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A NOVEL MONITORING APPROACH USING 
SUPPORT VECTOR REGRESSION METHOD 

FOR OPTIMIZING A TRIPLE-CONCEPT 
MODEL WITH AUTOCORRELATED DATA

Abstract: Integrating production, maintenance, and quality 
concepts has yielded positive results for imperfect processes that 
degrade over time due to various specific causes. In practice, 
identified correlations within monitored data over time challenges 
the traditional assumption of independence. To address this, the 
Autoregressive Moving Average (ARMA) control chart has been 
utilized in integrated models. This study proposes a novel control 
chart based on the support vector regression (SVR) method to 
apply within integrated models. In an integrated model, the 
performance of both monitoring techniques are assessed. A 
solution procedure based on particle swarm optimization (PSO) 
algorithm is employed. An industrial case study and comparative 
analyses are presented for further examination. Under smaller 
shifts, SVR performs better, whereas monitoring with the ARMA 
chart yields infeasible solutions in six scenarios. However, due to 
the time-consuming procedure of the SVR, the ARMA chart 
becomes a more desirable option for larger shifts.

Keywords: autocorrelation, ARMA chart, support vector 
regression, production, maintenance

1. Introduction

In statistical process control (SPC), control 
charts have increasingly gained acceptance 
in leading industries as effective tools for 
ensuring quality and reducing manufacturing 
costs. These charts are primarily utilized to 
detect process changes before large 
quantities of defective items are produced. 
Unlike processes that assume independence, 
many real-world processes exhibit 
correlation patterns among data points. 
Unidentified autocorrelation can degrade 
monitoring performance and lead to 
additional costs when using traditional 
monitoring techniques. This challenge has 
driven the development of specialized 
monitoring techniques for autocorrelated 
processes. Among these, the autoregressive 

moving average (ARMA) control chart 
stands out as a suitable option for monitoring 
autocorrelated processes (Jafarian et al., 
2021, 2024a, 2024b).

This study aims to develop a novel control 
chart that swiftly detects abnormal patterns. 
To achieve this, we leverage Machine 
Learning (ML) techniques, which effectively 
learn from historical data. ML offers 
valuable insights without significant 
resource demands, finding widespread 
application in SPC across various domains. 
Promising ML approaches include 
variational autoencoders (Sergin & Yan, 
2021), clustering (Lee et al., 2022), 
Convolutional Neural Networks (CNNs) (Xu 
et al., 2019), and Artificial Neural Networks 
(ANNs) (Yeganeh et al., 2023), often 
outperforming traditional statistical methods. 
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While limited research exists on ML 
implementation in monitoring ARMA 
processes, this study aims to make original 
contributions by applying ML to ARMA 
processes. Our proposed method integrates 
ARIMA based chart statistics with the well-
established support vector regression (SVR) 
technique to enhance out-of-control (OOC) 
detection capabilities, as measured by the 
average run length (ARL) criterion. The 
previous literature includes several SVR-
based control charts, such as those by 
Cuentas et al. (2017), Lee and Kim (2018), 
Yeganeh et al. (2024), and Hric and Sabahno 
(2024). Our proposed control chart 
introduces a unique SVR-based method for 
monitoring ARMA processes. This involves 
defining and extracting informative input 
features, which are subsequently used to 
train an SVR model offline. Once trained, 
these models are applied to monitor the 
process in real time and identify any OOC 
states. The approach significantly contributes 
to improving both the selection of input 
features and the training methodology, 
thereby enhancing the model's sensitivity to 
detecting OOC states.

