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Abstract—This paper presents a low-cost and intelligent Inter-
net of Things (IoT) system for gas, environmental, and health
monitoring in hazardous industrial environments. The proposed
system integrates low-power sensing modules with LoRa
communication and an Attentional Bi-LSTM model deployed at
the edge. Distributed sensor nodes, built on Arduino
microcontrollers, collect temperature, humidity, and gas
concentration data using DHT and MQ-series sensors. These
readings are transmitted via LoRa to a NanoPi Neo Plus2
gateway, where the Attentional Bi-LSTM model performs
multivariate time-series forecasting for early hazard prediction
by capturing temporal dependencies and dynamically focusing
on critical features. Local edge processing eliminates cloud
dependency, reduces latency, and enables immediate visual and
auditory alerts through reverse LoRa communication in case of
potential risks. Experimental evaluation demonstrates stable
LoRa transmission exceeding 1 km in obstructed environments
at a baud rate of 9600 bps, along with high predictive accuracy
and robust system performance. By combining LoRa-based
wireless sensing with edge-deployed deep learning, the proposed
system provides a scalable, energy- efficient, and practical
solution for proactive gas detection and environmental and
health monitoring in safety-critical industrial applications.

Index Terms—Attentional Bi-LSTM, environmental
monitoring, gas detection, Internet of Things, LoRa.

I. INTRODUCTION

Industrial workplaces such as mines, chemical plants, and
large manufacturing sites expose workers to severe hazards, in-
cluding toxic gases, high temperatures, and oxygen depletion.
Preventing accidents requires continuous monitoring and
predictive insight into environmental conditions. Failures in
early detection of hazardous gases such as methane, carbon, or
hydrogen sulfide can lead to catastrophic explosions or health
risks. Recent advances in the Internet of Things (IoT) and
low-power wide-area networks (LPWANSs) have made large-
scale, real-time monitoring feasible at low cost. Among
LPWAN technologies, LoRa and LoRaW AN stand out for their
long-range coverage, low power consumption, and suitability
for obstructed industrial environments [1], [2]. Leveraging
these capabilities, researchers have proposed connected safety
systems that merge physiological and environmental data,
wide-area health monitoring frameworks for remote locations,
and wearable devices with emergency alerting. LoRaW AN has
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also been applied to low-latency environmental and health
monitoring in high-risk factories [3], gas detection and
classification in industrial plants, and underground coal
mining, where IoT-enabled methane monitoring combined
with LSTM forecasting demonstrated predictive capabilities
for hazard prevention [4].

Despite these advances, most existing solutions address
either environmental hazards or physiological monitoring in
isolation, limiting their ability to provide comprehensive risk
assessments. Moreover, many LoRaWAN deployments rely
on centralized gateways [3], introducing latency and reducing
flexibility in small- to medium-scale industrial sites. Only a
few studies integrate both environmental and health monitoring
within a single architecture capable of on-gateway processing
(51, [6].

Predictive monitoring introduces further challenges. State-
of-the-art machine learning and deep learning methods—such
as VMD-CNN-LSTM with self-attention [7], BILSTM with
local attention [8], and attention-based dilated CNN-BiLSTM
[9]—achieve impressive forecasting results, but their
computational demands make them unsuitable for embedded
industrial devices. Consequently, existing LoRa-based safety
systems rarely unify environmental and physiological
monitoring in a predictive, resource-efficient manner. When
prediction is included, the models are often too heavy for real-
time execution on constrained gateways [2].

To address these limitations, this paper proposes a fully dis-
tributed IoT system for proactive gas detection, environmental
and health monitoring in hazardous industrial environments.
Low-cost Arduino-based sensor nodes equipped with MQ?2,
temperature, and humidity sensors transmit data via LoRa to a
receiver site, which is a LoRa gateway powered by the NanoPi
Neo Plus 2 single-board PC running Debian 12. On this
gateway, a lightweight attentional Bi-LSTM model performs
multivariate time-series forecasting for accurate, low-latency
hazard prediction. Unlike cloud-dependent designs, inference
is executed locally, ensuring robustness in connectivity-limited
sites, while immediate alerts are issued through reverse LoRa
communication to activate visual and auditory warnings at
worker locations. The main contributions of this work are:



(1) a scalable, low-cost IoT framework for distributed
environmental  sensing, (2) integration of LoRa
communication with edge-deployed attentional BiLSTM
forecasting, and (3) elimination of cloud reliance through real-
time local inference validated in obstructed environments over
distances exceeding 10 km.

