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Medium Term Horizon Market Clearing 
Price and Load Forecasting With an 

Improved Dual Unscented Kalman Filter  

 
Abstract— The deregulation of electric power supply 

industries has raised many challenging problems.  One of the 
most important ones is forecasting the Market Clearing Price 
(MCP) of electricity.  Decisions on various issues, such as to buy 
or sell electricity and to offer a transaction to the market, require 
accurate knowledge of the MCP.  Another problem, which has 
also been an important issue of the traditional power systems, is 
load forecasting for both short and long terms. 
The extended kalman filter has been widely adopted for state 
estimation of nonlinear systems, machine learning applications 
and neural network training. In the EKF, the state distribution is 
approximated by the first-order linearization of the nonlinear 
system. Therefore this can introduce large errors in the load and 
price forecasting as two Chaotic, nonstationary and nonlinear 
time-series. The unscented Kalman filter (UKF), in contrast, 
achieves third-order accuracy, by using a minimal set of MCP 
and load sigma points. In this paper an improved dual unscented 
Kalman filter (DUKF), which estimate state and parameter 
simultaneously has been applied to the real New England power 
market. The numerical stability and more accurate predictions of 
our method is comparable to the EKF, and traditional neural 
network training methods. Remarkably, the computational 
complexity of the DUKF is the same order as that of the EKE. 
The obtained results show significant improvement in both price 
and load forecasting. 
 

Keywords—Price prediction, load forecasting, deregulation, 
electric power market, artificial neural network, unscented filtering.    

 
I. INTRODUCTION 

 
The electric utility industries are undergoing a fundamental 
transformation from being regulated and monopolistic to 
becoming deregulated and competitive. This has created new 
issues in the operation and planning of power systems. From a 
supplier’s viewpoint, predicting the market clearing price 
(MCP) of electricity is a major issue in the bidding process.   
This is also an important problem for the independent system 
operator (ISO) who is responsible for congestion management 
and secure operation of the system.  Another important issue 
in the operation and planning of power systems is load 
forecasting. 
 

                                                
 

   The Kalman filter is a well-known method for recursive 
state estimation of linear dynamic systems, and is a minimum 
mean-square-error estimator. Through linearization, the 
extended Kalman filter (EKF) has been widely adopted for 
state estimation of nonlinear systems [1]. Classical (as time-
series) and intelligent methods, such as artificial neural 
networks, have been used to predict the MCP and load 
forecasting [2]-[6]. For example, a modular general regression 
neural network (GRNN) is used to predict the next day 24 
hours spot price or location marginal price (LMP) [7]. A 
single neural network, however, may misrepresent part of the 
input-output data mapping that could have been correctly 
represented by multiple networks.  Using a “committee 
machine” composed of multiple networks can in principle 
alleviate such a difficulty [8].  A major challenge for using a 
committee machine is to combine the predictions of multiple 
networks properly. In this reference, the weighting 
coefficients for combining network predictions are chosen to 
be the probabilities that individual networks capture the true 
input-output relationship at that prediction instant.  
As an alternative, a combination of two approaches, such as 
neural networks and fuzzy logic, have been used for 
forecasting the energy price [7] [9]. EKF_based neural 
network learning, and developed a novel method (called 
DEKF_UD) to reduce computation and improve numerical 
stability has been suggested [10]. The Baysian method is a 
minimum mean and square error predictor by using BP to 
minimize the cost function. The BP is a first-order algorithm, 
and suffers from slow convergence [11].  
 
In this paper, a new approach based on UKF for both state and 
parameters estimation for MCP is introduced. The rest of the 
paper is organized as follows.  Some background materials on 
price and load forecasting are described in Sections II and III.  
In Section IV, the UKF basic idea is briefly reviewed.  The 
dual proposed method is described in Section V and the 
simulation results are presented and compared b the results 
obtained by other methodologies in Section VI.  Section VII 
provides some relevant conclusions. 
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II. LITERATURE REVIEW 
 
  There are several methods for load and price forecasting.  
They can be classified into the following categories. 
    
1. Regression Methods 
   One approach to predict the market behavior is regression.  
The basic idea is to use the historical price, quantity, and other 
information such as load, temperature, fuel and other effective 
factors to predict the LMP or MCP.  Assuming x1, x2, …,xp are 
independent random variables, th e output of a lin ear 
regression model, y, is obtained as: 

ε++++= pp x bxbby ......110  (1) 

where b0, b1, …, bp are unknown but Constants, and ε is a 
random variable with Gaussian distribution of mean 0 and 
variance σ2, that is ε = N(0, σ2) [12]. 
 
