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Abstract: In this study, a closed-loop control scheme is proposed for the glucose–insulin regulatory system in type-1 diabetic
mellitus (T1DM) patients. Some innovative hybrid glucose–insulin regulators have combined artificial intelligence such as fuzzy
logic and genetic algorithm with well known Palumbo model to regulate the blood glucose (BG) level in T1DM patients.
However, most of these approaches have focused on the glucose reference tracking, and the qualitative of this tracking such as
chattering reduction of insulin injection has not been well-studied. Higher-order sliding mode (HoSM) controllers have been
employed to attenuate the effect of chattering. Owing to the delayed nature and non-linear property of glucose–insulin
mechanism as well as various unmeasurable disturbances, even the HoSM methods are partly successful. In this study, data
fusion of adaptive neuro-fuzzy inference systems optimised by particle swarm optimisation has been presented. The excellent
performance of the proposed hybrid controller, i.e. desired BG-level tracking and chattering reduction in the presence of daily
glucose-level disturbances is verified.

1 Introduction
The two main types of diabetes include type 1 and type 2. In type-1
diabetes (T1D), destruction of beta cells, in the pancreas leads to
defects in insulin production, whereas in type-2 diabetes, the
progressive body resistance to insulin may eventually lead to full
defects in insulin production. The field of glucose regulation in
patients with T1D is divided into three main categories: (i) diabetic
diagnosis and glucose monitoring, (ii) insulin–glucose modelling
and (iii) insulin–glucose control.

Continuous glucose monitoring has been demonstrated in
randomised trials to improve glucose control in patients with T1D
[1–4]. In the last four decades, mathematical models have become
of great importance in the context of diabetes treatment planning.
Some of the most important useful models that have been proposed
for glucose–insulin regulatory system include the Bergman
minimal model (BMM) presented in [5], the Sorensen model in [6],
the Kuang model in [7], the Dalaman model in [8, 9] and the Liu–
Tang model [10]. A novel blind identification approach has been
introduced to model T1D patients and to effectively recover the
unmeasured input signals such as food, physical activity and
emotions [11]. During the last decade, more attention has been to
delay differential equation (DDE) because of their compliance with
diagnostic testing of patients [12, 13]. The advantage of the DDE
model is that the delay of insulin effects is considered as the time
interval between blood glucose (BG)-level rise and insulin
injection time.

Many studies have shown that the artificial pancreas systems
can control BG concentrations (BGCs) in T1D patients [14–16].
Glucagon is the natural secretory product of pancreatic alpha cells
in the body and is normally released in response to hypoglycaemia.
Some papers have addressed the issue of avoiding hypoglycaemic
events by incorporating a second pump that delivers glucagon [17–
19]. A new control strategy has been proposed based on
individualised optimal insulin delivery that consists of a patient-
specific model predictive controller, a state estimator, a
personalised scheduling level and an open-loop optimisation
problem [20]. A multiple model probabilistic predictive controller
has been assessed on T1D patients that do not require meal
announcement [21].

By modifying the pancreatic insulin secretion based on the Liu–
Tang model, the model could be transformed to describe type-1

diabetic mellitus (T1DM) [22]. Then, using adaptive neuro-fuzzy
inference system (ANFIS) which combines the artificial neural
network (NN) adaptive approach and the fuzzy logic qualitative
features, the BG system will be regulated for a normal T1D patient.
Also, the FIS structure was constructed using subtractive clustering
approach [22]. Classical and traditional ANFIS-based
methodologies have some intrinsic problems that in the presence of
input disturbances such as food intake and physical activity often
yield chattering.

In [23], by switching on Bergman model (BM) and setting
appropriate parameters and overshoot time, the suggested
proportional–integral–derivative (PID) controller will be able to
reach the BG levels into a reference level. Controllers based on
induced L2-norm minimisation of glucose–insulin system [24],
improved PID [25], fuzzy logic [26] and H∞ robust control
approach [27] have been studied and tested in clinical trials.
However, most of the previously mentioned studies have focused
on error reduction of the glucose reference tracking, and the
qualitative of this tracking in T1D patients such as chattering
reduction has not been well-studied.

