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Abstract: Diabetic retinopathy is a serious complication of diabetes, and if not controlled, may
cause blindness. Automated screening of diabetic retinopathy helps physicians to diagnose and
control the disease in early stages. In this paper, two case studies are proposed, each on a
different dataset. Firstly, automatic screening of diabetic retinopathy utilising pre-trained
convolutional neural networks was employed on the Kaggle dataset. The reason for using
pre-trained networks is to save time and resources during training compared to fully training a
convolutional neural network. The proposed networks were fine-tuned for the pre-processed
dataset, and the selectable parameters of the fine-tuning approach were optimised. At the end, the
performance of the fine-tuned network was evaluated using a clinical dataset comprising
101 images. The clinical dataset is completely independent from the fine-tuning dataset and is
taken by a different device with different image quality and size.
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1 Introduction

One of the most important complications of diabetes which
damages the small arteries and veins in the retina is diabetic
retinopathy (DR). In the early stages, diabetic retinopathy
may be asymptomatic, but eventually, it causes blindness if
left untreated. In 2015, the number of patients diagnosed
with DR and late-stage DR was 145 million and 45 million,
respectively (Cho et al., 2017). Evidence shows that by
diagnosing DR in early stages it can be treated just by
diabetes management and can be prevented from further
damages to the retina (Antal and Hajdu, 2012).

Generally, DR is diagnosed by an experienced
ophthalmologist using a detailed and highly accurate retinal
image (fundus image). Ophthalmologist diagnoses
the severity of DR by -carefully investigating fundus
images and finding the different symptoms of DR,
such as haemorrhages, exudates, micro-aneurysms, and
neovascularisation. Figure 1 demonstrates an example of a
patient’s eye with signs of DR. Finding DR signs needs
careful and frequent examination, which makes it difficult
to diagnose in early stages. Also, in some countries with the
shortage of ophthalmologists, trained professionals are not
available for examining people’s eyes periodically.
Therefore, lots of DR cases remain undiagnosed in their
early stages (Hani and Nugroho, 2010).

According to recent studies, DR can be diagnosed
accurately in early stages by applying automatic diagnosis
systems. The main purpose of these systems is to classify
DR images from no DR images (Niemeijer et al., 2010).
There are multiple approaches in the literature using various
algorithms to implement automatic screening of DR.
Typically, these methods design their automated diagnostic
systems using hand-crafted features. Some of these methods
are artificial neural network (ANN) and Kk-nearest
neighbours (Bhatkar and Kharat, 2015; Osareh et al., 2009;
Saranya et al., 2012). As an effort in comparing different
available techniques, a study is implemented conventional
machine learning algorithms using hand-crafted features in
which linear support vector machine (SVM) with
polynomial kernel of degree three is defined as a reliable
classifier that can be used for DR diagnosis (Mohammadian
etal., 2017a).

Figure 1 Example of a retinal photo with diabetic retinopathy
(see online version for colours)
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Generally speaking, feature extraction techniques are
complex tasks and require depth knowledge of the images
and their differences. Therefore, recent studies are using
state-of-the-art neural network named convolutional neural
network (CNN) for various fields such as finger vein
recognition (Cheng et al., 2017), optimisation of speech
recognition system (Weipeng et al., 2019), and especially in
medical image analysis (Zhang et al., 2015).

