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Abstract--Ship borne targets normally maneuver on circular
paths which have lead to tracking filters on circular turns. In this
paper, an innovation technique is presented to transform the
tracking-maneuvering target problems from Polar coordinate to
Cartesian coordinate, therefore a standard linear Kalman filter
can be easily applied to them. Mathematical relation between
measurement noise covariance in polar coordinate and the
measurement noise covariance in Cartesian coordinate for
Kalman implementation is obtained in this approach via a
theorem.
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1. INTRODUCTION

HERE exist many approaches and methods for tracking
maneuvering targets [1]-[3]. For example, switching
between Kalman filters of different orders, estimation of
acceleration as input during a maneuver and to correct the
state using batch least squares methods or recursive estimation
for on-line implementation. Lanka [4] and Korn, Gully and
Willsky [5] have developed an extended Kalman filter using a
circular model of motion. Singer [6] modeled target
acceleration as a random process with known exponential
autocorrelation. This model is capable of tracking a
maneuvering target, but the performance of the estimation is
reduced when target moved at a constant velocity. A
generalized likelihood ratio (GLR) method for maneuver
detection and estimation was presented by Korn, Gully and
Willsky [5]. This algorithm proposes the use of two
hypotheses, null hypothesis for a target without maneuver, and
alternative hypothesis for a target with maneuver. When the
log likelihood ratio is over a threshold, a maneuver is detected.
This system needs a bank of correlators to detect the maneuver
onset time.
In this Paper, we presented a new approach to transform
measurement noise covariance matrix from Polar coordinate to
Cartesian coordinate.
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II. MODELS OF UNCERTAINTY [7]

The basic models to be considered in this paper are the
Bayesian and Fisher models which use in [8]. Theses models
are specific cases of the state space structure-white process.

The Bayesian models are one of the most important and
common used models of uncertainty. In Bayesian models,
uncertainty are modeled by random variables and/or stochastic

processes with completely specified either probability
distributions or completely specified first and second
moments.

The complete definition of the Bayesian, discrete time
model for linear systems is summarized now.
X(n+1)=Fm)X(n)+ G(n)w(n)
z(n)=H(n)X(n)+v(n)

X(n) state
z(n) observation (1)
v(n) white observation uncertainty
w(n) white system driving uncertainty
X(0) initial condition
R(ny) m =n,
E T V=
v(n)v" (ny)} { 0 1y # ny
O(ny)) ny=n
E{w(nan(nzn:{ 0 m e
Ex(0)x" (0)} =y
Ex(0)}=0 , E{w(0)}=0 , E{v(0)}=0

In many applications, the input disturbance, w(.) can be
modeled as being completely unknown. A model where w(.) is
completely unknown is a type of Fisher model. Of course,
conceptually such Fisher models have to be handled in a
different fashion from Bayesian models where w(.) is viewed
as a random vector with known covariance matrix Q(.). For
some applications the Fisher modeling of w(.), can be viewed
as the limiting Bayesian case, where.

III. FILTERING OF THE BAYESIAN MODELS

The desired form of the filtering solution is a difference
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equation (recursive relationship) expressing X (N +1‘ N) in
terms of X (N|N) on z(N+1).

The logic, which yields the desired equation, can be
summarized in the following steps:

1. Assume that X(N+1N+1) is to be calculate just X (N|N)
and z(N+1).

2. Use the one-step prediction logic to change the problem to
calculate X (N +1[N+1) from X (N +1|n)and z(N+1).

3. Solve a Fisher estimation problem where X (N +1|N+1) and

z(N+1) are considered on an unknown vector X(N+1).

In the Bayesian model, stochastic probabilistic models are
used for all the uncertainties. Thus x(0), v(n) and w(n) are
modeled as zero mean uncertainty random variables.

The matrix H(n), F(n) and G(n) in Eq. (1) assumed to be
known function of time n. The problem to be considered in
how to use the observation up to time #,, z(1),...z(n,), to
estimate the state X'(n,) at some time 7.