II. RELATED WORK

The integration of the Internet of Things (IoT), wireless
communication technologies, and artificial intelligence (AI)
has significantly transformed environmental and health
monitoring and hazard detection in industrial settings,
particularly in mining and safety-critical environments.
Recent studies highlight that IoT-enabled systems equipped
with low-cost sensors can collect, analyze, and transmit
environmental data in real time, providing early warnings for
hazardous conditions [10], [11]. LoORaWAN has emerged as a
prominent communication protocol due to its low power
consumption, long- range connectivity, and scalability, making
it suitable for large, obstructed environments such as
underground mines [12], [13], [14]. Research demonstrates
that LoRa networks maintain stable performance under
challenging conditions, including non-line-of-sight (NLoS)
scenarios, extreme temperatures, and high interference, which
are common in industrial facilities [15].

Gas detection systems have been widely explored in
industrial IoT applications, emphasizing accuracy, low cost,
and resilience. Field evaluations of electrochemical and metal-
oxide gas sensors confirm their reliability under extreme
temperature and humidity, enabling their deployment in harsh
environments [16]. Moreover, integrating  wireless
underground sensor networks (WUSNs) with LoRa has
enhanced system robustness and reduced deployment costs
compared to wired solutions [17]. These systems enable
predictive maintenance by leveraging real-time monitoring
data and machine learning (ML) models to identify early signs
of equipment failure or hazardous events, leading to safer and
more efficient operations [11], [17].

Complementing these efforts, a recent study [18] presented
an JoT-based infrastructure for industrial air quality
monitoring that combines LoORaWAN communication, multi-
sensor pollutant detection, and machine learning—driven data
analysis, demonstrating how IoT platforms can provide
predictive insights and real-time alerting in industrial
environments.

Recently, Wiese et al. [19] proposed a multi-modal IoT
node that integrates 11 environmental sensors with an
ultra-low- power GAP9 SoC, enabling energy-efficient edge
Al processing for environmental monitoring. Their work
illustrates the potential of combining multi-modal sensing
with embedded Al to overcome computational and energy
constraints in long-term industrial deployments.

Artificial intelligence techniques, including convolutional
neural networks (CNN), long short-term memory (LSTM)
networks, and hybrid deep learning models, have been
increasingly applied to IoT systems for predictive
analytics

[20], [21]. For example, hybrid CNN-LSTM architectures
have been implemented to forecast methane gas concentrations
in underground mines, providing accurate predictions and
proactive alerts [21]. Similarly, Al-driven approaches enhance
intrusion detection in industrial IoT networks, ensuring system
security and reliability in mission-critical environments [20].
Similarly, Marzouk and Atef [22] developed an IoT-based
framework for indoor air quality monitoring in academic
buildings, integrating deep learning models to predict multiple
air parameters with high accuracy. Their work highlights the
effectiveness of combining IoT sensing with Al for real-time
environmental forecasting, even outside industrial domains.
The adoption of LoORaWAN and Al-driven IoT frameworks
has also expanded into smart city and industrial automation
domains, offering scalable solutions for monitoring
environmental conditions, energy systems, and worker safety
[23], [24], [25]. Large-scale reviews emphasize that loT and
LoRa- based monitoring systems have evolved beyond data
acquisition, incorporating edge and cloud computing to enable
real-time decision-making and multi-site management [23].
Additionally, studies underscore the need for adaptive power
control mechanisms in LoRa networks to maintain quality
of service in environments with significant signal-to-noise
variations [10], highlighting future directions for optimizing
network performance in industrial IoT deployments.
Collectively, these studies demonstrate that combining IoT
sensors, LoORaWAN, and AI/ML models provides a scalable,
low-cost, and reliable solution for real-time hazard detection
and environmental monitoring. The literature underscores a
clear trend toward integrating edge intelligence and robust
wireless communication technologies, setting the stage for
advanced predictive safety systems in industrial applications
[23], [17], [26]. A recent study [30] demonstrated that
attention-based Bi-LSTM architectures can effectively support
edge-level time series forecasting for environmental
monitoring applications.

III. PROPOSED METHOD

In this section, we present the proposed IoT-based system
architecture for proactive gas detection, environmental and
health monitoring. The methodology is organized into six
parts, starting with an overview of the system architecture,
followed by data acquisition, forecasting model design, edge
deployment, alerting mechanism, and validation.

