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A NOVEL MONITORING APPROACH USING
SUPPORT VECTOR REGRESSION METHOD
FOR OPTIMIZING A TRIPLE-CONCEPT
MODEL WITH AUTOCORRELATED DATA

Abstract: Integrating production, maintenance, and quality
concepts has yielded positive results for imperfect processes that
degrade over time due to various specific causes. In practice,
identified correlations within monitored data over time challenges
the traditional assumption of independence. To address this, the
Autoregressive Moving Average (ARMA) control chart has been
utilized in integrated models. This study proposes a novel control
chart based on the support vector regression (SVR) method to
apply within integrated models. In an integrated model, the
performance of both monitoring techniques are assessed. A
solution procedure based on particle swarm optimization (PSO)
algorithm is employed. An industrial case study and comparative
analyses are presented for further examination. Under smaller
shifts, SVR performs better, whereas monitoring with the ARMA
chart yields infeasible solutions in six scenarios. However, due to
the time-consuming procedure of the SVR, the ARMA chart
becomes a more desirable option for larger shifts.

Keywords: autocorrelation, ARMA
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chart, support vector

moving average (ARMA) control chart
stands out as a suitable option for monitoring
autocorrelated processes (Jafarian et al.,

In statistical process control (SPC), control
charts have increasingly gained acceptance
in leading industries as effective tools for
ensuring quality and reducing manufacturing
costs. These charts are primarily utilized to
detect process changes before large
quantities of defective items are produced.
Unlike processes that assume independence,
many  real-world  processes  exhibit
correlation patterns among data points.
Unidentified autocorrelation can degrade
monitoring performance and lead to
additional costs when using traditional
monitoring techniques. This challenge has
driven the development of specialized
monitoring techniques for autocorrelated
processes. Among these, the autoregressive
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2021, 2024a, 2024b).

This study aims to develop a novel control
chart that swiftly detects abnormal patterns.
To achieve this, we leverage Machine
Learning (ML) techniques, which effectively

learn from historical data. ML offers
valuable insights  without significant
resource demands, finding widespread

application in SPC across various domains.
Promising ML  approaches  include
variational autoencoders (Sergin & Yan,
2021), clustering (Lee et al, 2022),
Convolutional Neural Networks (CNNs) (Xu
et al., 2019), and Artificial Neural Networks
(ANNs) (Yeganeh et al., 2023), often
outperforming traditional statistical methods.
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While limited research exists on ML
implementation in monitoring ARMA
processes, this study aims to make original
contributions by applying ML to ARMA
processes. Our proposed method integrates
ARIMA based chart statistics with the well-
established support vector regression (SVR)
technique to enhance out-of-control (OOC)
detection capabilities, as measured by the
average run length (ARL) criterion. The
previous literature includes several SVR-
based control charts, such as those by
Cuentas et al. (2017), Lee and Kim (2018),
Yeganeh et al. (2024), and Hric and Sabahno
(2024). Our proposed control chart
introduces a unique SVR-based method for
monitoring ARMA processes. This involves
defining and extracting informative input
features, which are subsequently used to
train an SVR model offline. Once trained,
these models are applied to monitor the
process in real time and identify any OOC
states. The approach significantly contributes
to improving both the selection of input
features and the training methodology,
thereby enhancing the model's sensitivity to
detecting OOC states.

In addition to enhancing quality, modern
production systems must also focus on
minimizing  downtime and reducing
operating costs. In these imperfect processes,
integrating three key components, including
SPC, maintenance policy (MP), and
economic production quantity (EPQ), has
yielded significant benefits for the overall
system. Under independence assumption of
data, Shojaee et al. (2024) further advanced
this field by proposing a model to monitor
simple linear profiles, resulting in significant
cost reductions and improved operational
efficiency. Salmasnia et al. (2023) developed
a bi-objective model integrating triple
concepts with warranty and pricing
strategies. Their employed a non-central chi-
square control chart for monitoring.
Salmasnia et al. (2024a) proposed an
integrated model for multi-component
systems with series-parallel configurations.
They used an X-bar control chart and
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structural importance measures to reduce
costs while addressing system complexity.
Additionally, Salmasnia et al. (2024b)
proposed an integrated model for a two-stage
cascade process with multiple assignable
causes and random failures, using a Cause-
selecting control chart and various
maintenance policies. Their results indicate
significant cost savings and improved system
performance.

