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Abstract—This study presents a resource-aware deep learning
pipeline for next-step multivariate time series forecasting, featur-
ing an attentional bidirectional long short-term memory archi-
tecture. The proposed model is designed to capture both forward
and backward temporal dependencies while dynamically focusing
on the most salient time steps using a Bahdanau-style attention
mechanism. We first evaluate the method on the widely used Jena
Climate dataset, then extend the study to a larger real-world me-
teorological dataset from California. This combination provides
both a standard benchmark and a more challenging real-world
test case, where the model demonstrates its superior predictive ac-
curacy compared to state-of-the-art models, including CNN-RNN,
CNN-LSTM, and Stacked-LSTM baselines. To ensure practical
applicability in real-world, resource-constrained environments,
the entire model is optimized and deployed on a NanoPi Neo
Plus2 board—an ARM-based 64-bit single-board computer with
limited computational resources. Our implementation leverages
lightweight inference techniques and efficient model quantization
to enable on-device prediction without cloud connectivity. The
resulting system achieves competitive forecasting performance
with minimal latency and power consumption, showcasing the
feasibility of edge-AI solutions for environmental monitoring and
smart sensing applications. Both quantitative and qualitative
analyses confirm the effectiveness and interpretability of the
proposed approach.The source code for this project is publicly
available at: https://github.com/NavidH95/attentional-bilstm-for-
edge-forecasting/tree/main.

Index Terms—Attention Mechanism, Attentional Bi-LSTM,
Bidirectional LSTM, Edge AI, Edge Deployment, Embedded
Deep Learning, Multivariate Time Series Forecasting, NanoPi
Neo Plus2, Real-Time Environmental Monitoring, Resource-
Constrained Inference

I. INTRODUCTION

Multivariate time series forecasting is a critical task in var-
ious real-world domains, including environmental monitoring,
energy systems, finance, and industrial automation [1]–[3].
Accurate forecasting enables timely decision-making, anomaly
detection, and resource optimization [4], [5]. However, real-
world time series data often exhibit complex temporal de-
pendencies, nonlinearity, and high dimensionality, making
effective forecasting particularly challenging [6], [7].

Recent advances in deep learning, especially recurrent
neural networks (RNNs) [8] and their variants like long
short-term memory (LSTM) [9] networks, have demonstrated

strong performance in capturing temporal patterns [10]–[12].
Bidirectional LSTM (Bi-LSTM) [13] architectures further
enhance sequence modeling by considering both past and
future contexts [14]. Nevertheless, not all historical time steps
contribute equally to a prediction task. Attention mechanisms
have emerged as a powerful complement to RNNs, allowing
models to dynamically focus on the most informative time
points [15].

In this study, we propose an attentional bidirectional LSTM
architecture for next-step multivariate time series forecasting.
Our model integrates a Bi-LSTM backbone with a Bahdanau-
style attention mechanism [16] to selectively weigh hidden
states and extract salient temporal features. We validate the
model on two datasets: (i) the widely used Jena Climate dataset
[17], which serves as a standard benchmark, and (ii) a larger
real-world meteorological dataset from California containing
35,088 hourly samples with 20+ environmental and astronom-
ical variables. This dual evaluation highlights performance
on both a controlled benchmark and a more complex, real-
world setting, with comparisons against traditional and deep
learning-based baselines [5].

Beyond algorithmic performance, practical deployment of
deep learning models on resource-constrained edge devices
remains a key barrier to real-world adoption. To bridge this
gap, we implement and deploy our proposed model on the
NanoPi Neo Plus2 [18], a compact ARM-based single-board
computer with limited compute and memory resources. Our
deployment demonstrates that high-accuracy time series fore-
casting can be achieved efficiently at the edge, without relying
on cloud servers or high-end GPUs.

