
 

Hardware-Efficient Pruned CNN Optimized by 
Neural Architecture Search and Genetic Algorithm 
for Diabetic Retinopathy Detection on STM32F746

Omid Askari Haddad  
Department of Computer Engineering 

Ferdowsi University of Mashhad 
https://orcid.org/0009-0006-4122-0079 

 

Sara Ershadi Nasab 
Corresponding author 

Ferdowsi University of Mashhad 
https://orcid.org/0000-0003-1561-4446 

   

Scalable screening for diabetic retinopathy remains difficult 
to deliver where it is most needed. We present a hardware-
efficient convolutional neural network (CNN) designed for 
reliable, on-device DR detection. Our approach integrates a 
compact CNN architecture with structured pruning and a Non-
dominated Sorting Genetic Algorithm II (NSGA-II) to work 
under strict memory and compute budgets. We validate the 
approach on standard DR datasets and demonstrate 
deployment on an ARM microcontroller, highlighting its 
practical feasibility for portable screening tools in rural and 
underserved clinics. This work contributes (1) an end-to-end, 
resource-aware pipeline that couples architecture search with 
pruning, (2) a principled optimization strategy that balances 
diagnostic accuracy and efficiency, and (3) an embedded 
deployment that illustrates scalable, accessible AI-driven DR 
screening. 
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I. INTRODUCTION 

A. Background 

Diabetic retinopathy (DR) remains a major barrier to 
vision health. The International Diabetes Federation (IDF) 
estimates that 589 million adults aged 20–79 were living with 
diabetes in 2024; this number may reach 853 million by 2050. 
DR, a microvascular complication caused by retinal vessel 
damage, affects about 23% of people with diabetes 
worldwide. Approximately 6% have proliferative DR, 5% 
have diabetic macular edema, and 11% face sight-threatening 
disease. Despite progress in screening, access remains limited 
in many low- and middle-income countries due to cost and 
shortages of trained personnel [1]. 

B. Limitations of Current Screening 

Traditional screening relies on clinical fundus examination 
by ophthalmologists or trained healthcare professionals using 
direct ophthalmoscopy or slit-lamp biomicroscopy [2]. 
Fundus photography, particularly the seven-field Early 
Treatment Diabetic Retinopathy Study (ETDRS) protocol, 
offers high sensitivity and specificity for clinically significant 
DR. However, these methods require specialized equipment 
and training, which restricts availability in rural or 
underserved settings. Diagnostic performance also depends on 
grader expertise, making consistency across sites difficult to 
ensure. 

C. Opportunity for AI and Edge Devices 

Recent advances in machine learning (ML) and deep 
learning (DL) help address these gaps. CNNs show strong 
performance in medical image analysis, including ophthalmic 
disease detection. AI-based DR screening can triage cases and 

flag patients who need specialist review. A notable example is 
IDx-DR, the first FDA-approved autonomous DR diagnostic 
system for retinal photographs, which can detect DR without 
specialist input. These systems are designed to support, not 
replace, clinicians, but they signal an important shift in DR 
detection and prevention [3]. 

Deploying high-performing CNNs on edge devices 
remains challenging. Models such as ResNet, Inception, and 
EfficientNet often contain tens of millions of parameters and 
require billions of operations. Such demands exceed the 
memory and compute budgets of low-cost hardware found in 
mobile phones, portable fundus cameras, and 
microcontrollers. Power consumption and latency also matter 
in the field. Cloud inference is not always feasible due to 
unreliable connectivity or privacy concerns. As a result, on-
device processing is crucial, and there is a clear need for 
lightweight CNNs that preserve accuracy within tight resource 
limits.   

Model compression can help. Pruning removes relatively 
unimportant filters, neurons, or connections to cut memory 
use and accelerate inference. Yet pruning must be controlled. 
Excessive pruning harms accuracy; insufficient pruning 
leaves efficiency gains unrealized. Finding the right accuracy–
efficiency balance is therefore a key problem for DR detection 
on constrained hardware. Hyperparameter tuning further 
complicates this task because the search space is large and 
interdependent, making manual or grid search inefficient. 

