —070 094 0.70 0.33  0.59
Regarding static features, the average historical yields, clay content 2022 RF 0.49 0.67. 0.3 0.49 0.6 0.39
garding : > 8 yields, clay ) XGBoost  0.51 0.65 0.40 0.46 071 037
pH, and soil organic carbon content are selected to represent the IR 0.73 0.46  0.59 0.69 052 056
county’s yield level and the soil’s physical structure and properties. 2023 RF 0.67 0.55 0.53 0.68 0.53  0.54
These static features describe location-specific characteristics, while XGBoost ~ 0.59 0.65  0.47 0.60 0.63  0.48
Table 2
Selected variables (Numbers in parentheses indicate the soil depth in centimeters for the corresponding variables e.g., PH(0) denotes pH at 0 cm depth).
Oct Nov Dec Jan Feb Mar Apr May Jun Jul
EVI v/
LAI v v
NDVI
NDWI v/ v/
ET, v v v v
LST v/ v/
Thin v v v
Tmean
Tmax v v v v
VPDjnax v v v
VPDpin v v v v
SM v v v
SPI1 v v v v
SPI2 v
SPI6 v

Static features Average Yield, CC (30), PH (0), PH (10), SOC (10), SOC (200)
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Statistical summary of wheat yield (t ha') in the training set (2014-2021) and test sets (2022, 2023).

Dataset Years Sample number Mean Median 25th Percentile 75th Percentile
(tha™h) (tha™h) (tha™h) (tha™h)
Training set 2014-2021 1018 2.72 2.78 2.21 3.25
Test set 1 2022 137 2.60 2.54 2.04 3.21
Test set 2 2023 113 2.61 2.52 1.72 3.37
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Fig. 9. Comparison of observed and predicted winter wheat yields using selected features for three machine learning models in 2022 and 2023: (a) LR, (b) RF, and

(c) XGBoost.

Kansas was the most affected state and experienced the most severe
precipitation shortfall since 1896 (Zhang et al., 2024). As a result,
Kansas’s winter wheat production fell to 5.5 million tons in 2023, the
lowest since 1966. These extreme weather conditions altered the data
patterns and broadened the range of yield values that were not seen in
the training set. As shown in Table 4, the 2023 test has a considerably
larger interquartile range (1.72-3.37 t ha™1), although its mean and
median are similar to the other sets. This higher variability is likely to
have affected the results, as algorithms perform best when training and
test data distributions are similar and there is no need to extrapolate
beyond the range of training data.

Fig. 9 provides a visual comparison of observed and predicted winter
wheat yields of the models that used only selected factors for the test
years (2022 and 2023). In each subplot, a red y = x reference line was
drawn, which represents perfect predictions, alongside a green fitted
regression line that illustrates the general trend of the predictions. The
model performs at its best when points closely cluster around the y = x
line.

Fig. 9 shows that the predicted values for 2022 were mostly close to
the ideal line y = x. However, in 2023, the points were further away
from this line. Even though the performance of models varied, XGBoost
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always did better than the other models and had the highest accuracy in
both years.

The plots in Fig. 9 illustrate that the models tend to overestimate low
yields and underestimate high ones. This pattern is likely due to the
limited number of extreme wheat yield samples in the training set. This
systematic bias suggests a potential need for further data balancing or
model adjustments to improve performance at the tails of the yield
distribution.

The comparison of R? and RMSE for models trained with the selected
features, during the whole study period is shown in Fig. 10. The per-
formance of all models declined considerably from training to test years,
as R? values decreased and RMSE rose accordingly. LR had the lowest
accuracy even when it was tested against the training years, while RF
and XGBoost maintained high and stable performance during the
training. XGBoost had the highest R? and the lowest RMSE in both
training and test years.

3.4. Spatial distribution of errors in winter wheat forecasts

Fig. 11 displays the observed winter wheat yields and prediction
errors from three models (LR, XGB, RF) for 2022 and 2023, using
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Fig. 10. Performance of the models from 2014 to 2023 with selected features as inputs: (A) R? comparison across models; (B) RMSE comparison across models.

selected factors as inputs. The observed yield maps (Fig. 11 (a) and (e))
show a lack of consistent spatial patterns, although a slight west-to-east
yield increase is noticeable, particularly in 2023. The wheat yield varied
greatly, ranging from less than 1 t ha™! to about 4 t ha™.