In addition to enhancing quality, modern 
production systems must also focus on 
minimizing downtime and reducing 
operating costs. In these imperfect processes, 
integrating three key components, including 
SPC, maintenance policy (MP), and 
economic production quantity (EPQ), has 
yielded significant benefits for the overall 
system. Under independence assumption of 
data, Shojaee et al. (2024) further advanced 
this field by proposing a model to monitor 
simple linear profiles, resulting in significant 
cost reductions and improved operational 
efficiency. Salmasnia et al. (2023) developed 
a bi-objective model integrating triple 
concepts with warranty and pricing 
strategies. Their employed a non-central chi-
square control chart for monitoring. 
Salmasnia et al. (2024a) proposed an 
integrated model for multi-component 
systems with series-parallel configurations. 
They used an X-bar control chart and 

structural importance measures to reduce 
costs while addressing system complexity. 
Additionally, Salmasnia et al. (2024b) 
proposed an integrated model for a two-stage 
cascade process with multiple assignable 
causes and random failures, using a Cause-
selecting control chart and various 
maintenance policies. Their results indicate 
significant cost savings and improved system 
performance.

Under autocorrelation, only three studies 
have explored integrated modeling as 
follows. Jafarian-Namin et al. (2021) 
optimized an integrated model of the triple 
components across ten scenarios by 
incorporating a delayed monitoring policy 
and utilizing the ARMA control chart. More 
recently, Jafarian-Namin et al. (2024a) 
proposed another integrated model, 
evaluating its performance in three 
scenarios. Their findings demonstrated the 
superior performance of the ARMA control 
chart compared to the mixed EWMA-
CUSUM, EWMAST, and special cause 
control charts. Furthermore, by introducing 
uncertainty in estimating input factors, 
Jafarian-Namin et al. (2024b) developed 
robust designs for two simple and integrated 
models, comparing the effectiveness of the 
ARMA and acceptance control charts.

This research introduces a novel control 
chart utilizing the SVR method. It is then 
incorporated into integrated modeling. 
Within the framework of the integrated 
model, the effectiveness of the proposed 
control chart is compared with that of the 
ARMA chart, as well as their respective 
contributions to cost reduction. The structure 
of this manuscript is as follows. The next 
section provides an overview of monitoring 
techniques for autocorrelated processes. 
Section three presents a detailed explanation 
of the integrated model. In section four, the 
particle swarm optimization (PSO) solution 
approach is introduced. Subsequently, an 
industrial case study and comparative 
analyses are presented in section five for 
further evaluation. Finally, the conclusions 
and potential future directions are outlined.
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2. Monitoring techniques

Consider a univariate autocorrelated ARMA 
process with a mean of µ. The value at time t
can be expressed using the ARMA(1,1) 
model as follows:

where C represents a constant, Xt-1 denotes 
the actual value at time t-1, and at and at-1

are random error terms distributed as 
N(0, a

2). Additionally, u and v are the 
parameters for the autoregressive (AR) and 
moving average (MA) components, 
respectively. The variance of ARMA(1,1) 
model can be determined as follows:

In the remainder of this section, the ARMA 
and SVR control charts are presented for 
monitoring ARMA(1,1) processes.

2.1. ARMA control chart

Consider L as a coefficient. The upper and 
lower control limits of the ARMA chart are 
defined as:

where:

This control chart monitors the following 
statistic (where 0=1+ - , with and 
representing the AR and MA parameters, 
respectively):

To compute the ARL values for in-control 
(IC) and OOC states, denoted as ARL0 and 
ARL1, respectively, a simulation procedure 
is employed, following the method described 
by Jafarian et al. (2024a).

2.2. SVR method

In 1995, Vapnik introduced the Support 
Vector Machine (SVM), a groundbreaking 

ML method designed to address limitations 
of ANNs, particularly in classification tasks. 
SVM's core principle revolves around 
minimizing the training error while 
simultaneously controlling the model's 
complexity (empirical or structural risk 
minimization). To achieve this, non-linear 
problems are transformed into higher-
dimensional spaces (mapped to a 
hyperplane) where optimal separation 
between classes is sought. This involves 
maximizing the geometric margins between 
classes while minimizing classification 
errors. While SVM excels in binary 
classification, extensions are necessary for 
multi-class problems and regression tasks. 
This paper focuses on using SVR for 
monitoring the ARMA process for the first 
time, which is briefly outlined here. For a 
more in-depth exploration of SVR for 
monitoring profiles, readers are referred to 
Yeganeh et al. (2024).