One of the main reasons for implementing CNN in
medical applications is that it is able to automatically extract
features by using deep multiple layers (Tajbakhsh et al.,
2016). Therefore, using CNN in medical diagnosis
applications is increasing during recent years. For instance,
CNNs were used for grading brain tumours in magnetic
resonance imaging (MRI) scans (Pan et al., 2015),
predicting the types of polyps during colonoscopy videos
(Zhang et al., 2017), classifying interstitial lung disease
(ILD) (Shin et al., 2016), and recognising cardiac MRI
acquisition plane (Margeta et al., 2017). In another study,
ensemble classification with CNN structures was used to
extract features and segment retinal blood vessels (Wang
et al., 2015) and a study related to severity DR diagnosis
using CNN was addressed in Pratt et al. (2016). Also,
two different comparative studies of two CNN algorithms to
diagnose DR cases are performed in Vo and Verma (2016)
and Mohammadian et al. (2017b).
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Requiring a large amount of medical training dataset,
complications about training of a deep CNN such as
convergence and overfitting issues, and requiring large
computing power and memory make the full training of a
CNN from scratch impractical (Tajbakhsh et al., 2016). In
literature, pre-trained CNNs have been fine-tuned as an
alternative technique to fully training CNNs and have been
used to modify the systems for other applications (Vo and
Verma, 2016; Margeta et al., 2017; Tajbakhsh et al., 2016).
There are different the state-of-the-art CNN architectures
for detection and classification such as CifarNet
(Krizhevsky, 2009), Alexnet (Krizhevsky et al., 2012) and
GoogleNet (Szegedy et al., 2015a) with different model
training parameter values. But GoogleNet model which uses
concatenation process is more complex than both CifarNet
and AlexNet (Shin et al., 2016). Therefore, in this study, a
widely known pre-trained CNN architecture named
Inception-V3 (the latest module version of the GoogLeNet
structure) was used for DR screening in Kaggle dataset.
Inception-V3 has been previously trained for the application
of ImageNet dataset classification and its weights are
publicly available (Deep Learning Models, 2015).

CNNs consist of different sets of layers, the earlier
layers are related to extract lower-level features from the
images including edges and can be useful for various tasks.
The other set of layers are trained to extract higher-level
features that are more specific for each dataset. Therefore,
for implementing DR screening system, the weights of the
last layers of the CNNs are fine-tuned to adapt the networks
for this very task.

The comparative study in this paper, introduces a better
understanding of the effects of re-training various layers of
a pre-trained network. Therefore, the images of Kaggle DR
dataset, publicly available, were used to retrain the networks
and to compare the accuracy of the proposed systems to the
aim of choosing the best CNN in performance.
(https://www .kaggle.com/c/diabetic-retinopathy-detection/
data). Kaggle dataset has a large number of diabetic
retinopathy images and is being used by researchers to
develop disease diagnosis models (Wang and Jianbo, 2018).
Also, in most of the similar literature, the trained networks
are being tested on a subset of images in the same dataset.
Although, the test dataset is chosen such that it does not
overlap with the training dataset but most of the times the
trained network is not easily applicable to other datasets. To
this end, in this paper the fine-tuned networks were
evaluated using a clinical dataset which is completely
independent of the original training and testing dataset. The
purpose of using the clinical dataset is not only to evaluate
the proposed networks, but also to investigate the capability
of this system to be employed in local clinics for automatic
DR diagnosis. It is noteworthy that the methods used here
for fine-tuning and data preparation have been discussed in
our previous study and this paper continues our latest
research in the field of DR screening and verification of the
proposed approach using clinical data (Mohammadian et al.,
2017b; https://goo.gl/a2dLbq).

Overall, the contributions of this paper are:

1 employing Inception-V3 as the most practical CNN
architecture for DR diagnosis

2 comparing the effects of re-training various layers of
Inception-V3

3 evaluating fine-tuned networks using clinical dataset.

The paper continues as follows. Section 2 briefly describes
methods that are used for data preparation. Section 3
explains the methodology to compare CNN models.
Section 4 introduces the clinical dataset that is utilised to
test the proposed networks. The results and comparative
analysis of the simulations are discussed in Section 5.
Section 6 presents the proposed approach, while Section 7
concludes the paper.

2 Data preparation
2.1 Diabetic retinopathy dataset

In this paper, Kaggle diabetic retinopathy dataset was used
to fine-tune the CNNs (Diabetic Retinopathy Detection,
2015). This dataset contains of 35,126 retina images, which
have various qualities due to the different models of
cameras that have been used for taking the fundus images.
Each image is carefully investigated by a clinician for
diabetic retinopathy and is rated as follows: no DR — 0; mild
DR - 1; moderate DR — 2; severe DR — 3 and proliferative
DR — 4. In this study, the aim is to classify the retina images
into No DR images (with the label 0) and DR images (with
labels 1-4). In addition, the proposed classification
networks can be used for diagnosing the severity of the
disease as well.

