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Abstract--Ship borne targets normally maneuver on circular 

paths which have lead to tracking filters on circular turns. In this 
paper, an innovation technique is presented to transform the 
tracking-maneuvering target problems from Polar coordinate to 
Cartesian coordinate, therefore a standard linear Kalman filter 
can be easily applied to them. Mathematical relation between 
measurement noise covariance in polar coordinate and the 
measurement noise covariance in Cartesian coordinate for 
Kalman implementation is obtained in this approach via a 
theorem. 
 

Keywords-Maneuvering targets, Polar to Cartesian 
transformation, target maneuver detection.  
 

I.  INTRODUCTION 
HERE exist many approaches and methods for tracking 
maneuvering targets [1]-[3]. For example, switching 

between Kalman filters of different orders, estimation of 
acceleration as input during a maneuver and to correct the 
state using batch least squares methods or recursive estimation 
for on-line implementation. Lanka [4] and Korn, Gully and 
Willsky [5] have developed an extended Kalman filter using a 
circular model of motion. Singer [6] modeled target 
acceleration as a random process with known exponential 
autocorrelation. This model is capable of tracking a 
maneuvering target, but the performance of the estimation is 
reduced when target moved at a constant velocity. A 
generalized likelihood ratio (GLR) method for maneuver 
detection and estimation was presented by Korn, Gully and 
Willsky [5]. This algorithm proposes the use of two 
hypotheses, null hypothesis for a target without maneuver, and 
alternative hypothesis for a target with maneuver. When the 
log likelihood ratio is over a threshold, a maneuver is detected. 
This system needs a bank of correlators to detect the maneuver 
onset time. 

In this Paper, we presented a new approach to transform 
measurement noise covariance matrix from Polar coordinate to 
Cartesian coordinate.  

                                                        
 

II.  MODELS OF UNCERTAINTY [7] 
The basic models to be considered in this paper are the 

Bayesian and Fisher models which use in [8]. Theses models 
are specific cases of the state space structure-white process.  

The Bayesian models are one of the most important and 
common used models of uncertainty. In Bayesian models, 
uncertainty are modeled by random variables and/or stochastic 
processes with completely specified either probability 
distributions or completely specified first and second 
moments. 

The complete definition of the Bayesian, discrete time 
model for linear systems is summarized now. 
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 In many applications, the input disturbance, w(.) can be 

modeled as being completely unknown. A model where w(.) is 
completely unknown is a type of Fisher model. Of course, 
conceptually such Fisher models have to be handled in a 
different fashion from Bayesian models where w(.) is viewed 
as a random vector with known covariance matrix Q(.). For 
some applications the Fisher modeling of w(.), can be viewed 
as the limiting Bayesian case, where.  

 

III.  FILTERING OF THE BAYESIAN MODELS 
The desired form of the filtering solution is a difference 
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equation (recursive relationship) expressing  )1(ˆ NNX +  in 

terms of  )(ˆ NNX on z(N+1). 
The logic, which yields the desired equation, can be 
summarized in the following steps: 
1. Assume that  )11(ˆ ++ NNX  is to be calculate just )(ˆ NNX  
and z(N+1). 
2. Use the one-step prediction logic to change the problem to 
calculate )11(ˆ ++ NNX from )1(ˆ NNX + and z(N+1). 
3. Solve a Fisher estimation problem where )11(ˆ ++ NNX  and 
z(N+1) are considered on an unknown vector X(N+1). 
In the Bayesian model, stochastic probabilistic models are 
used for all the uncertainties. Thus x(0), v(n) and w(n) are 
modeled as zero mean uncertainty    random variables. 
The matrix H(n), F(n) and G(n) in Eq. (1) assumed to be 
known function of time n. The problem to be considered in 
how to use the observation up to time 2n , z(1),...,z( 2n ), to 
estimate the state )( 1nX  at some time .1n  
The solution of the problem filtering, after some manipulation 
leads us to the Kalman filter with equations: 
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(2)  

)(NK  is the Kalman gain and notation )|1(ˆ NNX +  denotes the 

prediction at the thK )1( + sample point given the measurement 

up to and including the thK  whilst  )|(ˆ NNX  denotes the 

estimation at the thN  sample point given the measurement up 
to and including the thN . )|( NN∑ is the error covariance 
matrix and )|1( NN +∑ is the error covariance matrix of the 
one-step prediction. The measurement covariance matrixℜ is 
usually introduced in polar coordinate, but we need it in 
Cartesian coordinate for Kalman filter implementation at Eq. 
(2).   
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xδ : Standard diversion of target trajectory measurement at X axis 

yδ : Standard diversion of target trajectory measurement at Y axis 

Maneuvering Targets are difficult to track with Kalman filter 
since the target model of tracking filter might not fit the real 
target trajectory [9].  