The solution of the problem filtering, after some manipulation
leads us to the Kalman filter with equations:
X(N+1| N)= F(N)X(N | N)+K(N +D[z(N +1)
~H(N+DF(N)X(N|N)]

K(N+) =X(N+1| N)H (N+DRI(N+1)
S(N+1|N+1)=X(N+1|N)—
S(N+INHT(N+D[R(N+1)+ H(N+1)

SN+ NMHN+) T HN+D) Z(N+1)

(N +1|N)=F(N) (N | N)F" (N)
+G(NQAN)G' (N)

3(0]0)=0,X(0|0)=0

2

K(N) is the Kalman gain and notation X(~ +1|N) denotes the
prediction at the (K +1)" sample point given the measurement
up to and including the &” whilst (v |n) denotes the
estimation at the N sample point given the measurement up
to and including the N‘h.Z(N\ N)is the error covariance
matrix and Y (N +1|N)is the error covariance matrix of the

one-step prediction. The measurement covariance matrix R is
usually introduced in polar coordinate, but we need it in
Cartesian coordinate for Kalman filter implementation at Eq.

@.
6 0
9{{5 52} 3)

5 - Standard diversion of target trajectory measurement at X axis

5 y Standard diversion of target trajectory measurement at Y axis

Maneuvering Targets are difficult to track with Kalman filter
since the target model of tracking filter might not fit the real
target trajectory [9].

IV. TRANSFORMATION BETWEEN POLAR COORDINATE AND
CARTESIAN COORDINATE MEASUREMENT COVARIANCE MATRIX

The measurement noise in the maneuvering model is related to
the measurement noise in Cartesian coordinates by Roecker
and McGillem [10]. Tracking with a polar model of motion is
not easily implemented by using a Kalman filter in Cartesian
coordinate because the process model is nonlinear, and the
covariance matrix of each radar obtained in polar coordinate.
Therefore for Kalman filter implementation in Cartesian
coordinate, transformation between polar coordinate and
Cartesian coordinate measurement noise covariance matrix is
necessary.

The transformation between Cartesian coordinates and polar
coordinates is given by

R:w/xz +y2 “4)

0 =tan"' (2) (5)

X
X =Rcosb (6)
Y=Rsin@ (7
In polar coordinates the state is radius and angle of
target ([R ]) .
A. Theorem

If the states R and @ in polar coordinates are two
independent measurements with white noise zero mean
variables, then the states in Cartesian coordinates are two
independent measurements with white noise zero mean
variables. In addition the measurement noise vector in
Cartesian coordinates is related to the measurement noise
vector in polar coordinates by the following equation,

5? _|cos?6, R(sin’6, | Sz ®)
5y2 sin®@, R3cos’8, | 5;
where dand Jdyare too small.

B. Proof
Define,
R=R,+AR
0=06,+A0 ©)
where, AR and Af are two zero mean independent random
white noise variables as bellow:

AR : N(0,8)

A6:N(0,6,)

1) g - Standard diversion of target radius measurement

59 : Standard diversion of target angle measurement

Ro : Target radius without noise

60
Suppose that x and y in Cartesian coordinates have been
perturbed by a noise as bellow
X=X,+AX

Y=Y, +AY

: Target angle without noise

(10)
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where the states X, and Y, define the target trajectory in

Cartesian coordinates without noise. The relation equation
between variables AX , AY and AR, A@ is desired.
By Euler equation;

X, + /Y, =Re’% =R, cos@, + jR,siné, (11)
X+ jY = Re’?
=Rcos 0+ jRsind

=(R, +AR)cos(8, + AB)+ j(R, +AR)sin(6, + A6) (12)
=(R,+AR)(cos 8, cos A@—sin 8, sin A)
+ j(R, +AR)(sin @, cos A@+ cos &sin A)
By using Eq. (8) we have,
X, +AX + j(Y,+AY)=R cos@, cosAO—R sin @, sin Af
+ARcos 8, cosAG—ARsin 6, sin AG
+j(R, sin @, cosAG+ R, cos 8, sin AG (13)
+ARsin 8, cos A@+ AR cos 8, sin AG)
Suppose we know that AR and A@ both have small values.

so we have
cosAf =1

sinAf@=Af
AOGAR =0
By substitution (11) in (13) and using above relation we have,
X,+jY, +AX + jAY =R, cos 8, —R,A@sin 6,
+ AR cos 8, —ARA@sin 6,
+j(R,sin @, + R,AB cos 6,
+ARsin @, + ARAGcos 6,) (14)
=R, cos 8, +jR, sin 6,
—R,A@sin 6, + AR cos 6,
+j(R,ABcos 8, + ARsin 6,)

