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ABSTRACT 

In this paper, an innovation model is presented to transform the 
maneuvering target tracking problems to the standard Bayesian 
modet, therefore a standard Kalman filter can be applied to 
them, The modeling is based on mixed Bayesian- fisher 
uncertainties and a special augmentation in state space. In this 
model, target position and velocity are conventional states and 
the acceleration is treated as an additive input term, which has 
been augmented in the corresponding state equation. The results 
have been compared with the work of [7]. The simulation 
results show a high performance of the proposed innovation 
model and effectivencss of this scheme in tracking 
maneuvering targets. 

1. INTRODUCTION 

There exist many approaches and methods for target tracking 
with maneuver, for examplc, switching between Kalman filters 
of -different order, acceleration input estimate during a 
maneuver and correct the state accordingly using batch least 
squares methods or recursive cstimation for on-line 
implementation. Singer [ l ]  has bcen assumed thar the target 
acceleration is modeled as a random process with known 
exponcntial autocorrelation. This model is capable to tracks a 
maneuvering target, but the performance of the estimation Is 
reduced when the target move at a constant velocity. A 
gencrdized likelihood ratio (GLR) method for maneuver 
detection was presented by Korn, et. al. [2]. This algorithm 
proposed the use of two hypotheses, null hypothesis for a target 
without maneuver, and altemative hypothesis for a target with 
maneuver. When the log likelihood ratio is over a threshold, a 
maneuver is detected. This system needs a bank of correlators to 
detect the maneuver onset time. 
In this Paper, we presented a new modified algorithm for 
tracking of maneuvering targets based on the mixed Fisher and 
the standard Bayesian uncertainties models by some matrix 
manipulation on the state equations. 

2. MODELS OF UNCERTAINTY 

The two basic uncertainty models to be considered in this paper 
are the Bayesian and Fisher modeh [3]. Theses models are 
specific cases of the state space structure-white process. The 
Bayesian models are one the most important and common used 
models of uncertainty. In Bayesian models, uncertainty is 
modeled by random variables and'or stochastic processes with 
completely specified either probability distributions or 
completely specified first and second momenrs. 
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The complete definition of the Bayesian, discrete time model 
for linear systems is summarized as 

X ( n +  I ) =  F ( n ) X ( n ) + G ( n ) w ( n )  

z (n)  = H ( n ) X ( n  j + v i n )  
X ( n )  slate 

observaiiu n 

(1) 

d n )  
white observalia n uncerla inf y 

w i n )  while system dri ving im certu inf y 

X ( 0 )  initial CO ndicion 

E(X(O)X~(0)}  = l/i - 
E { x ( O ) ) = O  , E(w(O)}=O , E{v(O))=O 
In many applications, the input disturbance, w ( j  can be 
modeled as being completely unknown. A model where w()  is 
completely unknown i s  a type o f  Fisher model. Of course, 
conceptually such Fisher models have to be handled in a 
different fashion from Bayesian models where w() is viewed as 
a random vector with known covariance matrix e(). For some 
applications the Fisher modeling of wo, can be viewed as the 
limiting Bayesian case, where e(.) = 4. 

3. FILTERING OF THE BAYESIAN MODELS 

The desired fom, of the filtering soIution is a difference 

equation (recursive relationship) expressing k(N + 1IN) in 

terms of i ( N I N )  based on z(M+l). 
The logic, which yields the desired equation, can be 
summarized in the following steps: 
1. Assume that i ( N + l I N  + 1 )  is to be calculate just 

X ( N I N )  and r(N+l). 
2. Use the one-step prediction logic to change the probIem to 
calculate k(iV + 111%' +I )  from i ( N  + 1IN) and z(N+I). 

3. Solve a Fisher estimation problem where 

,?( N f 11N + 1) and :(N+l) are considered on an unknown 
vector X(N+I). 
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In the Bayesian model, stochastic probabilistic models are used 
for all the uncertainties. Thus x(O), v(n) and w(n) are modeled as 
zero mean uncertainty random variables. 
The matrix H(n). F(n) and G(n) in Eq. ( I )  assumed to be known 
function of time n. The problem to be considered is, how to use 
the observation up to time n 2 ,  z(l), ..., z( nz ), to estimate the 

state X ( n , )  at some time n l .  
The solution of the problem filtering, after some manipulation 
leads us to the KaIman filter with equations: 

&N+ I 1 N +  I) = F(N)X(N I N I +  K ( N +  I ) [ ~ ( N  + I) 
- H ( N + I ) F ( N ) ~ ( N I  N)]  

K ( N +  1) =UN+ I I N +  I ) H ~ ( N +  ~)R- ' (N+ 1) 

(2) 

U(N+11 N + I ) ) = ~ N + l I  N ) -  

where, X ( N  I N )  is the error covariance matrix and 

c ( N  + I I N )  is the error covariance matex of the one-step 
prediction. 