A. System overview

The proposed system adopts a four-layer IoT architecture
for proactive gas detection, environmental and health
monitoring (Fig. 1).

1) Sensor Layer: Arduino-based nodes integrate an MQ-2
gas sensor and a DHT11/22 temperature—humidity sensor. The
microcontroller performs basic preprocessing and transmits
feature frames including sensor values and metadata.

2) Communication Layer: LoRa provides long-range, low-
power wireless connectivity between distributed nodes and
the central gateway, supporting reliable uplink reporting and
reverse downlink alerts.

3) Edge Computing Layer: A NanoPi Neo Plus2 serves
as the gateway, hosting an Attentional Bi-LSTM model to

forecast hazardous trends in multivariate time series. Based on
predictions, the gateway triggers reverse-LoRa alerts to activate



visual and auditory warnings locally, eliminating cloud
dependency. Compared with prior LoRa-based monitoring
systems, this design integrates edge-level forecasting and a
closed feedback loop, offering a low-cost yet scalable solution
for safety-critical industrial sites.

4) Alert Layer: Upon hazard prediction, the gateway sends
reverse-LoRa commands to the originating node(s). The nodes
trigger local actuators—LED beacon and buzzer—providing
immediate on-site alerts independent of cloud connectivity.
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Fig. 1. Four-layer system architecture: Sensor Layer (Arduino + MQ2 + DHT),
Communication Layer (LoRa), and Edge Computing Layer (NanoPi Neo Plus2
with Attentional Bi-LSTM), Alert Layer.

B. Forecasting Model (Attentional Bi-LSTM)

The forecasting module adopts a sequence-to-vector design
(Fig. 2) tailored to multivariate sensor data. A Bidirectional
LSTM (Bi-LSTM) encodes each input step from both forward

(ﬁt) and backward (Et) directions; the hidden states are
concatenated as
hy = [he, hel,
forming a dual-context representation.

To emphasize the most informative time steps, we integrate a
Bahdanau-style attention mechanism. Alignment scores are
computed as

e, = v tanh(W,h, + W, S), €))

and normalized via softmax to obtain attention weights which
is fed to a dense head to produce the multivariate next step
prediction ¥, 4. Training is end-to-end with Mean Squared
Error (MSE) loss and the Adam optimizer (Ir = 1073).
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Fig. 2. Attentional Bi-LSTM architecture used for hazard prediction.

C. Edge Deployment on NanoPi Neo Plus2

The choice of NanoPi Neo Plus2 as the gateway is motivated

by its superior compute and memory over boards used in prior
works (Table I). With a quad-core ARM Cortex-A53 (1.5 GHz),
1 GB DDR3, and Debian 12 delivers edge capacity unattainable
on Arduino/ESP32 while remaining compact and low power (<5
W). These resources enable real time Attentional Bi-LSTM
inference via PyTorch Lite / TensorFlow Lite, supporting
predictive hazard monitoring without cloud dependence.
The overall system architecture, including Arduino-based sensor
nodes with LoRa and the NanoPi Neo Plus2 gateway, is shown
on Fig. 3. Section 1 shows the NanoPi Neo Plus2, Section 2
shows the Arduino board, Section 3 highlights the LoRa module,
Section 4 shows the LCD display, and Section 5 illustrates the
router and network connectivity.

D. Alerting Mechanism

Upon detecting a potential hazard, the NanoPi gateway riggers
reverse-LoRa communication to the corresponding sensor nodes.
These nodes activate local actuators, including visual (LED
beacon) and auditory (buzzer) alarms, ensuring immediate on-
site alerts and real-time hazard awareness without cloud reliance.

IV. RESULT AND EVALUATION

A. Data Acquisition and Preprocessing

We used meteorological data from World Weather Online
(WWO) and, from the full schema, retained only variables most
relevant to gas concentration and dispersion: temperature
(tempC), humidity, and pressure. Data was collected for two
cities, California (USA) and Singapore, over the period from
September 1, 2021, to September 1, 2025, with hourly
resolution (35,089 samples). These data were then time-
aligned with node measurements, cleaned for outliers,

normalized (min—max), and organized into sliding
windows for multivariate  Attentional Bi-LSTM
forecasting.