Palumbo et al. [28] have proposed one of the complete control
methods in the field of glucose–insulin regulatory system based on
feedback linearisation. This method is based on locus location of
the desired closed-loop poles and needs to be the trial and error
experiment. To overcome this drawback, a hybrid approach of the
fuzzy logic controller and the genetic algorithm (GA) as an
optimisation tool called hybrid method was proposed to control the
BG level in T1DM patients [29]. To date, only a few studies have
investigated the chattering phenomena of real-time insulin infusion
and its complications. Higher-order sliding mode (HoSM) control
techniques such as super-twisting algorithm were used to eliminate
the effect of chattering and obtain continuous control [30–34].
These controllers were generally based on BM, which is not
counted as a DDE model and has less compliance with diagnostic
testing of a diabetic patient. Another primary drawback to almost
all traditional insulin–glucose regulatory approaches is that they
are not able to recover or to systematically account for the various
disturbances that affect T1D patients. These various unmeasured
disturbances such as food, physical activity, emotions and actuator
errors are main sources of the glucose fluctuating and cause the
chattering phenomena in the insulin infusion rate.
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Recently, an adaptive fractional-order sliding mode control
(AFOSMC) has been designed for BG regulation based on BM in
the presence of the external disturbances such as food intake,
critical initial condition, parameters uncertainties and sensor noises
[34]. Although the simulation results have shown that the
AFOSMC has a good BG tracking in appropriate time, but insulin
injections suffer from some fluctuating behaviours [34].

In this paper, a data fusion of ANFISs optimised by particle
swarm optimisation (PSO) has been suggested to overcome these
drawbacks. The rest of this paper is organised as follows. A well
known mathematical model for glucose–insulin regulatory system
is reviewed in Section 2. In Section 3, a brief description of
Palumbo non-linear control is presented. Sections 4 and 5 describe
the hybrid control method and a typical HoSM controller,
respectively. In Section 6, the proposed chattering-free hybrid
ANFIS-PSO (HANFIS-PSO) data fusion methodology is
explained. Simulation of glucose–insulin system is presented in
Section 7. Finally, the conclusions of this paper are discussed in
Section 8.

2 Methods
2.1 DDE mathematical model of diabetic patient

Nowadays, the insulin therapy is based on discrete BG
measurements and either multiple daily insulin injections or an
implementation of a continuous subcutaneous insulin injection
pump for T1D patients [35]. The delayed non-linear model for
glucose–insulin regulatory system is considered as follows [12]:

Ġ t = − KxgiI t G t + Tgh
Vg

(1)

İ t = − KxiI t + Tigmax

Vi
f G t − τg + u t + dI t (2)

f G = (G/G*)γ

1 + (G/G*)γ (3)

where the delayed pancreatic insulin delivery rate is modelled as
the non-linear function f(G). Here, u t  and dI t  are considered as a
control input and an unavoidable actuator disturbance, respectively.
The purpose of the proposed control law is the reduction of plasma
glucose concentration above the normal level and keeps this value
at the normal level. That is possible through intravenous insulin
infusion. Palumbo delayed non-linear model parameters are
described as follows [12]:

• G(t), mM is the plasma glucose.
• I(t), pM is the plasma insulin.
• Kxgi, min−1 pM−1 denotes the degree of insulin resistance as a

linear function of the plasma glycaemia.
• Vg, L/kg BW is the apparent glucose distribution volume.
• Tgh, min−1 (mmol/kg BW) denotes the net balance between

hepatic glucose output and insulin-independent zero-order
glucose tissue uptake.

• Kxi, min−1 is the apparent first-order disappearance rate constant
for insulin.

• Tig max, min−1 (pmol/kg BW) is the maximal rate of second-phase
insulin release.

• Vi, L/kg BW is the apparent insulin distribution rate for insulin.
• τg, min is the delay with which the pancreas varies secondary

insulin release in response to increased plasma glucose
concentrations.

• G*, mM corresponds to the glycaemia at which the insulin rate
is half of its maximal volume.

• γ, denotes the progressivity with which the pancreas reacts to
circulating glucose concentrations.

