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ABSTRACT

In this paper, an innovation model is presented to transform the
maneuvering target tracking problems to the standard Bayesian
model, therefore a standard Kalman filter can be applied to
them. The modeling is based on mixed Bayesian- fisher
uncertaintics and a special augmentation in state space. In this
model, target position and velocity are conventional states and
the acceleration is treated as an additive input term, which has
been augmented in the corresponding state equation. The results
have been compared with the work of [7]. The simulation
results show a high performance of the proposed innovation
model and effectivencss of this scheme in tracking
maneuvering targets.

t. INTRODUCTION

There exist many approaches and methods for target tracking
with maneuver, for example, switching between Kalman filters
of -different order, acceleration input estimate during a
maneuver and correct the state accordingly using batch least
squares methods or recursive cstimation for on-line
implementation. Singer [1] has been assumed that the target
acceleration is modeled as a random process with known
exponential autocorrelation. This model is capable to tracks a
maneuvering target, but the performance of the estimation is
reduced when the target move at a constant velocity. A
generalized likelihood ratio (GLR) method for maneuver
detection was presented by Korn, et. al. [2]. This algorithm
proposed the use of two hypotheses, null hypothesis for a target
without maneuver, and alternative hypothesis for a target with
maneuver. When the log likelihood ratio is over a threshold, a
maneuver is detected. This system needs a bank of correlators to
detect the maneuver onset time.

In this Paper, we presented a new modified algorithm for
tracking of maneuvering targets based on the mixed Fisher and
the standard Bayesian uncertainties models by some matrix
manipulation on the state equations.

2. MODELS OF UNCERTAINTY

The two basic uncertainty models to be considered in this paper
are the Bayesian and Fisher models [3]. Theses models are
specific cases of the state space structure-white process. The
Bayesian models are one the most important and commeon used
models of uncertainty. In Bayesian models, uncertainty is
modeled by random variables and/or stochastic processes with
completely specified either probability distributions or
completely specified first and second moments.
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The complete definition of the Bayesian, discrete time model
for linear systems is summarized as

Xen+1)=F(n)X(n)+G(n)win)
z(n)=H{n)X{n)+vin)

X(n) state M
z(n) _observatio n
vin) white observation uncertainty
win) white s ystem driving uncerivinty
X(0) initial co ndition
R =
Ep )V ) ={ e
0 m#EN

[ =n
E{W(HI)WT("z)}={Q( W A

0 " # ny
E(x(0)x" ()} =y , -
E{x(0} =0 , E{w(0}}=0 , E{v(0)}=0

In many applications, the input disturbance, w() can be
modeled as being completely unknown. A model where w() is
completely unknown is a type of Fisher model. Of course,
conceptually such Fisher models have to be handled in a
different fashion from Bayesian models where w{} is viewed as
a random vector with known covariance matrix Of). For some
applications the Fisher modeling of w(,), can be viewed as the
limiting Bayesian case, where () = o] .

3. FILTERING OF THE BAYESIAN MODELS

The desired form of the filtering solution is a difference

equation (recursive relationship) expressing X +1|N ) in

terms of X'(N|N) based on z(N+1).

The logic, which yields the desired equation,
summarized in the following steps:

)?(N—HIN +1) is to be calculate just
X(N|N) and z(N+]).

2. Use the one-step prediction logic to change the problem to
calculate X (N + 1|V +1) from X(N +1|N¥) and z(¥+1).
Fisher problem
/‘?(N+IIN+1) and z(N+{) are considered on an unknown
vector X{N+1).

can be

1. Assume that

3. Solve a estimation where
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In the Bayesian model, stochastic probabilistic models are used
for all the uncertainties. Thus x(0), v(n) and win) are modeled as
zero mean uncertainty random variables.

The matrix Hfn), F(n) and G(n) in Eq. (1) assumed to be known
. function of time n. The problem to be considered is, how to use

the observation up to time 25, z(1),...,z( 73 ), to estimate the

state X'(#,) at some time n;.

