2007 Information, Decision and Control

High Maneuver Target Tracking Based on
Combined Kalman Filter and Fuzzy Logic

M. H. Bahari', A. Karsaz* H. Khaloozadeh®
'Department of Electrical Engineering, Ferdowsi University of Mashhad
Mashhad, Iran, m_h_bahari@yahoo.com
? Department of Electrical Engineering, Ferdowsi University of Mashhad
Mashhad, Iran, a_karsazl@yahoo.com
Faculty of Electrical Engineering, K.N.Toosi University of Technology
Tehran, Iran, h_khaloozadeh@kntu.ac.ir

Abstract

In this paper, a new combined scheme is presented to
overcome some drawbacks of the high maneuvering target
tracking problems by using the mixed Fuzzy logic and the
standard Kalman filter. This scheme is consist of two
important aspects; at first absolute value of difference
between last target course and the present observation target
course and the second aspect is the absolute value of
measurement vesidual. The results compared with the
augmented method and another combined fuzzy logic method
which have been reported in [8] and [l16], respectively.
Simulation results show a high performance of the proposed
innovation method and effectiveness of this scheme in high
maneuvering targets tracking problems.

1. INTRODUCTION

The Kalman filter has been used in many radar processors as
an adaptive tracking filter to estimate the position, the
velocity and the acceleration of a target; however its
performance may be seriously degraded in presence of
manoeuvre. Even a short-term acceleration can cause a bias
in the measurement sequence. There exist many approaches
and methods for tracking manoeuvring targets, which try to
solve this problem [1]-[3]. For example, switching between
Kalman filters of different order, estimation of acceleration as
input during a manoeuvre and to correct the state using batch
least squares methods or recursive estimation for on-line
implementation. An Extended Kalman Filter combined with
an algorithm for recursive estimation of the measurement
noise variance and the variance of the target acceleration is
proposed in [13]. Lanka [4] and Korn, Gully and Willsky [5]
have developed an extended Kalman filter using a circular
model of motion. Singer [6] modeled target acceleration as a
random process with known exponential autocorrelation. This
model is capable of tracking a manoeuvring target, but the
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performance of the estimation is reduced when target moves
at a constant velocity. A generalized likelihood ratio (GLR)
method for manoeuvre detection and estimation was
presented by Korn, Gully and Willsky [5]. This algorithm
proposed the use of two hypotheses, null hypothesis for a
target without manoeuvre, and alternative hypothesis for a
target with manoeuvre. When the log likelihood ratio is over
a threshold, a manoeuvre is detected. This system needs a
bank of correlators to detect the manoeuvre onset time. In
some situations, the Kalman filter solves the target tracking
problem by including the parameters as part of an augmented
state to be estimated [8, 11, 12]. In many papers such filters
are called “full state” estimator.

Recently, fuzzy logic was applied to manoeuvring target
tracking with intelligent adaptation capabilities [14, 15].
However it is not easy to find effective parameter on
manoeuvre detection and partition them.

[16] presents a method which used Kalman filter and fuzzy
logic in order to track a manoeuvre target, but the only input
of its fuzzy system was heading change. In this work we find
more effective parameter on acceleration estimation and
partition a new fuzzy system. This parameter leads us to an
immediate manoeuvre detection and a more accurate
estimation.

2. MODELS OF UNCERTAINITY [7]

The basic models to be considered in this paper are the
Bayesian and Fisher models which have used in [8]. Theses
models are specific cases of the state space structure-white
process. The Bayesian models are one of the most important
and common used models of uncertainty. In Bayesian
models, uncertainty are modeled by random variables and/or
stochastic processes with completely specified either
probability distributions or completely specified first and
second moments.



The complete definition of the Bayesian, discrete time
model for linear systems is summarized now.

X(n+1)=F(m)X(n)+ Gn)w(n)
z(n) = Hm)X (n) + v(n)

X(n) state
z(n) observatio n 0
v(n) white observation uncertiant y
w(n) white system driving uncertiant y
X(0) initial condition
Efo(m)V (ny)) ={m(0"1) o
T
Ex0)" (0} =y
Efx0)}=0 , E{w0)}=0 , E{v0)}=0

In many applications, the input disturbance, w(.) can be
modeled as being completely unknown. A model where wy(.)
is completely unknown is a type of Fisher model. Of course,
conceptually such Fisher models have to be handled in a
different fashion from Bayesian models where w(.) is viewed
as a random vector with known covariance matrix Q). For
some applications the Fisher modeling of w(.), can be viewed
as the limiting Bayesian case, where.

3. FILTERING OF THE BAYESIAN MODELS

The desired form of the filtering solution is a difference
equation (recursive relationship) —expressing {( N+N) in
terms of )A((N‘N) on z(N+1).