2.  Multi-layer Perceptrons (MLP) 
    The most widely used neural network is multi-layer 
perceptron (MLP).  The training of MLP is commonly 
performed by the back-propagation (BP method) algorithm 
[13][14].  Although this algorithm is straightforward and 
usually provides good solutions, the results are not necessarily 
optimum. To overcome this problem, the genetic algorithm 
has been proposed for training MLP’s.  This is a more 
powerful technique and can provide optimum solution. 
However, it requires more calculation time and therefore, it is 
useful only for small or medium scale problems. 
 
3.  Hybrid different Neural Network Structures 
   Because of problems such as insufficient input-output data 
points and too many tunable parameters, a single neural 
network might misrepresent part of the nonlinear input-output 
relationship.  This could have been more appropriately 
represented by using different neural networks.  For example, 
radial-basis function (RBF) network is effective in exploiting 
local data characteristics, while MLP is good at capturing 
global data trends [8], [23].  Therefore, a committee machine 
consisting of different types of neural networks can in 
principle alleviate the misrepresentation of the input-output 
data relationship in a single network [8].  
   To obtain predictions by a committee machine, a well-
known method is the ensemble averaging as depicted in Fig. 1.  
In this method, the predictions of neural networks are linearly 
combined based on a simple averaging or the statistics of 
historical prediction errors. 

 
 
Fig. 1. Schematic of an ensemble-averaging committee machine with network 
predictions  and weighting coefficients 
 
4. EKF-based Neural Network method 
Since EKF is a second-order learning algorithm, fast 
convergence with less accurate predictions is expected than 
traditional neural learning algorithms. In addition calculating 
Jacobian matrices can be very difficult and introduces 

numerous errors. Therefore for some cases it causes its 
estimation to diverge. In [10] presents a modified U-D 
factorization algorithm within the decoupled EKF (DEKF) 
framework to make the EKF more faster and numerical 
stability as compared to standard EKF.  To providing 
predictions, EKF can also estimate confidence interval (CI)
based on its innovation covariance matrix [10]. 
 

III. EKF PRICE FORECASTING 
EKF has been used to train MLP networks by training weights 
of a network as the state of an unforced or forced nonlinear 
dynamic system. The training can be described as a state 
estimation problem with the following linear forced dynamic 
and nonlinear observation equations [10]: 
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where )1( +nW  is an 1×WL  state vector (neural network 

Weights in n+1th iteration with dimension; WL  )and [.]f  is 
the MLP input-output relationship. The input variable 

)1(),...( nnLnL −  and )2(),...,( nnPnP −  (e. g. load and price at step 
time n ,…,n-n2) for MCP prediction at time n+1 are available 
in real time. The proper values of il  and ip  should be selected 
based on “sensitivity method” as discussed in [10]. Consider 
the basic state-space framework as in Equation 1. Given the 
noisy observation )1( +nP , a recursive estimation for )1( +nW  
can be expressed in the following form; 
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To drive the EKF formula considering input uncertainty, a 
first order Taylor series expansion of  [.]f  around the 

estimated weights )/1( nnW +
∧  is performed; 
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In the above, )(nH  is the partial derivative of [.]f  with 
respect to )(nW  at the estimated weights. i.e., a Jacobian 
matrix with dimension WP LL × : 
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and the higher order terms (HOT) are neglected. Then the 

estimated output )/1( nnP +
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 is given by 

)](),(),([)/1( ˆ 
jjP pnPlnLnWfnnP −−=+

∧  (7) 

with measurement residual calculated as below: 
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µ  set to a small constant (for example 41 − ≈ e µ  for data 
length 1000) [28]. 
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where )1( +nK  is Kalman gain and )/1( nnW +∑  is weight 
covariance matrix. In the above, the term ψ=∑ ) 0/0(w  is initial 
covariance matrix of weight, which can select by arbitrary 
value.  
 

