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Abstract-- The two-stage filtering methods, such as the well-
known augmented state Kalman estimator (AUSKE) and the
optimal two-stage Kalman estimator (OTSKE), suffer from
some major drawbacks. These drawbacks stem from assuming
constant acceleration and assuming the input term is
observable from the measurement equation. In addition, these
methodologies are usually computationally expensive. The
innovative optimal partitioned state Kalman estimator (OPSKE)
developed to overcome these drawbacks of traditional
methodologies. In this paper, we compare performance of the
OPSKE with the OTSKE and the AUSKE in the maneuvering
target tracking (MTT) problem. We provide some analytic
results to demonstrate the computational advantages of the
OPSKE.

Keywords- Optimal two-stage Kalman estimators; input
estimation; augmented state Kalman estimators; maneuvering
target tracking.

1. INTRODUCTION

The AUSKE or “full state” method, solves the general
state estimation problems by including the input parameters
as a part of an augmented state to be estimated [1], [2].
However “reduced state” methods do not augment the state,
and usually yield a better performance [3]. The AUSKE
suffers from complexity of computational effort and
numerical problems when state dimensions are large. The
input detection and estimation (IDE) algorithm was first
developed by Chan et al., in [4] using a simplified batch
least square data. The IDE approach suffers from a major
deficiency, being that the little prior knowledge is available
for dynamics estimation [5]. For example we can cite Wang
et. al., [6] used the IDE approach in the maneuvering target
tracking problem. In [6], the predicted states for the
maneuvering target are related to the corresponding states
without maneuvering assuming constant input or constant
acceleration (CA). Therefore, the performance of the
estimation is reduced when target moves with non-constant
acceleration. In [7] the unknown input defined as a sum of
elementary time functions. Although this input modeling is
more general than the constant-input model of the original
IDE algorithm, the performance is reduced if there is any
input dynamics.
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Friedland [8] introduced a method of separating
estimation of the unknown input from the dynamic variables
and Blair used this method in the MTT problem [9]. The
basic idea was to decouple the augmented Kalman filter
(AKF) into two-stage filters in order to reduce computation
and memory requirements [10]-[13]. Recently, Hsieh and
Chen [10], [11] derived an optimal two-stage Kalman
estimator (OTSKE) for a general case to reduce the
computational complexity of AUSKE. The two-stage
filtering method, suggested for MTT problem in [9] suffers
from two major drawbacks. These drawbacks stem from
assuming constant acceleration and assuming the input term
is observable from the measurement equation (also in [10]
and [13]).

In this paper, the performance of the OPSKE is analyzed
and compared with the AUSKE and the OTSKE to show the
advantage of the proposed algorithm. The OPSKE may serve
as an alternative solution of the OTSKE proposed in [10]. It
is shown that the maneuver tracking algorithm proposed in
[6] and [9] are special case of the OPSKE.

2. STATEMENT OF THE PROBLEM

The problem of interest is described by the discretized
equation set

X =A4X, +BU +W; D
U =CU +W/ (2)
Z,=H X, +V, (3)

Where X, € R" is the system state, U, e R" and Z, € R”
are the input and the measurement vectors, respectively.
Matrices 4,, B, , C, and H, are assumed to be known

functions of the time interval £ and are of appropriate
dimensions. Matrix C, is assumed nonsingular. The process

noises W', W, and the measurement noise V, are zero-
mean white Gaussian sequences with the following
covariances:  E[W;(W)1=0;6,  EW (W')1=0"s,

EW; W) 1=0i6, EWV,V]1=R3, . EWY/]=0 and
E[WV,1=0, where " denotes transpose and 0,, denotes
the Kronecker delta function. The initial states X, and U,
are assumed to be uncorrelated with the sequences W', W'
and V, . The initial conditions are assumed to be Gaussian
random variables with E[X,]=X, , E[X,X,]=P' ,

E[U,1=U,, E[UU,1=P,, E[X,U,]=P".