Under autocorrelation, only three studies
have explored integrated modeling as
follows. Jafarian-Namin et al. (2021)
optimized an integrated model of the triple
components across ten scenarios by
incorporating a delayed monitoring policy
and utilizing the ARMA control chart. More

recently, Jafarian-Namin et al. (2024a)
proposed  another integrated  model,
evaluating its performance in three

scenarios. Their findings demonstrated the
superior performance of the ARMA control
chart compared to the mixed EWMA-
CUSUM, EWMAST, and special cause
control charts. Furthermore, by introducing
uncertainty in estimating input factors,
Jafarian-Namin et al. (2024b) developed
robust designs for two simple and integrated
models, comparing the effectiveness of the
ARMA and acceptance control charts.

This research introduces a novel control
chart utilizing the SVR method. It is then
incorporated into integrated modeling.
Within the framework of the integrated
model, the effectiveness of the proposed
control chart is compared with that of the
ARMA chart, as well as their respective
contributions to cost reduction. The structure
of this manuscript is as follows. The next
section provides an overview of monitoring
techniques for autocorrelated processes.
Section three presents a detailed explanation
of the integrated model. In section four, the
particle swarm optimization (PSO) solution
approach is introduced. Subsequently, an
industrial case study and comparative
analyses are presented in section five for
further evaluation. Finally, the conclusions
and potential future directions are outlined.



2. Monitoring techniques

Consider a univariate autocorrelated ARMA
process with a mean of u. The value at time ¢
can be expressed using the ARMA(1,1)
model as follows:
X =C+uX,q +a; —va,_q

where C represents a constant, X;; denotes
the actual value at time #-1, and a, and a,,
are random error terms distributed as
N(O,aaz). Additionally, u and v are the
parameters for the autoregressive (AR) and
moving average (MA) components,
respectively. The variance of ARMA(1,1)
model can be determined as follows:

1—2uv + v?
1—u?
In the remainder of this section, the ARMA

and SVR control charts are presented for
monitoring ARMA(1,1) processes.

o2 =

2.1. ARMA control chart

Consider L as a coefficient. The upper and
lower control limits of the ARMA chart are
defined as:

UCL=u+ Loy,

LCL=pu— Loy
where:

o2 = 20—-¢p)1+06)
1+¢
This control chart monitors the following
statistic (where 6y=1+6-¢, with ¢ and 6O
representing the AR and MA parameters,
respectively):
Zy =QZi g + 00X — 00Xy

To compute the ARL values for in-control
(IC) and OOC states, denoted as ARL, and
ARL,, respectively, a simulation procedure

is employed, following the method described
by Jafarian et al. (2024a).

+ 1|0}

2.2. SVR method

In 1995, Vapnik introduced the Support
Vector Machine (SVM), a groundbreaking

ML method designed to address limitations
of ANNSs, particularly in classification tasks.

SVM's core principle revolves around
minimizing the training error while
simultaneously controlling the model's

complexity (empirical or structural risk
minimization). To achieve this, non-linear

problems are transformed into higher-
dimensional  spaces (mapped to a
hyperplane) where optimal separation

between classes is sought. This involves
maximizing the geometric margins between
classes while minimizing classification
errors. While SVM excels in binary
classification, extensions are necessary for
multi-class problems and regression tasks.
This paper focuses on using SVR for
monitoring the ARMA process for the first
time, which is briefly outlined here. For a
more in-depth exploration of SVR for
monitoring profiles, readers are referred to
Yeganeh et al. (2024).