IV. UKF PRICE FORECASTING 
 
A. UKF Parameter Estimation  
 
The EKF more than 30 years of experience in the estimation 
community has shown that is computationally expensive and 
difficult to implement. The UKF address the approximation 
issues of the EKF. The state distribution is again represented 
by a GRV, but is now specified using a minimal set of 
carefully chosen sample points [31]. No explicit calculations 
of Jacobians or Hessians are necessary to implement this 
algorithm. Furthermore, the overall number of computations is 
the same order as the EKF. This sample points completely 
capture the true mean and covariance of the GRV, and when 
propagated through the true uncertain dynamic non-linear 
system, captures the posterior mean and covariance accurately 
to the 3rd order (Taylor series expansion) for any non-linearity.  
Consider propagating a random vector variable )(nW   (neural 
network Weights in nth iteration) through a nonlinear function 
f[.], as (2). Assume )(nW  has mean )()]([ n WnWE =  and 
covariance )/(]))/( ˆ )())(/( ˆ )([( nnnnWnWnnWnWE 

W
T ∑= −− . To 

calculate the statistics of )(nP , we form a matrix )(n ω  of 
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where i W n n )/( ∑  means ith column of the matrix )/( nnW∑ . λ  is 
a scaling parameter. α  determines the spread of sigma points 
around W , and is usually set to a small positive value. κ  is a 

secondary scaling parameter which is usually set to 0, and β  
is used to corporate prior knowledge of the distribution of 

)(nW . These sigma vectors are propagated through the linear 
dynamic system,   
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By propagating vector variable )1( +niω   from nonlinear 
function f[.] we have: 
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And the mean and covariance for )(nP  are approximated using 
a weighted sample mean and covariance of the posterior sigma 
points, 
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Using recursive estimation for )1( +nW   expressed in (4) the 
following form for measurement update equations obtained: 
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A. The Dual Unscented Kalman Filter (DUKF)  

 
The dual estimation problem consists of estimating )1( +nP  
from later information of price and load up to sample time n, 
and the model parameter )1( +nW  from noisy data )1( +nZ  
simultaneously. For this propose, the following augmented 
matrix is suggested:  
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In the above augmented method the state )1( +nP  and 
parameter vector )1( +nW  can be estimated simultaneously. So 
at every time-step, the current estimate of the weights is used 
in the state estimation procedure and the later state estimati

509



 
 

 
 
 

on is used for to improve the parameter estimation.  
The number of input variables that drive the neural network 
subspaces has been selected by calculating the partial and 
standard autocorrelation functions suggested in [19].  
 

B. The Decoupled Unscented Kalman Filter (DeUKF)  
Using UKF as a learning method for MCP and load 
forecasting in view of the high dimensionality of weights 
involved, causing excessive computational requirements. 
Decoupled extended Kalman filter (DEKF) was developed in 
[10] and same methodology was used for UKF. In this 
methodology, the interdependency of the weights across 
neurons was ignored. So the weight covariance matrix is 
assumed to be block diagonal. In results section the DUKF 
method will be presented with significant reduction in 
computation and much faster than that UKF.  
 

V. RESULTS 
The data of New England electricity market in January, 
Februray and May 2004 were used as three study cases [24]. 
Different types of error can be used for validation of results.  
We have used the mean absolute error (MAE) defined as: 
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   Another type of error is the mean absolute percentage of 
error (MAPE) defined as: 
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The standard deviation (std) of error is a useful parameter and 
it is defined as 
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where ii i x xe ˆ−=  and ie  is the average of  ei values. 
The std is a well-known criteria used widely in documents. 
The root mean square error (rmse) which is composed of 
variance and bias is more suitable for validation. 
 

22 biasrmse += σ  (30) 
 
A. Case Study I 
   In the first case study, the hourly price and load data 
corresponding to January 2004 was used. 1008 sample points 
(corresponding to January 1, Feb 11) were used. The 800 
points of data are used as training data which selected 
randomly, and the final 208 points are used as the test set for 
validate the method. The price-price, price-load, load-price 
and load-load correlation coefficients for input determination 
were investigated (see [19] for detail). 
The desired forecasting horizons for both price and load in this 
case study were considered seven hours. Based on the 
correlation results is showed in TABLE. I (suggested in [19]), 

the proper values for parameters were selected (for 0, =jl j  
and for 24 and 3,2,1,0, =jp j , so the input number is equal to 6). 
In fact, the parameters were selected such that the correlation 
values of the corresponding quantities be larger than 0.5.   
A standard 4-1 MLP with tansig for first layer and logsig for 
second layer activation function was used in case study I. The 
neural network thus had 29 total number of weights and was 
trained from Jan 1 to Feb 3, and then predicted from Feb 4 to 
11. Several neural network structures were studied to select 
the network that has the best performance. The results showed 
that MLP is more suitable. It is clear that, the layer numbers 
and neurons in each layer affect the results of MLP. 
Therefore, same 4-1 MLP with similar activation functions 
was used for both EKF and DUKF. Figure 2 shows the 
predicted and real values of price for one step prediction. 
Also, Fig. 3 shows the predicted and real values of load for 
one step prediction.   