The main contributions of this work are as follows:
• We design a resource-efficient attentional Bi-LSTM

model for accurate multivariate time series forecasting.
• We validate the model on both a standard bench-

mark dataset (Jena Climate) and a large-scale real-world
weather dataset (California), demonstrating robustness
across simple and complex forecasting tasks.

• We introduce an edge deployment framework and demon-
strate successful inference on the NanoPi Neo Plus2
platform [18].

https://github.com/NavidH95/attentional-bilstm-for-edge-forecasting/tree/main
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• We provide a comprehensive experimental evaluation and
compare our model with several state-of-the-art methods
on the Jena Climate dataset [17].

• We offer insights into model interpretability through at-
tention weight visualization, highlighting which temporal
features drive predictions.

This paper is organized as follows: Section II reviews
the most relevant studies and highlights the key differences
between existing approaches and our proposed method; Sec-
tion III describes the proposed methodology; Section IV
presents the experimental setup, evaluation results, and com-
parative analyses; Section V describes the hardware setup and
real-time deployment aspects of our system; and Section VI
concludes with future directions.

II. RELATED WORK

Recent advances in time series forecasting have leveraged a
wide range of machine learning and deep learning techniques.
In this section, we categorize and review the most relevant
works in the literature, including hybrid deep learning mod-
els, standard recurrent architectures, and traditional machine
learning approaches.

Hybrid Deep Learning Models have gained popularity
due to their ability to capture both spatial and temporal
dependencies in complex multivariate time series data. Models
such as CNN-RNN [1], CNN-LSTM [14], and Recurrence Plot
combined with CNN [7] exploit convolutional layers for local
feature extraction and recurrent layers for temporal modeling.
These architectures have demonstrated improved forecasting
accuracy in various environmental and energy-related datasets.
Another study proposes a highly efficient hybrid weather
prediction model based on deep learning, combining various
neural networks to improve prediction accuracy, especially
for dynamic and complex environmental datasets [5]. These
advancements highlight the growing importance of hybrid
models in environmental forecasting. Recent work on Bi-
LSTM networks with attention mechanisms has also shown
superior predictive performance for time series forecasting,
such as in the study of environmental monitoring systems
implemented on resource-constrained edge devices.

Standard Recurrent Architectures like the standard
LSTM [10] and stacked-LSTM [12] have also been extensively
studied for sequence modeling tasks. While effective in cap-
turing long-term dependencies, these models often lack mech-
anisms for distinguishing the relative importance of different
time steps, which limits their interpretability and adaptability
in dynamic environments.

Traditional Machine Learning and Other Methods in-
clude classical algorithms such as the Levenberg-Marquardt
neural network [6], [15], Wavelet-SVM [3], Stacked denoising
autoencoders (SDAE) [19]. These methods often require exten-
sive feature engineering and may struggle to model nonlinear
temporal interactions, particularly in high-resolution or noisy
datasets. Specifically, SVR has been found to outperform
other machine learning methods in the prediction of long-
term air temperatures in Australia and New Zealand, showing

the importance of capturing climate change patterns with
statistical methods [4]. Nevertheless, lightweight statistical
approaches (e.g., LMS, ARIMA, SVR) may offer competitive
performance for simple one-step forecasting tasks but struggle
to maintain accuracy in multivariate, high-resolution datasets
like ours. This motivates the use of attention-enhanced deep
learning architectures that balance accuracy, interpretability,
and deployment efficiency.

In contrast to these existing methods, our proposed model
integrates a BidireLSTM architecture with an attention mech-
anism, enabling the model to capture temporal dependen-
cies from both directions while dynamically focusing on
the most informative time steps. Furthermore, we extend
the existing body of work by deploying the model on a
resource-constrained embedded platform (NanoPi Neo Plus2),
demonstrating its practical applicability for real-time edge-AI
forecasting tasks.

III. METHODOLOGY

This section details our proposed model for next-step mul-
tivariate time series forecasting. We first describe the data
preparation and problem formulation, followed by a detailed
explanation of our Attentional Bidirectional LSTM architec-
ture.

