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Abstract: Diabetic retinopathy is a serious complication of diabetes, and if not controlled, may 
cause blindness. Automated screening of diabetic retinopathy helps physicians to diagnose and 
control the disease in early stages. In this paper, two case studies are proposed, each on a 
different dataset. Firstly, automatic screening of diabetic retinopathy utilising pre-trained 
convolutional neural networks was employed on the Kaggle dataset. The reason for using  
pre-trained networks is to save time and resources during training compared to fully training a 
convolutional neural network. The proposed networks were fine-tuned for the pre-processed 
dataset, and the selectable parameters of the fine-tuning approach were optimised. At the end, the 
performance of the fine-tuned network was evaluated using a clinical dataset comprising  
101 images. The clinical dataset is completely independent from the fine-tuning dataset and is 
taken by a different device with different image quality and size. 
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1 Introduction 
One of the most important complications of diabetes which 
damages the small arteries and veins in the retina is diabetic 
retinopathy (DR). In the early stages, diabetic retinopathy 
may be asymptomatic, but eventually, it causes blindness if 
left untreated. In 2015, the number of patients diagnosed 
with DR and late-stage DR was 145 million and 45 million, 
respectively (Cho et al., 2017). Evidence shows that by 
diagnosing DR in early stages it can be treated just by 
diabetes management and can be prevented from further 
damages to the retina (Antal and Hajdu, 2012). 

Generally, DR is diagnosed by an experienced 
ophthalmologist using a detailed and highly accurate retinal 
image (fundus image). Ophthalmologist diagnoses  
the severity of DR by carefully investigating fundus  
images and finding the different symptoms of DR,  
such as haemorrhages, exudates, micro-aneurysms, and 
neovascularisation. Figure 1 demonstrates an example of a 
patient’s eye with signs of DR. Finding DR signs needs 
careful and frequent examination, which makes it difficult 
to diagnose in early stages. Also, in some countries with the 
shortage of ophthalmologists, trained professionals are not 
available for examining people’s eyes periodically. 
Therefore, lots of DR cases remain undiagnosed in their 
early stages (Hani and Nugroho, 2010). 

According to recent studies, DR can be diagnosed 
accurately in early stages by applying automatic diagnosis 
systems. The main purpose of these systems is to classify 
DR images from no DR images (Niemeijer et al., 2010). 
There are multiple approaches in the literature using various 
algorithms to implement automatic screening of DR. 
Typically, these methods design their automated diagnostic 
systems using hand-crafted features. Some of these methods 
are artificial neural network (ANN) and k-nearest 
neighbours (Bhatkar and Kharat, 2015; Osareh et al., 2009; 
Saranya et al., 2012). As an effort in comparing different 
available techniques, a study is implemented conventional 
machine learning algorithms using hand-crafted features in 
which linear support vector machine (SVM) with 
polynomial kernel of degree three is defined as a reliable 
classifier that can be used for DR diagnosis (Mohammadian 
et al., 2017a). 

 

Figure 1 Example of a retinal photo with diabetic retinopathy 
(see online version for colours) 

 

Generally speaking, feature extraction techniques are 
complex tasks and require depth knowledge of the images 
and their differences. Therefore, recent studies are using 
state-of-the-art neural network named convolutional neural 
network (CNN) for various fields such as finger vein 
recognition (Cheng et al., 2017), optimisation of speech 
recognition system (Weipeng et al., 2019), and especially in 
medical image analysis (Zhang et al., 2015). 