Treating X, and U, as the augmented system state [10],
the AUSKE is described by

X = X0 A K (Z, - XD 4)
X A )
K'Y =P (HIHSE, (HE) +RT (6)
1)k+]\k = A:ugpw‘ (Af”g)v + Qk (7)
le\m =(- KkAilingAf )PI<+1\I< (8)
Where
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Where the superscript ‘Aug’ denotes the augmented
system state, / denotes the identity matrix of any dimension
and 0, isa mxn zero matrix. It is clear from (4)-(8) that

the computational cost of the AUSKE increases with the
augmented state dimension [14]. The proposed approach in
[14] intends to relax restrictive assumptions concerning the
input dynamics modeling and using a new optimal
partitioned Kalman estimator. The OPSKE formulation is
based on the following equations (for details see [16]):

Xen =X+ K (Z - H, X,..,) )
X, =4X, (10)
K, =P H[H. P, (H.,)+R] (11)
Pl =A4P,(4) +0; (12)
Bl =U =K, H, )P, (13)
Ny =[1-K, H,  JM,, (14)
Ui =V +KLZ, ~H MU, (15)
I}M/A = CkUm (16)
Ky, =2P\ M, H,  x[3H M P M, H +P,1 (17)
Bl = Pl +3KA"+IHAHM&.B‘%MM;HH;H(KZL,)' (18)
+ KB (K =28 M H (K - 2K H M B,

Pl =CP,C + 0 (19)
Bl =H B H  + R, (20)
szfl\k = Hk+1Mk+1Pku+1\k @1
Tt R B @2
Xiown = X T NLU

M., =[AM, +B]IC., k=23,.. @3
M, =BC,'

N, =lI-K., H M, (24)

3. PERFORMANCE EVALUATIONS

To demonstrate the computational advantage of the
OPSKE over the AUSKE, the number of arithmetic
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operations are considered, i.e., multiplications and
summations, as suggested in [10]. The arithmetic operations
of a standard Kalman estimator with state dimension 7 and
measurement dimension p , are listed in Table 1. It is clear
from the equations (4)-(8) and Table 1, that the arithmetic
operations required for the AUSKE which has state
dimension n+m and measurement dimension p , are

and  S(n+m,p)

summations. Table 2 shows the arithmetic operations of the
input estimation and the auxiliary matrices needed by the
OPSKE which has state dimension 7 , measurement
dimension p and input vector dimension m . Note that the

M(@n+m,p) for multiplications for

number of the arithmetic operations of the AUSKE increases
with the augmented state dimension, which makes the
algorithm computationally inefficient. In contrast, the
OPSKE based on the two-stage decoupling technique
required fewer computations. The efficiency of the OPSKE
is due to order reduction, i.e., implementing two less order
n and m partitioned filters. This enables the proposed
algorithm to have much better computational efficiency than
the AUSKE. So, the arithmetic operations required (AOR)
for the AUSKE are

AOR(AUSKE)=M(n+ m, p) + S(n+ m, p)

=[B(n+m)’ +2(n+m)’ p+2(n+m)p’ + p’ +(n+m)’ +2(n+m)p]

(25)

+Bn+m)’ +2n+m) p+2n+m)p’ + p’ —(n+m) —(n+m)

The arithmetic operations required for the input
estimation and auxiliary matrices, by the OPSKE as shown
in Table 2 and using equations (15)-(24) are
AOR(OPSKE)
=M (n, p)+ S, p)+ M (n,m, p) + S (n,m, p)
=[3n" +2n’p +2np’° + p’ +n’ + 2np]
+[3n’ +2n°p +2np° + p* —n’ —n]
+[Bmp +2m* +2m’p + 2mp* + p’ + p’ (26)
+4m’ + 21’ p + 2nm + n’m + nm’ + nmp]
+[-mp—m’ —m+2m’p +2mp* + p’ + 4m’
+20°p —2np+ p* —n+2n'm+nm’ + nmp]

Using (25) and (26), the operational savings, denoted by
OS 532, of the OPSKE as compared to the AUSKE are

0S%%" = 4OR(AUSKE) — AOR(OPSKE) =

AUSKE
M(n+m,p)+SHn+m,p)—M(n,p)

= 8(n, p) =M (n,m, p) =S (n,m, p) 27
==2m* +15n°m +17nm* — 4n’ p + 6nmp

-2p’ +2np+n—-m’ -2p* —2nm

and the operational savings of the OTSKE over the AUSKE
as reported in [10] are

O0S°™* = JOR(AUSKE) — AOR(OTSKE) =—4m’ +

AZL/SKE , . \ (28)
12n°'m+12nm”° +4nmp+m —2m” — p° —2nm
Therefore, using (27) and (28) the operational savings of the
OPSKE over the OTSKE are

