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Abstract-- A new general two-stage algorithm was originally
proposed to reduce the computational effort of the augmented
state Kalman estimator. The conventional input estimation
techniques assume constant input level and there are not
covered a generalized input modeling. In this paper an
innovative scheme is developed to overcome these drawbacks
by using a new partitioned input dynamic modeling. In
addition, authors propose a modified two-stage Kalman
estimator with a new structure, which is an extension of the
conventional input estimation techniques and is optimal for
general, linear discrete-time systems.

Keywords- Optimal two-stage Kalman estimators; input
estimation; augmented state Kalman estimators; maneuvering
target tracking.

1. INTRODUCTION

The general state estimation problem in a stochastic
linear system with unknown input variable, is solved by the
well-known augmented state Kalman estimator (AUSKE) or
“full state” method. The AUSKE solves the problems by
including the input parameters as a part of an augmented
state to be estimated [1], [2]. However “reduced state”
methods do not augment the state, and usually yield a better
performance [3]. The AUSKE suffers from complexity of
computational effort and numerical problems when state
dimensions are large. The input detection and estimation
(IDE) algorithm was first developed by Chan et al., in [4]
using a simplified batch least square data. Although IDE
approach is attractive since it intends to relax restrictive
assumptions about input dynamics modeling, it suffers from
a major deficiency, being that little prior knowledge is
available for dynamics estimation [5]. For example, we can
cite Wang et. al., [6] used the IDE approach in the
maneuvering target tracking problem. In [6], the predicted
states for the maneuvering target are related to the
corresponding states without maneuvering assuming
constant input or constant acceleration (CA). Therefore, the
performance of the estimation is reduced when target moves
with non-constant acceleration. In [7] the unknown input
defined as a sum of elementary time functions. Although this
input modeling is more general than the constant-input
model of the original IDE algorithm, the performance is
reduced if there is any input dynamics.
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Friedland [8] introduced a method of separating
estimation of the unknown input from the dynamic variables
and Blair used this method in the MTT problem [9]. The
basic idea was to decouple the augmented Kalman filter
(AKF) into two-stage filters in order to reduce computation
and memory requirements [10]-[13]. Recently, Hsieh and
Chen [10], [11] derived an optimal two-stage Kalman
estimator (OTSKE) for a general case to reduce the
computational complexity of AUSKE. The two-stage
filtering method, suggested for MTT problem in [9] suffers
from two major drawbacks. These drawbacks stem from
assuming constant acceleration and assuming the input term
is observable from the measurement equation (also in [10]
and [13]).

The objective of this paper is to propose a new
partitioned two-stage Kalman estimator, which is optimal in
the minimum mean square error (MMSE) sense. The
Optimal Partitioned state Kalman Estimator (OPSKE) may
serve as an alternative solution of the OTSKE proposed in
[10]. It is shown that the maneuver tracking algorithm
proposed in [6] and [9] are special case of our proposed
method. The motivation of our proposed method is the
generation of a two-stage structure to obtain the optimal
performance when the input term is not observable through
the measurements. The computation cost will compare with
the AUSKE and OPSKE at another paper.

2. STATEMENT OF THE PROBLEM

The problem of interest is described by the discretized
equation set

X, =A4X +BU +W; (1)
U =CU, +W/! 2)
Z, =HX +V, (3)

Where X, € R" is the system state, U, € R" and
Z,€R’” are the input and the measurement vectors,
respectively. Matrices 4,, B,, C, and H, are assumed to
be known functions of the time interval & and are of
appropriate dimensions. Matrix C, is assumed nonsingular.
The process noises W,', W, and the measurement noise V,
are zero-mean white Gaussian sequences with the following
covariances: E[W; (W;)1=0;5, , EW'(W')1=03, .
EW;W')1=0"5, , EIV.V]1=R.5, , EWV;]1=0 and
EW!V,1=0, where " denotes transpose and 0, denotes the
Kronecker delta function. The initial states X, and U are

assumed to be uncorrelated with the sequences W, W' and



V. . The initial conditions are assumed to be Gaussian
random variables with E[X,]=X, , E[X,X,]=P ,
E[U,1=U,, E[UU,]=P", E[X,U,]=P". As we can see
in (3) the input vector U, is not observable through the

measurement process, in spite of the assumptions in [9], [10]
and [13].