Genetic algorithms (GAs) are well suited to this type of 
optimization. They perform guided stochastic search by 
encoding model parameters as chromosomes and evolving 
candidate solutions through selection, crossover, and mutation 
[4]. GAs have been used to optimize CNN hyperparameters, 
design architectures, and drive structured filter pruning. With 
an appropriate fitness function, they can push models toward 
better trade-offs between accuracy and efficiency. 

D. Contributions of This Work 

In this work, we propose an integrated framework for 
accurate and efficient DR detection on resource-constrained 
edge devices. Our method combines: 

1. a compact CNN architecture tailored for DR 
detection. 

2. iterative pruning to remove redundant parameters 
while preserving essential features. 

3. GA-based optimization to fine-tune hyperparameters 
and pruned architectures for maximum performance 
under strict hardware constraints. 



We deploy the optimized CNN on an ARM-based 
microcontroller and demonstrate feasibility for real-time 
binary DR detection in low-resource environments. The 
resulting model has a small memory footprint and low 
computational cost, enabling portable screening tools that 
operate without cloud connectivity and addressing both 
infrastructure and privacy barriers. 

The remainder of this paper is organized as follows: 
Section II presents related works, Section III describes the 
methodology, Section IV reports experimental results, Section 
V compares our approach with existing models, Section VI 
details deployment on ARM microcontrollers, and Section VII 
concludes the paper. 

II. RELATED WORK 

A. Early CNN-Based Approaches for DR Detection 

Early deep learning studies showed that CNNs can 
automate DR screening. After the 2015 Kaggle DR 
competition, several groups validated CNNs on fundus 
images. Manoj and Bhosale [5] trained a CNN and reported 
95% sensitivity and 75% accuracy on 5,000 validation images. 
Gulshan et al. [6] built a deep CNN with ~90% sensitivity and 
98% specificity for referable DR, reaching ophthalmologist-
level performance. Lam et al. [7] used a GoogLeNet-based 
classifier and achieved 95% sensitivity and 96% specificity on 
a binary DR task. 

B. Advances in DR Detection Models 

Recent work has further improved accuracy. Alyoubi et al. 
[8] combined lesion localization and classification. Their 
custom CNN (CNN512) with a YOLOv3 detector achieved 
~89% accuracy, 89% sensitivity, and 97.3% specificity. 
Çınarer et al. [9] fine-tuned DenseNet201 and ResNet152 on 
APTOS 2019 and reported an area under the receiver-
operating-characteristic curve (AUC) up to 0.94 and ~82.7% 
accuracy. Moustari et al. [10] proposed an attention-guided 
dual-branch CNN that reached 98.5% accuracy (AUC 0.998) 
on 5-class grading, surpassing a DenseNet-121 baseline at 
97.5% accuracy. Many recent studies report 94–96% accuracy 
on benchmarks by pairing advanced backbones (e.g., 
EfficientNet, Inception-ResNet) with data augmentation and 
class balancing. Akhtar et al. [11] introduced RSG-Net with 
extensive preprocessing and augmentation on Messidor and 
claimed >99% test accuracy for 4-class grading. Such extreme 
results may reflect dataset constraints, but the trend is clear: 
attention mechanisms, ensembles, and stronger training 
pipelines are pushing toward reliable screening. 

C. Lightweight CNN Models for Efficient DR Screening 

As accuracy matured, attention shifted to efficiency. Das 
and Pumrin [12] evaluated MobileNet and MobileNetV2 for 
DR classification and showed that compact models can 
perform well with further tuning. Zafar et al. [13] built a two-
stage lightweight framework for DR severity identification 
and adjusted network depth to balance speed and accuracy. 
Akhtar et al. [11] used SqueezeNet in a blockchain-based DR 
system and obtained ~94% accuracy with a small model size. 
Fu et al. [14] designed frequency-recalibrated lightweight 
networks for lesion segmentation to speed up inference. 
Qasim et al. [15] proposed a ShuffleNetV2-based classifier for 
mobile use, cutting parameters by ~28% compared with 
MobileNetV2 and reducing inference time from 73 ms to 40 
ms per image. 

