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Abstract—This paper presents a low-cost and intelligent Inter- 
net of Things (IoT) system for gas, environmental, and health 
monitoring in hazardous industrial environments. The proposed 
system integrates low-power sensing modules with LoRa 
communication and an Attentional Bi-LSTM model deployed at 
the edge. Distributed sensor nodes, built on Arduino 
microcontrollers, collect temperature, humidity, and gas 
concentration data using DHT and MQ-series sensors. These 
readings are transmitted via LoRa to a NanoPi Neo Plus2 
gateway, where the Attentional Bi-LSTM model performs 
multivariate time-series forecasting for early hazard prediction 
by capturing temporal dependencies and dynamically focusing 
on critical features. Local edge processing eliminates cloud 
dependency, reduces latency, and enables immediate visual and 
auditory alerts through reverse LoRa communication in case of 
potential risks. Experimental evaluation demonstrates stable 
LoRa transmission exceeding 1 km in obstructed environments 
at a baud rate of 9600 bps, along with high predictive accuracy 
and robust system performance. By combining LoRa-based 
wireless sensing with edge-deployed deep learning, the proposed 
system provides a scalable, energy- efficient, and practical 
solution for proactive gas detection and environmental and 
health monitoring in safety-critical industrial applications. 

Index Terms—Attentional Bi-LSTM, environmental 
monitoring, gas detection, Internet of Things, LoRa. 

I. INTRODUCTION 

Industrial workplaces such as mines, chemical plants, and 

large manufacturing sites expose workers to severe hazards, in-

cluding toxic gases, high temperatures, and oxygen depletion. 

Preventing accidents requires continuous monitoring and 

predictive insight into environmental conditions. Failures in 

early detection of hazardous gases such as methane, carbon, or 

hydrogen sulfide can lead to catastrophic explosions or health 

risks. Recent advances in the Internet of Things (IoT) and 

low-power wide-area networks (LPWANs) have made large-

scale, real-time monitoring feasible at low cost. Among 

LPWAN technologies, LoRa and LoRaWAN stand out for their 

long-range coverage, low power consumption, and suitability 

for obstructed industrial environments [1], [2]. Leveraging 

these capabilities, researchers have proposed connected safety 

systems that merge physiological and environmental data, 

wide-area health monitoring frameworks for remote locations, 

and wearable devices with emergency alerting. LoRaWAN has    

also been applied to low-latency environmental and health 

monitoring in high-risk factories [3], gas detection and 

classification in industrial plants, and underground coal 

mining, where IoT-enabled methane monitoring combined 

with LSTM forecasting demonstrated predictive capabilities 

for hazard prevention [4]. 

Despite these advances, most existing solutions address 

either environmental hazards or physiological monitoring in 

isolation, limiting their ability to provide comprehensive risk 

assessments. Moreover, many LoRaWAN deployments rely 

on centralized gateways [3], introducing latency and reducing 

flexibility in small- to medium-scale industrial sites. Only a 

few studies integrate both environmental and health monitoring 

within a single architecture capable of on-gateway processing 

[5], [6]. 

Predictive monitoring introduces further challenges. State- 

of-the-art machine learning and deep learning methods—such 

as VMD-CNN-LSTM with self-attention [7], BiLSTM with 

local attention [8], and attention-based dilated CNN-BiLSTM 

[9]—achieve impressive forecasting results, but their 

computational demands make them unsuitable for embedded 

industrial devices. Consequently, existing LoRa-based safety 

systems rarely unify environmental and physiological 

monitoring in a predictive, resource-efficient manner. When 

prediction is included, the models are often too heavy for real-

time execution on constrained gateways [2]. 

To address these limitations, this paper proposes a fully dis- 

tributed IoT system for proactive gas detection, environmental 

and health monitoring in hazardous industrial environments. 

Low-cost Arduino-based sensor nodes equipped with MQ2, 

temperature, and humidity sensors transmit data via LoRa to a 

receiver site, which is a LoRa gateway powered by the NanoPi 

Neo Plus 2 single-board PC running Debian 12. On this 

gateway, a lightweight attentional Bi-LSTM model performs 

multivariate time-series forecasting for accurate, low-latency 

hazard prediction. Unlike cloud-dependent designs, inference 

is executed locally, ensuring robustness in connectivity-limited 

sites, while immediate alerts are issued through reverse LoRa 

communication to activate visual and auditory warnings at 

worker locations. The main contributions of this work are: 



(1) a scalable, low-cost IoT framework for distributed 

environmental sensing, (2) integration of LoRa 

communication with edge-deployed attentional BiLSTM 

forecasting, and (3) elimination of cloud reliance through real-

time local inference validated in obstructed environments over 

distances exceeding 10 km. 