In the first step, Kaggle dataset was being used to retrain
the networks and to classify the DR images from no DR
ones by comparing performance results of each network.
After fine-tuning the network, a clinical dataset which
consists of DR and No DR images, was used to test the
networks’ performances on a completely different and
unknown dataset and to investigate which of the proposed
systems is the best model to be implemented for automatic
DR diagnosis in eye clinics. Therefore, the main aim of
utilising models on clinical dataset is to facilitate diagnosis
process for practitioners, increase the accuracy of DR
diagnosis in physical examinations, and reduce the time of
diagnosis for both patients and practitioners.

2.2 Image pre-processing

Various cameras are used to prepare Kaggle images, which
cause variations in the images. Therefore, an image
pre-processing algorithm using OpenCV package was
performed to decrease different camera resolution’ effects.
In the first step of the pre-processing method which is
discussed by Graham (2015), the images were rescaled to
have the same radius. The second step was to subtract the
local average from the colour of each pixel, which maps the
average to 50% grey. The last step was to eliminate the
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‘boundary effects’ by clipping the images’ edges (Graham,
2015).

2.3 Data augmentation

In this work, the dataset was enlarged because Inception-V3
is a complex network which requires a large dataset. One of
the well-known methods that is used in literature to decrease
overfitting is data augmentation (Simonyan and Zisserman,
2014), which is also useful to make networks robust to the
noises in the data (Pan et al.,, 2015). Therefore, data
augmentation was used in this work to provide good
learning convergence and generalisation which is one of the
ways to prevent overfitting. Rotating, shifting, and flipping
are common examples that were implemented for data
augmentation. Enlarging the dataset by this approach is
beneficial, as the augmented images disappear after each
training process and there is no need for more memory
space. On the other hand, the size of DR images of the
Kaggle dataset is not same as the No DR images. Therefore,
data augmentation technique was performed to increase the
number of DR images.

3 CNN architecture and fine-tuning

As a type of neural networks, CNN consists of
convolutional, pooling and fully connected (FC) layers
(Wang et al., 2015). The core layer of CNNs is
convolutional layer which is the most important part of the
network for extracting features from input data, and just like
its name, it convolves the input with kernel filters to
produce the output named feature map. Neurons in a
specific feature map have the same weights and biases.
Weights’ sharing has two important advantages. First,
neurons in a specific feature map can find the same features
at different locations of the image. The second advantage is
that the number of learning parameters decreases by weights
sharing. Subsampling or pooling layer is often placed after
convolutional layers and is used to reduce the number of
learning parameters that should to be trained, as well as,
keeping the most significant information. Max pooling and
average pooling are two different pooling layers that are
commonly used in CNNs. The last layer of a CNN is the FC
layer, in which, the neurons have full connection to all
activations in the former layer. The FC layer is the end of a
CNN and it works like a traditional multilayer neural
network (Krizhevsky et al., 2012; LeCun et al., 2015).

3.1 Finetuning

Practically, gathering adequate number of images to train a
CNN network from scratch in medical image analysis is
almost impossible (Tajbakhsh et al., 2016). Moreover,
training a deep network from scratch with a small dataset
may cause overfitting problem. Therefore, the most
common way to overcome these issues is to re-train the last
layers of a fully-trained CNN on a different task and
adjusting its weights and parameters for the new

classification task. It is noteworthy that the weights and
biases of the frozen layers are kept unchanged during the
training process, while the parameters of the unfrozen layers
are adjusted for the new task. This method is called
fine-tuning and can be useful to prevent overfitting, and
also, due to the small dataset that is used, large computing
power and memory are not required. Therefore, in this
study, a pre-trained CNN model, Inception-V3, was
fine-tuned for DR diagnosis application using Keras core
library.