A. Data Preparation and Problem Formulation

The model was developed and evaluated on two multivariate
time series datasets: (i) the Jena Climate dataset (D = 14
features), which serves as a benchmark, and (ii) a large-scale
California weather dataset containing 35,088 hourly records
with D = 22 features (including temperature, humidity, wind-
speed, cloud cover, UV index, astronomical variables, etc.). To
address disparate feature scales and ensure numerical stability,
we normalized each feature vector x to a [0, 1] range using
Min-Max normalization. The scaling parameters were derived
solely from the training set to prevent data leakage.

xscaled =
x− xmin

xmax − xmin
(1)

Subsequently, the forecasting task was framed as a supervised
learning problem via a sliding window approach. Input se-
quences Xi of a fixed length L = 128 were generated to
predict the subsequent time steps. In our experiments, we
evaluate both single-step forecasting (yi = xi+ 1) and multi-
step forecasting horizons (e.g., 3, 6, and 24 hours ahead),
to assess robustness in short-term and longer-term prediction
scenarios. To augment the dataset, a stride of S = 64
was employed, creating a 50% overlap between consecutive
sequences. This approach balances dataset size and computa-
tional efficiency, ensuring sufficient temporal coverage while
reducing redundancy.

B. Proposed Model: Attentional Bi-LSTM Network

The overall architecture of our proposed model is illustrated
in Figure 1. The model follows a sequence-to-vector design,
beginning with a Bi-LSTM layer that processes the input
sequence to extract rich contextual features from both forward



and backward temporal directions. The complete set of hidden
states from this layer is then passed to a Bahdanau-style
attention mechanism. This layer computes attention weights to
produce a single, fixed-length context vector that selectively
summarizes the most salient information from the input se-
quence. Finally, this context vector is fed into a dense feed-
forward layer to generate the multivariate prediction for the
next time step.

We propose a sequence-to-vector architecture designed to
capture complex temporal patterns by identifying salient his-
torical features. The core of our model is a Bi-LSTM network,
which processes input sequences from both forward (

−→
ht) and

backward (
←−
ht) directions. The resulting hidden states are

concatenated, ht = [
−→
ht;
←−
ht], to create a rich, dual-context

representation. To enable the model to dynamically focus on
the most relevant time steps, we integrated a Bahdanau-style
attention mechanism. This layer computes a context vector
(c) as a weighted sum of the Bi-LSTM hidden states. The
mechanism calculates alignment scores (et) which are then
normalized via a softmax function to produce attention weights
(αt).

et = vT tanh(Whht +Wss) (2)

αt =
exp(et)∑L

k=1 exp(ek)
(3)

The context vector, c =
∑L

t=1 αtht, serves as a distilled
summary that is passed to the final prediction layer. The model
is trained end-to-end by minimizing the mean squared error
(MSE) loss using the Adam optimizer.

Fig. 1: Architecture of the proposed model.

TABLE I: Model Hyperparameters used for training the atten-
tional Bi-LSTM model. Most parameters were kept consistent
across datasets, except the number of epochs.

Hyperparameter Jena Climate California
Sequence Length (L) 128 128
Stride (S) 64 64
Hidden Dimension (per Bi-LSTM layer) 64 64
Bi-LSTM Layer Count 2 2
Dropout Probability 0.2 0.2
Optimizer Adam Adam
Learning Rate 0.001 0.001
Batch Size 64 64
Number of Epochs 20 50

IV. EXPERIMENTS AND EVALUATION

This section details the experimental framework designed
to evaluate the performance of our proposed model. We
first outline the experimental setup and evaluation protocol,
followed by quantitative and qualitative results.

A. Experimental Setup

All experiments were conducted on the Jena Climate
dataset. The model was implemented using PyTorch and
trained on a system equipped with an NVIDIA Tesla T4 GPU.
The key hyperparameters for our proposed model are listed in
Table I.