Treating X, and U, as the augmented system state [10],
the AUSKE is described by

X = X A K2, - H X 4)
X =AM X ®)
K =Py (H H P, (HY) +R] ©)
By = AP (A1) +0,

(7)
Pya =U-KH'P,,

(3
where
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Where the superscript ‘Aug’ denotes the augmented system
state, / denotes the identity matrix of any dimension and
0, is a mxn zero matrix. It is clear from (4)-(8) that the

computational cost of the AUSKE increases with the
augmented state dimension [14]. The reason for this

computational complexity is the extra computation of P

terms in each sample time k [10]. Therefore, if this term
can be eliminated, one can reduce the complexity of
computational effort. In this paper, we propose a new
optimal two-stage Kalman estimator without calculating the

term of P explicitly. Therefore, the proposed scheme is

developed to reduced the computational cost of an AUSKE
by partitioning the equations (4)-(8) into two subsystems.

3. DERIVATION OF THE OPTIMAL PARTITIONED STATE
KALMAN ESTIMATOR

The design of a new two-stage estimator is described as
follows. First, define a modified input-free model and design
a modified input-free filter by ignoring the input term.
Second, derive an input filter to compensate the modified
input-free filter in order to minimize mean square error.
These two filters are used to build a new scheme, which is
equivalent to the AUSKE. The major derivation is the
relation between the measurement residues of the two
different filters. One is the measurement residue of the
input-free filter, which does not consider unknown input
vector, and the other is the measurement residue of the input
filter. Based on the measurement residues of the two filters,
an input estimation algorithm is derived using the minimum
mean square estimation technique.
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The input-free model can be obtained by ignoring the
input term (U, =0) in (1) as below:

ykﬂ = Ak)?k W ©

where the state vector of the input-free model is denoted
by X, . The input-free filter is just a Kalman filter based on
the model (9) and (3) as below:

Xy =X, Ko (2, ~H, X ) (10)
X, =A4X,, (11)
K,, =Pl H, [H, P, (H.) +R]’ (12)
= AP (4,) +0; (13)
Py, =U~K, H. P, (14)

In the following, we propose an expression which relates
the state vector of the input model X, to the state vector of

the input-free model X, . The state vector of the input model

in (1) using the state of the input-free model in (9) can be
calculated for each sample time:

X, =4X,+BU,+W;
= A(JXO +B(J[C(;1UI _Cr;IVVnu]"'VVoX

_ (15)
=X+ BOC(;]U] - BOC(IIVVOU

Since C, is a nonsingular matrix, U in (15) replaced
by (3). It is assumed in (15) that X, :)?0 , SO
X, =AX, +W =AX, +W; the

Following same

procedure, we can define and derive the expression for X,
by using (15):

X,=4AX +BU +W’

=A[X, +B,C,'U, - B,C,'W; 1+ BU, + W’

=X, +[4,B,C,' + B,]U, - 4 B,C,'W,;

— 16
=X, +[4B,C,' +B][C'U, -C'W"]- A4 B,C,'W, (16)
=X, +[4B8,C; + B)C['U, ~[4.B,C;' + B 1C['W;!

- A]BOC(;] VVON
For an arbitrary sample time & , we will have
_ k
X=X, +M U, _za)iVViu (17
i=0
where
M, =[4M,+B]C,", k=23,...
k+1 /(71 k k k (18)
M, =B,C,
k—=i-1
o =lo, +(IT4_)BIC', i=12..k
p
19)

=
w, = (/=Ho Akf/‘ )Bo C(;]



By using zero-mean property of W, and one-step

prediction logic from dynamic equation (17) the predicted
state is obtained as follow:

=X, +M_ U

K+1lk

X

K+1lk

(20

k+1

The updated state for the input model can be considered
using the state of the input-free model as below:

=X,  +N_U

k+1lk+1 k+1

A

X

F+Ilk+1

where N

k+1

1

k+1
in (21) must be calculated. Hence, the relation

between two innovation matrices M, and N, needs to be

)

)

determined. Suppose that the updated state X wen ODtaings
from the Kalman filter framework:
Xk+l\k+1 = Xk+l\k k+1 (Zk+l k+1Xk+l\k ) (22)

By some manipulation and using (10) and (22), an

expression to relate N,,, and M, can be obtained as below:
Nk+lUk+l = Xk+l\k+l _Xk+uk+1
= Xk+1\k k4l [Z/m Xk+1\k 1
_Xk+1\k K+l [ZA+I le+]\k ] (23)
=[I- KA+lHk+1 ][Xk+l\k Xk+l\k ]

=[/-K,.H, M, U,

The equation, which relates N,,, and M, 6 can be
obtained by comparing both sides of the above equation;

=l - Kk+lHk+] ]Mk+l 24)
Once the initial value of M, is chosen, M, , can be

recursively calculated by (18), and the N, , can be obtained
by (24) in each iteration. Note that the K,

filter is equal to K

for the input

., for the input-free filter since the input

term assumes to be nonrandom (for more detail see [15], [5]).

