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Abstract performance of the estimation is reduced when target moves
In this paper, a new combined scheme is presented to at a constant velocity. A generalized likelihood ratio (GLR)
overcome some drawbacks of the high maneuvering target method for manoeuvre detection and estimation was
tracking problems by using the mixed Fuzzy logic and the presented by Kom, Gully and Willsky [5]. This algorithm
standard Kalman filter. This scheme is consist of two proposed the use of two hypotheses, null hypothesis for a
important aspects; at first absolute value of difference target without manoeuvre, and alternative hypothesis for a
between last target course and the present observation target target with manoeuvre. When the log likelihood ratio is over
course and the second aspect is the absolute value of a threshold, a manoeuvre is detected. This system needs a
measurement residual. The results compared with the bank of correlators to detect the manoeuvre onset time. In
augmented method and another combinedfuzzy logic method some situations, the Kalman filter solves the target tracking
which have been reported in [8] and [16], respectively. problem by including the parameters as part of an augmented
Simulation results show a high performance of the proposed state to be estimated [8, 11, 12]. In many papers such filters
innovation method and effectiveness of this scheme in high are called "full state" estimator.
maneuvering targets trackingproblems. Recently, fuzzy logic was applied to manoeuvring target

tracking with intelligent adaptation capabilities [14, 15].
However it is not easy to find effective parameter on

1. INTRODUCTION manoeuvre detection and partition them.
[16] presents a method which used Kalman filter and fuzzy

The Kalman filter has been used in many radar processors as logic in order to track a manoeuvre target, but the only input
an adaptive tracking filter to estimate the position, the of its fuzzy system was heading change. In this work we find
velocity and the acceleration of a target; however its more effective parameter on acceleration estimation and
performance may be seriously degraded in presence of partition a new fuzzy system. This parameter leads us to an
manoeuvre. Even a short-term acceleration can cause a bias immediate manoeuvre detection and a more accurate
in the measurement sequence. There exist many approaches estimation.
and methods for tracking manoeuvring targets, which try to
solve this problem [1]-[3]. For example, switching between
Kalman filters of different order, estimation of acceleration as 2. MODELS OF UNCERTAINITY 171
input during a manoeuvre and to correct the state using batch
least squares methods or recursive estimation for on-line The basic models to be considered in this paper are the
implementation. An Extended Kalman Filter combined with Bayesian and Fisher models which have used in [8]. Theses
an algorithm for recursive estimation of the measurement models are specific cases of the state space structure-white
noise variance and the variance of the target acceleration is process. The Bayesian models are one of the most important
proposed in [13]. Lanka [4] and Korn, Gully and Willsky [5] and common used models of uncertainty. In Bayesian
have developed an extended Kalman filter using a circular models, uncertainty are modeled by random variables and/or
model of motion. Singer [6] modeled target acceleration as a stochastic processes with completely specified either
random process with known exponential autocorrelation. This probability distributions or completely specified first and
model iS capable of tracking a manoeuvring target, but the second moments.

1-4244-0902-0/07/$20.00 ©C 2007 IEEE 59



The complete definition of the Bayesian, discrete time error covariance matrix and Z(N+± N) is the error
model for linear systems is summarized now. covariance matrix of the one-step prediction.

Maneuvering targets are difficult to track with Kalman filter
X(n + 1) = F(n)X(n) + G(n)w(n) since the target model of tracking filter might not fit the real
z(n) = H(n)X(n) + v(n) target trajectory [9].
X(n) state
z(n) observatio n (1) 4. COMBINED KALMAN FILTER-FUZZY LOGIC METHOD

v(n) whtobservation unetay (1)
v(n) white observatio n uncertianty YIn this section, combined Kalman filter-fuzzy logic (CKF)
w(n) white system driving uncertiant y method is proposed for tracking a high manoeuvring target.
X(O) initial condition The main idea of the proposed method is adding some

information to Bayesian model in order to obtain better
T 9:S(nl ) n, = n2 performance. Because of mathematical limitations of standard

