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Abstract— The deregulation of electric power supply

industries has raised many challenging problems. One of the
most important ones is forecasting the Market Clearing Price
(MCP) of electricity. Decisions on various issues, such as to buy
or sell electricity and to offer a transaction to the market, require
accurate knowledge of the MCP. Another problem, which has
also been an important issue of the traditional power systems, is
load forecasting for both short and long terms.
The extended kalman filter has been widely adopted for state
estimation of nonlinear systems, machine learning applications
and neural network training. In the EKF, the state distribution is
approximated by the first-order linearization of the nonlinear
system. Therefore this can introduce large errors in the load and
price forecasting as two Chaotic, nonstationary and nonlinear
time-series. The unscented Kalman filter (UKF), in contrast,
achieves third-order accuracy, by using a minimal set of MCP
and load sigma points. In this paper an improved dual unscented
Kalman filter (DUKF), which estimate state and parameter
simultaneously has been applied to the real New England power
market. The numerical stability and more accurate predictions of
our method is comparable to the EKF, and traditional neural
network training methods. Remarkably, the computational
complexity of the DUKF is the same order as that of the EKE.
The obtained results show significant improvement in both price
and load forecasting.

Keywords—Price prediction, load forecasting, deregulation,
electric power market, artificial neural network, unscented filtering.

[. INTRODUCTION

The electric utility industries are undergoing a fundamental
transformation from being regulated and monopolistic to
becoming deregulated and competitive. This has created new
issues in the operation and planning of power systems. From a
supplier’s viewpoint, predicting the market clearing price
(MCP) of electricity is a major issue in the bidding process.
This is also an important problem for the independent system
operator (ISO) who is responsible for congestion management
and secure operation of the system. Another important issue
in the operation and planning of power systems is load

forecasting.
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The Kalman filter is a well-known method for recursive

state estimation of linear dynamic systems, and is a minimum
mean-square-error  estimator. Through linearization, the
extended Kalman filter (EKF) has been widely adopted for
state estimation of nonlinear systems [1]. Classical (as time-
series) and intelligent methods, such as artificial neural
networks, have been used to predict the MCP and load
forecasting [2]-[6]. For example, a modular general regression
neural network (GRNN) is used to predict the next day 24
hours spot price or location marginal price (LMP) [7]. A
single neural network, however, may misrepresent part of the
input-output data mapping that could have been correctly
represented by multiple networks. Using a “committee
machine” composed of multiple networks can in principle
alleviate such a difficulty [8]. A major challenge for using a
committee machine is to combine the predictions of multiple
networks properly. In this reference, the weighting
coefficients for combining network predictions are chosen to
be the probabilities that individual networks capture the true
input-output relationship at that prediction instant.
As an alternative, a combination of two approaches, such as
neural networks and fuzzy logic, have been used for
forecasting the energy price [7] [9]. EKF based neural
network learning, and developed a novel method (called
DEKF UD) to reduce computation and improve numerical
stability has been suggested [10]. The Baysian method is a
minimum mean and square error predictor by using BP to
minimize the cost function. The BP is a first-order algorithm,
and suffers from slow convergence [11].

In this paper, a new approach based on UKF for both state and
parameters estimation for MCP is introduced. The rest of the
paper is organized as follows. Some background materials on
price and load forecasting are described in Sections II and III.
In Section 1V, the UKF basic idea is briefly reviewed. The
dual proposed method is described in Section V and the
simulation results are presented and compared b the results
obtained by other methodologies in Section VI. Section VII
provides some relevant conclusions.



II. LITERATURE REVIEW

There are several methods for load and price forecasting.
They can be classified into the following categories.

1. Regression Methods

One approach to predict the market behavior is regression.
The basic idea is to use the historical price, quantity, and other
information such as load, temperature, fuel and other effective
factors to predict the LMP or MCP. Assumingx;, x,, ...,x, are
independent random variables, th e output of a linear
regression model, y, is obtained as:

y=by+bx +....+bx, +& )

where by, b;, ..., b, are unknown but Constants, and € is a
random variable with Gaussian distribution of mean 0 and
variance o7, that is & = N(0, %) [12].