In addition, both filters have the same covariance matrices.
On the other words, the equality of filter gain for X, and

X
matrices of X, and X denoted by P,

., in these filters arises from the same error covariance

. - The innovations

Z,., and Z
model and the input model are defined, respectively;

... as the measurement residues of the input-free

Lo =Ly~ Hk+1Xk+l\k (25)

Z,= Z}m _Hk+le+l\k (26)
The dlfference of these two 1nnovat10ns is defined as:

AZk Z an k+l [Xk+l\k Xk+l\k ] (27)
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Using (27) and (20), we represent U

which relates the input state to the measurement residue as

below:
Z = HA+1 [X

=H, M, U

k+1 k+1

., in the equation,

)?kn\k] + Z

kel

+Z

k+1
(28)

k+1 k+1

It is clear from the input-free filter (10)-(14) which is a
standard Kalman filter, that the measurement residue Z Eele
exists and easily obtainable while the measurement residue

4 is actually not available. Note that (28) is in the

standard form Z

k+1k

o =H, . X.. V., ,and can be viewed as an

observation model of U, , . In (28), the measurement residue

Z is a non-zero mean white random process since the

input term introduces a bias in the innovation Z kelk The
amount of this bias will supply the information about the
existence of input value. In contrast, the measurement

residue Z is a zero mean white random process

k+llk

(E[Z,,1=0) with covariance matrix P [5], [16]. On the

other words, we would like to estimate U, , in order to
minimize the error covariance matrix P/~ under the
constraint E[Z,1=E[Z,, - HMX,MM]:O , or
E[X,, 1= X w1 » yield unbiased estimation.

The desired form of the filtering solution for estimating
the unknown vector U, , is a difference equation expressing

A

U and ZM

derive a recursive algorithm to estimate U

in terms of U . In the following, we

k+k+1 Klk

., In order to

minimize the error covariance matrix of the input vector

orp’, e denotes the input state residue;

. Suppose that U
U,.=U,, -U

k+lk k+1 k+1lk

(29)

Using (28) and zero-mean property of Z..., we would like

K+1 2
to obtain a recursive algorithm in the form of Kalman filter
as below:

1

A

U

k+1lk+1

=U

N

= Uk+1\k K:H [Z k+1|k ]

K+

(30)
+K!

k+1lk K+l [Zk+] Hk+]Mk+lUk+]\k]

Using the residue of U, defined in (29) and using (30) and

k+l

(28), gives

Uyopor =Uo =U o =

Uy, ~Upy =K Ze —Ho M, U,

=0, ~K\H MU, +Z,,~H,M.U,.,1 G
=U K" H M, U -K' 7

k+1]k k+1 k+1 k+1" k+1]k k41" k+1



The covariance matrix of U

P =P, +K!

k+1]k+1 k+1]k k+1

k+1k+1

defined in (31) gives
Hk+lM Pl‘

k+1 I(+”kM/;+1HI'(+l (K:H )'
+KM PvZ (Kll ),_PAM

! ! u ’
k+17 k+1]k k+1 +l\/:Mk+lHk+1 (Kk+l)
uz u ’ u u
-PL (KL -K H M, P

k+ k+1 k+1 k+17 k+1lk

+Ku H M R:f”k(Ku )!_Ku P:u

k+1 k+1 k+1 k+1 k+17 k+1lk

+KU PZ“ Ml;+1HI;+1(K1’(4+1),

kel k1lk

€25

Where the covariance matrix of Z 1> denoted by P,

must be calculated. From (26):

P)kzﬂ\k = Hmeiuka +Rk+l (33)
It is seen that the input state residue {7, is time-

k+1lk
correlated with the measurement residue of the input model

Z,., ,denoted by B

ke
R(Tl\k = E{ZkHUII\'H\k } (34)