D. Evolutionary Algorithms in DR CNN Optimization 

Evolutionary methods have also improved DR CAD 
systems. Researchers use GAs for feature selection and CNN 
hyperparameter tuning. Welikala et al. [16] applied a GA to 
select discriminative fundus features and paired them with an 
ensemble classifier to enhance proliferative DR detection. 
Mounika and Ravisankar [17] built a hybrid VGG16–
EfficientNet model with channel attention and used a GA to 
optimize image preprocessing; the system reached 95% 
accuracy for 2-class DR. GAs can search large configuration 
spaces without exhaustive manual effort. By encoding 
parameters or architecture choices as chromosomes, they 
evolve models via selection, crossover, and mutation [4]. In 
DR detection, this approach has produced CNNs that 
outperform hand-crafted baselines on multiple metrics. For 
example, Das and Saha [18] used a GA to automatically set 
optimal CNN hyperparameters. 

III. METHODOLOGY 

We propose a resource-aware, end-to-end pipeline for 
binary DR detection that combines data preprocessing, 
automated neural architecture search, and structured model 
compression. The workflow is shown in Algorithm 1 and in 
Fig. 1.  

A. Dataset 

 Training: APTOS 2019 Blindness Detection [19], 
binarized labels. 

 External validation: IDRiD [24], same binarization 
to test generalization on a distinct dataset. 

CNN Architecture 
Optimization

NSGA-II (population = 
18, generations = 8)

↑ Accuracy, ↓ MACs

Model Fine-Tuning
(Best CNN from GA, 

epochs = 25)

Initial CNN Design
(Parameters: f₁, f₂, f₃, 

kₛ, dᵤ, dᵣ)

Structured Pruning 
Optimization

NSGA-II (population = 
18, generations = 4)

↑ Accuracy, ↓ MACs

Final Training of 
Pruned CNN
(epochs = 20)

Figure 1: The framework of the proposed method. 



 

B. Preprocessing 

For each input image:  
1. load raw PNG, convert to RGB, and resize. 
2. apply CLAHE to enhance local contrast [20]. 
3. use a 5×5 Gaussian blur to attenuate sensor noise.  
4. apply a sharpening kernel to restore edges. 
5. normalize pixel values to [0,1]. 

C. Architecture Design 

The base architecture is deliberately compact: two 
depthwise-separable convolutional blocks feed into global 
average pooling, followed by a single dense hidden layer and 
a softmax head. We define a six-parameter genome 
comprising three convolutional filter widths, the kernel size, 
Number of units in the dense layer and dropout rate. We run 
NSGA-II with a population of 18 for 8 generations. The multi-
objective fitness jointly maximizes validation accuracy and 
minimizes theoretical multiply–accumulate operations 
(MACs). 

To control evaluation cost, each candidate trains for four 
epochs on a 30% data subsample. Candidates exceeding 0.80 
validation accuracy are then trained for four additional epochs 
on the full dataset. We retain the Pareto frontier and select the 
model with the best accuracy–cost trade-off. That model is 
fine-tuned for 25 epochs to obtain the base network. 

D. Pruning Strategy 

Starting from the fine-tuned base network, we search 
pruning schedules that progressively increase sparsity during 
training while targeting low MACs. A second NSGA-II run 
(population 18, generations 4) explores candidate schedules; a 
cubic interpolation function governs the evolution of sparsity 
from its initial to final value. We adopt a monotonic, mask-
based structured pruning rule: global sparsity increases from 

0 up to 0.90, and once a weight is zeroed it remains zero. 
Candidates are scored on the joint objective of accuracy and 
MAC reduction. The best schedule is applied and the pruned 
model is fine-tuned for 20 epochs, yielding a highly sparse yet 
accurate network. 