3.2 Inception-V3 architecture

The Inception model was designed by Szegedy et al
(2015a). The main difference of inception module from
other CNN architectures is its concatenation process. In this
process, the output of an inception module is the
concatenation of 1x1, 3x3, and 5x5 convolutions that is
provided to the input. In a recent publication, Szegedy et al.
(2015b) developed Inception-V3, as an updated Inception
module. Figure 2 illustrates Inception-V3 schematic
diagram. As it is demonstrated in Figure 2, each block
consists of three different types of convolutional layer and a
pooling layer. The numbers in convolutional layers show
the size of the filter’s window that is convolved with the
input. Overall, Inception-V3 architecture consists of
219 layers which include convolution, pooling and FC
layers. More details of the network can be accessed from
other references (Szegedy et al., 2015a, 2015b).

Figure 2 Schematic diagram of Inception-V3 (see online version
for colours)
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3.3 Software and hardware

In this work, Tensorflow, OpenCV, Keras, Numpy,
Scikit-learn, and h5py packages were used to implement the
image pre-processing and fine-tuning steps to classify DR
and no DR images. Keras, a neural network Python library,



568 SM. Roshan €t al.

includes pre-trained CNNs. To implement Inception-V3,
Ubuntu operating system were used for running the
Tensorflow and Keras frameworks, and the other
above-mentioned packages were utilised for image
pre-processing and other related calculations in the Python
environment. CNN architecture that was used here was
pre-trained on the ImageNet dataset, and its weights are
widely used in studies for fine-tuning (Shin et al., 2016).
ImageNet has over 1.2 million images with 1,000 separate
object categories, which is used for object recognition
(Russakovsky et al., 2014).

Designing pre-trained CNNs instead of fully training
networks reduces the need for graphics processing unit and
external memories. Although, utilising this approach might
result in a slightly lower accuracy than training the network
from scratch, but it will save time and resources during
training process. An Intel i7 core CPU with 8 GB memory
was used here for retraining the models which is less
expensive and easily available compared to common CNN
hardware devices.

4 Clinical data and methodology

In this step, the proposed CNNs were optimised to diagnose
DR cases from real fundus images that are captured from
the Navid-e-Didegan ophthalmology clinic, Iran (Clinical
Dataset, 2016). This dataset contains 101 retinal images, in
which 50 of the images are labelled as No DR and 51
images are labelled as DR class by a professional
ophthalmologist. Therefore, by applying these labelled
images to the fine-tuned networks in the test step, the
performance of the networks was examined for the new and
unknown clinical dataset, in which all the test images are
independent and different from the train data and they have
been taken by a different device and different operator.

Table 1 Performance indices
Accuracy TP+TN
P+N
Precision TP
TP+ FP
Recall TP
TP+FN
F1-score 2TP
TPFPTEN

Source:  Olson and Delen (2008)

To compare the results of the fine-tuned networks for the
clinical data, four performance indices were calculated.
These indices are accuracy, precision, recall and Fl-score
(Olson and Delen, 2008; Nilanjan et al., 2017). Table 1
defines these values as being used in this paper. In this
table, TP, FP, TN and FN represent true positive, false
positive, true negative and false negative results of the
classification algorithm, respectively. P and N represent the

labelled DR and no DR samples, respectively, and P + N
demonstrates the total number of samples.

Softmax function is usually used in FC layers of CNNs
for the final decision of the classifier. Equation (1)
demonstrates softmax function for input X, where N is the
number of classes.

ex
2.e

Generally, the loss function that was used for CNN
classification problems is cross-entropy loss function. This
function defined as

f(x)= Viel,2,..,N (1)

L =-log = (2)

where f; is the j™ element of the vector of class scores T, f; is
the softmax function and can be calculated as equation (1).
The full loss of the network is the mean of L; over all
training data.

5 Performance analysis
5.1 Preparing dataset

As the train and test datasets include different fundus
images taken with different devices while varying in quality
and size, to reduce the variations in images, pre-processing
method discussed in Section 2.2 was implemented on both
train and test dataset. The result of image pre-processing
step is demonstrated in Figures 3(a) and 3(b).