In view of this fact, the algorithm has been proposed in

[6] is a sub-optimal algorithm where E{Z Mlj s =0. The
PZU

extra computation of this cross covariance matrix P,

(which relates to B, ) is the reason for the computational

complexity in the augmented state methods. Therefore, if
this term can be eliminated, one can reduce the complexity
of computational effort. In the following, we propose an

expression which relates P to P

il e - Since the magnitude

of the input term U, in (20) is unknown, we can only use

the estimation of U, to modify the state vector of the

k+1

input-free model X
model X

k+1[k

.. to obtain the state vector of the input

. Therefore, we rewrite (20):

U (35)

k+1k k+1lk k+17" k+1k

Using the equations (17), (3), (26) and (35), gives:
Ziw=2Z,—H X =H_[X., - X.,]+V,

k+1 k+1 k+17" k+1]k k+1

=H X __+V

k+1°7 k+1]k k+1

_ 3
=H [X.,+M_U. - Z@W”] -
i=0

H X, +M,.U

k+1]k k+1% k+1]k

< ~ 36
_mef]"'HA MkH[UkH_UIH]\k] ( )

c+1

1+7,

+1

= Hk+l[)?k

+1

- Hk+l a)iW“ + VA

+1

o

Hk+11\7 +Hk+le+1’lj'

k+1lk

k
- Hk+l ZCOIW + Vlm
i=0

Zow =H X u

+ Hk+lM

k+llk k1 ki

€0

i k+1

k
~H, Y oW +V,
i=0
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It should be noted that the term H ):( +V

k+1 k+11k k+1

in (37)

isnotequal to Z, , in (16). Using (37), the cross covariance

k+1

matrix P™ can be calculated:

k+llk

szfl\k = E[ZIHIUILHM 1= E[(Hk+1)_(k+1\k + Hk+1Mk+lUk+]V¢
k

-H,, Z oW +V U, 1= Hk+1Mk+lE{Uk+lV;Uk+l o (38)
i=0

= HA-+|Mk+1Pku+uk

k+1

=~ ~, k - ~,
Where E[X,,, U,..1, E[Y oW'U,,,1=0 and E[V,, U, 1=0
i=0

are equal to zero. One important property of the optimal

estimation of U, is that the input residue U, must be

k+l k+llk

orthogonal to Z,_,, V,,, and W, or any linear function of
Ly

szfl\k = Hk+1Mk+1Pku+1\k (39)
Substitute B, in (32) the covariance matrix of U k41
becomes

Bl = Bl + KLH M PEM G H (KLY

+ KB (KL = Bl M H (KLY

— B MH(KL) = K H M, (40)
+ K H M B MH (K

— K H M Byt

K H M, B M H (K

P/ﬁum = })kuﬂ\k + 3K:+1HanknR(“n\kM/;uH/Lu (K:” ),
K P (KL = 2P M H L (KL n
- 2K:+1Hk+1Mk+l})ku+1\k

The second and the third terms of the above equation can be
considered as K WW'(K, )", where

k+1 k+1
WW'=3H, M, P' M _H._ +P:

k+1lk k+1 k+1 k+1]k

(42)

and P°

k+1lk
symmetric, we can find a decomposition in the form of
WW' , for appropriate matrix W , then

P!, =P +[K'W-D|K"' W-D]-DD'

k+1]k+1 k+11k k+1

Since the covariance matrices P

k+1lk are

(43)

Comparing (41) and (43), the term D is defined as below:
D=2P M, H, (W' (44)

u

The minimum £, | is obtained by setting K, W equal to

k+k+1
D . Therefore,
K., =2P .M,

k+1 k+1k+1

X [3H1«+]Mk+lgil\lel+lHI;+l + PI(ZHM ]71

]]JI‘WI(VV,)I/V7l :2P" MIIH]HA"H

k+lk

(45)



€ minimum error covariance is obtained:
Th P btained

k+1lk+1
Pu — Pu _ DD! — U

krllk+1 kr1lk k+llk
(2B, M, H, JWW)' 2R, M, H, ]
= I:rl\k _4Pk“+l\kMI’c+1Hll(+l[3Hk+1Mk+ll)k”+1\k (46)
M H, , + P H M P,
= =2K; H, M 1B,
Based on (2), we have
Pkuﬂ\k = CkPlchCIL + Q: 47)

If the value of K

k+1

given by (45) substitute in (30), the

estimation of U, . leads to a minimum error covariance.

k+1

4. CONCLUSIONS

The proposed scheme is based on a new partitioned
dynamic modeling and intends to overcome the
computational expensiveness drawbacks of the other works
are based on the augmented methods. The proposed OPSKE
provides the optimal state estimate, which is equivalent to
that of the AUSKE.