One of the main reasons for implementing CNN in 
medical applications is that it is able to automatically extract 
features by using deep multiple layers (Tajbakhsh et al., 
2016). Therefore, using CNN in medical diagnosis 
applications is increasing during recent years. For instance, 
CNNs were used for grading brain tumours in magnetic 
resonance imaging (MRI) scans (Pan et al., 2015), 
predicting the types of polyps during colonoscopy videos 
(Zhang et al., 2017), classifying interstitial lung disease 
(ILD) (Shin et al., 2016), and recognising cardiac MRI 
acquisition plane (Margeta et al., 2017). In another study, 
ensemble classification with CNN structures was used to 
extract features and segment retinal blood vessels (Wang  
et al., 2015) and a study related to severity DR diagnosis 
using CNN was addressed in Pratt et al. (2016). Also,  
two different comparative studies of two CNN algorithms to 
diagnose DR cases are performed in Vo and Verma (2016) 
and Mohammadian et al. (2017b). 
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Requiring a large amount of medical training dataset, 
complications about training of a deep CNN such as 
convergence and overfitting issues, and requiring large 
computing power and memory make the full training of a 
CNN from scratch impractical (Tajbakhsh et al., 2016). In 
literature, pre-trained CNNs have been fine-tuned as an 
alternative technique to fully training CNNs and have been 
used to modify the systems for other applications (Vo and 
Verma, 2016; Margeta et al., 2017; Tajbakhsh et al., 2016). 
There are different the state-of-the-art CNN architectures 
for detection and classification such as CifarNet 
(Krizhevsky, 2009), Alexnet (Krizhevsky et al., 2012) and 
GoogleNet (Szegedy et al., 2015a) with different model 
training parameter values. But GoogleNet model which uses 
concatenation process is more complex than both CifarNet 
and AlexNet (Shin et al., 2016). Therefore, in this study, a 
widely known pre-trained CNN architecture named 
Inception-V3 (the latest module version of the GoogLeNet 
structure) was used for DR screening in Kaggle dataset. 
Inception-V3 has been previously trained for the application 
of ImageNet dataset classification and its weights are 
publicly available (Deep Learning Models, 2015). 

CNNs consist of different sets of layers, the earlier 
layers are related to extract lower-level features from the 
images including edges and can be useful for various tasks. 
The other set of layers are trained to extract higher-level 
features that are more specific for each dataset. Therefore, 
for implementing DR screening system, the weights of the 
last layers of the CNNs are fine-tuned to adapt the networks 
for this very task. 

The comparative study in this paper, introduces a better 
understanding of the effects of re-training various layers of 
a pre-trained network. Therefore, the images of Kaggle DR 
dataset, publicly available, were used to retrain the networks 
and to compare the accuracy of the proposed systems to the 
aim of choosing the best CNN in performance. 
(https://www.kaggle.com/c/diabetic-retinopathy-detection/ 
data). Kaggle dataset has a large number of diabetic 
retinopathy images and is being used by researchers to 
develop disease diagnosis models (Wang and Jianbo, 2018). 
Also, in most of the similar literature, the trained networks 
are being tested on a subset of images in the same dataset. 
Although, the test dataset is chosen such that it does not 
overlap with the training dataset but most of the times the 
trained network is not easily applicable to other datasets. To 
this end, in this paper the fine-tuned networks were 
evaluated using a clinical dataset which is completely 
independent of the original training and testing dataset. The 
purpose of using the clinical dataset is not only to evaluate 
the proposed networks, but also to investigate the capability 
of this system to be employed in local clinics for automatic 
DR diagnosis. It is noteworthy that the methods used here 
for fine-tuning and data preparation have been discussed in 
our previous study and this paper continues our latest 
research in the field of DR screening and verification of the 
proposed approach using clinical data (Mohammadian et al., 
2017b; https://goo.gl/a2dLbq). 

Overall, the contributions of this paper are: 

1 employing Inception-V3 as the most practical CNN 
architecture for DR diagnosis 

2 comparing the effects of re-training various layers of 
Inception-V3 

3 evaluating fine-tuned networks using clinical dataset. 

The paper continues as follows. Section 2 briefly describes 
methods that are used for data preparation. Section 3 
explains the methodology to compare CNN models.  
Section 4 introduces the clinical dataset that is utilised to 
test the proposed networks. The results and comparative 
analysis of the simulations are discussed in Section 5. 
Section 6 presents the proposed approach, while Section 7 
concludes the paper. 

2 Data preparation 
2.1 Diabetic retinopathy dataset 
In this paper, Kaggle diabetic retinopathy dataset was used 
to fine-tune the CNNs (Diabetic Retinopathy Detection, 
2015). This dataset contains of 35,126 retina images, which 
have various qualities due to the different models of 
cameras that have been used for taking the fundus images. 
Each image is carefully investigated by a clinician for 
diabetic retinopathy and is rated as follows: no DR – 0; mild 
DR – 1; moderate DR – 2; severe DR – 3 and proliferative 
DR – 4. In this study, the aim is to classify the retina images 
into No DR images (with the label 0) and DR images (with 
labels 1–4). In addition, the proposed classification 
networks can be used for diagnosing the severity of the 
disease as well. 