E. Optimization 

For the architecture optimization stage, a population size 
of 18 over 8 generations was adopted after pilot experiments 
showed that this configuration consistently produced stable 
Pareto fronts within the available compute budget. Increasing 
either parameter beyond this point led to minimal 
improvements in accuracy–efficiency trade-offs while 
significantly increasing runtime, indicating diminishing 
returns. Conversely, smaller budgets failed to adequately 
cover the search space, resulting in less diverse and less 
competitive solutions. 

In the pruning schedule optimization stage, a population 
size of 18 and 4 generations proved sufficient to converge to 
effective sparsity schedules. The search space in this stage was 
smaller and smoother, allowing good solutions to emerge 
quickly. Trials with larger budgets provided negligible 
accuracy gains relative to the added cost, while smaller 
budgets reduced stability across runs. 

These budget choices reflect a deliberate trade-off: 
providing enough evaluations to ensure consistent 
convergence and solution diversity, while keeping the total 
runtime practical for iterative experimentation and aligned 
with the resource-aware nature of the proposed system. 

F. Training Setup and Reproducibility  

This section outlines the key setup used for model 
training, including software, hardware, and optimization 
parameters. 

 Framework: TensorFlow/Keras 2.18 (Python 3.11)  
 Hardware: We ran all training on a single NVIDIA 

Tesla P100-PCIE-16GB GPU (provided by Kaggle 
notebook). 

 Optimizer: Adam. 
 Loss: categorical cross-entropy. 
 Learning-rate schedule: 5×10⁻⁴ for base training (25 

epochs) and pruning (20 epochs). 
We repeat the full pipeline five times with different seeds 

and report mean, standard deviation, and 95% confidence 
intervals (using Student’s t-distribution).  

IV. RESULTS  

A. CNN architecture parameters  

In the initial phase of the optimization process, the CNN 
hyperparameters (filter sizes, kernel size, dense layer units, 
and dropout rate) were tuned using the NSGA-II algorithm. 
The optimal set of parameters obtained from this search is 
summarized in Table I. 

 

 

 

 

 

 

Algorithm 1: Proposed pipeline. 



TABLE I: Best Hyperparameters for CNN 

Hyperparameter Meaning Optimum Value 

F1 Number of filters 
in first layer 20 

F2 Number of filters 
in second layer 16 

F3 Number of filters 
in third layer 249 

KS Kernel size 3 

DU Number of units 
in the dense layer 73 

DR Dropout rate 0.45 
 

B. Pruning parameters 

The best pruning parameters from the Pareto front, 
obtained via NSGA-II optimization, are presented below. 
These parameters were selected to achieve an optimal trade-
off between accuracy and computational efficiency in the 
lightweight CNN for DR classification, enabling high 
validation accuracy while maintaining low resource 
requirements. 

 Initial Sparsity (isp): 0.00 

 Final Sparsity (fsp): 0.90 

 Begin Step (bs): 184 

 End Step (es): 1564 

C. Final model performance 

The optimized model achieved high test and validation 
accuracy with minimal validation loss. Due to its low 
parameter count, the model exhibits a compact memory 
footprint and reduced computational complexity making it 
suitable for deployment on resource-constrained platforms 
such as mobile devices or embedded systems. The detailed 
performance and efficiency metrics are reported in Table II. 
Additionally, the model’s performance is visualized using a 
precision–recall curve, a confusion matrix, and bar plots 
summarizing precision, recall, and F1-score, as shown in Fig. 
2. 

V. COMPARISON 

To place the proposed model in context with existing DR 
detection systems, its performance is compared against four 

widely used baseline architectures: VGG-16, MobileNetV2, 
ResNet-50, and the recently published framework by Zafar et 
al. [13]. The proposed architecture requires only tens of 
thousands of parameters, representing an order-of-magnitude 
reduction relative to conventional backbone networks. This 
substantial model compression is achieved without degrading 
discriminative capability; despite its ultra-compact footprint, 
the model maintains classification performance comparable to 
that of substantially larger networks. The complete 
comparative results are reported in Table III. 