As mentioned before dI t  in (2) denotes the actuator error. This
disturbance is assumed measurable and generally considered as a
sinusoidal variable [12]

dI t = aI sin wIt , t > 0 (4)

To consider the glucose disturbances such as meal intake at t = tm,
another disturbance term dG t  is considered in (1) as below:

Ġ t = − KxgiI t G t + Tgh
Vg

+ dG t (5)

This disturbance is generally modelled by a decaying exponential
function [30]

dG t = α exp −β t − tm , t > tm (6)

This model does not consider other unmeasured input signals such
as physical activities and emotions, which is a common relevant
problem to the traditional controllers based on DDE models. In the
diabetes context, an important problem is about the not easily
measurable inputs, while the conventional glucose–insulin control
techniques do not consider or be able to handle such disturbances
[33, 34]. In our proposed approach, to show the complete dynamics
of the glucose–insulin regulatory system, the dG t  is considered as
below:

dG t = α exp −β t − tm + aG sin wGt

+γΠ t − t0

T + δv t
(7)

where the normal physical activity is defined by a sinusoidal
function, the constant physical activity is considered as a
rectangular function with duration T and v t  as a Gaussian white
random process is considered for sensor noise.

2.2 Palumbo non-linear control method

u t = S G t , I t , G t − τg − v(t)
KxgiG(t) (8)

S G t , I t , G t − τg

= − KxgiI t −KxgiI t G t + Tgh
Vg

−KxgiG t −KxiI t Tigmax

Vi
f G t − τg

(9)

Palumbo et al., after presenting the above-mentioned non-linear
model of glucose–insulin, provided a glucose–insulin regulatory
system based on feedback linearisation to eliminate the non-linear
terms [13]. This control approach based on the feedback
linearisation is as follows:

v t = G̈ref t + Ke t (10)

e t = e1 t
e2 t

= Z t − Zref t (11)

Z t = z1 t
z2 t

=
G t

−KxgiI t G t + Tgh
Vg

(12)

Zref t = Gref t Ġref t T (13)

where Gref t  denotes the glucose reference level, and in (10),
vector K ∈ R1*2 is determined in such a way that the matrix H in
(14) has the eigenvalues located on the left-hand side of the
imaginary axis
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H = 0 1
0 0 + 0

1 K (14)

This method is based on trial and error to find the desired location
of closed-loop poles. To overcome this problem, a hybrid of the
fuzzy logic controller and feedback linearisation has been
suggested [29].

2.3 Hybrid method for glucose–insulin control [29]

The collection of sufficient, well-distributed and accurately
measured input data of glucose–insulin regulatory mechanism is
the basic requirement to obtain an accurate HANFIS-PSO model.
Therefore, we use the hybrid controller provided in [29] as a
complete control approach to obtain the input–output data set for
our proposed HANFIS-PSO training. This input–output data set
would be obtained from a complete methodology such as hybrid
control system suggested in [29]. This hybrid approach regulates
the BG level of the patient via an insulin injection by employing a
feedback linearisation and fuzzy logic. To better stabilise BG to the
reference level, a Mamdani type of the fuzzy logic controller is
provided including two inputs and one output

eG = G(t) − Gref t (15)

eĠ = Ġ(t) − Ġref t (16)

Fuzzy controller inputs include both the difference between the
glucose level and its reference value eG = G(t) − Gref t  and rate of
changes in this difference eĠ = Ġ(t) − Ġref t  and the output of the
fuzzy controller is defined as the insulin infusion rate u t  as
follows.

Besides, the successful reference glucose tracking by using the
hybrid method, the finite implemented membership functions
related to fuzzy control produces chattering in insulin infusion rate.
Therefore, such input control fluctuations must be strictly avoided
in biological systems, which can cause damage to the patient body.
To solve the contradiction between the reference glucose tracking
and smooth insulin infusion rate, the HoSMCs were proposed [30–
32].

2.4 HoSM control [30]

The tracking error is defined as the difference between the glucose
value and the glucose reference value in T1D patient's blood as in
(15). The controller u t  would be designed such that eG goes to
zero in the presence of all noises and disturbances. At first, the
relative degree of the system for HoSM control must be calculated.
For dynamic (1), a relative degree r means the first appearance of
control u t  explicitly in the rth successive differentiation of
tracking error eG. Considering (1) without disturbances and noises,
the control variable appears in the derivatives after the second
differentiation, i.e.