4. TRACKING ALGORITHMS 

Some researches in detection and quick detection have been 
explored in the references [4-61. It is assumed that.the target 
moves in a plane, which is the two-dimensional case, such as a 
ship. The state equation for the non-maneuvering model is 
given by 

where 
x(n+I)=F(n)X(n)+Cfn)~~n) (3) 

x = [,r 1 y j ] '  
F is the state transition matrix, G is the plant noise system 
matrix, and w(n) is the plant noise, assumed to be white with 

variance 0;. The expression for G and F as functions of the 

update time T (T is the time interval between two consecutive 
measurements) are 

L J 

The measurement equation is given by 

where H is measurement matrix and v(k) is the measurement 
noisc, assumed Gaussian with covariance matrix R. The matrix 
H i s  given by 

z(n) = H ( n ) X ( n )  + v(n)  

The maneuvering model treats the acceleration as an additive 
term: 

In the work of (Wang et., al., IEEE Transactions On Aerospace 
and Electronics Systems, 1993) the predicted and estimated 

X ( n + l ) =  FX(n)+Cu(n)+Gw(n) (4) 

states for the maneuvering target are related to the 
corresponding states without maneuvering according to the 
following equation: 

i m ( n  + 1 I n) = i ( n +  I I n )  + M(n + I I n)s(n)  (5) 

?'(n 1 n )  = X(n  I n)+ N ( n ) u ( n - l )  
where, 
M ( n  + 1 )  = FN ( n )  + C ( n )  

K ( n )  is the Kalman gain and notation k(n + 1 1 n )  denotes the 

prediction at the (n + l)'h sample point given the measurement 

up to and including the n'* whilst x(nI n) denotes the 

estimation at the nlh sample point given the measurement up to 

and including the n'* . 
The estimate G(n) of the acceleration input u(n) can be 

expressed in terms of the residual r"(n) from the 
maneuvering filter 

( 6 )  
N ( n )  = [I - K ( n ) H  ]k' ( U )  

i(n) = i(n - I )  + G , ( n ) r m  (n) 

G, (n )  = e , ( n  - l)W 

w = M T ( n ) H T ( H M ( n ) P , ( n -  I)MT(n)HT + Rm(n)-' 

4,(n)=P,(n - I )  - <,(n - l)WHM(n)$-(n - I)  

R"(n) = HP'"(n I n-I)HT + R  

P ( n  I n) = P(n 1 n)+N(n)4 , (n)NT(n)  

F ( n + l l  n) = ~ ( n +  I 1 n)+ ~ ( n +  l)P,(n)MT(n+ I) 

(7) 

(8) 
where 

In Eq. (8) R"(n) is the modified measurement covariance, 
given by 

The estimated and prediction error covariances for the 
maneuvering model are respectively by 

(9) 

(W 

S. PROPOSED TRACKJNG ALGORITHM 
(MIXED FISHER AND BAYESIAN MODELS) 

The objective in this section is to develop a maneuver detection 
model, which detects the maneuver effectively. 
If we consider the additive maneuver term Z J ( ~ )  as a 
deterministic signal in the maneuvering equation (4), then we 
deal with two mixed uncertainties, one w(n) as a stochastic plant 
noise and w(n) as a deterministic but unknown additive 
maneuver term where C is as follows 

T 

c=r :  ;,; ;] 
Now, we propose the additive maneuver term u(n) as a new 
state and convert the maneuvering model Eq. (4) to a non- 
maneuvering model with an augmented state equation in the 
form of the standard Bayesian model with Eqs. ( I ) ,  (2) as 

r ( n ) =  H ( n ) X ( n ) +  v ( n )  
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z(n + 1) = HX(n+ 1) t v(n f 1) 

= H ( F X ( n ) + C ~ l ( n ) + G ~ n ) ) + v ( n + l )  (1 1) 

12 - Actual Velocity 
. _ ~ ~  Estimated Velaciiy 

b 

g si  
i i  

10 ;..-. 
2 . ,  ,= I 

- 

' 6  .- 6: 
Y .  

