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Scalable screening for diabetic retinopathy remains difficult
to deliver where it is most needed. We present a hardware-
efficient convolutional neural network (CNN) designed for
reliable, on-device DR detection. Our approach integrates a
compact CNN architecture with structured pruning and a Non-
dominated Sorting Genetic Algorithm II (NSGA-II) to work
under strict memory and compute budgets. We validate the
approach on standard DR datasets and demonstrate
deployment on an ARM microcontroller, highlighting its
practical feasibility for portable screening tools in rural and
underserved clinics. This work contributes (1) an end-to-end,
resource-aware pipeline that couples architecture search with
pruning, (2) a principled optimization strategy that balances
diagnostic accuracy and efficiency, and (3) an embedded
deployment that illustrates scalable, accessible Al-driven DR
screening.

Keywords—  Diabetic  retinopathy detection, Genetic
algorithm, Convolutional neural network, NSGA-II algorithm,
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I. INTRODUCTION

A. Background

Diabetic retinopathy (DR) remains a major barrier to
vision health. The International Diabetes Federation (IDF)
estimates that 589 million adults aged 20-79 were living with
diabetes in 2024; this number may reach 853 million by 2050.
DR, a microvascular complication caused by retinal vessel
damage, affects about 23% of people with diabetes
worldwide. Approximately 6% have proliferative DR, 5%
have diabetic macular edema, and 11% face sight-threatening
disease. Despite progress in screening, access remains limited
in many low- and middle-income countries due to cost and
shortages of trained personnel [1].

B. Limitations of Current Screening

Traditional screening relies on clinical fundus examination
by ophthalmologists or trained healthcare professionals using
direct ophthalmoscopy or slit-lamp biomicroscopy [2].
Fundus photography, particularly the seven-field Early
Treatment Diabetic Retinopathy Study (ETDRS) protocol,
offers high sensitivity and specificity for clinically significant
DR. However, these methods require specialized equipment
and training, which restricts availability in rural or
underserved settings. Diagnostic performance also depends on
grader expertise, making consistency across sites difficult to
ensure.

C. Opportunity for Al and Edge Devices

Recent advances in machine learning (ML) and deep
learning (DL) help address these gaps. CNNs show strong
performance in medical image analysis, including ophthalmic
disease detection. Al-based DR screening can triage cases and
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flag patients who need specialist review. A notable example is
IDx-DR, the first FDA-approved autonomous DR diagnostic
system for retinal photographs, which can detect DR without
specialist input. These systems are designed to support, not
replace, clinicians, but they signal an important shift in DR
detection and prevention [3].

Deploying high-performing CNNs on edge devices
remains challenging. Models such as ResNet, Inception, and
EfficientNet often contain tens of millions of parameters and
require billions of operations. Such demands exceed the
memory and compute budgets of low-cost hardware found in
mobile  phones, portable fundus cameras, and
microcontrollers. Power consumption and latency also matter
in the field. Cloud inference is not always feasible due to
unreliable connectivity or privacy concerns. As a result, on-
device processing is crucial, and there is a clear need for
lightweight CNNs that preserve accuracy within tight resource
limits.

Model compression can help. Pruning removes relatively
unimportant filters, neurons, or connections to cut memory
use and accelerate inference. Yet pruning must be controlled.
Excessive pruning harms accuracy; insufficient pruning
leaves efficiency gains unrealized. Finding the right accuracy—
efficiency balance is therefore a key problem for DR detection
on constrained hardware. Hyperparameter tuning further
complicates this task because the search space is large and
interdependent, making manual or grid search inefficient.

Genetic algorithms (GAs) are well suited to this type of
optimization. They perform guided stochastic search by
encoding model parameters as chromosomes and evolving
candidate solutions through selection, crossover, and mutation
[4]. GAs have been used to optimize CNN hyperparameters,
design architectures, and drive structured filter pruning. With
an appropriate fitness function, they can push models toward
better trade-offs between accuracy and efficiency.