G̈ t = − Kxgiİ t G t − KxgiI t Ġ t

= − Kxgi −KxiI t + Tigmax

Vi
f G t − τg + u t G t

−KxgiI t Ġ t

(17)

The above equation could be considered as below:

G̈ t = ∅ G, I, t − KxgiG t u t (18)

where

∅ G, I, t = KxgiKxiI t G t

+ Tig max

Vi
f G t − τg G t − KxgiI t Ġ t

(19)

On the basis of the relative degree r = 2 (the relative degree for
BM is r = 3 [30]) the sliding surface s is defined as follows:

S = d
dt + λ eG (20)

To ensure that the tracking error eG converges to zero, the sliding
variable and its derivatives must converge to zero. This condition
means the remaining of sliding surface s. Here, λ is a positive
constant, is defined by frequency bound of unmeasurable
uncertainties. ṡ can be calculated as follows:

Ṡ = G̈ t − G̈ref t + λ Ġ t − Ġref t

= − Kxgi −KxiI t + Tig max

Vi
f G t − τg + u t G t

−KxgiI t Ġ t − G̈ref t + λ Ġ t − Ġref t

(21)

By considering the input control u t  as below:

u t = − Tigmax

Vi
f G t − τg + KxiI t

+ −KxgiI t Ġ t + G̈ t + λ Ġ t − Ġref t
KxgiG t

(22)

By substituting u t  in (21), it would be seen that Ṡ = 0.

2.5 Proposed HANFIS-PSO data fusion scheme

An ANFIS generally refers to an adaptive artificial NN, which
performs such as an FIS [36]. ANFIS uses a hybrid learning
method to update parameters of Sugeno-type FIS. The HANFIS-
PSO data fusion algorithm combines the advantages of the
optimised FISs and artificial NN to identify NN unknown
parameters. The flexibility and individuality of each FISs, when
added to the optimisation solidity of adaptive networks, give the
new scheme its significant power of modelling and control set (see
Fig. 1).

The motivation of using the ANFIS is that it uses a hybrid
learning method to update its inference system parameters. The
ANFIS has the advantages of both NNs and FISs. Some of the
ANFIS advantages are the ability to capture the non-linear
structure of an unknown and complex process, adaptation
capability in membership functions and rapid learning capacity of
unknown parameters. Also, the PSO approach has the advantage of
being less computationally expensive compared with other well
known evolutionary algorithms such as GA, firefly algorithm and
Grey Wolf optimisation.

The new proposed algorithm applies a combination of the
intrinsic least-squares-back-propagation gradient descent methods
and the evolutionary stochastic search approach of PSO to emulate
a given training data. One of the advantages of the proposed
HANFIS-PSO approach besides preventing the chattering
phenomena from the insulin infusion rate is the robustness control

Fig. 1  Block diagram of hybrid proposed ANFIS-PSO data fusion scheme
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against the uncertainty and disturbance. The overall operation of
the HANFIS-PSO data fusion algorithm is illustrated by three
stages, according to Fig. 1.

2.5.1 Hybrid FISs (first stage): Genfis1: This kind of FIS
generates a single-output Sugeno-type fuzzy system using a grid
partition on the data. In almost all optimisation algorithms, there
are some alignment parameters, which significantly degraded its
performance. Genfis1 uses a number of membership functions for
each input based on equal grid partitioning method. The important
alignment parameter for this kind of FIS is the number of
membership functions (mi) for each input. Here, m ∈ R1*2 is a
vector whose coordinates specify the number of membership
functions associated with eG and eĠ  inputs.

Genfis2: Genfis2 is based on an FIS structure using subtractive
clustering approach, where a set of rules is extracted that models
the input–output data set behaviour. The subtractive clustering
method was first introduced in the field of extracting fuzzy rules
[37]. The subtractive clustering method considers each data point
as a potential cluster centre and defines a measure of the potential
of a data point xi to serve as a cluster centre as

Pi = ∑
j = 1

N
exp (xi − xj)2/ f i

2 (23)

where for N data points f i is a positive constant defined as the
range of influence. The potential of data point is a function of its
distance to all other data points. Thus, a high potential data sample
would be data with many neighbouring data samples. By selecting
the range of influence, the data points with the highest potential are
determined so that the feature space is covered. Therefore, the
alignment parameter for Genfis2 is the range of influence ( f i) in
each of the data dimensions. So the f i ∈ R1*3 is a vector which
specifies the ranges of influence in the first, second and third data
dimensions [i.e. eG, eĠ  and the insulin infusion rate u t ].

Genfis3: Genfis3 generates an FIS structure using fuzzy C-
means clustering algorithm by producing a set of rules that models
the data set behaviour. Alignment parameter for Genfis3 is the
number of clusters (ci ∈ R1*1). The number of clusters determines
the number of rules and membership functions in the generated
FIS.