II. RELATED WORK 

The integration of the Internet of Things (IoT), wireless 

communication technologies, and artificial intelligence (AI) 

has significantly transformed environmental and health 

monitoring and hazard detection in industrial settings, 

particularly in mining and safety-critical environments. 

Recent studies highlight that IoT-enabled systems equipped 

with low-cost sensors can collect, analyze, and transmit 

environmental data in real time, providing early warnings for 

hazardous conditions [10], [11]. LoRaWAN has emerged as a 

prominent communication protocol due to its low power 

consumption, long- range connectivity, and scalability, making 

it suitable for large, obstructed environments such as 

underground mines [12], [13], [14]. Research demonstrates 

that LoRa networks maintain stable performance under 

challenging conditions, including non-line-of-sight (NLoS) 

scenarios, extreme temperatures, and high interference, which 

are common in industrial facilities [15]. 

Gas detection systems have been widely explored in 

industrial IoT applications, emphasizing accuracy, low cost, 

and resilience. Field evaluations of electrochemical and metal- 

oxide gas sensors confirm their reliability under extreme 

temperature and humidity, enabling their deployment in harsh 

environments [16]. Moreover, integrating wireless 

underground sensor networks (WUSNs) with LoRa has 

enhanced system robustness and reduced deployment costs 

compared to wired solutions [17]. These systems enable 

predictive maintenance by leveraging real-time monitoring 

data and machine learning (ML) models to identify early signs 

of equipment failure or hazardous events, leading to safer and 

more efficient operations [11], [17]. 

Complementing these efforts, a recent study [18] presented 

an IoT-based infrastructure for industrial air quality 

monitoring that combines LoRaWAN communication, multi-

sensor pollutant detection, and machine learning–driven data 

analysis, demonstrating how IoT platforms can provide 

predictive insights and real-time alerting in industrial 

environments. 

Recently, Wiese et al. [19] proposed a multi-modal IoT 

node that integrates 11 environmental sensors with an 

ultra-low- power GAP9 SoC, enabling energy-efficient edge 

AI processing for environmental monitoring. Their work 

illustrates the potential of combining multi-modal sensing 

with embedded AI to overcome computational and energy 

constraints in long-term industrial deployments. 

Artificial intelligence techniques, including convolutional 

neural networks (CNN), long short-term memory (LSTM) 

networks, and hybrid deep learning models, have been 

increasingly applied to IoT systems for predictive 

analytics 

[20], [21]. For example, hybrid CNN-LSTM architectures 

have been implemented to forecast methane gas concentrations 

in underground mines, providing accurate predictions and 

proactive alerts [21]. Similarly, AI-driven approaches enhance 

intrusion detection in industrial IoT networks, ensuring system 

security and reliability in mission-critical environments [20]. 

Similarly, Marzouk and Atef [22] developed an IoT-based 

framework for indoor air quality monitoring in academic 

buildings, integrating deep learning models to predict multiple 

air parameters with high accuracy. Their work highlights the 

effectiveness of combining IoT sensing with AI for real-time 

environmental forecasting, even outside industrial domains. 

The adoption of LoRaWAN and AI-driven IoT frameworks 

has also expanded into smart city and industrial automation 

domains, offering scalable solutions for monitoring 

environmental conditions, energy systems, and worker safety 

[23], [24], [25]. Large-scale reviews emphasize that IoT and 

LoRa- based monitoring systems have evolved beyond data 

acquisition, incorporating edge and cloud computing to enable 

real-time decision-making and multi-site management [23]. 

Additionally, studies underscore the need for adaptive power 

control mechanisms in LoRa networks to maintain quality 

of service in environments with significant signal-to-noise 

variations [10], highlighting future directions for optimizing 

network performance in industrial IoT deployments. 

Collectively, these studies demonstrate that combining IoT 

sensors, LoRaWAN, and AI/ML models provides a scalable, 

low-cost, and reliable solution for real-time hazard detection 

and environmental monitoring. The literature underscores a 

clear trend toward integrating edge intelligence and robust 

wireless communication technologies, setting the stage for 

advanced predictive safety systems in industrial applications 

[23], [17], [26]. A recent study [30] demonstrated that 

attention-based Bi-LSTM architectures can effectively support 

edge-level time series forecasting for environmental 

monitoring applications. 