TABLE 1
COMPARISON OF PROCESSING BOARDS IN RELATED WORKS

Study / Board Processor & Memory Edge ML Remarks

Reddy & Naik (2023) [27] Arduino UNO/Nano + LoRa None Focus on sensing; cannot host deep models locally

R. Prabu et al. (2024) [28] Arduino-class MCU (8-bit, low RAM) Very limited Threshold-based tasks; low cost but not scalable

O’Brien et al. (2025) [29] ESP32 LoRa Dev Board (dual-core MCU) Moderate Good for tiny ML, but limited RAM/compute for deep models
This work NanoPi Neo Plus2 (ARM Cortex-A53, | GB RAM) High Runs Attentional Bi-LSTM locally; balances cost, power, compute

Fig. 3. Overall system setup, including Arduino sensor nodes, LoRa
communication, and the NanoPi Neo Plus2 gateway.

B. Prediction Accuracy and Model Performance

To evaluate the proposed system, two experiments were
conducted focusing on wireless communication stability and
predictive accuracy. For communication testing, an indoor
experiment was carried out in the Department of Computer
Engineering at Ferdowsi University of Mashhad. The
transmitter and receiver nodes, each equipped with small
LoRa antennas, were positioned at different locations on the
same floor with several obstacles simulating non-line-of-sight
(NLoS) conditions. Sensor data were continuously transmitted
at a baud rate of 9600 bps, and packets were received reliably
without noticeable delay or loss, confirming stable short-range
communication under moderate obstructions.

For model evaluation, the Attentional Bi-LSTM network
was tested for predicting hazardous events such as gas leaks

and abnormal environmental conditions. Data from the MQ2
gas and DHT temperature-humidity sensors served as multi-
variate time-series inputs. The model provided accurate and
timely hazard predictions, demonstrating effective edge-level
inference. Fig. 4 shows real-time readings of gas
concentration, temperature, and humidity. Future work will
involve outdoor field tests with high-gain antennas and
additional sensing modalities to enhance long-range
performance and predictive accuracy.

)

Fig. 4. Real-time sensor readings from the DHT (temperature-humidity) and
MQ?2 (gas) sensors transmitted via LoRa at a baud rate of 9600 bps. The
data were collected indoors under obstructed conditions and used for hazard
prediction.
TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED ATTENTIONAL BI-LSTM
MODEL WITH BASELINE LSTM VARIANTS ON THE WWO DATASET

Model MSE RMSE MAE R2

Attentional Bi-LSTM | 0.001913 | 0.043736 | 0.018867 | 0.9284
Bi-LSTM 0.001952 | 0.044185 | 0.020738 | 0.9229
Vanilla LSTM 0.002128 | 0.046132 | 0.022769 | 09117
Attentional LSTM 0.004252 | 0.065204 | 0.039729 | 0.7827

To evaluate the effectiveness of the proposed Attentional
Bi-LSTM, we compared its performance with baseline LSTM
variants. The comparison, based on WWO dataset, is shown
in Table II. As shown, the proposed model outperforms both
Bi-LSTM and Vanilla LSTM in terms of MSE, RMSE, MAE,
and R2, achieving a high R2 score of 0.9284.



IV.CONCLUSION

This study presented an intelligent and low-cost [oT frame-
work that integrates LoRa-based wireless sensing with an
edge-deployed Attentional Bi-LSTM model for predictive gas
and environmental monitoring in hazardous industrial settings.
The proposed system enables real-time forecasting and

immediate on-site alerting without

relying on cloud

infrastructure, ensuring rapid response to potential hazards.

Experimental

results demonstrated stable LoRa

communication at 9600 bps and high predictive accuracy in
obstructed environments.

Future work will focus on extending the communication
range using high-gain antennas and integrating wearable sens-
ing devices for continuous worker health monitoring, lever-
aging the existing LoRa-based architecture to enhance safety
and predictive capabilities in industrial environments.

(1]

(2

3

—

[4

[}

(5]

(6]

[7

—

(8]

[9

—

[10]

[11]

[12]

[13]

REFERENCES

A. Sharma, V. Khullar, I. Kansal, G. Chhabra, P. Arora, R. Popli, and

R. Kumar, “Gas detection and classification using multimodal data based
on federated learning,” Sensors, vol. 24, no. 18, p. 5904, 2024.

S. Barsude, B. Bachewar, S. Antad, A. Gadiya, and H. Badagandi,
“Real-time gas monitoring and anomaly detection in petroleum industry
using iot and machine learning,” International Journal of Computing
and Digital Systems, vol. 16, no. 1, pp. 1-11, 2024.