2.5.2 Data fusion of FIS outputs (second stage): As shown in
Fig. 1, the outputs of these three FISs would be combined by a data
fusion method. Data fusion approach is used to find a proper
amount of altered information, which may be arisen from different
viewpoints to glucose regulatory in the presence of disturbances
[38]. By fusion of these types of information, besides optimisation
of above-mentioned FISs parameters, results with proper
improvement and high stability could be achieved. There are
several methodologies in the field of data fusion. The most
common methods of data fusion, which are called the weighted
mean method, is used in this paper. In this methodology, the final
estimation value in a specified sample time is determined from
weighted averaging of the extracted data in that sample time

u t = 1
μ1 + μ2 + μ3

∑
i = 1

3
μiui t (24)

where ui t  denotes the output of the ith Genfis and μ ∈ R1 ∗ 3 is
determined by PSO.

2.5.3 PSO (third stage): PSO is a stochastic, metaheuristic
evolutionary method, which is inspired by the social behaviour of
bird flocking and is originally attributed to Eberhart and Kennedy
[39]. A PSO algorithm maintains a swarm of individuals, where
each particle represents a candidate solution. Particles follow a
simple behaviour based on both the success of neighbouring
particles and their own achieved success. The PSO approach has

the advantage of being less computationally expensive compared
with other well known evolutionary algorithms such as GA.
Particle position xi

k is updated as below:

xi
k + 1 = xi

k + vi
k + 1 (25)

where indices i and k show the ith particle at the kth sample time.
The PSO concept consists of changing the velocity of each particle
toward its personal best position (pbest) and global best position
(gbest), at each sample time. Velocity is weighted by the separate
random terms randp, randg ∈ U 0, 1 . So the velocity update
relation is calculated by

Vi
k + 1 = C0Vi

k + C1randp
k pbestik − xi

k

+C2randg
k gbestik − xi

k
(26)

where C0 is an inertia weight and C1, C2 are the positive velocity
constants. In this paper, hybrid FISs and data fusion scheme
employ PSO algorithm to adjust the previously mentioned
parameters. Therefore, the ith particle position vector would be
optimised by PSO defined as below:

xi = m1 m2 f 1 f 2 f 3 c1 μ1 μ2 μ3 ∈ R1*9 (27)

Different types of fitness functions could be used for validation of
particles. In this paper, the mean square error (MSE) and mean
absolute error (MAE) are used for glucose reference tracking
defined as

MSE EG = [EG − EG]T[EG − EG]
MAE EG = sum[EG − EG]/N

(28)

where EG = [eG1 eG2…eGN]T is the glucose reference tracking error
for N data points and eGk = G(t) − Gref t , t = kT , T = 2 min
means the kth glucose reference error and
sum[EG − EG] = ∑i = 1

N eGi − ēGi . Also, another important criterion
for the glucose–insulin controller is the amount of insulin infusion
rate well known as the control effort. Therefore, the control effort
can be defined as follows:

MSE U = [U − Ū]T U − Ū

MAE U = sum U − Ū /N
(29)

where U = [u1 u2…uN]T is the insulin infusion rate for N sample
times. The best fitness function considers the glucose–insulin
controller that balances between reference glucose tracking errors
and insulin infusion rates is as follows:

MSE GU = [EG − EG]TQ[EG − EG] + U − Ū TR U − Ū

MAE GU = sum(Q[EG − EG])/N + sum R U − Ū /N
(30)

where Q and R are weighted matrices.

3 Results
The numerical values of a T1D patient based on the Palumbo DDE
model are used for simulations [12]. Besides, to train the proposed
HANFIS-PSO data fusion controller, the input–output data set
obtained by the hybrid controller (Section 2.3) is used [29].

The plasma glucose level G t  is directly measured, and then
the plasma insulin I t  could be estimated. It must be noted that the
simulation results are based on this assumption that plasma insulin
value is estimated precisely, i.e. I^ t = I t  and the dynamics of the
insulin pump is neglected. Some parameters such as
G*, Vi, γ, Vg, Kxi, τg, Kxgi, Tgh and Tig max are estimated or
calculated according to patient steady-state relations [40–43].