III. PROPOSED METHOD 

In this section, we present the proposed IoT-based system 

architecture for proactive gas detection, environmental and 

health monitoring. The methodology is organized into six 

parts, starting with an overview of the system architecture, 

followed by data acquisition, forecasting model design, edge 

deployment, alerting mechanism, and validation. 

A. System overview 

The proposed system adopts a four-layer IoT architecture 

for proactive gas detection, environmental and health 

monitoring (Fig. 1). 

1) Sensor Layer: Arduino-based nodes integrate an MQ-2 

gas sensor and a DHT11/22 temperature–humidity sensor. The 

microcontroller performs basic preprocessing and transmits 

feature frames including sensor values and metadata. 

2) Communication Layer: LoRa provides long-range, low- 

power wireless connectivity between distributed nodes and 

the central gateway, supporting reliable uplink reporting and 

reverse downlink alerts. 

3) Edge Computing Layer: A NanoPi Neo Plus2 serves 

as the gateway, hosting an Attentional Bi-LSTM model to 
 
 

forecast hazardous trends in multivariate time series. Based on 

predictions, the gateway triggers reverse-LoRa alerts to activate 



visual and auditory warnings locally, eliminating cloud 

dependency. Compared with prior LoRa-based monitoring 

systems, this design integrates edge-level forecasting and a 

closed feedback loop, offering a low-cost yet scalable solution 

for safety-critical industrial sites. 

4) Alert Layer: Upon hazard prediction, the gateway sends 

reverse-LoRa commands to the originating node(s). The nodes 

trigger local actuators—LED beacon and buzzer—providing 

immediate on-site alerts independent of cloud connectivity. 

Fig. 1. Four-layer system architecture: Sensor Layer (Arduino + MQ2 + DHT), 
Communication Layer (LoRa), and Edge Computing Layer (NanoPi Neo Plus2 
with Attentional Bi-LSTM), Alert Layer. 

 
B. Forecasting Model (Attentional Bi-LSTM) 

The forecasting module adopts a sequence-to-vector design 

(Fig. 2) tailored to multivariate sensor data. A Bidirectional 

LSTM (Bi-LSTM) encodes each input step from both forward 

(ℎ�⃗ �) and backward (ℎ⃖��) directions; the hidden states are 

concatenated as  

          ℎ� = [ℎ�⃗ � , ℎ⃖��], 
 forming a dual-context representation. 
 
   To emphasize the most informative time steps, we integrate a 
Bahdanau-style attention mechanism. Alignment scores are 
computed as 

            
� = �� tanh(��ℎ� + �� �) ,                                    (1)              
 
 
and normalized via softmax to obtain attention weights which 
is fed to a dense head to produce the multivariate next step 

prediction �����. Training is end-to-end with Mean Squared 

Error (MSE) loss and the Adam optimizer (�� =  10!"). 
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Fig. 2. Attentional Bi-LSTM architecture used for hazard prediction. 

 
C. Edge Deployment on NanoPi Neo Plus2 

 The choice of NanoPi Neo Plus2 as the gateway is motivated 

by its superior compute and memory over boards used in prior 

works (Table I). With a quad-core ARM Cortex-A53 (1.5 GHz), 

1 GB DDR3, and Debian 12 delivers edge capacity unattainable 

on Arduino/ESP32 while remaining compact and low power (<5 

W). These resources enable real time Attentional Bi-LSTM 

inference via PyTorch Lite / TensorFlow Lite, supporting 

predictive hazard monitoring without cloud dependence. 
The overall system architecture, including Arduino-based sensor 

nodes with LoRa and the NanoPi Neo Plus2 gateway, is shown 

on Fig. 3. Section 1 shows the NanoPi Neo Plus2, Section 2 

shows the Arduino board, Section 3 highlights the LoRa module, 

Section 4 shows the LCD display, and Section 5 illustrates the 

router and network connectivity. 

D. Alerting Mechanism 

Upon detecting a potential hazard, the NanoPi gateway riggers 

reverse-LoRa communication to the corresponding sensor nodes. 

These nodes activate local actuators, including visual (LED 

beacon) and auditory (buzzer) alarms, ensuring immediate on-

site alerts and real-time hazard awareness without cloud reliance. 