B. Evaluation Protocol

To rigorously assess the model’s generalization performance
while respecting temporal dependencies, a specialized evalua-
tion protocol was imperative. Standard k-fold cross-validation,
which involves random data shuffling, is unsuitable for time-
series forecasting as it would cause data leakage. Conse-
quently, we adopted a walk-forward validation methodology.
The dataset was first chronologically partitioned, with the
initial 85% of data allocated for training and validation, and
the final 15% reserved as a completely unseen hold-out test
set. This protocol was applied independently to both datasets:
the Jena Climate dataset for benchmark comparison, and
the California weather dataset to evaluate performance on a
more complex, real-world scenario. Within the 85% training
partition, we implemented a 5-fold ‘TimeSeriesSplit‘ scheme.
In this scheme, the training window progressively expands
to include data from the previous validation block, ensuring
the model is always tested on future data. Informed by this
validation process, a final model was trained on the entire 85%
partition. Its performance was then conclusively evaluated on
the hold-out test set using mean squared error (MSE), root
mean squared error (RMSE), mean absolute error (MAE),
and coefficient of determination (R2) as our primary metrics.

C. Quantitative Results

The learning progression of the final model is depicted in
Figure 3. The training loss (blue line) shows a consistent
and smooth decrease, indicating that the model is effectively
learning from the training data. Critically, the validation loss
(orange line), evaluated on the unseen test set, also con-
verges and remains stable at a low value without significant



Fig. 2: Training and validation loss curves for the Jena
benchmark

Fig. 3: Training and validation loss curves for the California
real-world datasets

divergence from the training loss. This convergence pattern
demonstrates a stable training process and suggests that the
model has generalized well without succumbing to significant
overfitting. Similar learning and convergence patterns were
observed for the California dataset, demonstrating that the
attentional Bi-LSTM can effectively capture complex temporal
dependencies in large, multivariate real-world time series.

To contextualize the performance of our proposed atten-
tional Bi-LSTM model, we conduct a comprehensive com-
parative analysis against a diverse range of models from the
existing literature. The selection of these baseline models
spans several categories, including traditional machine learn-
ing methods, standalone recurrent architectures, and state-of-
the-art hybrid deep learning models. The performance metrics
for these models are cited directly from their respective
publications, as reported on the same Jena Climate dataset. In
addition, we evaluate our proposed attentional Bi-LSTM on
the California dataset to provide a real-world assessment. On
the California dataset, the model maintains strong predictive
performance with an R2 of 0.79, despite the dataset’s higher
dimensionality and more irregular temporal patterns. This
confirms that the attentional Bi-LSTM effectively captures

TABLE II: Comparison of the proposed attentional Bi-LSTM
model with other models in the literature

Model MSE RMSE MAE R2 Reported by
Attentional Bi-LSTM 0.001809 0.042531 0.013926 0.9284 Proposed method (Jena dataset)
Attentional Bi-LSTM 0.006407 0.080044 0.055011 0.7915 Proposed method (California dataset)
CNN-RNN 0.035 0.189 0.126 0.987 A. Utku and U. Can [1]
Levenberg–Marquardt 1.96550 – – 0.98881 Dombaycı and Gölcü [2]
Wavelet-SVM 0.0937 – – – Liu et al. [3]
Levenberg–Marquardt – 1.53 1.27 0.995 Kisi and Shiri [6]
SDAE – 1.38 – – Hossain et al. [19]
SVR, MLP – – 0.7232 – Salcedo–Sanz et al. [4]
Stacked-LSTM 1.5365 1.236 0.9056 0.9692 Li et al. [10]
LSTM – 1.04 – 0.984 Li et al. [11]
CNN–LSTM – 1.97 1.02 – Hou et al. [14]
Recurrence Plot + CNN + Binarised 0.718 – 0.696 – Fister et al. [7]

complex dependencies across multiple meteorological vari-
ables, highlighting its practical utility for real-world forecast-
ing tasks.