Figure 3 (a) The proliferative DR image (b) The pre-processed
image (c) The horizontally flipped image (see online
version for colours)

As previously discussed, in this study, Kaggle dataset was
used to perform the training step of the fine-tuning. There
are 35,126 fundus images in this dataset that are divided to
25,810 images of no DR and 9,316 images of DR by an
expert. To implement classification algorithms, it is very
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common to use the same size of data in each class for
training and testing the networks. Therefore, to balance the
number of DR images and no DR ones, different image
augmentation algorithms were used to increase the size of
DR images. By applying the augmentation method that was
discussed in Section 2.3 to DR images randomly, we
increased the number of these images to 25,619. Figure 3(c)
demonstrates an example of a horizontally flipped image.

In order to train the networks, 20 and 80% of the images
were chosen randomly for the test and train datasets,
respectively. The testing and training sets that were used for
each simulation were kept identical to keep the results
comparable. The test dataset was being used solely to
evaluate the performance of the fine-tuning algorithm in
each step. Moreover, the clinical dataset was used to
evaluate the performance of each completed fine-tuning
process.

5.2 Fine-tuning and retraining networks

There is a growing interest in implementing fine-tuned
CNNs for medical tasks due to lack of sufficient datasets
(Esteva et al., 2017; Kieffer et al., 2017; Vesal et al., 2018).
A common practice in fine-tuning algorithms is to re-train
the last two blocks of the pre-trained networks to fine-tune
the CNN. Therefore, the first 172 layers of the Inception-V3
network were kept frozen, while the other layers of the
network as well as the FC layer were retrained. In addition,
to compare the network’ results for various fine-tuned
layers of the CNN, two situations where the last three and
four blocks were unfrozen and re-trained were also tested.
By increasing the number of layers that were re-trained and
fine-tuned, the training time was increasing from 3 to
10 hours. The hardware devices that were used for training
the models are mentioned in Section 3.3.

To employ CNN for image classification applications,
hyperbolic tangent (tanh), sigmoid, exponential linear unit
(ELU) and rectified linear unit (RELU) are the four
frequently-used activation functions, which we utilised in
this study. The accuracy results on the test dataset using
these activation functions were compared, while all other
parameters were kept constant. Based on the investigation,
ELU showed the best performance among these activation
functions and were used for the rest of the study. Also, by
utilising adaptive moment estimation (ADAM), adaptive
gradient algorithm (Adagrad), Nadam (Adam with Nesterov
momentum), Adamax (a variant of Adam based on the
infinity norm), stochastic gradient descent (SGD) and Root
mean square propagation (RMSProp) optimisers; SGD and
ADAM demonstrated best performances among all the
optimisers. The accuracy results on the test images using
these optimisers, while other parameters were kept constant,
have been reported in Mohammadian et al. (2017b), and
demonstrate the better performance of ADAM and SGD. In
addition, ADAM converged faster than SGD with a lower
number of epochs required, which makes it the most
appropriate optimiser for the proposed networks considering

hardware limits. Due to the promising performance of
ADAM optimiser and ELU activation function, these
two functions were used for performing the simulations.
Also, train dataset was augmented by using parameters
of height-shift-range, shear-range, zoom-range, and
width-shift-range equal to 0.2 and rotation-range equals to
40 degrees with the aim of increasing the model’
performances, and also decreasing the overfitting in them.

Multiple block sizes of the pre-trained network were
re-trained to investigate the effect of fine-tuning the
different layers on the network performance. In the first
case, we froze the first 172 layers of the model and fine-
tuned the rest of the layers (last two blocks).

Figure 4 demonstrates the loss results for both train and
test datasets over 50 epochs. Note that in this step of
comparison, the test dataset is still a subset of Kaggle
dataset and the loss results were used to compare the CNNs
(Shin et al., 2016). As anticipated, in Figure 4, the loss is
decreasing with epochs. Therefore, it can be concluded that
re-training the last two blocks may result in an acceptable
performance. The fluctuation seen in Figure 4 (and the rest
of figures in the paper) is due to the batch size of training
data. Increasing the batch size will result in reducing the
fluctuation. Experimentally, in this work the batch size was
chosen as 16 for all the networks. Increasing the size can
decrease the fluctuations but it will violate the hardware
limitations.

