
Abstract-- A new general two-stage algorithm was originally 
proposed to reduce the computational effort of the augmented 
state Kalman estimator. The conventional input estimation 
techniques assume constant input level and there are not 
covered a generalized input modeling. In this paper an 
innovative scheme is developed to overcome these drawbacks 
by using a new partitioned input dynamic modeling. In 
addition, authors propose a modified two-stage Kalman 
estimator with a new structure, which is an extension of the 
conventional input estimation techniques and is optimal for 
general, linear discrete-time systems. 

Keywords- Optimal two-stage Kalman estimators; input 
estimation; augmented state Kalman estimators; maneuvering 
target tracking. 

1. INTRODUCTION 
The general state estimation problem in a stochastic 

linear system with unknown input variable, is solved by the 
well-known augmented state Kalman estimator (AUSKE) or 
“full state” method. The AUSKE solves the problems by 
including the input parameters as a part of an augmented 
state to be estimated [1], [2]. However “reduced state” 
methods do not augment the state, and usually yield a better 
performance [3]. The AUSKE suffers from complexity of 
computational effort and numerical problems when state 
dimensions are large. The input detection and estimation 
(IDE) algorithm was first developed by Chan et al., in [4] 
using a simplified batch least square data. Although IDE 
approach is attractive since it intends to relax restrictive 
assumptions about input dynamics modeling, it suffers from 
a major deficiency, being that little prior knowledge is 
available for dynamics estimation [5]. For example, we can 
cite Wang et. al., [6] used the IDE approach in the 
maneuvering target tracking problem. In [6], the predicted 
states for the maneuvering target are related to the 
corresponding states without maneuvering assuming 
constant input or constant acceleration (CA). Therefore, the 
performance of the estimation is reduced when target moves 
with non-constant acceleration. In [7] the unknown input 
defined as a sum of elementary time functions. Although this 
input modeling is more general than the constant-input 
model of the original IDE algorithm, the performance is 
reduced if there is any input dynamics. 
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Friedland [8] introduced a method of separating 
estimation of the unknown input from the dynamic variables 
and Blair used this method in the MTT problem [9]. The 
basic idea was to decouple the augmented Kalman filter 
(AKF) into two-stage filters in order to reduce computation 
and memory requirements [10]-[13]. Recently, Hsieh and 
Chen [10], [11] derived an optimal two-stage Kalman 
estimator (OTSKE) for a general case to reduce the 
computational complexity of AUSKE. The two-stage 
filtering method, suggested for MTT problem in [9] suffers 
from two major drawbacks. These drawbacks stem from 
assuming constant acceleration and assuming the input term 
is observable from the measurement equation (also in [10] 
and [13]). 

The objective of this paper is to propose a new 
partitioned two-stage Kalman estimator, which is optimal in 
the minimum mean square error (MMSE) sense. The 
Optimal Partitioned state Kalman Estimator (OPSKE) may 
serve as an alternative solution of the OTSKE proposed in 
[10]. It is shown that the maneuver tracking algorithm 
proposed in [6] and [9] are special case of our proposed 
method. The motivation of our proposed method is the 
generation of a two-stage structure to obtain the optimal 
performance when the input term is not observable through 
the measurements. The computation cost will compare with 
the AUSKE and OPSKE at another paper.  

2. STATEMENT OF THE PROBLEM 
The problem of interest is described by the discretized 
equation set 

x
kkkkkk WUBXAX ++=+1  (1)

u
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kkkk VXHZ +=  (3)

Where n
k RX ∈  is the system state, m

k RU ∈  and 
p

k RZ ∈  are the input and the measurement vectors, 
respectively. Matrices kA , kB , kC  and kH  are assumed to 
be known functions of the time interval k  and are of 
appropriate dimensions. Matrix kC  is assumed nonsingular. 
The process noises x

kW , u
kW  and the measurement noise kV  

are zero-mean white Gaussian sequences with the following 
covariances: kl
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assumed to be uncorrelated with the sequences x

kW , u
kW  and 
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kV . The initial conditions are assumed to be Gaussian 

random variables with 00
ˆ][ XXE = , xPXXE 0

'
00 ][ = , 

00
ˆ][ UUE = , uPUUE 0

'
00 ][ = , xuPUXE 0

'
00 ][ = . As we can see 

in (3) the input vector kU  is not observable through the 
measurement process, in spite of the assumptions in [9], [10] 
and [13].  
Treating kX   and kU  as the augmented system state [10], 
the AUSKE is described by 
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Where the superscript ‘Aug’ denotes the augmented system 
state, I  denotes the identity matrix of any dimension and 

nm×0  is a nm×  zero matrix. It is clear from (4)-(8) that the 
computational cost of the AUSKE increases with the 
augmented state dimension [14]. The reason for this 
computational complexity is the extra computation of xu

kP  
terms in each sample time k  [10]. Therefore, if this term 
can be eliminated, one can reduce the complexity of 
computational effort. In this paper, we propose a new 
optimal two-stage Kalman estimator without calculating the 
term of xu

kP  explicitly. Therefore, the proposed scheme is 
developed to reduced the computational cost of an AUSKE 
by partitioning the equations (4)-(8) into two subsystems. 