Table II presents a direct comparison of our model’s per-
formance against these established benchmarks, demonstrating
that our proposed attentional Bi-LSTM model achieves a
significantly lower error across all primary metrics. The model
obtains an MSE of 0.001809, an RMSE of 0.042531, an MAE
of 0.013926, and R2 of 0.9284. These results represent a sub-
stantial improvement over the next-best performing model, the
CNN-RNN [1], showcasing the superior predictive accuracy
of our approach. The superior performance underscores the
efficacy of combining a bidirectional context with a dynamic
attention mechanism for this forecasting task.

D. Comparative Analysis

This section provides a deeper analysis of these comparative
results. A closer examination reveals several key insights.
When compared to other sophisticated deep learning archi-
tectures like CNN-RNN [1] and stacked-LSTM [12], our
model’s superiority is particularly evident. We attribute this
significant performance gain to the synergistic effect of its core
architectural components. First, the bidirectional nature of the
LSTM layers allows the model to build a more comprehensive
contextual understanding of the input sequence by processing
information from both past and future directions. This creates
a richer representation than what is available to unidirectional
models like the standard LSTM [10]. Second, and more
critically, the integrated attention mechanism empowers the
model to dynamically weigh the importance of each time step
within this rich context. Unlike architectures that may treat all
historical data with uniform importance, our model learns to
focus on the most salient temporal features for the prediction
task, a behavior we explore qualitatively in the next section.
This ability to intelligently filter and prioritize information is a
distinct advantage and a primary driver of the model’s reduced
error rates.

In summary, the comparative analysis confirms the quan-
titative superiority of our proposed architecture and suggests
that its unique combination of bidirectional context encoding
and an attention-based focus mechanism is highly effective
for high-resolution climate forecasting, as demonstrated across
both the benchmark Jena dataset and the larger, real-world
California dataset.



Fig. 4: Predicted vs. Actual values for the T(degC) feature in
the Jena dataset.

E. Qualitative Analysis

Beyond quantitative metrics, a qualitative analysis was
performed to visually assess the model’s behavior and inter-
pretability. First, to confirm the model’s forecasting accuracy,
we visualized its predictions against the ground-truth values
for representative features on the test set. As depicted in
Figure 4, the predicted values (red dashed line) demonstrate
high fidelity, closely tracking the fluctuations and trends of the
actual time series (blue solid line). Likewise, Figure 5 presents
the predicted vs. actual values for the temperature feature in
the California dataset. The model effectively captures the real-
world fluctuations and trends, confirming its generalizability
to larger, more complex datasets. This visual evidence corrob-
orates the strong quantitative results and confirms the model’s
capability to capture the complex dynamics of the climate data.

Second, to understand the model’s decision-making process,
we visualized the attention weights (αt) assigned to the input
sequence for a representative prediction, as shown in Figure 6.
The plot clearly reveals that the model has learned to allocate
the vast majority of its attention to the most recent time steps.
This behavior is highly logical, as it indicates the model has
successfully identified the strong short-term auto-correlation
present in the data. Rather than treating all historical data
points equally, the attention mechanism dynamically focuses
on the most salient temporal segment, which validates our
architectural choice and highlights the model’s interpretability.
Figure 7 shows the attention weights for a representative
California prediction. As with the Jena dataset, the model
assigns higher attention to the most informative time steps
and covariates, demonstrating consistent prioritization patterns
across datasets and reinforcing the interpretability of the
attentional Bi-LSTM architecture.

F. Ablation Study

To systematically investigate the contribution of each key
component of our proposed architecture, we conducted a
comprehensive ablation study. We evaluated the performance

Fig. 5: Predicted vs. Actual values for the Temperature (degC)
feature in the California weather dataset.