34 IET Syst. Biol., 2020, Vol. 14 Iss. 1, pp. 31-38
© The Institution of Engineering and Technology 2019



To compare the proposed HANFIS-PSO method performance
and the other glucose–insulin regulatory methodologies, the
parameters of a typical T1DM patient are used in this paper as
shown in Table 1. This selected T1DM patient has a body mass
index (BMI) =50 and the base BG level is Gb = G 0 = 12.37 mM
that indicates a higher BG level compared with the normal level.
Kxgi is the rate of glucose uptake by insulin-dependent tissues per
pM of plasma insulin concentration is <10−4 that shows a sub-
normal insulin delivery rate [44–46].

A single meal disturbance is provided and the initial BGC of
T1DM patient is considered to be 12.37 mM at t = 0 min. The
reference signal of plasma glucose has a decreasing exponentially
profile from the value of 12.37 to the final value 4.7 as below:

Gref t = 4.7 + 12.37 − 4.7 × exp −0.01t (31)

The hypoglycaemia and hyperglycaemia were reduced in the
presence of parametric variability and exogenous meal disturbance

in [33]. The effects of sensor and actuator noises, critical initial
condition, physical activity and emotions have been neglected in
[33]. Control of BG level was investigated in the presence of food
intake, critical initial condition, parameters uncertainties and sensor
noise in [34]. The effects of physical activities such as exercise and
emotional behaviour were not considered in [34]. Only meal
disturbances, sensor and actuator noises were considered and try to
be rejected in [45]; the effects of physical exercise by the patient
was not considered.

In our proposed approach, a complete list of uncertainties such
as food intake, physical exercise, emotion effects, critical initial
condition, parameters uncertainties and sensor and actuator noises
are considered. Table 2 shows the numerical values chosen for the
insulin actuator and glucose disturbance parameters mentioned in
(4) and (7).

Fig. 2 shows the glucose disturbances profile due to food
intake, normal and constant physical activities and emotional
disturbances. The numerical values of two variables eG and eĠ
obtained by the hybrid controller [29] are used as the input data set
and insulin injection rate u(t) is considered as the output to train the
HANFIS-PSO controller. The parameters associated with PSO
algorithm are shown in Table 3. 

Where nvar, npop and niter are the number of variables, the
number of particles and the number of iterations, respectively.
Also, xmin and xmax control the minimum and maximum permissible
values of each particle through the algorithm. In total, 600 training
sample data sets in 1200 epochs are taken to train the proposed
HANFIS-PSO model.

In the following, there are some details about three different
FISs used in the proposed hybrid scheme. After 300 iterations, the
applied PSO found the globally best particle as below:

xgbest = [7 7 0.5 0.005 4 20 0.79 2.12 2.89] (32)

Therefore, seven membership functions determined as the optimal
number of membership functions for each input of Genfis1 (i.e.
m = 7 7 ). Thus, 49 rules are generated to track glucose reference
level. Here, f 1 = 0.5 and f 2 = 0.005 are found as the range of
influence for the first and second input data sets, and f 3 = 4 was
determined as the range of influence for the output data by PSO.
Consequently, 25 membership functions were considered for each
input by MATLAB software, and totally 25 × 25 = 625 rules are
generated. The number of clusters determined by PSO is c1 = 20;
consequently, the number of rules generated by Genfis3 is 20.
Finally, μ = 0.79 2.12 2.89  is determined as the optimal weighted
coefficients for data fusion.

As illustrated in Fig. 3, without applying controller, the BG
level remains in the range 12.37 mM while by using closed-loop
controller the BG level gets closer to the normal or reference
amount. Fig. 3a shows the stabilisation of the patient's BG level
into the normal level by using HANFIS-PSO data fusion approach
compared with fuzzy, fuzzy-genetic, Palumbo, hybrid and HoSM
controllers. Fig. 3b illustrates the error obtained from the difference
between patient's BG and normal glucose levels in the proposed
approach compared with the other control methods. All of the
insulin dosing control is based on a T = 2 min glucose sample time.
The difference between the different controller performances is
apparent on finer scale as shown in Fig. 4. The fuzzy controller
approach cannot control the BG very well, but by using fuzzy-GA
controller, where the fuzzy membership functions are optimised by
GA, the BG can better get to the normal level.