The solution of the problem filtering, after some manipulation
leads us to the Kalman filter with equations:

X(N+|N+1)=F(N)X(N|N}+K(N+1)[z(N+1)
—H(N+DF(N)X(N|N)]

K(N+)=X/N+||N+UH (N+ R (N+1)
HN+N+IP=2(N+1|{N)~ ‘
SN+N)H (N+DIR(N+1)+ H(N+1)

SN+ NHN+)T T N+ )N+
N+ N)=F(N)SIN|N)F'(N)
+G(NJXAN)GT(N)

3700} =y, X(0]0)=0

2

LN |N)

2N +1| N}is the error covariance matrix of the one-step

where, is the error covariance matrix and

prediction.

4. TRACKING ALGORITHMS

Some researches in detection and quick detection have been
explored in the references [4-6]. It is assumed that-the target
moves in a plane, which is the two-dimensional case, such ag a
ship. The state equation for the non-maneuvering model is
given by
X(n+1)=F(mX{n}+G{nyw(n)
where

X=[ = v T

F is the state transition matrix, G is the plant noise system
matrix, and wn) is the plant noise, assumed to be white with

3

variance O’IZ,. The expression for G-and F as functions of the

update time T (7 is the time interval between two consecutive
measurements) are

1700 , .
Fol0 100 _{T‘/ZTOO}
oot | o - 2

0001 ‘OOT,/ZT

The measurement equation is given by

z{m) = H(mX{n)+vin)

where f{ is measurement matrix and v(k} is the measurement
noise, assumed Gaussian with covariance matrix B. The matnix
H is given by

1 0 00
H=
{0 0 1 0}
The maneuvering model treats the acceleration as an additive
term:
X(n+1)y=FX(m)+ Cu(n)+ Guin) (4)

In the work of (Wang et., al., IEEE Transactions On Aerospace
and Electronics Systems, 1993) the predicted and estimated
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states for the maneuvering target are related to the
corresponding statss without maneuvering according to the
following equation:

X™n+15) = X(n+1| )+ M(n+1| mai(n) (5)
X™(nin) = Xn| m)+ N{ryu(n—1)

where,

M(n+1)=FN (n)+ C(n) 6)

N{n)={1-K(n)H M (n)
K(n) is the Kalman gain and notation X (n+1{n) denotes the

prediction at the (n+ 1)”’ sample point given the measurement

H

up to and including the n™ whilst X (n|7) denotes the

estimation at the ™' sample point given the measurement up to
and including the »™
The estimate #(n) of the acceleration input u(n) can be

in terms of the residual

maneuvering filter

expressed r(n) from the

d(n) =d(n=1)+G, {(n)r™(n) M
where
G,(nm)=F,(n-1)i¥ (8)

W =M (mHT (HM(mP,(n -~ DM (MHT + R (n)™
PAny=F,(n=1)= B, (n = OWHM () B (n -1}

In Eq. (8) R™(n) is the modified measurement covariance,
given by

R™(n) = HP™(n| n-DHT + R ®

The estimated and prediction error covandances for the
maneuvering model are respectively by

P"(n|ny= P(n|m)+N(mE,mNT (n)
Pl (n+1| 1} = P(n+1{n)+ Mn+ DB, (MM (n+1)

(10)

5. PROPOSED TRACKING ALGORITHM
{MIXED FISHER AND BAYESIAN MODELS)

The objective in this section is to develop a maneuver detection
medel, which detects the maneuver effectively.

If we consider the additive maneuver term wufn} as a
deterministic signal in the mancuvering equation (4), then we
deal with two mixed uncerainties, one w(n) as a stochastic plant
noise and w7y as a deterministic but unknown additive
maneuver term where C is as follows

2 . r
C= 7712 T 00

00T T
Now, we propose the additive maneuver term #(») as a new
state and convert the maneuvering model Eq. (4) to a non-

maneuvering model with an augmented state equation in the
form of the standard Bayesian model with Egs. (1), (2) as

X(n+1)] [F c][x(r) G
[u(:+1)]‘[0 1][;;(:?)}*[0}“’(").
zinp=H{(n)X{(n)+vin)

F C G
X 4o () =1X(m) u(n)J’:F,,,,g=[ }G,me



zin+ )= HX(n+)+v(n+1)

= H{FX(m)+Cu(m)+CGwn)t+v(n+1) an
X (")]+ch(n)+ Wn+1l) =
u(n)

H yue =HF HC|:V 4, = HGw(n)+ v(n+1)

Now we have a standard Bayesian model, and use kalman filter
to estimate X, u .