360 380 400 420 440 460 480 500 520
0

50

100

150

200

250

Hour

M
C

P
in

di
ce

s

Real 

UKF estimated

 
Fig. 2. Proposed method simulation results (DUKF), price forecasting 

(finer scale, one step prediction, case study I) 
 

320 340 360 380 400 420
1600

1800

2000

2200

2400

2600

2800

3000

Hour

Lo
ad

 (
M

W
H

)

Predicted Error, std=75.31

Real 

Estimated

 
Fig. 3. Proposed method simulation results (DUKF), load  forecasting  
(One step prediction, case study I) 

 

TABLE I 
 THE CORRELATION COEFFICIENTS BETWEEN PRICE AND 

LOAD SAMPLES 
Twenty 

Four step 
Five  
step 

Four  
step 

Three  
step Two  step One  

step  

0.09 0.199 0.306 0.430 0.4596 0.635 Price(n+24), 
 Load(n)-Load(n-7) 

0.612 0.430 0.513 0.584 0.677 0.846 Price(n+24), 
 Price(n)-Price(n-7) 
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Fig. 4 shows comparison errors for one step MCP forecasting 
for three methods at test data (e.g. DUKF and EKF).  
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Fig. 4. DUKF, EKF and BP simulation error results, price forecasting (One 
step prediction, case study I) 
 
The results STD, MAE, MAPE and RMSE values for one to 
seven steps predictions of price and load are shown in Table 
II. It can be seen that the smallest MAPE is 5.33% for one step 
price prediction and 3.01% for one step load prediction.  This 
error increases slightly for higher step predictions. The MAPE 
values for seven steps price and load predictions are 13.03 and 
6.82, respectively. 
 
 

TABLE II 
COMPARING ERROR VALUES BETWEEN PROPOSED and  EKF 

METHODS, ( case study I, One step ahead  prediction) 

Price forecasting Load forecasting 

Method 
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D

 

RM
SE

 

M
AE

 

M
AP

E 
(%

) 

ST
D

 
(M

wh
) 

RM
SE

 
(M

wh
) 

M
AE

 
(M

wh
) 

M
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DUKF 14.9 14.9 5.8 1.9 43.5 44.2 34.3 1.0

EKF 16.5 16.6 7.6 2.5 55.4 59.1 58.6 1.8

 
B. Case study II 

In the second case study, the hourly price and load data 
corresponding to February 1, 2004 to March 5, 2004 was used. 
1008 sample points were used. The overall forecasting 
performance for these two methods and BP training method 
are summarized in Table III. The first 600 points of data are 
used as training data which selected randomly, and the final 
240 points are used as the test set for validate the method.  The 
proper values for parameters were selected from correlation 
coefficients test (for 0, =jl j  and for  7*24,24 and 3,2,1,0, =jp j , so 
the input number is equal to 7). Comparing the input numbers 
for this case study and case study I, it can be seen that the 
correlation coefficients values are higher than later case study 
(for detail see [19]). 
A standard 4-1 MLP with tansig for first layer and logsig for 
second layer activation function was used in case study, too. 
This structure was used for four methodologies, similarly. 
Figure 5 shows comparison errors for seven step MCP 
forecasting for these four methods at test data (e.g. DUKF, 
UKF, EKF and BP).  
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Fig. 5. DUKF and EKF simulation error results, price forecasting (Seven 
forward step prediction, case study II) 

 
The resultant STD, MAE, MAPE and RMSE values for one, 
seven and next day predictions of price and load are shown in 
Table III, IV and V. 
 
 

TABLE III 
COMPARING  ERROR VALUES BETWEEN PROPOSED,  EKF  AND BP 

METHODS, ( case study II, One step forward prediction) 

Price forecasting Load forecasting 

Method 
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DUKF 6.32 6.33 4.57 4.70 38.23 37.9 30.1 0.93 

UKF 6.45 6.63 5.1 5.3 39.4 38.2 30.0 0.91 

EKF 6.55 6.67 5.25 5.40 45.56 46.23 42.56 1.5 

BP 6.43 6.45 4.89 5.03 37.86 38.1 29.5 0.92 

 
TABLE IV 

COMPARING  ERROR VALUES BETWEEN PROPOSED,  EKF  AND BP 
METHODS, ( case study II, Seven step forward prediction) 

Price forecasting Load forecasting 

Method 
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DUKF 7.56 7.42 5.01 4.98 140.4 152.1 121.3 4.0 