Etv(nl)vT (n2)91= 1 Kalman filter, it is pretty impossible or very difficult to
adding more information on it. As we know, fuzzy systems

E{w(nl1)wT(nl2)}=.Q(nl) n1 n2 do not require a mathematical model of how system outputs
0 ni n2 depend on inputs. Therefore in this research fuzzy logic is

E{x(O)XT (O)}V employed in order to add some more information to the
E{x(0)] = 0 E{w(0)] = 0 E{v(0)] = 0 tracker. In fact, in this method Fuzzy logic is used in order to

detect high manoeuvre of the target.
In many applications, the input disturbance, w() can be Radar output signal has no exact mathematical relation with

modeled as being completely unknown. A model where w() target manoeuvre, but with no doubt there exist a complex
is completely unknown is a type of Fisher model. Of course, nonlinear mapping between them. To map the input vector to
conceptually such Fisher models have to be handled in a target acceleration vector it is important to find the effective
different fashion from Bayesian models where w( is viewed input elements. In the proposed method two features is used

as a random vector with known covariance matrix Q(). For as inputs of fuzzy acceleration estimator system.
some applications the Fisher modeling of wQ, can be viewed 1. Absolute value of diference between last target course
as the limiting Bayesian case, where. (u) and observation target course (;). this is shown as AO

in Fig .1. AO is one of the most useful elements to detect the
3. FILTERING OF THE BAYESIAN MODELS

target manoeuvre [16].
The desired form of the filtering solution is a difference WhenIAO is low, then the target with high probability is

equation (recursive relationship) expressingx(N+ IN) in moving around its last direction and when IAOI is high, then

terms of k(N N) on z(N+1). the target with high probability is moving toward sensor's
observation. This fact was used as a fuzzy rule in fuzzy

The solution of the filtering problem is the Kalman filter with controller of CKF.
equations: IAOI, t and ; are calculated by the following equations.

X~(N + I N) = F(N)X~(N I) + K(N + 1)[Z(N + 1) AO?= W ; (3)
- H(N +1)F(N)X(N N)] where:
K(N + 1) = Y(N +1 N)HT (N +1)-1 (N + 1) Last Taget Course
Y(N + I N + 1)) = Y(N + I N) - ; = Observation Target Course
Y(N + 1N)HT (N + 1)[9i(N + 1) + H(N + 1) Last Target Course = angle(HX(N -1|N)- HX(N - 21N)
L(N + 1I N)H(N + 1)T ] 1H(N + 1) L(N + 1) (2) Observation Target Course = angle(Z(NIN)- HX(N - 1N)) (4)
Y(N + 1I N) = F(N) Y(N N)FT (N)
+ G(N)Q(N)GT (N) 2. Absolute value of measurement residual (R): The

I0) =O,(0 0) 0 objective in this section is to develop a manoeuvre detection
algorithm which detects the acceleration and jerk of a
manoeuvring target. Similar idea of quickest detection and

where K(N) is the Kalman gain and notation X(N + 1 N) change detection algorithm only for constant acceleration has
denotes the prediction at the (N + I)th sample point given the been investigated in the [3]. The standard KF (equation (2)) is

measurement~ ~up tanicldgthNth whls ^( N an efficient and unbias filter, so the sequence
Z(n±+i) =Z(n±+i) -Z(n±+i/ln) =Z(n±+i)-H(n±+i)X(n±+i/ln) ,which iS the

denotes the estimation at the Nth sample point given the residue of the observation is a stochastic zero mean white
measurement up to and including the Nth . Z(N N) is the process. i.e.,
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EtZ(n + 1)} = 0 a ty Y- axis Target acceleration
- - T

E{Z(n )Z(n2)T}J= R(nj -n2)

Thus, for non-manoeuvring targets, the mean of this sequence New Information
Z(n + 1) ) is zero. But for manoeuvring target case this

sequence is no longer zero, using Kalman filter. Block 1 Block 2 Block 3
Angle & R Al Fuzzy * State

R y

Y Present PredictionBlc
-Point

Last state aCombiner New
State

LastTargetV - - - ~~~~~~~~~Measurement
Course Blok

'~ Observation
| LastTargtTarget Course

, Rang Last predicton ............................................................................................................