D. Contributions of This Work

In this work, we propose an integrated framework for
accurate and efficient DR detection on resource-constrained
edge devices. Our method combines:

1. a compact CNN architecture tailored for DR
detection.

2. iterative pruning to remove redundant parameters
while preserving essential features.

3.  GA-based optimization to fine-tune hyperparameters
and pruned architectures for maximum performance
under strict hardware constraints.
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Figure 1: The framework of the proposed method.

We deploy the optimized CNN on an ARM-based
microcontroller and demonstrate feasibility for real-time
binary DR detection in low-resource environments. The
resulting model has a small memory footprint and low
computational cost, enabling portable screening tools that
operate without cloud connectivity and addressing both
infrastructure and privacy barriers.

The remainder of this paper is organized as follows:
Section II presents related works, Section III describes the
methodology, Section IV reports experimental results, Section
V compares our approach with existing models, Section VI
details deployment on ARM microcontrollers, and Section VII
concludes the paper.

II. RELATED WORK

A. Early CNN-Based Approaches for DR Detection

Early deep learning studies showed that CNNs can
automate DR screening. After the 2015 Kaggle DR
competition, several groups validated CNNs on fundus
images. Manoj and Bhosale [5] trained a CNN and reported
95% sensitivity and 75% accuracy on 5,000 validation images.
Gulshan et al. [6] built a deep CNN with ~90% sensitivity and
98% specificity for referable DR, reaching ophthalmologist-
level performance. Lam et al. [7] used a GoogLeNet-based
classifier and achieved 95% sensitivity and 96% specificity on
a binary DR task.

B. Advances in DR Detection Models

Recent work has further improved accuracy. Alyoubi et al.
[8] combined lesion localization and classification. Their
custom CNN (CNN512) with a YOLOvV3 detector achieved
~89% accuracy, 89% sensitivity, and 97.3% specificity.
Cinarer et al. [9] fine-tuned DenseNet201 and ResNet152 on
APTOS 2019 and reported an area under the receiver-
operating-characteristic curve (AUC) up to 0.94 and ~82.7%
accuracy. Moustari et al. [10] proposed an attention-guided
dual-branch CNN that reached 98.5% accuracy (AUC 0.998)
on 5-class grading, surpassing a DenseNet-121 baseline at
97.5% accuracy. Many recent studies report 94—96% accuracy
on benchmarks by pairing advanced backbones (e.g.,
EfficientNet, Inception-ResNet) with data augmentation and
class balancing. Akhtar et al. [11] introduced RSG-Net with
extensive preprocessing and augmentation on Messidor and
claimed >99% test accuracy for 4-class grading. Such extreme
results may reflect dataset constraints, but the trend is clear:
attention mechanisms, ensembles, and stronger training
pipelines are pushing toward reliable screening.

C. Lightweight CNN Models for Efficient DR Screening

As accuracy matured, attention shifted to efficiency. Das
and Pumrin [12] evaluated MobileNet and MobileNetV2 for
DR classification and showed that compact models can
perform well with further tuning. Zafar et al. [13] built a two-
stage lightweight framework for DR severity identification
and adjusted network depth to balance speed and accuracy.
Akhtar et al. [11] used SqueezeNet in a blockchain-based DR
system and obtained ~94% accuracy with a small model size.
Fu et al. [14] designed frequency-recalibrated lightweight
networks for lesion segmentation to speed up inference.
Qasim et al. [15] proposed a ShuffleNetV2-based classifier for
mobile use, cutting parameters by ~28% compared with
MobileNetV2 and reducing inference time from 73 ms to 40
ms per image.