2. Multi-layer Perceptrons (MLP)

The most widely used neural network is multi-layer
perceptron (MLP). The training of MLP is commonly
performed by the back-propagation (BP method) algorithm
[13][14]. Although this algorithm is straightforward and
usually provides good solutions, the results are not necessarily
optimum. To overcome this problem, the genetic algorithm
has been proposed for training MLP’s. This is a more
powerful technique and can provide optimum solution.
However, it requires more calculation time and therefore, it is
useful only for small or medium scale problems.

3. Hybrid different Neural Network Structures

Because of problems such as insufficient input-output data
points and too many tunable parameters, a single neural
network might misrepresent part of the nonlinear input-output
relationship.  This could have been more appropriately
represented by using different neural networks. For example,
radial-basis function (RBF) network is effective in exploiting
local data characteristics, while MLP is good at capturing
global data trends [8], [23]. Therefore, a committee machine
consisting of different types of neural networks can in
principle alleviate the misrepresentation of the input-output
data relationship in a single network [8].

To obtain predictions by a committee machine, a well-
known method is the ensemble averaging as depicted in Fig. 1.
In this method, the predictions of neural networks are linearly
combined based on a simple averaging or the statistics of
historical prediction errors.
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Fig. 1. Schematic of an ensemble-averaging committee machine with network
predictions and weighting coefficients

4. EKF-based Neural Network method

Since EKF 1is a second-order learning algorithm, fast
convergence with less accurate predictions is expected than
traditional neural learning algorithms. In addition calculating
Jacobian matrices can be very difficult and introduces
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numerous errors. Therefore for some cases it causes its
estimation to diverge. In [10] presents a modified U-D
factorization algorithm within the decoupled EKF (DEKF)
framework to make the EKF more faster and numerical
stability as compared to standard EKF. To providing
predictions, EKF can also estimate confidence interval (CI)
based on its innovation covariance matrix [10].

III. EKF PRICE FORECASTING
EKF has been used to train MLP networks by training weights
of a network as the state of an unforced or forced nonlinear
dynamic system. The training can be described as a state
estimation problem with the following linear forced dynamic
and nonlinear observation equations [10]:

P(n+1)=fW(n+1),L(n—1,),P(n—p;)]+q(n)
W(n+1)=W(n)+Gn)U(n) 2)
Zp(n+1l)=P(n+1)+V(n)

where 1, p, e {01....} are defined as lag steps.

Wp(n)=[wp(n) Wiy (m)]" (3)

where W (n+1) is an L, x1 state vector (neural network

Weights in n+1" iteration with dimension; £, )and f[.] is
the MLP input-output relationship. The input variable
L(n),..L(n-nl) and P(n),..,P(n—n2) (e. g. load and price at step
time n ,...,n-n2) for MCP prediction at time n+1 are available
in real time. The proper values of /, and p, should be selected

based on “sensitivity method” as discussed in [10]. Consider
the basic state-space framework as in Equation 1. Given the
noisy observation P(n+1), a recursive estimation for w (n+1)

can be expressed in the following form;

W+ 1n+1)=Wn+1/n)+Kn+DPn+1)-Pn+1/m)] (4

To drive the EKF formula considering input uncertainty, a
first order Taylor series expansion of f[.] around the
estimated weights w(n+1/n) is performed,;

P@+1) = fTF (), L(n=1,), P(n=p, )]

+ Hm)[W (n+1)=W(n+1/n)]+ HOT +g(n+1) (5)

In the above, H(n) is the partial derivative of f[.] with
respect to W(n) at the estimated weights. i.e., a Jacobian

matrix with dimension Lp XLy, :

AW (n+1),L(n—1,),P(n—p))] ©
oW (n) W ()= (a1 m)

and the higher order terms (HOT) are neglected. Then the

H(n)=(

estimated output P(n+1/n) is given by
13(n+1/n):f[V?/p(n),L(n—lj),P(n—p/)] (7)

with measurement residual calculated as below:

P(n+1/n) = P(n+1)=P(n+1/n) =

H(n+ )W (a+ 1)~ W(n+1/n)]+V (n) ®)
Z(n+1/n)=P(n+1/n)

The innovation covariance Z (4 1/m)=3,(n+1/n)+ R(n) is

the covariance of the measur ement residual

S.(n+1/n)=Z,(n+1)~Z,(n+1/n) .