In fact, we can estimate X and # simultaneously with the
standard Kalman filter by using the equations:

X fug (n+l)::FAﬂg X(n)+GA,,gw(n)
ZAug(n):z(n+l)zHAHg(n)XAHg(n)+VAug(n) (12)
Since v(n} and w(n) are uncorrelated, we can obtain the new

Z(n+D)=[HF HC{

covariance matrix of the measurement noise VAL,K (r) forthe
augmented statc equations as

Ry = EWV g ij‘g 1e

E{(HGw (n)+ v(n+ D HGw (n}+vin+ I))T t

= HGE {w(myw(m) }GTHT + Efv(n+ v(n + )7}

= Rug = BV gg (1) 1 (n)) a3
=HGEG THT + R
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6. SIMULATION RESULTS

It is assumed that the target moves in a plane, which is the two-
dimensional case, such as a ship.

The performance of the new modeling maneuvering target
detection is evaluated by simulation some examples. To
evaluate the proposed algorithm, an example of a target, which
turns, in two-dimensional space are simulated.

In first example we consider a target which is traveling ar initial
velocity in X and Y direction as

v (0)=10m /sec.,vy(0)=15m/sec. and acceleration

and Y direction as

u(t)={ay(t) a ()] in X
ax('l)=0m/52 ,ay(r)=0m/s2

until /=15 sec. In this simulation, the sampling time is 7=0./
second and the elements of the 0 and R matrices are 0.023

Figure 1, shows the actual and estimation of x(t}
(6 vi(t)and v (1) of the proposed method in the present of

target maneuvering.
Figure 2, shows the actual and estimation of the acceleration in
X and Y direction in the present of target maneuvering..
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Figure 1: Actual and estimation of x(#). p(f), v.(t)and v (1) of the proposed method (a,(?)=a,(t)=0 m/s?)
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Figure 2: Actual and estimation of the acceleration in X and ¥ direction (a,(t)=a,(t}=0m/s*)
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.In second example we consider a target which is traveling at where al=0.3 m/s’ and a2=0.5 m/s* until /=13 second. The
initial velocity v, (0)=35m/ sec.,v, (0)=~3m/ sec. sampling time is 7=01 second and the elements of the O and
R matrices are 0.5, Figure 3, shows the actual and estimation
. 7. .
and acceleration uft)=[a.(t) a,t)/° in X and ¥ of x(t), y(t), v.(t)and vy(t) of the proposed method in the
direction as a () = al (m/s? ), a,(t=a2 (mis? }, present of target maneuvering, Flgure 4, 1llusFratc_s the actual
’ : and estimation of the acceleration in X and Y direction.
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Figure 3: Actual and estimation ofx(f‘), (). v (t)and v (t) of the proposed method (g (1)=03 mfsz,ay(;) =0.5mfs2}
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Figure 4: Actual and estimation of the acceleration in X and ¥ direction (o ¢¢)=03 m/s{ay(,) =0.5m/s2,alt)= 1}:1,2(:) + ayz(t) 3}

In the end for second example also, the performance of
proposed algorithm has been compared with the work of Wang.
The simulation results show a very good performance for
proposed method and effectiveness of this scheme in parameters
tracking of the maneuvering targets. Figure 5, represents the
actual acceleration, Wang's method and proposed method.
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Accelecation of Target

D n L
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Figure 5: Actual acceleration, Wang’s method and proposed

miethod acceleration estimation { af 1 } = axz(r) + ayZ(:))

7. CONCLUSIONS

This paper deals with a new modeling to tracking-maneuvering
detection. This method is based on a mixed Bayesian- fisher
uncertainty models. Converting this augmented model to a
standard Bayesian model, then a standard Kalman filter can be
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applied to this model. The results compared with the work of
[7]. Simulation results show a high performance of the
proposed innovation model and effectiveness of this scheme in
parameter detection of the maneuvering targets.
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