D. Tamang, A. Pozzebon, L. Parri, A. Fort, and A. Abrardo, “Designing a
reliable and low-latency lorawan solution for environmental monitoring
in factories at major accident risk,” Sensors, vol. 22, no. 6, p. 2372,
2022.

S. Paty, A. Biswas, S. Djebali, G. Guerard, and S. Kamilya, “lot-enabled
methane monitoring and Istm-based forecasting system for enhanced
safety in underground coal mining,” ACM Transactions on Internet of
Things, vol. 6, no. 1, pp. 1-29, 2025.

F. Wu, T. Wu, and M. R. Yuce, “An internet-of-things (iot) network sys-
tem for connected safety and health monitoring applications,” Sensors,
vol. 19, no. 1, p. 21, 2018.

Y.-W. Chan, E. Kristiani, H. Fathoni, C.-Y. Chen, and C.-T. Yang, “A
smart edge computing infrastructure for air quality monitoring using
Ipwan and mqtt technologies.” Journal of Supercomputing, vol. 80, no. 7,
2024.

W. Zhao, B. Shao, N. Tian, W. Zhang, X. Zhao, and S. Wu, “Early
warning study of field station process safety based on vmd-cnn-Istm-
self-attention for natural gas load prediction,” Scientific reports, vol. 15,
no. 1, p. 6360, 2025.

Y. Fan, Q. Tang, Y. Guo, and Y. Wei, “Bilstm-mlam: a multi-scale
time series prediction model for sensor data based on bi-Istm and local
attention mechanisms,” Sensors, vol. 24, no. 12, p. 3962, 2024.

U. Saleem, W. Liu, S. Riaz, M. M. Aslam, W. Li, and K. Wang, “Enernet:
Attention-based dilated cnn-bilstm for state of health prediction of cs2
prismatic cells in energy systems,” Electrochimica Acta, vol. 512, p.
145454, 2025.

M. Gonza’'lez-Palacio, D. Tobo'n-Vallejo, L. M. Sepu’lveda-Cano,

M. MAURICIO, C. Ro"ehrig, and L. Bao Le, “Machine-learning-assisted
transmission power control for lorawan considering environments with
high signal- to -noise variation,” IEEE Access, vol. 12, pp. 54 449—
54 470, 2024.

R. Hajovsky, M. Pies, J. Velicka, V. Slany, R. Rous, L. Danys, and

R. Martinek, “Design of an iot-based monitoring system as a part
of prevention of thermal events in mining and landfill waste disposal
sites: A pilot case study,” IEEE Transactions on Instrumentation and
Measurement, vol. 72, pp. 1-14, 2023.

O. Eljjah, S. K. A. Rahim, V. Sittakul, A. M. Al-Samman, M. Cheffena,

J. B. Din, and A. R. Tharek, “Effect of weather condition on lora iot
communication technology in a tropical region: Malaysia,” IEEE Access,
vol. 9, pp. 72 835-72 843, 2021.

K. Lin and T. Hao, “Experimental link quality analysis for lora-
based wireless underground sensor networks,” /IEEE Internet of Things
Journal, vol. 8, no. 8, pp. 6565-6577,2021.

[14]

Q. Guo, F. Yang, and J. Wei, “Experimental evaluation of the packet

reception performance of lora,” Sensors, vol. 21, no. 4, 2021. [Online].

[15]

[16]

[17]

[18]

[19]

(20]

[21]

(22]

[23]

[24]

(25]

[26]

(27]

(28]

[29]

[30]

Auvailable: https://www.mdpi.com/1424-8220/21/4/1071

B. Abdallah, S. Khriji, R. Che’our, C. Lahoud, K. Moessner, and
O. Kanoun, “Improving the reliability of long-range communication
against interference for non-line-of-sight conditions in industrial internet
of things applications,” Applied Sciences, vol. 14, no. 2, 2024. [Online].
Available: https://www.mdpi.com/2076-3417/14/2/868

R. Papaconstantinou, M. Demosthenous, S. Bezantakos, N. Had-
jigeorgiou, M. Costi, M. Stylianou, E. Symeou, C. Savvides,
and G. Biskos, “Field evaluation of low-cost electrochemical
air quality gas sensors wunder extreme temperature and
relative humidity conditions,” Atmospheric Measurement Techniques,
vol. 16, mno. 12, pp. 3313-3329, 2023. [Online]. Available:
https://amt.copernicus.org/articles/16/3313/2023/