Figure 4 Network loss for fine-tuning of the last two blocks
(the first 172 layers are kept frozen) (see online version
for colours)

model loss
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In the second step, the first 158 layers of the model were
kept frozen and the last three blocks were fine-tuned.
Figure 5(a) demonstrates the loss for this network. As it can
be seen in Figure 5(a), although the training loss is
decreasing, the test loss is not showing acceptable
performance. This behaviour is the typical sign of
overfitting the network during training (Shin et al., 2016).
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Figure 5 (a) Network loss for fine-tuning of the last three blocks

loss

loss

(the first 158 layers are kept frozen) (b) Network loss
for fine-tuning of the last three blocks (the first

158 layers are kept frozen), while applying a dropout
layer (see online version for colours)
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One of the most useful regularisation techniques to prevent
overfitting in CNNs is to apply a dropout layer before the
fully-connected layer (see Figure 3). By implementing
dropout layer with dropout factor of 0.5, the network’s
performance is improved for the test dataset as shown in
Figure 5(b).

In the last step, the first 136 layers of the model were
kept frozen and the last four blocks were fine-tuned.
Figure 6 demonstrates the loss graph for this network. For
this case, although the number of re-trained layers is more
than the previous cases, the loss graphs do not demonstrate
acceptable performance. The reason is that the first layers of
the original CNN are tuned specifically to extract
lower-level features such as edges, shapes, etc. in the base
dataset which is relatively larger and more comprehensive.
Therefore, re-training these layers with the smaller dataset,

and lower epoch number will affect the pre-trained weights
that are already well trained and hence it will disturb the
accuracy.

Figure 6 Network loss for fine-tuning of the last four blocks
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(the first 136 layers are kept frozen) (see online version
for colours)
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To compare different fine-tuning steps, Figures 7(a) and
7(b) demonstrate loss graphs of the train and the test dataset
for all steps, respectively. As shown in Figure 7(a), training
loss for all approaches is converging to a fixed number with
acceptable performance. Therefore, the difference between
networks can be discussed more accurately by investigating
the loss graph for test dataset [Figure 7(b)]. Figure 7(b)
demonstrates that networks with 158 and 172 frozen layers
(fine-tuning the last three and two blocks, respectively) have
better results for the test data than the network with
136 frozen layers (fine-tuning the last four blocks).

Figure 7 (a) Network loss for train dataset (b) Network loss for

loss

test dataset (see online version for colours)
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Figure 7 (a) Network loss for train dataset (b) Network loss for
test dataset (continued) (see online version for colours)
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Overall, fine-tuning the last two or three blocks of
Inception-V3 architecture utilising ELU and ADAM as the
selected activation function and optimiser, respectively,
showed the best classification result for diabetic retinopathy
diagnosis in Kaggle dataset.

5.3 Testing the networks with clinical dataset

Section 5.2 included the comparative approach to fine-tune
the CNN network utilising Kaggle dataset. The next case
study is to clinically evaluate the networks and to test the
fine-tuned networks using clinical datasets. The first step for
using the clinical dataset was to pre-process the images and
to diminish the variations in the images, as before. The
image pre-processing technique discussed in Section 2.2
was applied to the clinical images and the pre-processed
images are demonstrated in Figure 8.

The next step is to apply the pre-processed images to the
proposed networks that have already been trained and
discussed in Section 5.2. In the comparison step, the
performance indices mentioned in Section 4 were used. The
result of the comparison is demonstrated in Table 2.

As shown in Table 2, the fine-tuned network after
re-training the last three blocks has the best performance
results among the other networks, considering all
performance indices. However, from the clinical usage
perspective of the automatic DR screening approach the
recall, which demonstrates the correctness of DR diagnosis,
is the most important factor.