SVR is a powerful machine learning 
algorithm derived from the SVM framework. 
Unlike traditional SVM, which focuses on 
classification, SVR aims to predict 
continuous values. It achieves this by 
defining an "epsilon-insensitive" loss 
function. This function penalizes predictions 
that deviate from the actual values by more 
than a specified margin (epsilon). SVR seeks 
to find a function that minimizes the sum of 
the errors within this margin while 
simultaneously controlling the model's 
complexity. This approach leads to robust 
and accurate predictions, making SVR a 
valuable tool for various regression problems 
in fields like finance, engineering, and time 
series analysis. The SVR training and 
evaluation process involves preparing the 
dataset by cleaning, engineering features, 
and splitting it into training and testing sets. 
The model is then trained on the training 
data using selected hyperparameters, and its 
performance is evaluated on the unseen test 
data using metrics like Mean Squared Error 
(MSE) and R-squared. Hyperparameter 
tuning can be performed to optimize the 
model's performance, followed by retraining 
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and re-evaluation.

3. Model description

Considering the three scenarios in Fig. 1, the 
integrated total cost function is defined as 
follows:

where the terms for quality loss, sampling, 
maintenance, and inventory-related costs are 
defined as follows, respectively:

Table 1 lists the applied notations (for more 
details, refer to Jafarian et al. (2024a)). By 
dividing the ETC in (6) by E(T), the 
expected hourly cost (EHC) is obtained.
Thus, the integrated model is expressed as 
follows:

where the ARL values are constrained to 
achieve desirable ones. The lower bound of 
RInt ensures the continuity of the process. 
The fourth constraint guarantees the 
feasibility of the results. Checking time of 
simple size n must not exceed h time units. 
To obtain an unconstrained model for 
solving via PSO, the penalized OBF is 
defined as follows (S indicates a solution, 
and violvi represents the violation terms for 
the vith constraint from its right-hand-side, 
where vi=1,2,3,4):

Table 1. Notations of integrated modeling
Notation Description
E(CQ|Scr) Expected quality loss cost for 

each scenario
E(CS|Scr) Expected sampling cost for 

each scenario
E(CM|Scr) Expected maintenance cost for 

each scenario
Pr(Scr) Probability of occurring the rth

scenario
E(T) Expected time of process cycle
A Ordering cost
B Inventory holding cost
D Total demand
p Production rate
d Daily demand

Figure 1. Scenarios

4. Solution procedure

The fitness value of each particle is assessed 
by the penalized OBF, fp(Prty

r), for y=1, 
NP. During the optimization process, a 

particle's movement is guided by its: (1) 
current velocity, personal best (pbest), and 
(3) global best (gbest). To determine the 
pbest, if fp(Prty

r fp(pbesty
r-1), the best 

position experienced by yth particle is 
updated to pbesty

r Prty
r. To determine the 

gbest, if fp(pbesty
r fp(gbestr-1) for y

NP, the best solution among all particles is 
set to gbestr pbesty

r. Afterward, the 
stopping criterion is evaluated. If r=NI, the 
gbestr becomes the optimal solution. Else,
the iteration continues by setting r=r+1 and 
generating two random numbers rp, and rg,
uniformly distributed between (0,1). The 
velocities and positions are then updated. 
Note that the models are solved in MATLAB 
software (version R2016b). Moreover, we 
set w=1, (c1, c2)=(2, 2), NP=80, and NI=150 
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for optimization.

5. Experimental results

Table 2 presents the nominal parameters of 
an industrial example adapted from Jafarian 
et al. (2024a). For shift sizes of =1.2, 1.5, 
and 2, Table 3 represents the optimal 
solutions of employing both ARMA and 
SVR monitoring techniques. At =1.2, 
applying SVR results in a maximum saving 
of 80.33 in EHC. However, employing the 
ARMA chart at =1.2 leads to an infeasible 
solution because ARL1=12.07 exceeds its 
threshold. Utilizing the SVR brings a saving 
of 35.66  in EHC decreases to at =1.5. 
However, at =2.0, utilizing the ARMA 
chart becomes desirable.