Yon+1/ny=Hm+)X (n+1/n)Hn+1)" +Q(n) 9)
Y,(n+1/n)y=Hn+)X (n+1/n)Hn+1)" + R(n)+O(n) (10)

Kn+D)=X, (n+1/m)Hn+1)" T, (n+1/n)"

(11)
Y, (n+1/n+1)=[1 - K(n+DHn+D]L, (1 +1/n) (12)
Sp+1/n)y =X, (n/n)+Gm) X, (n/n)Gn)" (13)

X, (n/n)=pZ, (n/n)
u set to a small constant (for example u=le—4 for data
length 1000) [28].

>,0/0)=y

E[V (m)V ()" 1= R(n)

Elg(n)q(n)"1=0(n)

where K(n+1) is Kalman gain and ¥, (n+1/n) is weight
covariance matrix. In the above, the term ¥ (0/0)=y is initial

covariance matrix of weight, which can select by arbitrary
value.

IV. UKF PRICE FORECASTING

A. UKF Parameter Estimation

The EKF more than 30 years of experience in the estimation
community has shown that is computationally expensive and
difficult to implement. The UKF address the approximation
issues of the EKF. The state distribution is again represented
by a GRV, but is now specified using a minimal set of
carefully chosen sample points [31]. No explicit calculations
of Jacobians or Hessians are necessary to implement this
algorithm. Furthermore, the overall number of computations is
the same order as the EKF. This sample points completely
capture the true mean and covariance of the GRV, and when
propagated through the true uncertain dynamic non-linear
system, captures the posterior mean and covariance accurately
to the 3™ order (Taylor series expansion) for any non-linearity.
Consider propagating a random vector variable w(n) (neural
network Weights in n™ iteration) through a nonlinear function
fl.], as (2). Assume Ww(n) has mean E[W(n)]=W(n) and

E[(W () =W (n/ n))W (n) =W (n/n))' ] = Z , @iy . To
calculate the statistics of P(n), we form a matrix w(n) of
2L, +1 sigma vectors @,(n) (With corresponding weights #,) ,

covariance

according the following:

W) = ANL, + )

W =AL, +A)+(-a+ )

W =W =05/L,+A) i=ly2 Ly
A=0d*(L,+Kx)-L,

@, (n) =W (n)

o, =7 () + (L, +/1)Z /), i=l..L,
N (15)
@ (n) =W (n)— (L, + /1)2 , (n/m) i=L,+1,..2L,

O =[@y(1) . @y, ()]
where ¥, (n/n), means i"™ column of the matrix Y, (n/n). A is

(14)

a scaling parameter. o determines the spread of sigma points
around # , and is usually set to a small positive value. «x is a

secondary scaling parameter which is usually set to 0, and 3

is used to corporate prior knowledge of the distribution of
w(n) . These sigma vectors are propagated through the linear
dynamic system,

.(n+1) = w,(n) i=0,..2L, (16)
2L,

Wn+1/ny=> W a(n+1) (17)
And covariance matrix of residue
Wn+1/n)=Wh+1)-W(n+1/n) is

2Ly,
Y. (n+1/n)= ZW;‘[w,(n +) =W (n+1/n)]

(18)

X[+ = Wn+1/n)]" +Gn) T, (n/mGn)’
2, (n/ny=uZ, (nln)
By propagating vector variable w(n+1) from nonlinear
function f[.] we have:
pi(n+1) = flo,(n+1),L(n=1;),P(n—p;)] (19)
i=0,..,2L,
And the mean and covariance for P(n) are approximated using
a weighted sample mean and covariance of the posterior sigma
points,
2L,
ZW,'” pi(n+1) (20)
i=0

Using recursive estimation for w (n+1)

P(n+1/n)=

expressed in (4) the

following form for measurement update equations obtained:

2Lw
zp(ml):ZW;[p,(n+1)—f>(n+1/n)][p,(n+1)—13(n+1/n)]" +Rm  (21)

i=0

S, (n+1) =X, (n+ 1)+ O(n) (22)
Zn+1/n)=Pn+1/n)
Ty (n+1) :ZW,"[a),(n +D) =W+ mlp(n+1)-Zn+1/n]" (23)

Kn+)=X, 0+ )T, m+1)" (24)
T+l n+D) =3, (n+1/n)—Kn+)I ,(n+ DK@+ 1) (25)
>.(0/0) =y

A. The Dual Unscented Kalman Filter (DUKF)

The dual estimation problem consists of estimating P(n+1)
from later information of price and load up to sample time n,
and the model parameter W(n+1) from noisy data Z(n+1)
simultaneously. For this propose, the following augmented
matrix is suggested:

Wn+1] W (n)
P+1) | | fIW(n+1),L(n—1;),P(n—p,)

. [G(n) O}[U(n)} (26)

0 7] q(n)

Zn+1=[o 1][W(" * D} V()
P(n+1)

In the above augmented method the state P(n+1) and

parameter vector #(n+1) can be estimated simultaneously. So

at every time-step, the current estimate of the weights is used
in the state estimation procedure and the later state estimati



on is used for to improve the parameter estimation.

The number of input variables that drive the neural network
subspaces has been selected by calculating the partial and
standard autocorrelation functions suggested in [19].

B.  The Decoupled Unscented Kalman Filter (DeUKF)
Using UKF as a learning method for MCP and load
forecasting in view of the high dimensionality of weights
involved, causing excessive computational requirements.
Decoupled extended Kalman filter (DEKF) was developed in
[10] and same methodology was used for UKF. In this
methodology, the interdependency of the weights across
neurons was ignored. So the weight covariance matrix is
assumed to be block diagonal. In results section the DUKF
method will be presented with significant reduction in
computation and much faster than that UKF.

V. RESULTS
The data of New England electricity market in January,
Februray and May 2004 were used as three study cases [24].
Different types of error can be used for validation of results.
We have used the mean absolute error (MAE) defined as:

N A
MAE = %Z X; — Xi e, (27)

i=1

1 N
_NZ

i=l

Another type of error is the mean absolute percentage of
error (MAPE) defined as:

100 & 5 -
A4A1%E:=Ajyf§:444447

=1 X

(28)

The standard deviation (std) of error is a useful parameter and
it is defined as

N

o= 2le e

i=1

(29)

where ¢, =x,— %, and ¢, is the average of ¢; values.

The std is a well-known criteria used widely in documents.
The root mean square error (rmse) which is composed of
variance and bias is more suitable for validation.

rmse =+ o + bias”

A. Case Study I

In the first case study, the hourly price and load data
corresponding to January 2004 was used. 1008 sample points
(corresponding to January 1, Feb 11) were used. The 800
points of data are used as training data which selected
randomly, and the final 208 points are used as the test set for
validate the method. The price-price, price-load, load-price
and load-load correlation coefficients for input determination
were investigated (see [19] for detail).
The desired forecasting horizons for both price and load in this
case study were considered seven hours. Based on the
correlation results is showed in TABLE. I (suggested in [19]),

(30)

510

the proper values for parameters were selected (for /,,;=0
and for p;,j=0,23and 24, so the input number is equal to 6).

In fact, the parameters were selected such that the correlation
values of the corresponding quantities be larger than 0.5.

A standard 4-1 MLP with tansig for first layer and logsig for
second layer activation function was used in case study I. The
neural network thus had 29 total number of weights and was
trained from Jan 1 to Feb 3, and then predicted from Feb 4 to
11. Several neural network structures were studied to select
the network that has the best performance. The results showed
that MLP is more suitable. It is clear that, the layer numbers
and neurons in each layer affect the results of MLP.
Therefore, same 4-1 MLP with similar activation functions
was used for both EKF and DUKF. Figure 2 shows the
predicted and real values of price for one step prediction.
Also, Fig. 3 shows the predicted and real values of load for
one step prediction.
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Fig. 2. Proposed method simulation results (DUKF), price forecasting
(finer scale, one step prediction, case study I)
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Fig. 3. Proposed method simulation results (DUKF), load forecasting
(One step prediction, case study I)