In Table 4, the error rate of each controller is given in terms of
criteria MSE and MAE based on (28). Table 4 shows a comparison
between the HANFIS-PSO data fusion approach and five other
approaches for glucose reference tracking. The obtained results by
the HoSM control are comparable with those obtained by fuzzy
control and fuzzy-genetic approach controllers. The error of hybrid
and HANFIS-PSO controllers are less than others. Table 4 reflects
the improving performance of the HANFIS-PSO data fusion
controller compared with the other methodologies. These results
are computed ignoring initial transitions. Fig. 5 shows excellent
control performances by applying Palumbo, hybrid and HANFIS-

Table 1 Numerical values of a T1D patient based on the
Palumbo DDE model [12]
Gb = 12.37 mM Ib = 93.669 pM
Kxgi = 2.51 × 10−5 min−1 pM−1 G* = 9 mM

Tgh = 0.003 min−1 mmol/kg BW τg = 24 min
Vg = 0.187 L/kg BW γ = 3.205
Kxi = 1.211 × 10−2 min−1 Vi = 0.25 L/kg BW

Tig max = 0.242 min−1 (pmol/kg BW) BMI = 50
 

Table 2 Numerical values of insulin actuator and glucose
disturbances [40, 47]
aI = 0.03 pM wI = 0.08 rad/ min
β = − 0.02 min−1 tm = 160 min
wG = 0.08 rad/ min γ = − 0.03 mM
T = 200 min δ = 0.012 mM
α = 0.09 mM aG = 0.03 mM
t0 = 350 min —

 

Fig. 2  BG disturbances profile
 

Table 3 Numerical values of the PSO alignment
parameters
nvar = 9 niter = 300 npop = 20
C0 = 1 C1 = 2 C2 = 2
xmin = [3 3 0.1 0.001 1 3 0.1 0.1 0.1]
xmax = [20 20 2 0.2 10 30 4 4 4]
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PSO data fusion controllers. Although the hybrid control approach
has comparable performance based on Table 4, this algorithm has
acceptable performance, but not excellent as illustrated in Fig. 5.

One important aspect of the proposed HANFIS-PSO based on
hybrid FISs optimised by PSO is desired BG-level tracking while
preventing chattering behaviour of the insulin infusion rate. This
property of the proposed method is a vital feature for T1DM
patients. Although the Palumbo, hybrid and HoSM approaches

provide acceptable performances in glucose reference tracking, all
of them suffer the chattering phenomena in their insulin infusion
rates. Fig. 6 shows the injected insulin infusion rate while
preventing chattering by the HANFIS-PSO approach, especially
over the steady-state time interval.

Fig. 7 indicates the body insulin changes by applying each
controller for this T1DM patient, respectively. In Table 5, the
control efforts (i.e. the insulin injected rate) of each controller are
also given and compared with HANFIS-PSO data fusion controller
regarding the MSE and MAE criteria. Although fuzzy and
optimised fuzzy methods are counted as the typical controllers (as
seen in Table 4), but this decreasing glucose tracking error would
be with a corresponding increment in control effort (as shown in
Table 5).

In contrast to fuzzy-based controllers, the HoSM controller has
a better performance of glucose reference tracking (Table 4) and its
control effort generally has an acceptable level and even lower than
that of by hybrid method. Improvements in MSE of the control
effort for the proposed approach for the Palumbo, hybrid and
HoSM approaches are 12.8, 31.4 and 17.5%, respectively.

As mentioned before, the best criterion should be considered a
trade-off between reference glucose tracking error and the control
effort was presented in (30). In Table 6, the results of six different
methods are summarised regarding the MSE and MAE criteria, Q
and R are set to 100 and 1, respectively.

Improvements in MSE for the proposed approach for Palumbo,
hybrid and HoSM methodologies are 61.9, 26.6 and 96.85%,
respectively.

4 Discussion
T1D patients rely on insulin injection at regular periods to maintain
the BGC near the normal level. So the ability of smooth insulin
delivery is considered as a vital feature of a typical glucose–insulin
controller to prevent some of complications such as hypo or
hyperglycaemia in diabetic patients. One of the main drawbacks to
almost all traditional insulin–glucose regulatory approaches is that
they are not able to stabilise the glucose level in the presence of
disturbances. These various unmeasured disturbances such as food,
physical activity, emotions and actuator errors are the main sources
of the glucose fluctuating and cause the chattering phenomena in
the insulin infusion rate. In this paper, a hybrid technique for BG

Fig. 3  The stabilisation of the patient's BG level
(a) Regulation of plasma glucose by applying HANFIS-PSO data fusion controller, (b) The error of blood glucose tracking respect to the reference glucose

 

Fig. 4  Regulation of plasma glucose by applying HANFIS-PSO data
fusion controller (finer scale)

 
Table 4 Error of glucose control (ignoring initial transitions)
Control method MSE EG MAE EG

fuzzy control 0.051516 0.218197
fuzzy-GA control 0.042534 0.196960
Palumbo control [11] 0.000272 0.015499
hybrid control [27] 0.000036 0.003677
HoSM control [30] 0.004901 0.067432
HANFIS-PSO data fusion control 0.000034 0.003255
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regulation by insulin injections is proposed to overcome these
drawbacks.