Therefore,
AX =ARcos6, —R,Afsinb, (15)
AY =R ,Afcosf, + ARsin 6, (16)

As mentioned before AR and A6 are two zero mean
independent random white noise variables, then X,Y are zero
mean white noise with following variances :

var(AX) = cos? 8, var(AR) + Rg sin? 8, var(A6)

var(AY) =sin? 6, var(AR) + Rg cos? 8, var(A6)

5; 3 cos’ 6, R;sin’6, | 5z
55 sin®@, R; cos’6, |5,
5, 0
R=| *
0 o,

Because, R,,cosf, andsing, are constant at each time. The
values of 0y,d,can obtained from radar catalogs and have
known values.

V. SIMULATION RESULTS

As an evaluation of this transformation technique, a Monte
Carlo simulation was performed and various paths with
circular and straight trajectories were implemented.

A target maneuvering tracking algorithm which turns in two-
dimensional space is simulated. Several values of
measurement noise covariance elements, range measurement
and target azimuth measurement was used.

It is assumed that the target moves in a plane, which is the
two-dimensional case, such as a ship.

At first example the target is traveling at zero acceleration
u(t)py in X and Y direction a (t)=0m/s?,
a, =0 m/s*. In this simulation, the sampling time is
T=0.015 second and the matrices of Q is 0.1. A Monte Carlo

simulation of 10000 runs was performed on these paths
(R, =5000(m)and @, =30(deg) with constant velocity). As

Fig.1 and Fig.2 shows, measurement noise covariance

equal

clements generated for Rand @ axis are both Gaussian
random variable. Fig. 3 shows actual and noisy Trajectory
(measurement trajectory) in polar coordinate with constant
velocity. Fig. 3 is only apparent on finer scale (600 time index
point from 10000).

Histogram R, 5R=1 00 (m)
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Fig. 1. Histogram of state R in polar coordinate with a Gaussian
measurement noise (5, =100m )
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Fig. 2. Histogram of state & in polar coordinate with a Gaussian
measurement noise (8, =2° )
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As proof by Theorem A, and using Eq. (6), (7) for evaluate the
X and Y directly from noisy R and & (show in Fig.4, Fig.5),

Gaussian distribution can see for both X and Y too.

Target Range
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Fig. 6 shows the simulation result when target has a constant
velocity and maneuver detection is done by using linear

Kalman filter (Eq. 2).

Target Azimuth

32 \ r
sl ! Lo
30 L P T i LA Tl AL
291 -k R == -- ==
o8 1 ;
0 200 400 600
time index T
Target Azimuth measurement Error
4 f i
2o
il |||’| ‘\‘||‘|‘|‘JM J}.ﬂ
0w\¢|v ]“WHWWU‘ “” vvu
-1t - : - - - - : o
4 | |
0 200 400 600
time index T

Figure 3: Actual and noisy Trajectory in polar coordinate with
constant velocity and their Gaussian measurement errors
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Fig.4. Histogram of X in Cartesian coordinate evaluated
by Eq. (6)
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Fig.5. Histogram of Y in Cartesian coordinate evaluated
by Eq. (7)



Target Trajectory
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Fig. 6. Actual and Estimation Trajectory in Cartesian coordinate with
constant velocity using linear Kalman filter (Eq. 2).

By using Eq. (4), (5) trajectory of target in polar coordinate
are obtained (Fig .7).

Fig. 8, shows the actual and estimation of target parameter in
R and @ direction in the present of target maneuvering.

VI. CONCLUSIONS

In this paper, a new transformation is presented to transform
Polar coordinate to Cartesian coordinate tracking target
problems. Linear Kalman filter in Cartesian coordinate can
easily implemented by using this technique. Simulation results
show a high performance of the proposed innovation
technique and effectiveness of this scheme in tracking
maneuvering targets.
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Figure 7: Actual and Estimation Trajectory in polar coordinate with constant
velocity and their errors
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Figure 8: Actual and Estimation Trajectory in polar coordinate with maneuvering target and

their errors a(t) = af ®+ a)z, (1) =0.1m/ s>
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