IV.  TRANSFORMATION BETWEEN POLAR COORDINATE AND 
CARTESIAN COORDINATE MEASUREMENT COVARIANCE MATRIX 
The measurement noise in the maneuvering model is related to 
the measurement noise in Cartesian coordinates by Roecker 
and McGillem [10]. Tracking with a polar model of motion is 
not easily implemented by using a Kalman filter in Cartesian 
coordinate because the process model is nonlinear, and the 
covariance matrix of each radar obtained in polar coordinate. 
Therefore for Kalman filter implementation in Cartesian 
coordinate, transformation between polar coordinate and 
Cartesian coordinate measurement noise covariance matrix is 
necessary. 
The transformation between Cartesian coordinates and polar 
coordinates is given by 

22 yxR +=  (4) 

)(tan 1

x
y−=θ  (5) 

θcosRX =  (6) 
θsinRY =  (7) 

In polar coordinates the state is radius and angle of 

target ]) ([ θR .  

A.  Theorem  
If the states R  and θ  in polar coordinates are two 
independent measurements with white noise zero mean 
variables, then the states in Cartesian coordinates are two 
independent measurements with white noise zero mean  
variables. In addition the measurement noise vector in 
Cartesian coordinates is related to the measurement noise 
vector in polar coordinates by the following equation, 
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where Rδ and θδ are too small.  

B.  Proof 
Define, 

RRR o ∆+=  
θθθ ∆+= o  

(9) 

where, R∆  and θ∆  are two zero mean independent random 
white noise variables as bellow: 

),0(: RNR δ∆  
),0(: θδθ N∆  

Rδ : Standard diversion of target radius measurement 

θδ : Standard diversion of target angle measurement 

oR : Target radius without noise 

oθ : Target angle without noise 

Suppose that x and y in Cartesian coordinates have been 
perturbed by a noise as bellow  

XXX o ∆+=  
YYY ∆+= 0  (10) 

 

2979



 

 
 

 

where the states oX and oY define the target trajectory in 
Cartesian coordinates without noise. The relation equation 
between variables X∆ , Y∆ and R∆ , θ∆ is desired. 
By Euler equation; 
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By using Eq. (8) we have, 
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Suppose we know that R∆  and θ∆  both have small values. 
so we have 
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By substitution (11) in (13) and using above relation we have, 
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Therefore, 
ooo RRX θθθ sincos ∆−∆=∆     (15)  

ooo RRY θθθ sincos ∆+∆=∆  (16)  
As mentioned before R∆  and θ∆  are two zero mean 
independent random white noise variables, then Y ,X are zero 
mean white noise with following variances : 
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Because, oo sin and cos , θθoR  are constant at each time. The 
values of θδδ ,R can obtained from radar catalogs and have 
known values.  

V.  SIMULATION RESULTS 
As an evaluation of this transformation technique, a Monte 
Carlo simulation was performed and various paths with 
circular and straight trajectories were implemented.  

A target maneuvering tracking algorithm which turns in two-
dimensional space is simulated. Several values of 
measurement noise covariance elements, range measurement 
and target azimuth measurement was used.  
It is assumed that the target moves in a plane, which is the 
two-dimensional case, such as a ship. 
At first example the target is traveling at zero acceleration 

1*2)(tu  in X and Y direction equal 2m/s 0)( =ta x , 
2m/s  0=(t)a y . In this simulation, the sampling time is 

T=0.015 second and the matrices of Q is 0.1. A Monte Carlo 
simulation of 10000 runs was performed on these paths 
( (m) 50000 =R and (deg) 300 =θ  with constant velocity). As 
Fig.1 and Fig.2 shows, measurement noise covariance 
elements generated for R and θ  axis are both Gaussian 
random variable. Fig. 3 shows actual and noisy Trajectory 
(measurement trajectory) in polar coordinate with constant 
velocity. Fig. 3 is only apparent on finer scale (600 time index 
point from 10000).  
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Fig. 2. Histogram of state θ in polar coordinate with a Gaussian 
measurement noise ( o2=θδ  ) 
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As proof by Theorem A, and using Eq. (6), (7) for evaluate the 
X and Y directly from noisy R and θ  (show in Fig.4, Fig.5), 

Gaussian distribution can see for both X and Y  too. 
 

Fig. 6 shows the simulation result when target has a constant 
velocity and maneuver detection is done by using linear 
Kalman filter (Eq. 2). 
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Figure 3:  Actual and noisy Trajectory in polar coordinate with 

 constant velocity and their Gaussian measurement errors 
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Fig.5. Histogram of Y in Cartesian coordinate evaluated  
by Eq. (7) 
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Fig. 6. Actual and Estimation Trajectory in Cartesian coordinate with 

constant velocity using linear  Kalman filter (Eq. 2). 
  

By using Eq. (4), (5) trajectory of target in polar coordinate 
are obtained (Fig .7). 
 
Fig. 8, shows the actual and estimation of target parameter in 
R  and θ  direction in the present of target maneuvering. 
 

VI.  CONCLUSIONS 
In this paper, a new transformation is presented to transform 
Polar coordinate to Cartesian coordinate tracking target 
problems. Linear Kalman filter in Cartesian coordinate can 
easily implemented by using this technique. Simulation results 
show a high performance of the proposed innovation 
technique and effectiveness of this scheme in tracking 
maneuvering targets. 
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Figure 7:  Actual and Estimation Trajectory in polar coordinate with constant 
velocity and their errors 
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