TABLE I
THE CORRELATION COEFFICIENTS BETWEEN PRICE AND
LOAD SAMPLES

One Two sie Three | Four Five Twenty
step step step step step | Four step
Price(n+24),
Load(n)-Load(n-7) 0.635 0.4596 0.430 | 0.306 | 0.199 0.09
Price(n+24),
Price(n)-Price(n-7) 0.846 0.677 0.584 | 0.513 | 0.430 0.612




Fig. 4 shows comparison errors for one step MCP forecasting
for three methods at test data (e.g. DUKF and EKF).
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Fig. 4. DUKF, EKF and BP simulation error results, price forecasting (One
step prediction, case study I)

The results STD, MAE, MAPE and RMSE values for one to
seven steps predictions of price and load are shown in Table
IL. It can be seen that the smallest MAPE is 5.33% for one step
price prediction and 3.01% for one step load prediction. This
error increases slightly for higher step predictions. The MAPE
values for seven steps price and load predictions are 13.03 and
6.82, respectively.

TABLE II
COMPARING ERROR VALUES BETWEEN PROPOSED and EKF
METHODS, ( case study I, One step ahead prediction)

Price forecasting Load forecasting
Method S S SR S|
HEAERESEHEH RS
§ | 2| S |SS|ss|&8 =555
DUKF 14.9 14.9 5.8 1.9 43.5 44.2 34.3 1.0
EKF 16.5 16.6 7.6 2.5 55.4 59.1 58.6 1.8

B. Case study I
In the second case study, the hourly price and load data
corresponding to February 1, 2004 to March 5, 2004 was used.
1008 sample points were used. The overall forecasting
performance for these two methods and BP training method
are summarized in Table III. The first 600 points of data are
used as training data which selected randomly, and the final
240 points are used as the test set for validate the method. The
proper values for parameters were selected from correlation
coefficients test (for /,,j=0 and for p,,j=01,23and24,24*7, so

the input number is equal to 7). Comparing the input numbers
for this case study and case study I, it can be seen that the
correlation coefficients values are higher than later case study
(for detail see [19]).

A standard 4-1 MLP with tansig for first layer and logsig for
second layer activation function was used in case study, too.
This structure was used for four methodologies, similarly.
Figure 5 shows comparison errors for seven step MCP
forecasting for these four methods at test data (e.g. DUKF,
UKF, EKF and BP).
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Fig. 5. DUKF and EKF simulation error results, price forecasting (Seven
forward step prediction, case study II)

The resultant STD, MAE, MAPE and RMSE values for one,
seven and next day predictions of price and load are shown in
Table ITI, IV and V.

TABLE III
COMPARING ERROR VALUES BETWEEN PROPOSED, EKF AND BP

METHODS, ( case study II, One step forward prediction)

Price forecasting Load forecasting
=2 Q R EEEEEER
X N = S S
Method | & | 2 SN R AR S
1] E ~ o = E
DUKF 6.32 6.33 4.57 4.70 38.23 37.9 30.1 [0.93
UKF 6.45 6.63 5.1 53 39.4 38.2 30.0 (091
EKF 6.55 6.67 525 5.40 45.56 46.23 42.56 1.5
BP 6.43 6.45 4.89 5.03 37.86 38.1 29.5 10.92
TABLE IV
COMPARING ERROR VALUES BETWEEN PROPOSED, EKF AND BP
METHODS, ( case study II, Seven step forward prediction)
Price forecasting Load forecasting
Method
m S =
e < & E 2| av| gd S5 |8 :
S| 2 = | ST | 8% =8| 8|3
DUKF |7.56 7.42 5.01 4.98 140.4 152.1 121.3 4.0
UKF 8.46 8.52 6.22 4.81 143.0 153.8 122.0 42
EKF 8.70 8.75 6.47 5.01 146.4 153.5 118.9 43
BP 7.43 7.23 4.89 5.03 216.5 266.9 211.0 7.5
TABLE V
COMPARING ERROR VALUES BETWEEN PROPOSED, EKF AND BP
METHODS, ( case study II, Next Day prediction)
Price forecasting Load forecasting
Method
m i 899 | 9% |=
1% ) 2 1%
as S
DUKF 9.82 10.24 7.90 6.11 186.6 207.1 162.8 5.7
UKF 9.89 10.30 7.93 6.14 188.6 210.1 164.8 5.8
EKF 9.7 10.62 8.28 6.4 195.2 209.8 164.6 5.8
BP
11.04 |11.42 9.01 6.97 265.7 336.5 278.7 9.9