D. Evolutionary Algorithms in DR CNN Optimization

Evolutionary methods have also improved DR CAD
systems. Researchers use GAs for feature selection and CNN
hyperparameter tuning. Welikala et al. [16] applied a GA to
select discriminative fundus features and paired them with an
ensemble classifier to enhance proliferative DR detection.
Mounika and Ravisankar [17] built a hybrid VGGl6-
EfficientNet model with channel attention and used a GA to
optimize image preprocessing; the system reached 95%
accuracy for 2-class DR. GAs can search large configuration
spaces without exhaustive manual effort. By encoding
parameters or architecture choices as chromosomes, they
evolve models via selection, crossover, and mutation [4]. In
DR detection, this approach has produced CNNs that
outperform hand-crafted baselines on multiple metrics. For
example, Das and Saha [18] used a GA to automatically set
optimal CNN hyperparameters.

III. METHODOLOGY

We propose a resource-aware, end-to-end pipeline for
binary DR detection that combines data preprocessing,
automated neural architecture search, and structured model
compression. The workflow is shown in Algorithm 1 and in
Fig. 1.

A. Dataset

e Training: APTOS 2019 Blindness Detection [19],
binarized labels.

e  External validation: IDRiID [24], same binarization
to test generalization on a distinct dataset.



Algorithm 1: Proposed pipeline.

Algorithm 1: Multi-Objective CNN Architecture and Pruning Opti-
mization

Input: Training data (X ain, Yirain), validation data (X,a, Yial),
number of classes n.5, input shape s, population size p,
offspring size A, CNN generations G.,,, pruning generations
Gprune

Output: Optimized and pruned CNN model

1 Phase 1: CNN Architecture Search

2 Initialize toolbox tb_cnn with gene parameters: {fi, fa, f3, ks, dy, d;} ;

3 Register fitness function: accuracy vs. MACs using partial training and
evaluation ;

4 Run NSGA-II for Gpy generations with population p and offspring A ;

5 Obtain Pareto front P,,,,: select best individual g, maximizing
accuracy and minimizing MACs ;

6 Phase 2: Fine-Tune Base CNN

7 Construct CNN using g7, :

8 Train for 25 epochs with full training data and save weights ;

9 Phase 3: Pruning Parameter Search

10 Initialize toolbox tb_prune with gene parameters: {ig,, fop. by, €5}

11 Register fitness function using accuracy and MACs after pruning
training ;

12 Run NSGA-II for Gprune generations ;

13 Obtain Pareto front Pprune; select best pruning policy _r/]*,,.“m, -

14 Phase 4: Final Training with Pruning

15 Apply dynamic sparsity pruning schedule using gy, e ;

16 Train the CNN for 20 epochs with pruning applied ;

17 return final model and optimal gene sets {g7,,,,, gy rune }

B. Preprocessing

For each input image:
1. load raw PNG, convert to RGB, and resize.
2. apply CLAHE to enhance local contrast [20].
3. usea5x5 Gaussian blur to attenuate sensor noise.
4. apply a sharpening kernel to restore edges.
5. normalize pixel values to [0,1].

C. Architecture Design

The base architecture is deliberately compact: two
depthwise-separable convolutional blocks feed into global
average pooling, followed by a single dense hidden layer and
a softmax head. We define a six-parameter genome
comprising three convolutional filter widths, the kernel size,
Number of units in the dense layer and dropout rate. We run
NSGA-II with a population of 18 for 8 generations. The multi-
objective fitness jointly maximizes validation accuracy and
minimizes theoretical multiply—accumulate operations
(MAC:s).

To control evaluation cost, each candidate trains for four
epochs on a 30% data subsample. Candidates exceeding 0.80
validation accuracy are then trained for four additional epochs
on the full dataset. We retain the Pareto frontier and select the
model with the best accuracy—cost trade-off. That model is
fine-tuned for 25 epochs to obtain the base network.