2 :  
1: 

i :  
2 

D 

H A ,  =[HF Hc];vAug =HGb4(n)+v(f i+l)  
Now we have a standard Bayesian model, and use kaIman filter 
to estimate X ,  U 
In fact, we can estimateXand U simultaneously with the 
standard Kalman filter by using the equations: 
X A ~ , ~  i n +  I ) = F A ,  X i n ) + G ~ , , ~ w ( n )  
z A u g i n ) = z ( n + l ) =  H A u , ( n ) X A u ~ ( n ) +  vAug(nI ( I  2) 
Since v(n) and w(n) are uncorrelated, we can obtain the new 

covariance matrix of the measurement noise vAug (n)  for the 

augmented state equations as 

RA,,K = E V A ,  G,, 1 = 

= HCE ( w ( n ) w ( n ) T ) C T H T  + E ( v ( n +  I ) v ( n + l ) T }  

3 R A I l g  = E{V,4 ,@ ( n Y L g  (rill 

E ( ( H G w  (n) + v(n + l ) ) ( H G w ( n )  + v(n + 

( 1  3) 

= HGQG ' H T  + R 

20 
. .  

% 15 ;:-.. 
s :  s i  
._ 6 10: 

.--I : 

- *  Y I  

E :  
e :  

0 

6. SIMULATION RESULTS 

It is assumed that the target moves in a plane, which is the two- 
dimensional case, such as a ship. 
The performance of the new modeling maneuvering target 
detection is evaluated by simulation some examples. To 
evaluate the proposed algorithm, an example of a target, which 
turns, in two-dimensional space are simulated. 
In first example we consider a target which is traveling at initial 
velocity inXand Ydirection as 
v X  (0) = 10m / sec ., v y  (0) = 15m /sec. and acceleration 

u ( t l = [ a , ( f )  ay(f)f in X and Y direction as 

o,(r) = o m d ,  ay(') = o m / 2  

until 1=15 sec. In this simulation, the sampling time is T 4 .  I 
second and the elements of the Q and R matrices are 0.025 
Figure 1, shows the actual and estimation of x(0, 
y(l), v,(t)and vJr) of the proposed method in the present of 

target maneuvering. 
F iy rc  2, shows the actual and estimation of the acceleration in 
Xand Ydirection in the present of target maneuvering.. 

Figure I: Actual and estimation ofx(0. y(0, v,(t)andvy(t) ofthe proposedmethod (o , ( t )=c~~( t )=Otn / /~ ' )  
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- Actual accceterarion - Estrmared Acceleration by Propased Meihod 
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Figure 2 :  Actual and estimation of the acceleration in Xand I direction (u,(t) = a y ( f )  = 0 m / s ’ )  
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In second example we considcr a target which is traveling at 
initial velocity vx (0) = 5m / sec ., v y  (0) = -3m / sec. 

and acceleration ~ r ( t ) = [ a , ( t )  a,(f)jT in X and Y 

direction as a,(t) = a1 (m/s2) ,  a,(t) = a2 (m/s2) I 

where al=0.3 m / s 2  and a24 .5  m/s2 until t=15 second The 
sampling time is T=O.l second and the elements of the Q and 
R matrices are 0.5. Figure 3, shows the actual and estimation 
of r(?, y(t), v,(t) and vJt) of the proposed method in the 

present of target maneuvering. Figure 4, illustrates the actual 
and estimation of the acceleration in Xand Ydirection. 
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73 

- Actual Accelwallon - Cstimared kce l sra tmn by Proposed Method 
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Figure 3: Actual and estimation ofx{r), y(?. v,( f )  andvy(t) of the proposed method = 0.3 ds’,a,(t) = 0.5mis2) 
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2 5  I - Actual Acceleration - Estimated Acceleratinn by Proposed Method 
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Figure 4: Actual and estimation of the.acceleration inXand Y direction (o,(r)  = 0 . 3 m / ~ * , ~ , , ( t )  = 0.5 mis2, a ( f )  & r X 2 ( t ) + 4 ~ ; ! r )  ) 

In the’ end for second example also, the performance of applied to this model. The results compared with the work of 
proposed algorithm has been compared with the work of Wang. [7]. Simulation results show a high performance of the 
The simitlation results show a very good performance for proposed innovation model and effectiveness of this scheme in 
proposed method and effectiveness of this scheme in parameters parametcr detection of the maneuvenng targets. 
tracking of the maneuvering targets. Figure 5 ,  represents the 
actual acceleration, Wang’s method and proposed method. 

Actual and Esimated Acceleration by Proposed Method and Method of Wang 
2 5  - Actual Acceleration 

- Estimatsd Acceleration by Methad nfWang 
..._ Estimated Acceleration by Proposed Method 

-0 5 10 15 
time (sec 

Fiy re  5:  Actual acderaiion, Wang’s method and proposed 

method acceleration estimation (af t )  = Ja>(t)+ q:(f)) 

7. CONCLUSIONS 

This paper deals with a new modeling to tracking-maneuvering 
detection. This method is based on a mixed Bayesian- fisher 
uncertainty models. Converting this augmented model to a 
standard Bayesian model, then a standard Kalman filter can be 
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