The solution of the filtering problem is the Kalman filter with
equations:

X(N+1|NY=F(N)X(N )+ KN +D[z(N +1)
—H(N +D)F(N)X(N | N)]

K(N+D)=X(N+1| MHT (N +DRT (N +1)
S(N+1|N+1) = (N +1|N)-
S(N+NHT (N +D[R(N +1)+ H(N +1)
SN+ NMHN+D) T H(N + D) (N +1)
S(N+1|N)= F(IN)Z(N | NYFT(N)
+GNQNIGT (V)

3(0[0)=0,X(0]0)=0

@)

where K(N) is the Kalman gain and notation )?(N+1\ N)
denotes the prediction at the (N + 1) sample point given the

measurement up to and including the N whilst X (N |N)

denotes the estimation at the N™ sample point given the
measurement up to and including the y™.3(N|N) is the
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error covariance matrix and (N +1|N)is the error

covariance matrix of the one-step prediction.

Maneuvering targets are difficult to track with Kalman filter
since the target model of tracking filter might not fit the real
target trajectory [9].

4. COMBINED KALMAN FILTER-FUZZY LOGIC METHOD

In this section, combined Kalman filter-fuzzy logic (CKF)
method is proposed for tracking a high manoeuvring target.
The main idea of the proposed method is adding some
information to Bayesian model in order to obtain better
performance. Because of mathematical limitations of standard
Kalman filter, it is pretty impossible or very difficult to
adding more information on it. As we know, fuzzy systems
do not require a mathematical model of how system outputs
depend on inputs. Therefore in this research fuzzy logic is
employed in order to add some more information to the
tracker. In fact, in this method Fuzzy logic is used in order to
detect high manoeuvre of the target.
Radar output signal has no exact mathematical relation with
target manoeuvre, but with no doubt there exist a complex
nonlinear mapping between them. To map the input vector to
target acceleration vector it is important to find the effective
input elements. In the proposed method two features is used
as inputs of fuzzy acceleration estimator system.

1. Absolute value of difference between last target course
(v ) and observation target course (£ ): this is shown as A&
in Fig .1. Aé is one of the most useful elements to detect the
target manoeuvre [16].

When|Ad| is low, then the target with high probability is

moving around its last direction and when |A9| is high, then

the target with high probability is moving toward sensor’s
observation. This fact was used as a fuzzy rule in fuzzy
controller of CKF.

|A6|, v and & are calculated by the following equations.

Ab=y-& 3
where:
v = Last Target Course
& = Observation Target Course
Last Target Course = angle(H)?(N - 1|N) - H)?(N - 2|N))
S

Observation Target Course = angle(Z(N‘N) - H)?(N - I‘N))

2. Absolute value of measurement residual (R): The
objective in this section is to develop a manoeuvre detection
algorithm which detects the acceleration and jerk of a
manoeuvring target. Similar idea of quickest detection and
change detection algorithm only for constant acceleration has
been investigated in the [3]. The standard KF (equation (2)) is
an efficient and unbias filter, so the sequence

Zn+) = Z(n+ )= Z(n+1/n) = Z(n+1)— Hmn+ DX (n+1/m) ,Which is the
residue of the observation is a stochastic zero mean white
process. i.e.,



E{Z(n+1)}=0
E{Z(n)Z(ny)"} = R(my —ny)
Thus, for non-manoeuvring targets, the mean of this sequence

(Z (n+1)) is zero. But for manoeuvring target case this
sequence is no longer zero, using Kalman filter.
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Fig. 1: Target movement geometry

Considering this fact, one can use this idea for manoeuvre
detection by using the measurement residue in the
manoeuvring case, which is not longer white zero mean and it
contains more information which can use for manoeuvre
detection procedure. This fact is used as another fuzzy rule in
fuzzy acceleration estimator system.

The CKF method is illustrated in Fig .2. In this figure, block
1, calculates A@ and R. Block 2 is a fuzzy controller and the
fuzzy system have two input and one output. The input
variables of fuzzy system are|A9| and R. Inputs and output

fuzzy sets all have three Gaussian membership functions with
the following membership grade ulf (x;).

1 x,-—cl.j )
o

uf () = exp| ——
where, c,-j and x; are the centre value and the standard

: 5)

deviation of Gaussian membership function for i th input
variable of j-th fuzzy rule, respectively. The output of the

fuzzy logic controller determines the estimated acceleration
value of target deviation a, from its last Target course based

onA@input. Fuzzy inference rules support mentioned
information. Block 3 estimates the new state based on the
fuzzy logic output as follow.

YV +1|Nv)= F(V (Vv )+ 6(w) F"‘}
Ay
a ¢ - Target Acceleration (Output of block 2)
a_ =a,Cos (5 )
a, =a,Sin (5 )
a

(©)

x + X-axis Target acceleration
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aty 1 y- axis Target acceleration

New Information

Block 1 N Block 2 Block3 |
Angle & R Fuzzy State
Calculator Controller Calculator || i
A 4 R Y
Block 5
Last state ™ 4, Combiner New
State
Measurement
Block 4
X
» Ka_lman
Filter

Last Information

Fig. 2: The CKF method

Y +1|~) Denotes the fuzzy prediction at the (¥ +1)" sample

point given the measurement up to and including the N,
whilst ¢(¥|N) denotes the fuzzy estimation at the N
sample point given the measurement up to and including

the ;. The output of block 3,Y, is the new state which
calculated by Fuzzy logic based on the new information.