D. Pruning Strategy

Starting from the fine-tuned base network, we search
pruning schedules that progressively increase sparsity during
training while targeting low MACs. A second NSGA-II run
(population 18, generations 4) explores candidate schedules; a
cubic interpolation function governs the evolution of sparsity
from its initial to final value. We adopt a monotonic, mask-
based structured pruning rule: global sparsity increases from

0 up to 0.90, and once a weight is zeroed it remains zero.
Candidates are scored on the joint objective of accuracy and
MAC reduction. The best schedule is applied and the pruned
model is fine-tuned for 20 epochs, yielding a highly sparse yet
accurate network.

E. Optimization

For the architecture optimization stage, a population size
of 18 over 8 generations was adopted after pilot experiments
showed that this configuration consistently produced stable
Pareto fronts within the available compute budget. Increasing
either parameter beyond this point led to minimal
improvements in accuracy—efficiency trade-offs while
significantly increasing runtime, indicating diminishing
returns. Conversely, smaller budgets failed to adequately
cover the search space, resulting in less diverse and less
competitive solutions.

In the pruning schedule optimization stage, a population
size of 18 and 4 generations proved sufficient to converge to
effective sparsity schedules. The search space in this stage was
smaller and smoother, allowing good solutions to emerge
quickly. Trials with larger budgets provided negligible
accuracy gains relative to the added cost, while smaller
budgets reduced stability across runs.

These budget choices reflect a deliberate trade-off:
providing enough evaluations to ensure consistent
convergence and solution diversity, while keeping the total
runtime practical for iterative experimentation and aligned
with the resource-aware nature of the proposed system.

F. Training Setup and Reproducibility

This section outlines the key setup used for model
training, including software, hardware, and optimization
parameters.

e Framework: TensorFlow/Keras 2.18 (Python 3.11)
e  Hardware: We ran all training on a single NVIDIA
Tesla P100-PCIE-16GB GPU (provided by Kaggle
notebook).
e Optimizer: Adam.
e Loss: categorical cross-entropy.
e Learning-rate schedule: 5x10~ for base training (25
epochs) and pruning (20 epochs).
We repeat the full pipeline five times with different seeds
and report mean, standard deviation, and 95% confidence
intervals (using Student’s t-distribution).

IV. RESULTS

A. CNN architecture parameters

In the initial phase of the optimization process, the CNN
hyperparameters (filter sizes, kernel size, dense layer units,
and dropout rate) were tuned using the NSGA-II algorithm.
The optimal set of parameters obtained from this search is
summarized in Table 1.
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Figure 2: Performance Visualizations of the Optimized CNN Model

TABLE I: Best Hyperparameters for CNN

Hyperparameter ~ Meaning Optimum Value

F1 Number of filters 20
in first layer

F2 Number of filters 16
in second layer
Number of filters

F3 in third layer 249

KS Kernel size 3
Number of units

bu in the dense layer &

DR Dropout rate 0.45

B. Pruning parameters

The best pruning parameters from the Pareto front,
obtained via NSGA-II optimization, are presented below.
These parameters were selected to achieve an optimal trade-
off between accuracy and computational efficiency in the
lightweight CNN for DR classification, enabling high
validation accuracy while maintaining low resource
requirements.

e Initial Sparsity (isp): 0.00
e  Final Sparsity (fsp): 0.90
e Begin Step (bs): 184
e End Step (es): 1564

C. Final model performance

The optimized model achieved high test and validation
accuracy with minimal validation loss. Due to its low
parameter count, the model exhibits a compact memory
footprint and reduced computational complexity making it
suitable for deployment on resource-constrained platforms
such as mobile devices or embedded systems. The detailed
performance and efficiency metrics are reported in Table II.
Additionally, the model’s performance is visualized using a
precision—recall curve, a confusion matrix, and bar plots
summarizing precision, recall, and F1-score, as shown in Fig.
2.

V. COMPARISON

To place the proposed model in context with existing DR
detection systems, its performance is compared against four

widely used baseline architectures: VGG-16, MobileNetV2,
ResNet-50, and the recently published framework by Zafar et
al. [13]. The proposed architecture requires only tens of
thousands of parameters, representing an order-of-magnitude
reduction relative to conventional backbone networks. This
substantial model compression is achieved without degrading
discriminative capability; despite its ultra-compact footprint,
the model maintains classification performance comparable to
that of substantially larger networks. The complete
comparative results are reported in Table III.