3. DERIVATION OF THE OPTIMAL PARTITIONED STATE 
KALMAN ESTIMATOR 

The design of a new two-stage estimator is described as 
follows. First, define a modified input-free model and design 
a modified input-free filter by ignoring the input term. 
Second, derive an input filter to compensate the modified 
input-free filter in order to minimize mean square error. 
These two filters are used to build a new scheme, which is 
equivalent to the AUSKE. The major derivation is the 
relation between the measurement residues of the two 
different filters. One is the measurement residue of the 
input-free filter, which does not consider unknown input 
vector, and the other is the measurement residue of the input 
filter. Based on the measurement residues of the two filters, 
an input estimation algorithm is derived using the minimum 
mean square estimation technique. 

The input-free model can be obtained by ignoring the 
input term ( 0=kU ) in (1) as below: 

x
kkkk WXAX +=+1  (9)

 
where the state vector of the input-free model is denoted 

by kX . The input-free filter is just a Kalman filter based on 
the model (9) and (3) as below: 
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In the following, we propose an expression which relates 

the state vector of the input model kX  to the state vector of 
the input-free model kX . The state vector of the input model 
in (1) using the state of the input-free model in (9) can be 
calculated for each sample time: 
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Since kC  is a nonsingular matrix, 0U  in (15) replaced 

by (3). It is assumed in (15) that 00 XX = , so 
xx WXAWXAX 0000001 +=+= . Following the same 

procedure, we can define and derive the expression for 2X  
by using (15): 
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For an arbitrary sample time k , we will have 
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By using zero-mean property of u
kW  and one-step 

prediction logic from dynamic equation (17) the predicted 
state is obtained as follow: 
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The updated state for the input model can be considered 

using the state of the input-free model as below: 
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where 1+kN  in (21) must be calculated. Hence, the relation 
between two innovation matrices kM  and kN  needs to be 

determined. Suppose that the updated state 1|1
ˆ

++ kkX  obtains 
from the Kalman filter framework: 
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By some manipulation and using (10) and (22), an 

expression to relate 1+kN  and 1+kM  can be obtained as below: 
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The equation, which relates 1+kN  and 1+kM  can be 

obtained by comparing both sides of the above equation; 
1111 ][ ++++ −= kkkk MHKIN  (24)

 
Once the initial value of kM  is chosen, 1+kM  can be 

recursively calculated by (18), and the 1+kN   can be obtained 
by (24) in each iteration. Note that the 1+kK  for the input 
filter is equal to 1+kK  for the input-free filter since the input 
term assumes to be nonrandom (for more detail see [15], [5]). 
In addition, both filters have the same covariance matrices. 
On the other words, the equality of filter gain for kX  and 

kX  in these filters arises from the same error covariance 
matrices of kX  and kX  denoted by x

kkP | . The innovations 
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model and the input model are defined, respectively; 
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The difference of these two innovations is defined as: 
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Using (27) and (20), we represent 1+kU  in the equation, 
which relates the input state to the measurement residue as 
below: 
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It is clear from the input-free filter (10)-(14) which is a 

standard Kalman filter, that the measurement residue k|kZ
~

1+  
exists and easily obtainable while the measurement residue 

k|kZ~ 1+  is actually not available. Note that (28) is in the 

standard form 1111 ++++ +Η=Ζ kkkk νχ , and can be viewed as an 
observation model of 1+kU . In (28), the measurement residue
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input term introduces a bias in the innovation k|kZ
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1+ .
 
 The 

amount of this bias will supply the information about the 
existence of input value. In contrast, the measurement 
residue k|kZ~ 1+  is a zero mean white random process 

( 0]~[ 1 =+kZE ) with covariance matrix z
k|kP  [5], [16]. On the 

other words, we would like to estimate 1+kU  in order to 
minimize the error covariance matrix u

kP 1+  under the 
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The desired form of the filtering solution for estimating 
the unknown vector 1+kU  is a difference equation expressing  
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derive a recursive algorithm to estimate 1+kU  in order to 
minimize the error covariance matrix of the input vector 
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Using (28) and zero-mean property of  1
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+KZ , we would like 

to obtain a recursive algorithm in the form of Kalman filter 
as below: 
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Using the residue of  1+kU  defined in (29) and using (30) and 
(28), gives 