Regarding the error values, positive values (red tones) indicated an
overestimation of yield, while negative values (blue tones) reflect un-
derestimation by the models. Generally, lighter colors on the error maps
mean that the predictions are more accurate. As shown by the lighter
color tones, XGBoost models had lower error magnitudes in both years
(Fig. 9(d) and (h)), suggesting superior predictive performance
compared to the LR and RF models.

A notable observation is that yields were underestimated in the
central counties, while they were overestimated in the northeastern area
in 2022 and the eastern region in 2023. In Fig. 11, these geographically
clustered errors are marked by black ellipses. Such homogeneous error
patterns suggest that the models have difficulty accounting for the
spatial variability of yield.

4. Discussion

We adopted multiple sources of data, including VIs, ET,, climate and
soil data, to predict winter wheat yield at the county scale. Correlation
analysis in conjunction with a feature-selection method was employed
to identify key features and investigate the temporal significance of
time-series variables. Three machine learning models were implemented
to perform wheat yield prediction.

4.1. Input variables analysis

We inspected the interaction of input variables with wheat yield
using two methods, correlation analysis and feature selection. Regarding
feature importance, most studies have focused on the overall relation-
ship between time-series variables and yield. However, our study pre-
sents the temporal correlation of individual time-series variables,
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providing deeper insights into agricultural data analysis. The correlation
analysis revealed that vegetation indices (VIs) are most significant after
the green-up stage (February to March) and peak during the heading to
early grain-filling stages (May). In contrast, weaker correlations are
observed in the early growing season and harvest periods. These results
are consistent with the findings of prior studies (Joshi et al., 2023; Panek
et al., 2020). Similarly, Cai et al. (2019) showed that the contribution of
satellite data saturates at the peak of the growing season. Moreover,
Actual evapotranspiration showed a moderate positive correlation from
mid-growing season to the maturity stage, but demonstrated a negative
correlation in October. This negative relationship can be attributed to
the fact that, in the early stage of wheat growth, evapotranspiration
mainly consists of soil evaporation rather than plant transpiration. As a
result, if ET, is excessively high, soil moisture may be depleted, poten-
tially causing water stress that adversely affects germination and root
establishment.

Regarding climate and soil data, soil moisture consistently showed a
positive correlation throughout the growing season to the end of the
flowering stage. SPI1 also had a similar trend, but, interestingly, showed
a moderate negative relationship with yield in June. This finding aligns
with Joshi et al. (2023), who reported that heavy rainfall just before the
harvest may cause wheat kernels to lose weight, ultimately leading to
yield loss. Temperature variables mostly had a positive linkage to wheat
yield before April, whereas a negative correlation was found during the
heading to grain filling stages. A similar result was reported by Jarlan
et al. (2014), who found a positive correlation in the early stage and a
negative one in the grain-filling stage of wheat growth in Morocco.
Generally, most variables reached their peak correlations with yield
during April and May. This critical period spans from jointing to
grain-filling stages. Identifying such a yield-sensitive window prior to
harvest could be valuable for both decision-makers and farmers.
Monitoring this period not only helps authorities strategically plan for
supply and demand but also enables farmers to adapt their with-
in-season management practices, such as modifications to fertilization
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Fig. 11. Spatial representation of prediction errors for 2022 and 2023: (a, e) Observed yield; (b, f) LR prediction errors; (c, g) RF prediction errors; (d, h) XGBoost
prediction errors. Panels in the top row are for 2022, and those in the bottom row are for 2023.

or irrigation. In future research, incorporating data with higher tem-
poral and spatial resolution for this period may lead to more accurate
predictions of final yield.

The feature selection method used in this study considers both the
stability of the selected features and model performance to select im-
pactful features. This approach distinguishes our study from most pre-
vious works, as maximizing model performance has mainly been the
only criterion in most previous studies. While correlation analysis just
informs us about how features are related to each other, an efficient
feature selection technique can hand-pick independent features with the
strongest influence on the target variable.