In the first step, Kaggle dataset was being used to retrain 
the networks and to classify the DR images from no DR 
ones by comparing performance results of each network. 
After fine-tuning the network, a clinical dataset which 
consists of DR and No DR images, was used to test the 
networks’ performances on a completely different and 
unknown dataset and to investigate which of the proposed 
systems is the best model to be implemented for automatic 
DR diagnosis in eye clinics. Therefore, the main aim of 
utilising models on clinical dataset is to facilitate diagnosis 
process for practitioners, increase the accuracy of DR 
diagnosis in physical examinations, and reduce the time of 
diagnosis for both patients and practitioners. 

2.2 Image pre-processing 
Various cameras are used to prepare Kaggle images, which 
cause variations in the images. Therefore, an image  
pre-processing algorithm using OpenCV package was 
performed to decrease different camera resolution’ effects. 
In the first step of the pre-processing method which is 
discussed by Graham (2015), the images were rescaled to 
have the same radius. The second step was to subtract the 
local average from the colour of each pixel, which maps the 
average to 50% grey. The last step was to eliminate the 
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‘boundary effects’ by clipping the images’ edges (Graham, 
2015). 

2.3 Data augmentation 
In this work, the dataset was enlarged because Inception-V3 
is a complex network which requires a large dataset. One of 
the well-known methods that is used in literature to decrease 
overfitting is data augmentation (Simonyan and Zisserman, 
2014), which is also useful to make networks robust to the 
noises in the data (Pan et al., 2015). Therefore, data 
augmentation was used in this work to provide good 
learning convergence and generalisation which is one of the 
ways to prevent overfitting. Rotating, shifting, and flipping 
are common examples that were implemented for data 
augmentation. Enlarging the dataset by this approach is 
beneficial, as the augmented images disappear after each 
training process and there is no need for more memory 
space. On the other hand, the size of DR images of the 
Kaggle dataset is not same as the No DR images. Therefore, 
data augmentation technique was performed to increase the 
number of DR images. 

3 CNN architecture and fine-tuning 
As a type of neural networks, CNN consists of 
convolutional, pooling and fully connected (FC) layers 
(Wang et al., 2015). The core layer of CNNs is 
convolutional layer which is the most important part of the 
network for extracting features from input data, and just like 
its name, it convolves the input with kernel filters to 
produce the output named feature map. Neurons in a 
specific feature map have the same weights and biases. 
Weights’ sharing has two important advantages. First, 
neurons in a specific feature map can find the same features 
at different locations of the image. The second advantage is 
that the number of learning parameters decreases by weights 
sharing. Subsampling or pooling layer is often placed after 
convolutional layers and is used to reduce the number of 
learning parameters that should to be trained, as well as, 
keeping the most significant information. Max pooling and 
average pooling are two different pooling layers that are 
commonly used in CNNs. The last layer of a CNN is the FC 
layer, in which, the neurons have full connection to all 
activations in the former layer. The FC layer is the end of a 
CNN and it works like a traditional multilayer neural 
network (Krizhevsky et al., 2012; LeCun et al., 2015). 

3.1 Fine-tuning 
Practically, gathering adequate number of images to train a 
CNN network from scratch in medical image analysis is 
almost impossible (Tajbakhsh et al., 2016). Moreover, 
training a deep network from scratch with a small dataset 
may cause overfitting problem. Therefore, the most 
common way to overcome these issues is to re-train the last 
layers of a fully-trained CNN on a different task and 
adjusting its weights and parameters for the new 

classification task. It is noteworthy that the weights and 
biases of the frozen layers are kept unchanged during the 
training process, while the parameters of the unfrozen layers 
are adjusted for the new task. This method is called  
fine-tuning and can be useful to prevent overfitting, and 
also, due to the small dataset that is used, large computing 
power and memory are not required. Therefore, in this 
study, a pre-trained CNN model, Inception-V3, was  
fine-tuned for DR diagnosis application using Keras core 
library. 