TABLE II: Performance and Efficiency Metrics 

Metric Mean ± Sd 95% CI 

Test Accuracy 94.0 ± 2.1 92.8–95.2 

Validation 
Accuracy 

94.5 ± 0.7 94.1–94.9 

Validation Loss 0.1355  

Total Parameters 25,027  

Model Size 
(Kilobytes) 150.26  

MACs 1,633,670  

   TABLE III: Binary DR detection on APTOS 2019 

Network Accuracy (%) Parameters 
(M) 

VGG-16 [21] 79.99 138 
MobileNetV2 [22] 97 3.5 
InceptionResNetV2[25] 97.54 54 
Xception [25] 97.81 20 
RA-EfficientNet [25] 98.36 4.27 
Zafar et al.[13] 99.06 1.3 
Proposed 96.1 0.025 

VI. DEPLOYMENT ON ARM MICROCONTROLLER 

Deploying AI models on microcontrollers poses 
significant challenges due to limited resources. For example, 
the STM32F746G Discovery board uses an ARM Cortex-M7 
microcontroller. It has only 1,024 KB of flash memory and 
320 KB of RAM. Conventional AI workloads often exceed 
these limits. They require more memory and processing 
power. As a result, real-time inference becomes difficult 
without external support like cloud connectivity. Our 
optimized model overcomes these constraints. We verified 

Figure 2: Performance Visualizations of the Optimized CNN Model 



this with X-CUBE-AI analysis. This efficiency allows real-
time DR detection on the device. It suits resource-limited 
settings, such as rural clinics [23]. The deployment process 
was straightforward. We converted the trained .h5 model to C 
code using X-CUBE-AI v10.1. Then, we integrated it into 
STM32CubeIDE v1.19.0 for firmware development. For 
testing, we set up a PC terminal. It communicated via UART 
to send retinal fundus images to the board. The board returned 
classification outputs. Results appeared on the terminal and 
the board's LCD. This setup provided user-friendly 
interaction. Table IV summarizes the key resource usage from 
X-CUBE-AI analysis. 

TABLE IV: Key resource usage from X-CUBE-AI analysis. 

Resource Component Usage (Bytes) 
Flash Weights 34,312 
Flash Runtime Library 19,422 
Flash Total 53,734 
RAM Activations 271,424 
RAM Runtime Library 5,696 
RAM Total 277,120 

 These metrics show the model's feasibility for edge 
inference. This enables affordable, portable DR screening. 
The solutions work without cloud dependency. See Figs. 3 and 
4 for analysis results and performance.  

 

VII. CONCLUSION 

This work shows that co-designing neural architectures 
and compression schedules with the target hardware can 

deliver clinically strong, on-device diabetic retinopathy 
screening under tight resource limits. We introduce an end-to-
end, resource-aware pipeline that jointly optimizes a compact 
CNN and its structured-pruning schedule via NSGA-II with 
explicit budgets for accuracy, MACs, and memory. A 
monotonic, mask-based pruning strategy maintains sparsity 
throughout training to produce an ultra-compact yet 
discriminative model. The system is fully embedded on a low-
cost microcontroller supporting real-time inference. 
Empirically, it is robust across runs, achieving mean test 
accuracy of more than 94%, while cutting parameters by 
orders of magnitude versus conventional backbones. External 
validation and deployment metrics indicate feasibility without 
cloud or specialized accelerators, enabling scalable, privacy-
preserving triage in low-resource settings. 

Looking ahead, this foundation opens several promising 
avenues for extension: (1) Advancing from binary to multi-
class severity grading. (2) Integrating quantization to further 
minimize memory demands. (3) We should try and conduct 
real-world tests with handheld fundus cameras to check 
workflow fit, cost-effectiveness, and whether performance 
holds across varied imaging conditions. 
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