 
          IV. RESULT AND EVALUATION 

A. Data Acquisition and Preprocessing 

We used meteorological data from World Weather Online 
(WWO) and, from the full schema, retained only variables most 
relevant to gas concentration and dispersion: temperature 
(tempC), humidity, and pressure. Data was collected for two 
cities, California (USA) and Singapore, over the period from 
September 1, 2021, to September 1, 2025, with hourly 
resolution (35,089 samples). These data were then time-
aligned with node measurements, cleaned for outliers, 
normalized (min–max), and organized into sliding 
windows for multivariate Attentional Bi-LSTM 
forecasting. 
 

 



TABLE I 
COMPARISON OF PROCESSING BOARDS IN RELATED WORKS 

 

Study / Board Processor & Memory Edge ML Remarks 

Reddy & Naik (2023) [27] Arduino UNO/Nano + LoRa None Focus on sensing; cannot host deep models locally 
R. Prabu et al. (2024) [28] Arduino-class MCU (8-bit, low RAM) Very limited Threshold-based tasks; low cost but not scalable 
O’Brien et al. (2025) [29] ESP32 LoRa Dev Board (dual-core MCU) Moderate Good for tiny ML, but limited RAM/compute for deep models 
This work NanoPi Neo Plus2 (ARM Cortex-A53, 1 GB RAM) High Runs Attentional Bi-LSTM locally; balances cost, power, compute 

 

 
 

 

Fig. 3. Overall system setup, including Arduino sensor nodes, LoRa 
communication, and the NanoPi Neo Plus2 gateway. 

B. Prediction Accuracy and Model Performance 

To evaluate the proposed system, two experiments were 

conducted focusing on wireless communication stability and 

predictive accuracy. For communication testing, an indoor 

experiment was carried out in the Department of Computer 

Engineering at Ferdowsi University of Mashhad. The 

transmitter and receiver nodes, each equipped with small 

LoRa antennas, were positioned at different locations on the 

same floor with several obstacles simulating non-line-of-sight 

(NLoS) conditions. Sensor data were continuously transmitted 

at a baud rate of 9600 bps, and packets were received reliably 

without noticeable delay or loss, confirming stable short-range 

communication under moderate obstructions. 

For model evaluation, the Attentional Bi-LSTM network 

was tested for predicting hazardous events such as gas leaks 

and abnormal environmental conditions. Data from the MQ2 

gas and DHT temperature-humidity sensors served as multi- 

variate time-series inputs. The model provided accurate and 

timely hazard predictions, demonstrating effective edge-level 

inference. Fig. 4 shows real-time readings of gas 

concentration, temperature, and humidity. Future work will 

involve outdoor field tests with high-gain antennas and 

additional sensing modalities to enhance long-range 

performance and predictive accuracy. 

 

 
Fig. 4. Real-time sensor readings from the DHT (temperature-humidity) and 
MQ2 (gas) sensors transmitted via LoRa at a baud rate of 9600 bps. The 
data were collected indoors under obstructed conditions and used for hazard 
prediction. 

TABLE II 
PERFORMANCE COMPARISON OF THE PROPOSED ATTENTIONAL BI-LSTM 

MODEL WITH BASELINE LSTM VARIANTS ON THE WWO DATASET 
 

Model MSE RMSE MAE R2 

Attentional Bi-LSTM 0.001913 0.043736 0.018867 0.9284 

Bi-LSTM 0.001952 0.044185 0.020738 0.9229 
Vanilla LSTM 0.002128 0.046132 0.022769 0.9117 
Attentional LSTM 0.004252 0.065204 0.039729 0.7827 

 

To evaluate the effectiveness of the proposed Attentional 

Bi-LSTM, we compared its performance with baseline LSTM 

variants. The comparison, based on WWO dataset, is shown 

in Table II. As shown, the proposed model outperforms both 

Bi-LSTM and Vanilla LSTM in terms of MSE, RMSE, MAE, 

and R2, achieving a high R2 score of 0.9284. 



IV. CONCLUSION 

This study presented an intelligent and low-cost IoT frame- 

work that integrates LoRa-based wireless sensing with an 

edge-deployed Attentional Bi-LSTM model for predictive gas 

and environmental monitoring in hazardous industrial settings. 

The proposed system enables real-time forecasting and 

immediate on-site alerting without relying on cloud 

infrastructure, ensuring rapid response to potential hazards. 

Experimental results demonstrated stable LoRa 

communication at 9600 bps and high predictive accuracy in 

obstructed environments. 

Future work will focus on extending the communication 

range using high-gain antennas and integrating wearable sens- 

ing devices for continuous worker health monitoring, lever- 

aging the existing LoRa-based architecture to enhance safety 

and predictive capabilities in industrial environments. 
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