3.2 Inception-V3 architecture 
The Inception model was designed by Szegedy et al. 
(2015a). The main difference of inception module from 
other CNN architectures is its concatenation process. In this 
process, the output of an inception module is the 
concatenation of 1×1, 3×3, and 5×5 convolutions that is 
provided to the input. In a recent publication, Szegedy et al. 
(2015b) developed Inception-V3, as an updated Inception 
module. Figure 2 illustrates Inception-V3 schematic 
diagram. As it is demonstrated in Figure 2, each block 
consists of three different types of convolutional layer and a 
pooling layer. The numbers in convolutional layers show 
the size of the filter’s window that is convolved with the 
input. Overall, Inception-V3 architecture consists of  
219 layers which include convolution, pooling and FC 
layers. More details of the network can be accessed from 
other references (Szegedy et al., 2015a, 2015b). 

Figure 2 Schematic diagram of Inception-V3 (see online version 
for colours) 

 

3.3 Software and hardware 
In this work, Tensorflow, OpenCV, Keras, Numpy,  
Scikit-learn, and h5py packages were used to implement the 
image pre-processing and fine-tuning steps to classify DR 
and no DR images. Keras, a neural network Python library, 
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includes pre-trained CNNs. To implement Inception-V3, 
Ubuntu operating system were used for running the 
Tensorflow and Keras frameworks, and the other  
above-mentioned packages were utilised for image  
pre-processing and other related calculations in the Python 
environment. CNN architecture that was used here was  
pre-trained on the ImageNet dataset, and its weights are 
widely used in studies for fine-tuning (Shin et al., 2016). 
ImageNet has over 1.2 million images with 1,000 separate 
object categories, which is used for object recognition 
(Russakovsky et al., 2014). 

Designing pre-trained CNNs instead of fully training 
networks reduces the need for graphics processing unit and 
external memories. Although, utilising this approach might 
result in a slightly lower accuracy than training the network 
from scratch, but it will save time and resources during 
training process. An Intel i7 core CPU with 8 GB memory 
was used here for retraining the models which is less 
expensive and easily available compared to common CNN 
hardware devices. 

4 Clinical data and methodology 
In this step, the proposed CNNs were optimised to diagnose 
DR cases from real fundus images that are captured from 
the Navid-e-Didegan ophthalmology clinic, Iran (Clinical 
Dataset, 2016). This dataset contains 101 retinal images, in 
which 50 of the images are labelled as No DR and 51 
images are labelled as DR class by a professional 
ophthalmologist. Therefore, by applying these labelled 
images to the fine-tuned networks in the test step, the 
performance of the networks was examined for the new and 
unknown clinical dataset, in which all the test images are 
independent and different from the train data and they have 
been taken by a different device and different operator. 

Table 1 Performance indices 

Accuracy TP TN
P N

+
+

 

Precision TP
TP FP+

 

Recall TP
TP FN+

 

F1-score 2
2

TP
TP FP FN+ +

 

Source: Olson and Delen (2008) 

To compare the results of the fine-tuned networks for the 
clinical data, four performance indices were calculated. 
These indices are accuracy, precision, recall and F1-score 
(Olson and Delen, 2008; Nilanjan et al., 2017). Table 1 
defines these values as being used in this paper. In this 
table, TP, FP, TN and FN represent true positive, false 
positive, true negative and false negative results of the 
classification algorithm, respectively. P and N represent the 

labelled DR and no DR samples, respectively, and P + N 
demonstrates the total number of samples. 

Softmax function is usually used in FC layers of CNNs 
for the final decision of the classifier. Equation (1) 
demonstrates softmax function for input xi where N is the 
number of classes. 

( )
1

1, 2, ,
i

i

x

i N x
i

ef x i N
e

=

= ∀ ∈


  (1) 

Generally, the loss function that was used for CNN 
classification problems is cross-entropy loss function. This 
function defined as 

log .
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j

f
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e
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where fj is the jth element of the vector of class scores f, fj is 
the softmax function and can be calculated as equation (1). 
The full loss of the network is the mean of Li over all 
training data. 

5 Performance analysis 
5.1 Preparing dataset 
As the train and test datasets include different fundus 
images taken with different devices while varying in quality 
and size, to reduce the variations in images, pre-processing 
method discussed in Section 2.2 was implemented on both 
train and test dataset. The result of image pre-processing 
step is demonstrated in Figures 3(a) and 3(b). 