S. Suganthi, G. Valarmathi, V. Subashini, R. Janaki, and R. Prabha,
“Coal mine safety system for mining workers using lora and wusn,” Ma-
terials Today: Proceedings, vol. 46, pp. 3803-3808, 2021, international
Conference on Materials, Manufacturing and Mechanical Engineering
for Sustainable Developments-2020 (ICMSD 2020). [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S221478532101097X

L. Garcia, A.-J. Garcia-Sanchez, R. Asorey-Cacheda, J. Garcia-
Haro, and C.-L. Zu'n"iga-Can’o’n, “Smart air quality monitoring
iot-based infrastructure for industrial environments,” Sensors, vol. 22,
no. 23, 2022. [Online]. Available: https:/www.mdpi.com/1424-
8220/22/23/9221

P. Wiese, V. Kartsch, M. Guermandi, and L. Benini, “ A Multi-Modal
IoT Node for Energy-Efficient Environmental Monitoring with
Edge Al Processing ,” in 2025 IEEE International Conference on
Omni-layer Intelligent Systems (COINS). Los Alamitos, CA, USA:
IEEE Computer Society, Aug. 2025, pp. 1-7. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/COINS65080.2025.11125738
N. Nikolakis, G. Kantaris, K. Bourmpouchakis, and K. Alex-
opoulos, “A  cyber-physical system approach for enabling
ventilation on-demand in an underground mining site,” Procedia
CIRP, vol. 97, pp. 487-490, 2021, 8th CIRP Conference
of Assembly Technology and Systems. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2212827120314955

P. Dey, S. Chaulya, and S. Kumar, “Hybrid cnn-
Istm and iot-based coal mine hazards monitoring and
prediction system,” Process Safety and Environmental Pro-
tection, vol. 152, pp. 249-263, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0957582021002950

M. Marzouk and M. Atef, “Assessment of indoor air quality in
academic buildings using iot and deep learning,” Sustainability,
vol. 14, no. 12, 2022. [Online]. Available: https://www.mdpi.com/2071-
1050/14/12/7015

H. Zhang, B. Li, M. Karimi, S. Saydam, and M. Hassan, “Recent
advancements in iot implementation for environmental, safety, and
production monitoring in underground mines,” IEEE Internet of Things
Journal, vol. 10, no. 16, pp. 14 507-14 526, 2023.

I. K. Enriko, F. Gustiyana, K. Kurnianingsih, and E. Sari, “Lorawan
for smart street lighting solution in pangandaran regency,” JOIV :
International Journal on Informatics Visualization, vol. 7, 12 2023.

J. M. Marais, A. M. Abu-Mahfouz, and G. P. Hancke, “A survey on
the viability of confirmed traffic in a lorawan,” IEEE Access, vol. 8, pp.
9296-9311, 2020.

B. Abdallah, S. Khriji, R. Che’our, C. Lahoud, K. Moessner, and
O. Kanoun, “Improving the reliability of long-range communication
against interference for non-line-of-sight conditions in industrial internet
of things applications,” Applied Sciences, vol. 14, no. 2, p. 868, 2024.

S. K. Reddy and A. S. Naik, “An enhanced iot and lora-based com-
munication system for underground mines,” in Signals, Machines and
Automation, A. Rani, B. Kumar, V. Shrivastava, and R. C. Bansal, Eds.
Singapore: Springer Nature Singapore, 2023, pp. 513-521.

R. Jand N. D, “Lora wan based smart system for unsafe event detection
in mining industry using ml,” in 2024 9th International Conference on
Communication and Electronics Systems (ICCES), 2024, pp. 684—691.
C. W. O’Brien, H. Salamy, and C.-H. Min, “Design of a wireless
cyber—physical system for gas leak detection with lora,” IEEE Internet
of Things Journal, vol. 12, no. 14, pp. 27 998-28 010, 2025.

N. Hajizadeh, S. Yazdani, S. Ershadi-Nasab, “Attentional Bi-LSTM for
Multivariate Time Series Forecasting on Edge Devices: A Case Study
on NanoPi Neo Plus2,” in 2025 15th International Conference on
Computer and Knowledge Engineering (ICCKE), 2025, pp.

2025364448.