One important aspect of the new ANFIS-PSO control scheme is
glucose tracking to the desired level as well as the preventing

chattering behaviour in insulin injection rate. Although the
simulation results showed the acceptable performances in glucose
reference tracking for Palumbo, hybrid and HoSM control
approaches, all of them suffer the chattering phenomena in their
insulin infusion rates. It is shown that the proposed technique
adequately address the issue of reducing chattering phenomena of
insulin delivery.

Another vital aspect of the new hybrid technique is the
preventing of hypo or hyperglycaemia events. The regulated
glucose levels are <8.5 mM/L or 154 mg/dl and more than 3.88 
mM/L or 70 mg/dl for all simulation results which are following
recommendations made by the American Diabetes Association
[48]. The simulation results in 100 different runs showed the
preventing hypoglycaemia and hyperglycaemia events of the
proposed algorithm compared with other methodologies. Although
the simulation results showed (based on Table 4) the acceptable
performances in glucose reference tracking for Palumbo, hybrid
and HoSM control approaches, these decreasing glucose tracking
error could be with corresponding increase in control efforts
(shown in Table 5).

The advantages of our proposed control scheme make it
different from [12, 28–30] were:

i. A delayed non-linear model was used here with a complete list
of uncertainties such as food intake, physical activities and
emotions, sensor and actuator noises, whereas in [12, 29, 30]
uncertainty was only considered as glucose disturbance. The
effects of sensor and actuator noises, critical initial condition,
physical activity and emotions were neglected in [33, 34]. The
effects of physical exercise by the patient are not considered in
[45].

ii. The proposed intelligent control scheme on the well known
Palumbo model was done, whereas in [33, 34, 45–47], based
on BM [34], BMM [47], modified BMM [33, 46] and Dalla
Man model [45] which are not counted as a DDE model and
have less compliance with diagnostic testing of a diabetic
patient.

iii. For the first time, an intelligent combination of ANFISs
optimised by PSO as a control signal was used. This new
control law could simultaneously guarantee the desired BG-
level tracking and chattering reduction.

iv. The new HANFIS-PSO data fusion technique has avoided any
occurrences of several hypoglycaemia or hyperglycaemia
events given satisfactory performance under uncertainties.

v. Another advantage of the proposed control technique besides
preventing the chattering phenomena from the insulin infusion
rate is the robustness control against the uncertainty and
disturbance.

Some of the further developments and disadvantages of the newly
proposed control technique are:

i. Further study is required to evaluate the performance of the
HANFIS-PSO scheme in a more realistic case, where insulin
value must be estimated from the available glucose value.

ii. The limitation of the Palumbo DDE model is that the effects of
growth hormone and glucagon and so on have not been
considered, whereas in [45] based on Dalla Man model.

iii. Additional requirement is about the dynamics of the insulin
pump that should be considered.

iv. Another development such as the use of fault detection
techniques to detect pump malfunctions should be considered
before moving to the clinical use of any suggested controller.

5 Conclusion
The application of the proposed hybrid method to Palumbo DDE
model is both novel and effective. By applying an intelligent
combination of ANFISs optimised by PSO as a control signal on
the well known Palumbo model, more stabilisation of glucose
tracking and preventing of insulin chattering would be achieved.
The simulation results reported in Tables 4–6 show the excellent
performance of the proposed controller, especially on control effort

Fig. 5  Insulin injection rate by using chattering-free HANFIS-PSO data
fusion controller compared with the other controllers

 

Fig. 6  Injected insulin infusion rate by applying chattering-free HANFIS-
PSO data fusion controller compared with the other control methods (finer
scale, steady-state condition)

 

Fig. 7  Patient’s plasma insulin changes by applying each controller
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besides the preventing chattering phenomena on the insulin–
glucose regulatory system.
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