SVR is a powerful machine learning
algorithm derived from the SVM framework.
Unlike traditional SVM, which focuses on
classification, SVR aims to predict
continuous values. It achieves this by
defining an "epsilon-insensitive"  loss
function. This function penalizes predictions
that deviate from the actual values by more
than a specified margin (epsilon). SVR seeks
to find a function that minimizes the sum of
the errors within this margin while
simultaneously controlling the model's
complexity. This approach leads to robust
and accurate predictions, making SVR a
valuable tool for various regression problems
in fields like finance, engineering, and time
series analysis. The SVR training and
evaluation process involves preparing the
dataset by cleaning, engineering features,
and splitting it into training and testing sets.
The model is then trained on the training
data using selected hyperparameters, and its
performance is evaluated on the unseen test
data using metrics like Mean Squared Error
(MSE) and R-squared. Hyperparameter
tuning can be performed to optimize the
model's performance, followed by retraining
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and re-evaluation.

3. Model description

Considering the three scenarios in Fig. 1, the
integrated total cost function is defined as
follows:

ETC =E@Q)+ESa)+EM)+E()
where the terms for quality loss, sampling,
maintenance, and inventory-related costs are
defined as follows, respectively:

3
EQQ) = Z =1E(CQ|Scr) Pr(Sc,)
E(Sa) = 23_ E(Cs|Sc,) Pr(Sc,)

3
E(M) = z E(CyISc,) Pr(Sc,)
r=1

BXE(MT)x(p—d) DxA

2 p X E(T)
Table 1 lists the applied notations (for more
details, refer to Jafarian et al. (2024a)). By
dividing the ETC in (6) by E(T), the
expected hourly cost (EHC) is obtained.
Thus, the integrated model is expressed as
follows:

E(D) =

min EHC
S.t.
ARLy > ARLT™
ARL; < ARLT**
kh = Ryt
nE <h
Bounded decision variables
where the ARL values are constrained to
achieve desirable ones. The lower bound of
Ry, ensures the continuity of the process.
The fourth constraint guarantees the
feasibility of the results. Checking time of
simple size » must not exceed / time units.
To obtain an unconstrained model for
solving via PSO, the penalized OBF is
defined as follows (S indicates a solution,
and viol,; represents the violation terms for
the vi™ constraint from its right-hand-side,
where vi=1,2,3,4):
fp(S) = EHC(S) x
(1 + viol,(S) + viol,(S) + violy(S) + viol,(S))#
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Table 1. Notations of integrated modelin,

Notation Description

E(CqlScy) Expected quality loss cost for
each scenario

E(Cg|Scy) Expected sampling cost for
each scenario

E(Cym|Sc,) | Expected maintenance cost for
each scenario

Pr(Sc,) Probability of occurring the "
scenario

E(T) Expected time of process cycle

A Ordering cost

B Inventory holding cost

D Total demand

p Production rate

d Daily demand

Ist Jth (j+1jth (j+ijth kth
sample sample sample sample sample T

$ [ ]

Se; ° @

Sc ® E

] A

in-control state  out-of-control state process shift true alarm

Figure 1. Scenarios

4. Solution procedure

The fitness value of each particle is assessed
by the penalized OBF, fp(Prt,), for y=I,
2,..., Np. During the optimization process, a
particle's movement is guided by its: (1)
current velocity, personal best (pbest), and
(3) global best (gbest). To determine the
phest, if fo(Prt,))<fp(pbest,"), the best
position experienced by " particle is
updated to pbest,” — Prt,”. To determine the
gbest, if fp(pbestyr)ﬁfp(gbestr'l) for y=1, 2,...,
Np, the best solution among all particles is
set to ghest — pbest,. Afterward, the
stopping criterion is evaluated. If r=N;, the
ghest” becomes the optimal solution. Else,
the iteration continues by setting =r+1 and
generating two random numbers r,, and 7,
uniformly distributed between (0,1). The
velocities and positions are then updated.
Note that the models are solved in MATLAB
software (version R2016b). Moreover, we
set w=1, (c1, ¢2)=(2, 2), Np=80, and N=150



for optimization.