11|1111|1

|11111111|1

|11111|11

1|111|1

~~~
]ˆ~[~

]ˆ~
[ˆ

ˆ~

+++++++

+++++++++

+++++++

+++++

−−=

−+−=

−−−

=−=

k
u
kkkkk

u
kkk

kkkkkkkk
u
kkk

kkkkk
u
kkkk

kkkkk

ZKUMHKU

UMHZUMHKU

UMHZKUU

UUU

 

(31)

938



 
The covariance matrix of  11 ++ k|kU~  defined in (31) gives 
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Where the covariance matrix of 1

~
+kZ , denoted by z

kkP |1+  
must be calculated. From (26): 
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It is seen that the input state residue 

k|kU~ 1+
 is time-

correlated with the measurement residue of the input model 
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+kZ , denoted by zu
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In view of this fact, the algorithm has been proposed in 

[6] is a sub-optimal algorithm where 0}~~{ '
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extra computation of this cross covariance matrix zu
kkP |1+  

(which relates to xu
kkP |1+ ) is the reason for the computational 

complexity in the augmented state methods. Therefore, if 
this term can be eliminated, one can reduce the complexity 
of computational effort. In the following, we propose an 
expression which relates zu

kkP |1+  to u
kkP |1+ . Since the magnitude 

of the input term 1+kU  in (20) is unknown, we can only use 

the estimation of 1
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input-free model kkX |1+  to obtain the state vector of the input 
model kkX |1+ . Therefore, we rewrite (20): 
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Using the equations (17), (3), (26) and (35), gives:  
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It should be noted that the term 1|11

~
+++ + kkkk VXH  in (37) 

is not equal to 1

~
+kZ   in (16). Using (37), the cross covariance 

matrix zu
kkP |1+  can be calculated: 
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Substitute zu

kkP |1+  in (32) the covariance matrix of  11 ++ k|kÛ  
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The second and the third terms of the above equation can be 
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Comparing (41) and (43), the term D  is defined as below: 
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The minimum error covariance u

kkP 1|1 ++  is obtained: 
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Based on (2), we have 
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If the value of u

kK 1+  given by (45) substitute in (30), the 

estimation of 1
ˆ

+kU  leads to a minimum error covariance.  

4. CONCLUSIONS 
The proposed scheme is based on a new partitioned 

dynamic modeling and intends to overcome the 
computational expensiveness drawbacks of the other works 
are based on the augmented methods. The proposed OPSKE 
provides the optimal state estimate, which is equivalent to 
that of the AUSKE.  

5. SIMULATION RESULTS 
To evaluate the proposed algorithm, an example of 

maneuvering target tracking problem which turns, in two-
dimensional space is simulated such as a ship or an aircraft 
with constant elevation. In this simulation example, the 
performance of the OPSKE for the maneuvering target 
tracking has been compared with the work suggested in [2] 
as an example of the AUSKE method. As mentioned before 
in the augmented state method the state vector includes the 
input vector i.e., acceleration and jerk parameter in 
maneuvering target tracking problem. The sampling interval 
is T=0.01 (sec) and target maneuver is applied at 9th second 
(900th sample). The initial conditions are selected similar for 
the AUSKE as well as the OPSKE. The state vectors are 

[ ] ' y
kk

x
kkk vyvxX = , [ ] ' y

k
y
k

x
k

x
kk jujuU = ,  

[ ] ' y
k

y
k

x
k

x
k

y
kk

x
kk

Aug
k jujuvyvxX =  

where kx , x
kv , x

ku  and x
kj  denote the position, velocity, 

acceleration and jerk of the target along the x  axis, 
respectively. We consider the target initial conditions for the 
state and the acceleration vectors as below: 

[ ] ' / 25 1250/ 80 21650 smmsmmX −= , 
[ ] ' sec/ 0 0sec/ 0 00 ggggU =  
[ ] ' sec/ 0 0sec/ 0 0/ 25 1250/ 80 21650 ggggsmmsmmX Aug −=  
The target begins to maneuver as 
[ ] ' sec/ 4.00sec/ 7.00900 ggggU −=  for sec)( 90(sec)  9 ≤≤ t . 

The system matrices are given by 
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where )(09.0 3−= msjσ  is the variance of the target jerk 
and )(s 0123.0 -1=α  is the reciprocal of the jerk time 
constant ατ /1= .  The measurement standard deviations of 
x  and y  target positions are: )( 1010 mx =σ , )( 20 my =σ . 

Thus, the measurement covariance matrix is ⎥
⎦

⎤
⎢
⎣

⎡
=
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kR  

for both methods. The Root Mean Square Error (RMSE) 
index is used for the results evaluation. 

Fig. 1 shows the actual value and the estimation of x  
and y  and RMS errors of x  and y  positions estimations 
by the proposed OPSKE and the AUSKE. 
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Fig. 1. The actual value and the estimation of the x, y positions and 
RMS errors estimations by the OPSKE and the AUSKE methods. 

 

Fig. 2 shows the actual value and the estimations of yx v  ,v  
and the RMS errors of the x  and y  velocities estimations 
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by the proposed method compared with the augmented 
method. 
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Fig.  2. The actual value  and the estimation of  yx vv  ,  and RMS 

errors of x and y velocities estimations by the OPSKE and the AUSKE  
methods. 
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