Fig. 6: Visualization of attention weights for a single predic-
tion on the Jena dataset.

Fig. 7: Attention weights visualization for a single prediction
on the California dataset. The model prioritizes the most in-
formative time steps across multiple meteorological variables.

of our full attentional Bi-LSTM model against three ablated
versions: (i) a standard Bi-LSTM model without the attention
mechanism, (ii) a unidirectional attentional LSTM, and (iii)
a vanilla (unidirectional) LSTM. This analysis allows us to
isolate the impact of bidirectionality and the attention mecha-
nism. The results are summarized in Table III. We additionally
evaluated the ablated models on the California dataset. While



TABLE III: Performance comparison of the proposed atten-
tional Bi-LSTM model with baseline LSTM variants on the
Jena Climate dataset

Model MSE RMSE MAE R2 Reported by
Attentional Bi-LSTM 0.001913 0.043736 0.018867 0.9284 Proposed method
Bi-LSTM 0.001952 0.044185 0.020738 0.9229 Our implementation
Vanilla LSTM 0.002128 0.046132 0.022769 0.9117 Our implementation
Attentional LSTM 0.004252 0.065204 0.039729 0.7827 Our implementation

absolute errors are higher due to more irregular temporal
patterns, the relative improvements from bidirectionality and
attention remain consistent, confirming that both architectural
components generalize effectively to real-world, large-scale
multivariate data.

The Critical Role of Bidirectionality: The most significant
performance degradation occurs when bidirectionality is re-
moved. The unidirectional attentional LSTM shows a dramatic
increase in error (e.g., MSE increases by over 122% compared
to our full model). This starkly demonstrates that encoding
contextual information from both past and future time steps
is fundamental to accurately capturing the complex temporal
dynamics of the dataset. The richer representation provided by
the Bi-LSTM serves as a powerful foundation for the model.

The Fine-Tuning Effect of Attention: The benefit of the
attention mechanism is also clearly evident. Comparing our
full model to the standard Bi-LSTM, we observe a consistent
improvement across all error metrics. For instance, the MAE is
reduced from 0.020738 to 0.018867. This indicates that once
a rich bidirectional context is established, the attention layer
provides an effective and valuable fine-tuning step, allowing
the model to dynamically focus on the most salient features
within that context for a more precise prediction.

In conclusion, the ablation study validates our architectural
design choices. The findings suggest that while both compo-
nents are beneficial, establishing a comprehensive bidirectional
context is the primary driver of performance. The attention
mechanism then acts as a powerful enhancement, further
refining the model’s predictive capabilities and leading to the
superior overall results of our proposed method.

G. Model Efficiency and Versatility

Our proposed model is highly efficient in terms of both
complexity and computational performance, demonstrating
its practicality for diverse deployment scenarios. With only
175,118 trainable parameters and a final size of 688 KB,
the model is lightweight. This efficiency is further highlighted
by its performance across different hardware platforms. On
a high-performance NVIDIA Tesla T4 GPU, the model
achieves exceptional inference speed, processing data at over
19360 samples/second with an average latency of just 0.0517
ms per sample.

To assess its viability for edge computing, the model was
also deployed on a NanoPi microcontroller. On this resource-
constrained device, it maintained a practical performance,
achieving a throughput of approximately 20 samples/second

with an average latency of 48.2 ms per sample. This combi-
nation of high predictive accuracy, low model complexity, and
strong performance on both high-end servers and low-power
edge devices confirms that our proposed model is not only
effective but also highly versatile for real-world applications.

V. HARDWARE IMPLEMENTATION AND REAL-TIME
DEPLOYMENT

To evaluate the feasibility of deploying AI-powered fore-
casting models in real-world environmental monitoring sce-
narios, we implemented a complete embedded system using
the NanoPi NEO Plus2 board. This section details both the
hardware architecture and the software configuration necessary
to support real-time inference at the edge.