TABLE II: Performance and Efficiency Metrics

Metric Mean + Sd 95% CI
Test Accuracy 94.0+2.1 92.8-95.2
Validation 94.5+0.7 94.1-94.9
Accuracy

Validation Loss 0.1355

Total Parameters 25,027

Model Size

(Kilobytes) 150.26

MACs 1,633,670

TABLE I1I: Binary DR detection on APTOS 2019

Network Accuracy (%) Z\z;[r)a meters
VGG-16 [21] 79.99 138
MobileNetV2 [22] 97 35
InceptionResNetV2[25] 97.54 54
Xception [25] 97.81 20
RA-EfficientNet [25] 98.36 4.27

Zafar et al.[13] 99.06 13
Proposed 96.1 0.025

VI. DEPLOYMENT ON ARM MICROCONTROLLER

Deploying Al models on microcontrollers poses
significant challenges due to limited resources. For example,
the STM32F746G Discovery board uses an ARM Cortex-M7
microcontroller. It has only 1,024 KB of flash memory and
320 KB of RAM. Conventional Al workloads often exceed
these limits. They require more memory and processing
power. As a result, real-time inference becomes difficult
without external support like cloud connectivity. Our
optimized model overcomes these constraints. We verified



this with X-CUBE-AI analysis. This efficiency allows real-
time DR detection on the device. It suits resource-limited
settings, such as rural clinics [23]. The deployment process
was straightforward. We converted the trained .h5 model to C
code using X-CUBE-AI v10.1. Then, we integrated it into
STM32CubeIDE v1.19.0 for firmware development. For
testing, we set up a PC terminal. It communicated via UART
to send retinal fundus images to the board. The board returned
classification outputs. Results appeared on the terminal and
the board's LCD. This setup provided user-friendly
interaction. Table IV summarizes the key resource usage from
X-CUBE-AI analysis.

TABLE IV: Key resource usage from X-CUBE-AI analysis.

Resource Component Usage (Bytes)
Flash Weights 34,312

Flash Runtime Library 19,422

Flash Total 53,734

RAM Activations 271,424
RAM Runtime Library 5,696

RAM Total 277,120

These metrics show the model's feasibility for edge
inference. This enables affordable, portable DR screening.
The solutions work without cloud dependency. See Figs. 3 and
4 for analysis results and performance.
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Figure 3: Result of the model’s correct prediction
on UART: the fundus image is healthy and is
correctly classified

Figure 4: Result of the model’s prediction on LCD,
which occurs simultaneously with UART.

VII. CONCLUSION

This work shows that co-designing neural architectures
and compression schedules with the target hardware can

deliver clinically strong, on-device diabetic retinopathy
screening under tight resource limits. We introduce an end-to-
end, resource-aware pipeline that jointly optimizes a compact
CNN and its structured-pruning schedule via NSGA-II with
explicit budgets for accuracy, MACs, and memory. A
monotonic, mask-based pruning strategy maintains sparsity
throughout training to produce an ultra-compact yet
discriminative model. The system is fully embedded on a low-
cost microcontroller supporting real-time inference.
Empirically, it is robust across runs, achieving mean test
accuracy of more than 94%, while cutting parameters by
orders of magnitude versus conventional backbones. External
validation and deployment metrics indicate feasibility without
cloud or specialized accelerators, enabling scalable, privacy-
preserving triage in low-resource settings.

Looking ahead, this foundation opens several promising
avenues for extension: (1) Advancing from binary to multi-
class severity grading. (2) Integrating quantization to further
minimize memory demands. (3) We should try and conduct
real-world tests with handheld fundus cameras to check
workflow fit, cost-effectiveness, and whether performance
holds across varied imaging conditions.
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