Kalman filter facilitates the mean-square-error analysis of the
system behaviour. This method has some advantages and
works well in mild manoeuvres. For making use of the
advantages of Kalman filter, block 4 uses it to estimate the
new state. In the other words, the output of block 4, ¥, is the
new state which is estimated by Kalman filter based on the
last information. At the end of the process a method is needed
to combine output of the fuzzy estimator, ¥ , and output of
the Kalman estimator, X, considering their advantages and
disadvantages. Simulation result proves that fuzzy tracker
performs better when the manoeuvre is high and Kalman
Filter works better when manoeuvre is mild. Assuming the

target manoeuvre is proportional toa,, Y and £ can be

combined in block 5 using the following relation:

NX = [QZQ + (amax - )X,J

(M

In formula 7, ay,, is the maximum value of ¢, and NX is

the output of block 5. As illustrated in figure 2, CKF uses
both kinematics information and new information, which
leads to a better performance.

Amax

5. SIMULATION RESULTS

The estimation improvement obtained by purposed method
is illustrated by the following examples.
In experiments reported in this section, the following
assumptions and parameter values are used. In this
simulation, the sampling time is T=0.015 (sec). Covariance



elements generated for R and ¢ axis are both Gaussian random
variables; in addition the measurement noise vector in
Cartesian coordinates is related to the measurement noise
vector in polar coordinates by the following equation [10].

o= cos>@, Risin’6, |52
2|~ v D 2 2 2 (8)
5)7 sin 00 RO COS 00 53
where,
O, =200, o, =1

R, =5000 (m) and g, =30 (deg)
In order to evaluate the new tracking scheme and comparison

with two existing method augmented Kalman filter [8] and
method of [16], two scenarios were considered as follow.

First scenario: The initial position of the target is given by
(x,y)=(4330,2500) with an initial speed of (v ,v,)=(13,7.5)
and on a constant course of 30° and speed until t= 75 s, then it
starts to maneuver with acceleration value w,=-1 m/s’ ,
u,= -1 m/s’. Target move with this acceleration up to end of
this simulation at t=135 s. Fig. 3 shows, target trajectory
estimation by proposed method and augmented Kalman filter
in this scenario. Fig. 4 shows, target range estimation by two
methods. Fig. 5 shows, target azimuth estimation by two
methods. In order to compare CKF with augmented Kalman
filter and method of [16], a Monte- Carlo simulation of 50
runs was performed. The standard deviation (std) of
estimation error of range, azimuth, course and speed of all
three methods in this scenario is compared in Table 1.
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Fig. 3: Target’s Trajectory in Cartesian coordinate and tracking result of
CKF and augmented Kalman filter
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Fig. 4: Target’s range estimation
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Fig. 5: Target’s azimuth estimation
TABLE 1: RADAR FILTER ESTIMATION ERROR IN THE FIRST

SCENARIO (std)
Range| Azimut Coursg Speed
CKF 11.6913  0.0653 12.123 2.3834
Augmented Method  140.536 04474  35.076 13.865
Method of [16] 592167  0.1145  25474{ 14.018

Second scenario: The initial position of the target is given by
(x,y)=(4330,2500) with an initial speed of (v, ,vy)=(13,7.5)
and on a constant course of 30° and speed until t= 180 s, then
it starts to maneuver with acceleration value u,=-1/ m/s’
u,=-1 m/s’. This acceleration finish at t=225 s after that,
target starts to maneuver at t=228s with acceleration of
u,=1.6 m/s’, u,=1.6 m/s. Target moves with this acceleration
up to end of this simulation at t=300s. Fig. 6 shows, target
trajectory estimation by proposed method and augmented
Kalman filter in this scenario. Fig.7 shows, target range
estimation by two methods. Fig.8 shows, target azimuth
estimation by two methods.
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Fig. 6: Target’s Trajectory in Cartesian coordinate and tracking result of
CKF and augmented Kalman filter
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Table 2 shows comparison of the std of estimation error in
second scenario. These results are the mean value over 50
runs.

TABLE 2: RADAR FILTER ESTIMATION ERROR IN THE SECOND

SCENARIO (std)
Range Azimuth | Course Speed
CKF 18.640 0.0690 20.0826 | 2.9348
Augmented Method | 369.0760 | 0.8371 30.7829 | 23.4713
Method of [16] 62.7099 0.1214 21.0996 | 53662

6. CONCOLUSION

In this paper, a new combined scheme is presented to overcome
the high maneuvering target tracking problems. This scheme is
based on two important aspects; at first absolute value of
difference between last target course and the present observation
target course and the second aspect is the absolute value of
measurement residual. The results compared with the works of
augmented method proposed in [8] and the work was reported in
[16]. Simulation results show a high performance of the
proposed method and effectiveness of this scheme in tracking of
high maneuvering targets.
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