Point Last Information

,' Target Fig. 2: The CKF method
, Azimuth >

X Y~(N + I N) Denotes the fuzzy prediction at the (N + 1)th sample
Fig. 1: Target movement geometry point given the measurement up to and including the Nth,

whilst Y(N N) denotes the fuzzy estimation at the NthConsidering this fact, one can use this idea for manoeuvre
detection by using the measurement residue in the sample point given the measurement up to and including
manoeuvring case, which is not longer white zero mean and it the Nth The output of block 3, Y, is the new state which
contains more information which can use for manoeuvre calculated by Fuzzy logic based on the new information.
detection procedure. This fact is used as another fuzzy rule in Kalman filter facilitates the mean-square-error analysis of the
fuzzy acceleration estimator system. system behaviour. This method has some advantages and
The CKF method is illustrated in Fig .2. In this figure, block works well in mild manoeuvres. For making use of the
1, calculates AO and R. Block 2 is a fuzzy controller and the advantages of Kalman filter, block 4 uses it to estimate the
fuzzy system have two input and one output. The input new state. In the other words, the output of block 4, x, is the
variables of fuzzy system are AO and R. Inputs and output new state which is estimated by Kalman filter based on the
fuzzy sets all have three Gaussian membership functions with last information. At the end of the process a method is needed

to combine output of the fuzzy estimator, Y, and output of
the following membershipgadeuthe Kalman estimator, X, considering their advantages and

disadvantages. Simulation result proves that fuzzy tracker
1____ x, 2performs better when the manoeuvre is high and Kalman

u/(x,)cxPL ylilJj (5) Filter works better when manoeuvre is mild. Assuming the
target manoeuvre is proportional to a t S Y andx can be

where, Cf and xi are the centre value and the standard combined in block 5 using the following relation:

deviation of Gaussian membership function for i th input NX - LaIY + (amax - at)X]
variable of j -th fuzzy rule, respectively. The output of the Na= (7)amax
fuzzy logic controller determines the estimated acceleration In formula 7 ama iS the maximum value of at and NX iSvalue of target deviation at from its last Target course based max

the output of block 5. As illustrated in figure 2, CKF useson AO input. Fuzzy inference rules support mentioned .. 'both kinematics information and new information, which
information. Block 3 estimates the new state based on the ldto atter peformance.
fuzzy logic output as follow.

Yr(N + 1lN)= F(N)Y(NjN)+ G(N) a 5. SIMULATION RESULTS

a t: Target Acceleration (Output of block 2) The estimation improvement obtained by purposed method
- C { 8 ~~~~~~~~~(6)is illustrated by the following examples.a1r -a1os v In experiments reported in this section, the following

at =~at Sin(4) assumptions and parameter values are used. In this

a tx : x-axi s Taget accelerationsimulation, the sampling time is T=0.015 (sec). Covariance
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elements generated for R and 0 axis are both Gaussian random Target Range
variables; in addition the measurement noise vector in 6400

Real
Cartesian coordinates is related to the measurement noise 6200 Proposed-menthod

Augmented
vector in polar coordinates by the following equation [10]. 6000

2F27F2o 2 80LSxJ cos2 00 Ro sin2 J0 jd (8) 5600
LS2 Lsin2 00 Ro Cos

0
SoL92 60

5400 -Swhere,
5200 - - -l

8R =200, =500
Ro = 5000 (m) and 00 =30 (deg) 4800
In order to evaluate the new tracking scheme and comparison 4600 2 6 80 0
with two existing method augmented Kalman filter [8] and 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

method of [16], two scenarios were considered as follow.
Fig. 4: Target's range estimation