UKF 8.46 8.52 6.22 4.81 143.0 153.8 122.0 4.2 

EKF 8.70 8.75 6.47 5.01 146.4 153.5 118.9 4.3 

BP 7.43 7.23 4.89 5.03 216.5 266.9 211.0 7.5 

 
TABLE V 

COMPARING ERROR VALUES BETWEEN PROPOSED,  EKF  AND BP 
METHODS, ( case study II, Next Day prediction) 

Price forecasting Load forecasting 

Method 
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DUKF 9.82 10.24 7.90 6.11 186.6      207.1 162.8 5.7 

UKF 9.89 10.30 7.93 6.14 188.6      210.1 164.8 5.8 

EKF 9.7 10.62 8.28 6.4 195.2 209.8 164.6 5.8 

BP 
11.04 11.42 9.01 6.97 265.7 336.5 278.7 9.9 
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  In Table VI, the price and load forecasting results obtained 
by the proposed method (DUKF) are compared to the results 
obtained by six other techniques for this case study. The above 
advantages are the average of 100 iterations. These are: MLP 
using BP, MLP using genetic algorithm, fuzzy-neural 
approach [7], generalized regression neural network (GRNN),
CO-CO approach [19], EKF method [10] and the proposed 
method (UKF and DUKF).  The same training and testing data 
sets were used for all methods. The resultant STD, MSE, 
MAE and MAPE for each case considering seven step are 
shown in this table. 
 

It can be observed that the smallest error was about 4.81% 
(MAPE) and 7.42 (RMSE) for cases seven step price prediction 
using proposed method. And smallest error was about 4.01% 
(MAPE) and 140.4 (STD) for cases seven step load prediction. 

 
 The new method has shown to be able to improve the 

results in about 5-10% at confident interval 95% than the other 
algorithms. In the other word forecasting results show that this 
approach is more accurate than conventional techniques which 
introduced before. 
 
 

TABLE VI 
COMPARING ERROR VALUES BETWEEN DIFFERENT METHODS PERDICTION INTERVAL, 

( FEB 25, 2004 to MARCH 5, 2004, ONE STEP PREDICTION) 
 

Price forecasting Load forecasting  
Method Specification STD RMSE RMSE) MAPE 

(%) 
STD 

(Mwh) 
RMSE 
(Mwh) 

MAE 
(Mwh) 

MAPE 
(%) 

1 MLP-BP 1600steps trianing =  7.43 7.23 4.89 5.03 216.5 266.9 211.0 7.5 

2 MLP-GA 2000number-eneration =  7.33 6.92 4.81 4.96 208.23 261.9 201.0 7.1 

3 Fuzzy-Neural [6] 
1.0number-spread

Prediction Pricefor  GRNN
Prediction Loadfor  LogicFuzzy 

=

 6.46 6.63 4.09 7.45 212.23 255.9 220.1 8.1 

4 GRNN 1.0number-spread =  7.53 7.92 5.21 5.16 215.23 222.9 211.0 7.2 

5 CO-CO [19] 
1.0number-Spread 

Pr&
   GRNN  2

=
iceLoad

forsubspaces
 6.35 6.38 4.6 5.60 208.23 261.9 201.0 7.1 

6 EKF [10] 1600steps =trianing  8.70 8.75 6.47 5.01 146.4 153.5 118.9 4.3 

7 UKF 0 2, 0.005,
1600steps 

===
=

κβα
trianing  8.46 8.52 6.22 4.81 143.0 153.8 122.0 4.2 

8 DUKF 0 2, 0.005,
1600steps 

===
=

κβα
trianing  7.56 7.42 5.01 4.98 140.4 152.1 121.3 4.0 

 

VI. DISCUSSION AND CONCLUTION 

Using EKF as a learning method for MCP prediction may 
suffers a number of serious limitations. At first the existent of 
Jacobian matrices is a critical problem, especially for some 
activation functions contain discontinuities (for example hard-
limit), so Jacobian matrices might be abruptly. The second, 
linear transformations can introduce large errors in true 
posterior mean and covariance; therefore it causes its 
estimation to diverge. Finally calculating Jacobian matrices can 
be very difficult and introduces numerous errors. In this paper a 
new methodology for MCP and load forecasting was 
introduced to determine neural networks weighting coefficients 
based on unscented filtering. This approach is able to 
efficiently forecast the both MCP indices and load in 
comparison with the other methods. Our DUKF forecasting 
results are better and reliable than the prediction obtained by 
using the EKF method, and are comparable with BP methods. 
From the above simulation results and many other simulations 
(not reported here), the proposed DUKF method is shown to be 
more computationally efficient (especially in long term 

prediction) in price and load prediction than other 
methods. 
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