Figure 3 (a) The proliferative DR image (b) The pre-processed 
image (c) The horizontally flipped image (see online 
version for colours) 

  
 (a) (b) 

 

 
(c) 

As previously discussed, in this study, Kaggle dataset was 
used to perform the training step of the fine-tuning. There 
are 35,126 fundus images in this dataset that are divided to 
25,810 images of no DR and 9,316 images of DR by an 
expert. To implement classification algorithms, it is very 
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common to use the same size of data in each class for 
training and testing the networks. Therefore, to balance the 
number of DR images and no DR ones, different image 
augmentation algorithms were used to increase the size of 
DR images. By applying the augmentation method that was 
discussed in Section 2.3 to DR images randomly, we 
increased the number of these images to 25,619. Figure 3(c) 
demonstrates an example of a horizontally flipped image. 

In order to train the networks, 20 and 80% of the images 
were chosen randomly for the test and train datasets, 
respectively. The testing and training sets that were used for 
each simulation were kept identical to keep the results 
comparable. The test dataset was being used solely to 
evaluate the performance of the fine-tuning algorithm in 
each step. Moreover, the clinical dataset was used to 
evaluate the performance of each completed fine-tuning 
process. 

5.2 Fine-tuning and retraining networks 
There is a growing interest in implementing fine-tuned 
CNNs for medical tasks due to lack of sufficient datasets 
(Esteva et al., 2017; Kieffer et al., 2017; Vesal et al., 2018). 
A common practice in fine-tuning algorithms is to re-train 
the last two blocks of the pre-trained networks to fine-tune 
the CNN. Therefore, the first 172 layers of the Inception-V3 
network were kept frozen, while the other layers of the 
network as well as the FC layer were retrained. In addition, 
to compare the network’ results for various fine-tuned 
layers of the CNN, two situations where the last three and 
four blocks were unfrozen and re-trained were also tested. 
By increasing the number of layers that were re-trained and 
fine-tuned, the training time was increasing from 3 to  
10 hours. The hardware devices that were used for training 
the models are mentioned in Section 3.3. 

To employ CNN for image classification applications, 
hyperbolic tangent (tanh), sigmoid, exponential linear unit 
(ELU) and rectified linear unit (RELU) are the four 
frequently-used activation functions, which we utilised in 
this study. The accuracy results on the test dataset using 
these activation functions were compared, while all other 
parameters were kept constant. Based on the investigation, 
ELU showed the best performance among these activation 
functions and were used for the rest of the study. Also, by 
utilising adaptive moment estimation (ADAM), adaptive 
gradient algorithm (Adagrad), Nadam (Adam with Nesterov 
momentum), Adamax (a variant of Adam based on the 
infinity norm), stochastic gradient descent (SGD) and Root 
mean square propagation (RMSProp) optimisers; SGD and 
ADAM demonstrated best performances among all the 
optimisers. The accuracy results on the test images using 
these optimisers, while other parameters were kept constant, 
have been reported in Mohammadian et al. (2017b), and 
demonstrate the better performance of ADAM and SGD. In 
addition, ADAM converged faster than SGD with a lower 
number of epochs required, which makes it the most 
appropriate optimiser for the proposed networks considering  
 
 

hardware limits. Due to the promising performance of 
ADAM optimiser and ELU activation function, these  
two functions were used for performing the simulations. 
Also, train dataset was augmented by using parameters  
of height-shift-range, shear-range, zoom-range, and  
width-shift-range equal to 0.2 and rotation-range equals to 
40 degrees with the aim of increasing the model’ 
performances, and also decreasing the overfitting in them. 

Multiple block sizes of the pre-trained network were  
re-trained to investigate the effect of fine-tuning the 
different layers on the network performance. In the first 
case, we froze the first 172 layers of the model and fine-
tuned the rest of the layers (last two blocks). 

Figure 4 demonstrates the loss results for both train and 
test datasets over 50 epochs. Note that in this step of 
comparison, the test dataset is still a subset of Kaggle 
dataset and the loss results were used to compare the CNNs 
(Shin et al., 2016). As anticipated, in Figure 4, the loss is 
decreasing with epochs. Therefore, it can be concluded that 
re-training the last two blocks may result in an acceptable 
performance. The fluctuation seen in Figure 4 (and the rest 
of figures in the paper) is due to the batch size of training 
data. Increasing the batch size will result in reducing the 
fluctuation. Experimentally, in this work the batch size was 
chosen as 16 for all the networks. Increasing the size can 
decrease the fluctuations but it will violate the hardware 
limitations. 