Table 2. Nominal parameters
Parameter µ x

2 u
Value 100 10 0.475
Parameter v E p
Value 0.00 0.01 100
Parameter d D A
Value 80 10000 60
Parameter B RInt

Value 10 5
Parameter ARL0

min ARL1
max

Value 200 10

Upon examining the detailed results in 
Tables 4, 5, and 6, several key findings 
emerge regarding the comparative 
performance of the ARMA and SVR 
methods, as outlined below:

1. EHC trend:
SVR generally shows lower EHC
compared to ARMA, indicating that 
SVR is more cost-efficient under 
lower values of .
As increases, EHC for both 
methods tends to increase.
SVR maintains more stable EHC
values across varying u and v.
Higher values of v often lead to 
increased EHC for ARMA, while 
SVR remains less sensitive.
The utilization of the ARMA chart 
results in infeasible solutions for 
four designs in Table 4 and two 
designs in Table 5.

2. ARL0 trend:
ARMA achieves higher ARL0

values, meaning it has better false 
alarm control compared to SVR.

0 shows more 
variability across u and v, while 
SVR remains consistent.

3. ARL1 trend:
ARMA exhibits lower ARL1 values 
under =2.0, indicating faster 
detection of shifts.
Lower values lead to higher ARL1

for ARMA compared to SVR.
ARL1 for ARMA decreases 
significantly as v increases, while 

1 remains relatively 
constant.

Table 3. Comparison between two monitoring techniques in triple-concept integrated model
Control chart EHC ARL0 ARL1

1.2 ARMA 451.97 203.37 12.07
SVR 371.64 227.56 6.48

1.5 ARMA 407.30 217.37 8.94
SVR 371.64 227.56 6.48

2.0 ARMA 368.29 230.97 5.56
SVR 371.92 212.34 6.22
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Table 4. Comparison between two monitoring techniques in triple-concept integrated model 
under different ARMA parameters and =1.2

u v Control chart EHC ARL0 ARL1

0.00 0.00 ARMA 373.07 226.94 6.63
SVR 370.00 213.28 6.30

0.25 ARMA 364.75 233.61 4.68

SVR 369.13 212.74 6.08
0.50 ARMA 359.29 272.86 3.37

SVR 369.34 213.28 6.16
0.75 ARMA 354.93 290.04 2.62

SVR 369.24 213.28 6.46
0.25 0.00 ARMA 406.24 201.61 9.17

SVR 371.50 209.12 6.18
0.25 ARMA 372.01 213.12 6.64

SVR 369.53 260.92 6.32
0.50 ARMA 364.01 234.11 4.24

SVR 369.43 213.28 6.24
0.75 ARMA 358.01 218.08 3.05

SVR 373.53 213.28 6.44
0.50 0.00 ARMA 470.10 203.97 13.35

SVR 371.64 227.56 6.48
0.25 ARMA 538.11 204.57 9.66

SVR 369.11 209.48 6.06
0.50 ARMA 374.63 244.34 6.52

SVR 369.52 213.28 6.44
0.75 ARMA 361.57 325.39 4.11

SVR 369.90 212.66 6.24
0.75 0.00 ARMA 500.47 210.91 22.48

SVR 369.83 207.80 6.12
0.25 ARMA 520.80 208.89 25.30

SVR 369.65 222.32 5.98
0.50 ARMA 489.71 200.06 13.14

SVR 368.70 207.22 6.06
0.75 ARMA 375.63 277.98 7.03

SVR 368.97 213.28 6.30

Table 5. Comparison between two monitoring techniques in triple-concept integrated model 
under different ARMA parameters and =1.5

u v Control chart EHC ARL0 ARL1

0.00 0.00 ARMA 365.99 280.08 4.86
SVR 372.25 211.30 6.44

0.25 ARMA 358.21 215.77 3.35
SVR 369.14 210.60 6.16

0.50 ARMA 356.92 309.03 2.63
SVR 369.40 213.28 6.50

0.75 ARMA 352.76 597.30 2.32
SVR 372.08 213.28 6.40

0.25 0.00 ARMA 375.19 222.93 6.89
SVR 368.31 209.48 6.12
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u v Control chart EHC ARL0 ARL1