A. System Architecture

Fig. 8: Real-time environmental monitoring system archi-
tecture. The system consists of: (1) I2C LCD display for
user feedback, (2) NanoPi NEO Plus2 for AI inference and
decision-making, (3) Arduino UNO as an analog-to-digital
converter (ADC), (4) MQ2 gas sensor, (5) soil moisture sensor,
(6) buzzer for acoustic alerts, and (7) RGB LED for visual
status indication. Data flows from sensors to the Arduino, then
via UART to the NanoPi, where the deep learning model runs
locally.

Environmental data collected by the sensors are transmitted
via UART from the Arduino UNO to the NanoPi. Sensor data
can be streamed via standard ADC interfaces or UART proto-
cols to the NanoPi, which performs on-device normalization
and forecasting. The system supports configurable sampling
rates and buffering logic to ensure low-latency, continuous
inference. The NanoPi runs a pre-trained deep learning model
in Python, executing inference in real time to assess envi-
ronmental conditions. Sensor readings (e.g., temperature and
moisture) are shown on the LCD, and alerts are triggered using
the buzzer and RGB LED. These alerts are currently based on
simple threshold logic rather than AI output, ensuring minimal
latency during actuation. The experimental hardware setup is
illustrated in Figure 8.



B. Deployment on the NanoPi NEO Plus2

Due to the absence of an HDMI port, the NanoPi board was
accessed via SSH. The board was connected to a local network
using a USB WiFi dongle and assigned a static IP address
during the initial setup. Debian 12 (64-bit) was selected as the
operating system to support critical libraries like NumPy and
Tensorflow-lite.

Access to GPIO ports from the virtual environment required
elevated permissions, as reading digital pin data typically
requires sudo. To solve this, a dedicated Linux group was
created and assigned permissions to access the necessary
device files. This approach enabled GPIO interaction without
sudo, which is typically restricted in virtual environments.

C. Analog-to-Digital Conversion Strategy

The NanoPi board does not include native analog input pins.
To read analog sensors such as the MQ2 gas sensor and the
soil moisture sensor, we integrated an Arduino UNO to serve
solely as an analog-to-digital converter (ADC). The Arduino
continuously reads analog voltages, digitizes the values, and
transmits them to the NanoPi via UART. No computation
occurs on the Arduino side.

This architectural choice keeps the system simple while
enabling analog interfacing. However, the Arduino dependency
could be eliminated in future iterations by replacing it with a
dedicated ADC IC (e.g., ADS1115), allowing the NanoPi to
operate all sensors and actuators independently.

D. Inference on Edge

The pre-trained model was exported in a lightweight format
and executed on the NanoPi using optimized Python scripts.
This validates the practicality of deploying multivariate deep
learning models on low-power, low-cost hardware for environ-
mental monitoring.

VI. CONCLUSION AND FUTURE WORK

This paper introduced an efficient and accurate attentional
bidirectional LSTM model for multivariate time series fore-
casting, specifically designed for edge devices. It outperformed
existing methods on the Jena Climate dataset, with analyses
confirming that attention and bidirectionality are key to its
success. The model is lightweight, fast, and suitable for real-
world edge deployment on both GPUs and low-power devices
like NanoPi. Future work includes optimizing the hardware
setup, enabling multi-step forecasting, integrating predictions
into on-device decision-making, and testing across diverse
datasets. The study offers a practical road map for bringing
deep learning to edge environments.

An immediate extension of this work is to implement
an efficient data communication pipeline using the MQTT
protocol. This would enable real-time transmission of sensor
data and forecast results from the NanoPi edge device to a
web-based weather prediction dashboard. Leveraging MQTT’s
lightweight publish-subscribe mechanism ensures minimal la-
tency and bandwidth usage, making it ideal for constrained
edge environments. Integrating this communication layer will

facilitate remote monitoring, visualization, and user interaction
with the forecasting system, bridging the gap between on-
device processing and user-facing applications.
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