5. Experimental results

Table 2 presents the nominal parameters of
an industrial example adapted from Jafarian
et al. (2024a). For shift sizes of 0=1.2, 1.5,
and 2, Table 3 represents the optimal
solutions of employing both ARMA and
SVR monitoring techniques. At J=1.2,
applying SVR results in a maximum saving
of 80.33 in EHC. However, employing the
ARMA chart at 6=1.2 leads to an infeasible
solution because ARL;=12.07 exceeds its
threshold. Utilizing the SVR brings a saving
of 35.66 in EHC decreases to at o=1.5.
However, at ¢=2.0, utilizing the ARMA
chart becomes desirable.

Table 2. Nominal parameters

Parameter | u 0.’ u
Value 100 10 0.475
Parameter | v E p
Value 0.00 0.01 100
Parameter | d D A
Value 80 10000 60
Parameter | B Ry

Value 10 5

Parameter | ARL,™ | ARL,™

Value 200 10

Upon examining the detailed results in
Tables 4, 5, and 6, several key findings
emerge  regarding  the  comparative
performance of the ARMA and SVR
methods, as outlined below:

EHC trend:

e SVR generally shows lower EHC
compared to ARMA, indicating that
SVR is more cost-efficient under
lower values of ¢.

e As ¢ increases, FHC for both
methods tends to increase.

e SVR maintains more stable EHC
values across varying u and v.
Higher values of v often lead to
increased EHC for ARMA, while
SVR remains less sensitive.

e The utilization of the ARMA chart
results in infeasible solutions for
four designs in Table 4 and two
designs in Table 5.

ARL, trend:

e ARMA achieves higher ARL,
values, meaning it has better false
alarm control compared to SVR.

e ARMA’s ARL, shows more
variability across u and v, while
SVR remains consistent.

ARL, trend:

e ARMA exhibits lower ARL; values
under 0=2.0, indicating faster
detection of shifts.

e Lower ¢ values lead to higher ARL,
for ARMA compared to SVR.

e ARL; for ARMA decreases
significantly as v increases, while
SVR’s ARL; remains relatively
constant.

Table 3. Comparison between two monitoring techniques in triple-concept integrated model

0 Control chart EHC ARL, ARL,
1.2 ARMA 451.97 203.37 12.07
SVR 371.64 227.56 6.48
1.5 ARMA 407.30 217.37 8.94
SVR 371.64 227.56 6.48
2.0 ARMA 368.29 230.97 5.56
SVR 371.92 212.34 6.22
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Table 4. Comparison between two monitoring techniques in triple-concept integrated model

under different ARMA parameters and 6=1.2

u v Control chart EHC ARLy ARL,
0.00 0.00 ARMA 373.07 226.94 6.63
SVR 370.00 213.28 6.30
0.25 ARMA 364.75 233.61 4.68
SVR 369.13 212.74 6.08
0.50 ARMA 359.29 272.86 3.37
SVR 369.34 213.28 6.16
0.75 ARMA 354.93 290.04 2.62
SVR 369.24 213.28 6.46
0.25 0.00 ARMA 406.24 201.61 9.17
SVR 371.50 209.12 6.18
0.25 ARMA 372.01 213.12 6.64
SVR 369.53 260.92 6.32
0.50 ARMA 364.01 234.11 4.24
SVR 369.43 213.28 6.24
0.75 ARMA 358.01 218.08 3.05
SVR 373.53 213.28 6.44
0.50 0.00 ARMA 470.10 203.97 13.35
SVR 371.64 227.56 6.48
0.25 ARMA 538.11 204.57 9.66
SVR 369.11 209.48 6.06
0.50 ARMA 374.63 244.34 6.52
SVR 369.52 213.28 6.44
0.75 ARMA 361.57 325.39 4.11
SVR 369.90 212.66 6.24
0.75 0.00 ARMA 500.47 210.91 22.48
SVR 369.83 207.80 6.12
0.25 ARMA 520.80 208.89 25.30
SVR 369.65 222.32 5.98
0.50 ARMA 489.71 200.06 13.14
SVR 368.70 207.22 6.06
0.75 ARMA 375.63 277.98 7.03
SVR 368.97 213.28 6.30