0.25 ARMA 363.73 308.97 4.93
SVR 369.52 213.28 6.44

0.50 ARMA 361.00 250.81 3.36
SVR 369.26 212.66 6.26

0.75 ARMA 354.68 533.90 2.70
SVR 370.75 213.28 6.68

0.50 0.00 ARMA 449.64 214.44 9.59
SVR 371.64 227.56 6.48

0.25 ARMA 381.40 227.98 7.76
SVR 369.11 209.48 6.06

0.50 ARMA 365.67 302.63 5.17
SVR 369.52 213.28 6.44

0.75 ARMA 358.44 223.94 3.06
SVR 373.60 212.74 6.62

0.75 0.00 ARMA 451.19 213.58 15.87
SVR 373.16 215.42 7.14

0.25 ARMA 490.19 228.62 14.53
SVR 370.68 213.28 6.66

0.50 ARMA 382.27 216.49 9.43
SVR 370.56 207.76 6.62

0.75 ARMA 367.99 237.06 4.94
SVR 370.44 215.42 6.78

Table 6. Comparison between two monitoring techniques in triple-concept integrated model 
under different ARMA parameters and =2.0

u v Control chart EHC ARL0 ARL1

0.00 0.00 ARMA 361.20 280.79 3.34
SVR 372.25 211.30 6.44

0.25 ARMA 352.26 378.27 2.48
SVR 369.14 210.60 6.16

0.50 ARMA 350.56 320.06 2.03
SVR 371.16 309.20 7.06

0.75 ARMA 349.47 290.30 1.71
SVR 372.20 213.28 6.44

0.25 0.00 ARMA 364.77 225.69 4.15
SVR 368.55 213.94 6.10

0.25 ARMA 360.80 274.49 3.31
SVR 371.52 213.28 6.16

0.50 ARMA 351.90 263.95 2.38
SVR 371.64 213.28 6.30

0.75 ARMA 351.19 267.07 1.93
SVR 369.87 215.42 6.36

0.50 0.00 ARMA 370.59 247.77 5.69
SVR 367.62 210.66 5.78

0.25 ARMA 364.44 212.64 4.08
SVR 371.57 209.12 6.14

0.50 ARMA 360.11 231.61 3.06
SVR 369.53 260.92 6.32

0.75 ARMA 351.81 337.06 2.30
SVR 371.75 213.28 6.22

0.75 0.00 ARMA 411.57 206.25 9.15
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u v Control chart EHC ARL0 ARL1

SVR 370.85 204.20 5.72
0.25 ARMA 385.05 283.70 8.71

SVR 368.74 235.84 6.18
0.50 ARMA 367.87 200.93 4.88

SVR 368.08 211.80 5.88
0.75 ARMA 357.41 250.83 3.09

SVR 371.26 209.50 6.20

6. Conclusions

The specific characteristics of the monitored 
process can influence the relative 
performance of ARMA and SVR. In general, 
SVR outperforms ARMA due to its lower 
EHC across different scenarios with smaller 
shift sizes. However, the SVR procedure is 
time-consuming. For instance, with a shift 

size of 2, obtaining results using the ARMA 
and SVR methods takes approximately 94.38 
and 6876.15 seconds, respectively. In 
summary, a comprehensive evaluation that 
considers the specific process characteristics, 
desired control objectives, and runtime 
duration is crucial for selecting the most 
suitable method.
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