5. SIMULATION RESULTS

To evaluate the proposed algorithm, an example of
maneuvering target tracking problem which turns, in two-
dimensional space is simulated such as a ship or an aircraft
with constant elevation. In this simulation example, the
performance of the OPSKE for the maneuvering target
tracking has been compared with the work suggested in [2]
as an example of the AUSKE method. As mentioned before
in the augmented state method the state vector includes the
input vector i.e., acceleration and jerk parameter in
maneuvering target tracking problem. The sampling interval
is T=0.01 (sec) and target maneuver is applied at 9" second
(900™ sample). The initial conditions are selected similar for
the AUSKE as well as the OPSKE. The state vectors are
Xo=beoviowe wlhuosl sow il
XkA“g = [xA VAX Vi Vkv u; j[ u/? jkv]'

x

where x,, v, , u; and j, denote the position, velocity,
acceleration and jerk of the target along the x axis,
respectively. We consider the target initial conditions for the
state and the acceleration vectors as below:
X, =[2165m —80m/s 1250m 25m/s]|' ,
U, =[0g Og/sec Og Og/sec]'
X/ =[2165m —80m/s 1250m 25m/s 0g Og/sec Og 0g/sec|'

The target begins to maneuver as
Uy =[0g -07g/sec 0g 0.4g/sec| for 9 (sec)<t<90(sec) .
The system matrices are given by

LT o 0 T°/2 T°/6 0 0 1 700
010 0l T T2 0 0o, . |01 0 0]
4, = B, = ) G =
oo 1T 0 0 T'/2 T'/6 0 01T
00 0 1 0 0 T T /2 0 0 0 1
10
00
H, =
0 1
0 0
(73/3 T*/2 0 0
T*/2 T 0 0
" =2a0, ,
o o 0 T'/3 T/2
|0 0o T/2 T
(777252 T°/72 0 0
T°/72 T°/20 0 0
0, =2a0, ] .
0 0 T7/252 T/72
L 0 0 T°/72 T°/20
T°/30 T'/24 0 0
4 3
0" =2ao, /s T/6 0 0 > p =107,
0 0 T°/30 T'/24
0 0 T'/8 T/6

pP'=0.11,,, P()xu :I4><4’H:”g ={Hk} .

2x4

where o, =0.09(ms™) is the variance of the target jerk

and «=0.0123(s") is the reciprocal of the jerk time
constant 7 =1/« . The measurement standard deviations of
x and y target positions are: g =10v10 (m) , o, =20(m) -
1000 O

0 400}

for both methods. The Root Mean Square Error (RMSE)
index is used for the results evaluation.

Fig. 1 shows the actual value and the estimation of x
and ¥ and RMS errors of x and y positions estimations

by the proposed OPSKE and the AUSKE.

Thus, the measurement covariance matrix is g {

x 10 x 10*

Atcual position
——=—— OPSKE method estimation
AUSKE method estimation

x(m
ym

Atcual position
-3|{ —=—— OPSKE method estimation - — —
AUSKE method estimation

10 15 20 25
Time (sec)

3
N T g
77777 S
//\ | g
****** I ot e
L ____L ?
| |
EE=—"——— === |— === = i
20 25

Time (sec)

Time (sec)

Fig. 1. The actual value and the estimation of the x, y positions and
RMS errors estimations by the OPSKE and the AUSKE methods.

Fig. 2 shows the actual value and the estimations of v* ,v”
and the RMS errors of the X and y velocities estimations
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by the proposed method compared with the augmented
method.

Atcual velocity
L1000 — — — T e — — b —__ 1 3000 o OpSKE method estimation
F— AUSKE method estimation
-2000 - P ] P —— [ ————
-3000 - — — — — - — — — — é
>

-4000 Atcual velocity

5000 ] " OPSKE method estimation

AUSKE method estimation
T T

vx(rﬂsec)

10 15 20 25 10 15 20 25
Time (sec) Time (sec)

Y

Averaged RVSE of v, (misec)
Averaged RVSE of v_(fsec)

Time (sec) Time (sec)

Fig. 2. The actual value and the estimation of Vv',v' and RMS

errors of x and y velocities estimations by the OPSKE and the AUSKE
methods.
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