Table 5. Comparison between two monitoring techniques in triple-concept integrated model

under different ARMA parameters and 6=1.5

u v Control chart EHC ARL, ARL,
0.00 0.00 ARMA 365.99 280.08 4.86
SVR 372.25 211.30 6.44

0.25 ARMA 358.21 215.77 3.35

SVR 369.14 210.60 6.16

0.50 ARMA 356.92 309.03 2.63

SVR 369.40 213.28 6.50

0.75 ARMA 352.76 597.30 2.32

SVR 372.08 213.28 6.40

0.25 0.00 ARMA 375.19 222.93 6.89
SVR 368.31 209.48 6.12
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u v Control chart EHC ARL, ARL,
0.25 ARMA 363.73 308.97 4.93
SVR 369.52 213.28 6.44
0.50 ARMA 361.00 250.81 3.36
SVR 369.26 212.66 6.26
0.75 ARMA 354.68 533.90 2.70
SVR 370.75 213.28 6.68
0.50 0.00 ARMA 449.64 214.44 9.59
SVR 371.64 227.56 6.48
0.25 ARMA 381.40 227.98 7.76
SVR 369.11 209.48 6.06
0.50 ARMA 365.67 302.63 5.17
SVR 369.52 213.28 6.44
0.75 ARMA 358.44 223.94 3.06
SVR 373.60 212.74 6.62
0.75 0.00 ARMA 451.19 213.58 15.87
SVR 373.16 215.42 7.14
0.25 ARMA 490.19 228.62 14.53
SVR 370.68 213.28 6.66
0.50 ARMA 382.27 216.49 9.43
SVR 370.56 207.76 6.62
0.75 ARMA 367.99 237.06 4.94
SVR 370.44 215.42 6.78

Table 6. Comparison between two monitoring techniques in triple-concept integrated model

under different ARMA parameters and 6=2.0

u % Control chart EHC ARL, ARL,
0.00 0.00 ARMA 361.20 280.79 3.34
SVR 372.25 211.30 6.44

0.25 ARMA 352.26 378.27 2.48

SVR 369.14 210.60 6.16

0.50 ARMA 350.56 320.06 2.03

SVR 371.16 309.20 7.06

0.75 ARMA 349.47 290.30 1.71

SVR 372.20 213.28 6.44

0.25 0.00 ARMA 364.77 225.69 4.15
SVR 368.55 213.94 6.10

0.25 ARMA 360.80 274.49 3.31

SVR 371.52 213.28 6.16

0.50 ARMA 351.90 263.95 2.38

SVR 371.64 213.28 6.30

0.75 ARMA 351.19 267.07 1.93

SVR 369.87 215.42 6.36

0.50 0.00 ARMA 370.59 247.77 5.69
SVR 367.62 210.66 5.78

0.25 ARMA 364.44 212.64 4.08

SVR 371.57 209.12 6.14

0.50 ARMA 360.11 231.61 3.06

SVR 369.53 260.92 6.32

0.75 ARMA 351.81 337.06 2.30

SVR 371.75 213.28 6.22

0.75 0.00 ARMA 411.57 206.25 9.15
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u % Control chart EHC ARL, ARL,

SVR 370.85 204.20 5.72

0.25 ARMA 385.05 283.70 8.71

SVR 368.74 235.84 6.18

0.50 ARMA 367.87 200.93 4.88

SVR 368.08 211.80 5.88

0.75 ARMA 357.41 250.83 3.09

SVR 371.26 209.50 6.20
6. Conclusions size of 2, obtaining results using the ARMA
and SVR methods takes approximately 94.38
The specific characteristics of the monitored and 6876.15 seconds, respectively. In
process can influence the relative summary, a comprehensive evaluation that
performance of ARMA and SVR. In general, considers the specific process characteristics,
SVR outperforms ARMA due to its lower desired control objectives, and runtime
EHC across different scenarios with smaller ~ duration is crucial for selecting the most

shift sizes. However, the SVR procedure is  suitable method.

time-consuming. For instance, with a shift
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