In Table VI, the price and load forecasting results obtained
by the proposed method (DUKF) are compared to the results
obtained by six other techniques for this case study. The above
advantages are the average of 100 iterations. These are: MLP
using BP, MLP wusing genetic algorithm, fuzzy-neural
approach [7], generalized regression neural network (GRNN),
C0-CO approach [19], EKF method [10] and the proposed
method (UKF and DUKF). The same training and testing data
sets were used for all methods. The resultant STD, MSE,
MAE and MAPE for each case considering seven step are
shown in this table.

It can be observed that the smallest error was about 4.81%
(MAPE) and 7.42 (RMSE) for cases seven step price prediction
using proposed method. And smallest error was about 4.01%
(MAPE) and 140.4 (STD) for cases seven step load prediction.

The new method has shown to be able to improve the
results in about 5-10% at confident interval 95% than the other
algorithms. In the other word forecasting results show that this
approach is more accurate than conventional techniques which
introduced before.

TABLE VI

COMPARING ERROR VALUES BETWEEN DIFFERENT METHODS PERDICTION INTERVAL,
(FEB 25,2004 to MARCH 5, 2004, ONE STEP PREDICTION)

Price forecasting Load forecasting
Method Specification MAPE STD RMSE MAE MAPE
STD RMSE | RMSE) (%) (Mwh) (Mwh) (Mwh) (%)
1 MLP-BP trianing steps = 1600 7.43 7.23 4.89 5.03 216.5 266.9 211.0 7.5
2 MLP-GA eneration - number = 2000 7.33 6.92 4.81 4.96 208.23 | 261.9 201.0 7.1
Fuzzy Logic for Load Prediction
3 Fuzzy-Neural [6] GRNN for Price Prediction 6.46 6.63 4.09 7.45 212.23 | 2559 220.1 8.1
spread - number = 0.1
4 GRNN spread - number = 0.1 7.53 7.92 5.21 5.16 215.23 | 2229 211.0 7.2
2 GRNN subspaces for
5 CO-CO [19] Load & Price 6.35 6.38 4.6 5.60 208.23 | 261.9 201.0 7.1
Spread - number = 0.1
6 EKF [10] trianing steps =1600 8.70 8.75 6.47 5.01 146.4 153.5 118.9 43
trianing steps = 1600 846 | 852 | 622 | 4381 1430 | 1538 | 1220 | 42
7 a a=0.005,8=2,k=0 ’ ’ : ) : ’ : :
8 trianing steps = 1600 56 42 | 501 | 498 | 1404 | 1521 | 1213 | 40
s a=0.005,8=2,k=0 7. 7. : ) : ) ’ :
prediction) in price and load prediction than other
VI.  DISCUSSION AND CONCLUTION methods.

Using EKF as a learning method for MCP prediction may
suffers a number of serious limitations. At first the existent of
Jacobian matrices is a critical problem, especially for some
activation functions contain discontinuities (for example hard-
limit), so Jacobian matrices might be abruptly. The second,
linear transformations can introduce large errors in true
posterior mean and covariance; therefore it causes its
estimation to diverge. Finally calculating Jacobian matrices can
be very difficult and introduces numerous errors. In this paper a
new methodology for MCP and load forecasting was
introduced to determine neural networks weighting coefficients
based on unscented filtering. This approach is able to
efficiently forecast the both MCP indices and load in
comparison with the other methods. Our DUKF forecasting
results are better and reliable than the prediction obtained by
using the EKF method, and are comparable with BP methods.
From the above simulation results and many other simulations
(not reported here), the proposed DUKF method is shown to be
more computationally efficient (especially in long term
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