Our selected features mostly align with agronomic knowledge.
Vegetation indices such as EVI, NDWI, and LAI were chosen from mid to
late growing season, as these features in this period, especially during
heading to grain filling, proved to be indicators of biomass and canopy
health in numerous studies. Among selected variables, ET, is chosen in
four months, January and May to July, demonstrating its significance in
yield prediction. This is because actual evapotranspiration is a reflection
of various factors, including temperature, precipitation, solar radiation,
etc. Likewise, soil moisture and different SPI timescales emerged several
times as selected variables, together covering almost the entire growing
season. This illustrates the importance of water availability for crop
yield.

4.2. Performance

In our framework, we combined various datasets with different
spatial and temporal resolutions and unified their resolutions to predict
winter wheat yield at the county scale. These data were filtered out
using a feature selection method before being fed to the model. Then, the
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machine learning models were trained from 2014 to 2021 and tested in
two separate years, 2022 and 2023. Based on the results, the best model
for year 2022 could explain up to 71 % and for year 2023, up to 65 %.
This variability in the performance of models across different years can
be attributed to different environmental factors, as well as statistical
differences in training and test data.

One of the strengths of this study is the feature selection approach
that led to a noticeable improvement in most models despite using less
than a fourth of the candidate features. The benefits of dimensionality
reduction are also discussed in prior studies (Li et al., 2022, 2023). While
the improvement in the model’s accuracy was subtle for XGBoost and
RF, it was substantial for LR. Such a result reflects that XGBoost and RF
are less prone to overfitting. Moreover, our results indicated a distinct
spatial pattern, with yields being underestimated in several
high-producing areas and overestimated in some low-yielding regions,
leading to geographically clustered error trends. Therefore, some
contiguous counties exhibited similar errors, which are likely due to a
lack of extreme yield values in the training data as well as the inability of
traditional machine learning models to capture spatial yield variability,
as reported in other studies. The underestimation in high-yield regions
was also observed by Wang et al. (2020). Addressing this issue could
involve incorporating spatial machine learning models, which may help
improve the accuracy of predictions across regions with varying
conditions.

4.3. Study limitations

There are some limitations in this study that hinder the modelling
ability. One possible source of uncertainty in models can be attributed to
not including some influential agronomic and environmental factors
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such as pests, fertilizers, management practices, irrigation, etc. Further
studies can incorporate these variables, not only to improve forecasts
but also as a means of better understanding the final yield dynamics.
Also, while having a general prediction model can provide broad
applicability, the relationships between predictive variables and the
target are not spatially uniform across the geographical area in the two
states. To address this issue, a spatially-aware machine learning model
needs to be incorporated to better account for geographical heteroge-
neity. The same challenge is also true for the feature selection, as the
influential variables may differ across regions. Thus, the feature selec-
tion process needs to be tailored to agronomically similar areas.

Finally, while aggregating all datasets to a monthly resolution helped
to reduce data dimensionality, this rather coarse temporal scale restricts
the capacity to completely capture the dynamics of crop growth. Within
days or weeks, the wheat phenological stages can change rapidly and
may be exposed to extreme weather or abnormal conditions. Thus, a
finer temporal resolution, such as weekly or bi-weekly, would probably
be more suitable for tracking these changes and may improve the
sensitivity of the model to short-term variations.

5. Conclusion

In this paper, a framework with integrated soil, satellite-based, and
climate data was introduced to predict winter wheat yield using ma-
chine learning algorithms. One notable finding that emerged is that ET,
proved to add critical information as it demonstrated a moderate posi-
tive relationship to crop yield and was selected multiple times across the
growing season in the feature selection procedure. Also, the correlation
results showed that two to three months before harvest are significantly
important in determining the final yield, as most variables had strong
correlation with crop yield in April and May compared to other months.
Moreover, the feature selection technique implemented in this study
effectively identified key predictors while maintaining and, in most
cases, enhancing model performance. It also contributed to mitigating
overfitting and reducing multicollinearity. Importantly, the month-by-
month analysis of variable importance provides decision-makers with
more nuanced insights into the temporal dynamics influencing wheat
yield. In terms of modelling performance, XGBoost outperformed both
LR and RF in both test years. Also, the spatial analysis of models’ errors
showed significant geographical clustering, especially in low-yield and
high-yield regions. This highlights the need for incorporating spatially-
aware modeling approaches to further improve yield predictions.
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