As during the screening stage, the goal is to save time
for the physician while reducing the number of test images
and labelling the ones which are suspicious of DR as well as
the ones which are close, having a high recall means that
most of the patients will be screened correctly and their
images will be labelled for ophthalmologist consideration.
As shown in Table 2, re-training the last two blocks of the
pre-trained Inception-V3 CNN shows a superior

performance in terms of recall, which can facilitate the
screening process for ophthalmologists and increase their
accuracy and efficiency, while re-training the last
three blocks also demonstrates acceptable performance.

Figure 8 (a) Proliferative DR image (b) Pre-processed
proliferative DR image (c) No DR image
(d) Pre-processed no DR image (see online version
for colours)

Table 2 Performance indices for the clinical data
Performance Unfrozen Unfrozen Unfrozen
indices blocks: 2 blocks: 3 blocks: 4
Accuracy 0.6733 0.7030 0.5841
Precision 0.6097 0.6438 0.5849
Recall 0.9803 0.9216 0.6078
Fl1-score 0.7518 0.7580 0.5961

6 Discussion

Recently, convolutional neural networks are being widely
used for medical applications, especially disease diagnosis
from images. CNNs are deep networks which require very
large datasets to be trained. Also, there is no need to feed
them hand-crafted features as the features are extracted
through the network, which makes them more suitable for
classifying complex datasets. Because large medical data is
not available to train deep networks from scratch, it is useful
to leverage previously trained networks on a different
dataset to classify a new dataset (Tajbakhsh et al., 2016;
Margeta et al., 2017). In this study, a pre-trained CNN
(Inception-V3), which was trained for object detection, was
used for DR diagnosis.

In the first layers of Inception-V3, the lower-level
features of the images including edges, lines, and curves are
extracted and trained. In the middle layers, another set of
the lower level features such as shapes are trained and
segmented. These features are general and can be used for
many other datasets (such as the DR diagnosis application).
In contrast, the higher-level features are extracted and
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trained in the last layers of the CNN and retraining these last
layers is the key factor of retargeting the system for the new
classification problem (Yosinski et al., 2014). So,
fine-tuning the last layers of pre-trained networks can make
the networks specific to identify the individual features of
the new dataset and being able to classify based on them.
By fine-tuning the last layers of Inception-V3 on the new
dataset, the network is adapted to detect anomalies in
fundus images which are the purpose of DR diagnosis
system.

Noteworthy is that in Inception-V3, by removing the
fully connected layer, the output of the network is the
vectors of extracted features. Therefore, other classification
algorithms can be trained by providing these features to
other common classification methods such as SVM. The
feature extraction approach can be used when the dataset is
small and is very different from the initial pre-trained
dataset. In the case of this work and as the DR-related
dataset is large enough, the fine tuning approach is used for
DR detection with the description as mentioned above.

To compare the importance of retraining the last layers
on the performance of the network, the result of fine-tuning
the network for two, three, and four unfrozen blocks were
studied. Also, in order to validate the fine-tuned network, a
clinical dataset was used without being presented as the
training set. In analysing the clinical trial results, the recall
index is an important parameter in screening the
performance of the automatic disease diagnosis models and
shows the proportion of correctly diagnosed patients.
Therefore, this index was used in order to compare different
network structures and eventually to test the system on the
clinical dataset.

7 Conclusions

In this paper, a widely known pre-trained convolutional
neural network was fine-tuned for the diabetic retinopathy
screening task. The reason for fine-tuning a pre-trained
model is to save time and resource during training deep
networks, while being able to retarget perfectly on the new
dataset and produce acceptable results. This study was
developed to compare the effect of re-training different
number of layers of the networks on the network’s
performance in screening diabetic retinopathy cases. Also,
to demonstrate the results of the fine-tuned network in
clinical applications, a dataset including 101 fundus images,
independent of the training and testing dataset, was applied
and evaluated. The results of the study can be helpful to
determine the best network architecture for diabetic
retinopathy screening in real clinical cases.
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