Figure 4 Network loss for fine-tuning of the last two blocks  
(the first 172 layers are kept frozen) (see online version 
for colours) 
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In the second step, the first 158 layers of the model were 
kept frozen and the last three blocks were fine-tuned.  
Figure 5(a) demonstrates the loss for this network. As it can 
be seen in Figure 5(a), although the training loss is 
decreasing, the test loss is not showing acceptable 
performance. This behaviour is the typical sign of 
overfitting the network during training (Shin et al., 2016). 
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Figure 5 (a) Network loss for fine-tuning of the last three blocks 
(the first 158 layers are kept frozen) (b) Network loss 
for fine-tuning of the last three blocks (the first  
158 layers are kept frozen), while applying a dropout 
layer (see online version for colours) 
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(b) 

One of the most useful regularisation techniques to prevent 
overfitting in CNNs is to apply a dropout layer before the 
fully-connected layer (see Figure 3). By implementing 
dropout layer with dropout factor of 0.5, the network’s 
performance is improved for the test dataset as shown in 
Figure 5(b). 

In the last step, the first 136 layers of the model were 
kept frozen and the last four blocks were fine-tuned.  
Figure 6 demonstrates the loss graph for this network. For 
this case, although the number of re-trained layers is more 
than the previous cases, the loss graphs do not demonstrate 
acceptable performance. The reason is that the first layers of 
the original CNN are tuned specifically to extract  
lower-level features such as edges, shapes, etc. in the base 
dataset which is relatively larger and more comprehensive. 
Therefore, re-training these layers with the smaller dataset, 

and lower epoch number will affect the pre-trained weights 
that are already well trained and hence it will disturb the 
accuracy. 

Figure 6 Network loss for fine-tuning of the last four blocks  
(the first 136 layers are kept frozen) (see online version 
for colours) 
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To compare different fine-tuning steps, Figures 7(a) and 
7(b) demonstrate loss graphs of the train and the test dataset 
for all steps, respectively. As shown in Figure 7(a), training 
loss for all approaches is converging to a fixed number with 
acceptable performance. Therefore, the difference between 
networks can be discussed more accurately by investigating 
the loss graph for test dataset [Figure 7(b)]. Figure 7(b) 
demonstrates that networks with 158 and 172 frozen layers 
(fine-tuning the last three and two blocks, respectively) have 
better results for the test data than the network with  
136 frozen layers (fine-tuning the last four blocks). 

Figure 7 (a) Network loss for train dataset (b) Network loss for 
test dataset (see online version for colours) 
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Figure 7 (a) Network loss for train dataset (b) Network loss for 
test dataset (continued) (see online version for colours) 
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Overall, fine-tuning the last two or three blocks of 
Inception-V3 architecture utilising ELU and ADAM as the 
selected activation function and optimiser, respectively, 
showed the best classification result for diabetic retinopathy 
diagnosis in Kaggle dataset. 

5.3 Testing the networks with clinical dataset 
Section 5.2 included the comparative approach to fine-tune 
the CNN network utilising Kaggle dataset. The next case 
study is to clinically evaluate the networks and to test the 
fine-tuned networks using clinical datasets. The first step for 
using the clinical dataset was to pre-process the images and 
to diminish the variations in the images, as before. The 
image pre-processing technique discussed in Section 2.2 
was applied to the clinical images and the pre-processed 
images are demonstrated in Figure 8. 

The next step is to apply the pre-processed images to the 
proposed networks that have already been trained and 
discussed in Section 5.2. In the comparison step, the 
performance indices mentioned in Section 4 were used. The 
result of the comparison is demonstrated in Table 2. 

As shown in Table 2, the fine-tuned network after  
re-training the last three blocks has the best performance 
results among the other networks, considering all 
performance indices. However, from the clinical usage 
perspective of the automatic DR screening approach the 
recall, which demonstrates the correctness of DR diagnosis, 
is the most important factor. 