First scenario. The initial position of the target is given by Target Azimuth
(x,y)=(4330,2500) with an initial speed of (v, ,vy)=(13,7.5) 31 F 7
and on a constant course of 300 and speed until t= 75 s, then it 30

-

starts to maneuver with acceleration value ux=-l r/s2
y-1 r/s2. Target move with this acceleration up to end of

this simulation at t=135 s. Fig. 3 shows, target trajectory 28 -

estimation by proposed method and augmented Kalman filter 27 -

in this scenario. Fig. 4 shows, target range estimation by two 26
- -

methods. Fig. 5 shows, target azimuth estimation by two
methods. In order to compare CKF with augmented Kalman
filter and method of [16], a Monte- Carlo simulation of 50 24
runs was performed. The standard deviation (std) of 23 -

estimation error of range, azimuth, course and speed of all 22 Real22 Proposed method -

three methods in this scenario is compared in Table 1. 21 Augmented
Target Trajectory 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

3200

3000 / 2 Fig. 5: Target's azimuth estimation
_ /, TABLE 1: RADAR FILTER ESTIMATION ERROR IN THE FIRST

2800 -
SCENARIO (std)
Range Azimul Cours( Speed

2600 - - -X- CKF 11.6915 0.065^ 12.123. 2.383(
Augmented Method~ 140.5361 0.447z~ 35.076' 13.8651
Method of [16] 59.216= 0.1144 25.474 14.018

2200 -g' -X
Second scenario. The initial position of the target is given by

2000 - - (x,y)=(4330,2500) with an initial speed of (vx ,vy)=(13,7.5)
1800 - Real and on a constant course of 300 and speed until t= 180 s, then

Proposed method it starts to maneuver with acceleration value uj=-] mr/s2
1600 Augmented u=-1 r/s2. This acceleration finish at t=225 s after that,4200 4400 4600 4800 5000 5200 5400 5600 T

X(m) target starts to maneuver at t=228s with acceleration of
Fig. 3: Target's Trajectory in Cartesian coordinate and tracking result of ux=1 6 m/s2, uy=1. 6 r/s2. Target moves with this acceleration

CKF and augmented Kalman filter up to end of this simulation at t=300s. Fig. 6 shows, target
trajectory estimation by proposed method and augmented
Kalman filter in this scenario. Fig.7 shows, target range
estimation by two methods. Fig.8 shows, target azimuth
estimation by two methods.
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Target Trajectory Table 2 shows comparison of the std of estimation error in
4500 Real second scenario. These results are the mean value over 50

Proposed method runs.
Augmented

4000 - _

TABLE 2: RADAR FILTER ESTIMATION ERROR IN THE SECOND

3500 - SCENARIO (std)

Range Azimuth Course Speed
CKF 18.640 0.0690 20.0826 2.9348

3000 - Augmented Method 369.0760 0.8371 30.7829 23.4713

FMethod of [16] 62.7099 0.1214 21.0996 5.3662

2500 - ' _

6. CONCOLUSION

2000
4000 4500 5000 5500 6000 6500 7000 7500 8000**X (in) In this paper, a new combined scheme is presented to overcome

the high maneuvering target tracking problems. This scheme is
Fig. 6: Target's Trajectory in Cartesian coordinate and tracking result of baed onetwo rimpotant actsna frst absolutev eof

CKadugene Klmn ile based on two important aspects; at first absolute value ofCKF and augmented Kalman filter
difference between last target course and the present observation

Target Range target course and the second aspect is the absolute value of
9000

Real
I I I Imeasurement residual. The results compared with the works of

Proposed method | augmented method proposed in [8] and the work was reported in
8500 Augmented [16]. Simulation results show a high performance of the

8000 /_ Tproposed method and effectiveness of this scheme in tracking of
high maneuvering targets.

7500 - _7
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