As during the screening stage, the goal is to save time 
for the physician while reducing the number of test images 
and labelling the ones which are suspicious of DR as well as 
the ones which are close, having a high recall means that 
most of the patients will be screened correctly and their 
images will be labelled for ophthalmologist consideration. 
As shown in Table 2, re-training the last two blocks of the 
pre-trained Inception-V3 CNN shows a superior 

performance in terms of recall, which can facilitate the 
screening process for ophthalmologists and increase their 
accuracy and efficiency, while re-training the last  
three blocks also demonstrates acceptable performance. 

Figure 8 (a) Proliferative DR image (b) Pre-processed 
proliferative DR image (c) No DR image  
(d) Pre-processed no DR image (see online version  
for colours) 

  
 (a) (b) 

   
 (c) (d) 

Table 2 Performance indices for the clinical data 

Performance 
indices 

Unfrozen 
blocks: 2 

Unfrozen 
blocks: 3 

Unfrozen 
blocks: 4 

Accuracy 0.6733 0.7030 0.5841 
Precision 0.6097 0.6438 0.5849 
Recall 0.9803 0.9216 0.6078 
F1-score 0.7518 0.7580 0.5961 

6 Discussion 
Recently, convolutional neural networks are being widely 
used for medical applications, especially disease diagnosis 
from images. CNNs are deep networks which require very 
large datasets to be trained. Also, there is no need to feed 
them hand-crafted features as the features are extracted 
through the network, which makes them more suitable for 
classifying complex datasets. Because large medical data is 
not available to train deep networks from scratch, it is useful 
to leverage previously trained networks on a different 
dataset to classify a new dataset (Tajbakhsh et al., 2016; 
Margeta et al., 2017). In this study, a pre-trained CNN 
(Inception-V3), which was trained for object detection, was 
used for DR diagnosis. 

In the first layers of Inception-V3, the lower-level 
features of the images including edges, lines, and curves are 
extracted and trained. In the middle layers, another set of 
the lower level features such as shapes are trained and 
segmented. These features are general and can be used for 
many other datasets (such as the DR diagnosis application). 
In contrast, the higher-level features are extracted and 
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trained in the last layers of the CNN and retraining these last 
layers is the key factor of retargeting the system for the new 
classification problem (Yosinski et al., 2014). So,  
fine-tuning the last layers of pre-trained networks can make 
the networks specific to identify the individual features of 
the new dataset and being able to classify based on them. 
By fine-tuning the last layers of Inception-V3 on the new 
dataset, the network is adapted to detect anomalies in 
fundus images which are the purpose of DR diagnosis 
system. 

Noteworthy is that in Inception-V3, by removing the 
fully connected layer, the output of the network is the 
vectors of extracted features. Therefore, other classification 
algorithms can be trained by providing these features to 
other common classification methods such as SVM. The 
feature extraction approach can be used when the dataset is 
small and is very different from the initial pre-trained 
dataset. In the case of this work and as the DR-related 
dataset is large enough, the fine tuning approach is used for 
DR detection with the description as mentioned above. 

To compare the importance of retraining the last layers 
on the performance of the network, the result of fine-tuning 
the network for two, three, and four unfrozen blocks were 
studied. Also, in order to validate the fine-tuned network, a 
clinical dataset was used without being presented as the 
training set. In analysing the clinical trial results, the recall 
index is an important parameter in screening the 
performance of the automatic disease diagnosis models and 
shows the proportion of correctly diagnosed patients. 
Therefore, this index was used in order to compare different 
network structures and eventually to test the system on the 
clinical dataset. 

7 Conclusions 
In this paper, a widely known pre-trained convolutional 
neural network was fine-tuned for the diabetic retinopathy 
screening task. The reason for fine-tuning a pre-trained 
model is to save time and resource during training deep 
networks, while being able to retarget perfectly on the new 
dataset and produce acceptable results. This study was 
developed to compare the effect of re-training different 
number of layers of the networks on the network’s 
performance in screening diabetic retinopathy cases. Also, 
to demonstrate the results of the fine-tuned network in 
clinical applications, a dataset including 101 fundus images, 
independent of the training and testing dataset, was applied 
and evaluated. The results of the study can be helpful to 
determine the best network architecture for diabetic 
retinopathy screening in real clinical cases. 
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