OS2 = AOR(OTSKE) — AOR(OPSKE) = 2m’ +3n’m

(29)

+5nm’ —4n’ p+2nmp—p’ +2np+n—m+m’ -2 p’°
It is clear from (27) and (29) that form and p < n, the
proposed scheme has computational advantage over the



AUSKE and it is comparable to the OTSKE. The operational
savings discussed here will be tested as an example in the
simulation results section. To measure the relative
operational savings of the OPSKE with respect to the
arithmetic  operation required by the AUSKE
(AOR(AUSKE) ), the percentage of the operational savings

defined as below:

Using (27), (29) and (30), the operational savings and the
percentage of the operational savings, of the OPSKE
comparing to the OTSKE and the AUSKE for different
values of n, m and p are shown in Table 3. It can be

inferred from Table 3 that the OPSKE has better overall

performance than the AUSKE (averaged 32%) and the
OTSKE (averaged 7.3%).

poss = O __ (30)
AOR(AUSKE)
TABLE 1:STANDARD KALMAN ESTIMATOR ARITHMETIC OPERATION REQUIREMENTS
Variable Number of Multiplications, M (n, p) Number of summations, S(n,p)
1 X k+1lk+1 2np 2np
2 XK+1\k n’ n*—n
30K, n’p+2np’ +p’ n’p+2np* +p’ —2mnp
4 P 2n’ 2n —n?
3 P n*+n’p n’ +n2p—n2
Totals 3n° +2n° p+2np* + pP +n’ +2np 3 +2n° p+2mp* + pP —n’ —n

TABLE 2:INPUT ESTIMATION AND AUXILIARY MATRICES ARITHMETIC OPERATION REQUIREMENTS FOR THE OPSKE

Variable Number of Multiplications M or n,m, Number of summations SOP n,m,
p p
1 Ui 2mp 2mp
2 UK+1\k m’ m’ —m
3 K, m2p+2mpz+p3 +p2 +mp m2p+2mp2+p3—2mp
4 P 2m’ 2m’ —m’
S| Pl m’ +m’p+m’ m’ +m’p—m’
6 Pl 2n’p 2n’p—2np + p*
7 X}Huk mn m
8 Xvkﬂ\kﬂ mn min—n
9 | M, n’m+m’ +nm? n’m+m’ +nm* —nm
10 | N, n’m n*m—nm
11 Hk+1Mk+1 nmp nmp - mp
3mp +2m* +2m’p+2mp* + p’ + p’ —mp—m® —m+2m’ p+2mp> +p’ +4m’
Totals e " "o " porp mpT I TmE A Ay TP "

+4m’ +2n* p + 2nm + n*m + nm* + nmp

+2n°p=2np+p’ —n+2n°m+nm* +nmp

TABLE 3:THE OPERATIONAL SAVINGS AND THE PERCENTAGE OF THE OPERATIONAL SAVINGS OF THE OPSKE COMPARED TO THE

AUSKE AND THE OTSKE
The state vector dimensions OS 9o POS §lexr (%) OSIrte POSSPE (%)

n=4m=4,p=2 1340 35.7 592 15.7
n=4m=2p=2 578 33.7 102 5.9
n=4m=2,p=1 553 37.5 155 10.5
n=4m=1p=1 242 27.5 23 2.6
n=4m=3,p=3 978 32.7 247 8.2
n=100m=2,p=2 2954 25.1 132 112
Average =1107 32.0 =208 7.3
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4. SIMULATION RESULTS

To evaluate the proposed algorithm, an example of
maneuvering target tracking problem which turns, in two-
dimensional space is simulated such as a ship or an aircraft
with constant elevation. In this simulation example, the
performance of the OPSKE for the maneuvering target
tracking has been compared with the work suggested in [2]
as an example of the AUSKE method. As mentioned before
in the augmented state method the state vector includes the
input vector i.e., acceleration and jerk parameter in
maneuvering target tracking problem. The sampling
interval is T=0.01 (sec) and target maneuver is applied at
9™ second (900" sample). The initial conditions are selected
similar for the AUSKE as well as the OPSKE. The state
vectors are
X, :[xk v, ¥ v[‘]‘, U, = [u[ Jioouj

A — * ¥ * P y v |
X _[xk Ve Vi Ve U Jp U ]k]

where X, v, u, and j; denote the position, velocity,

il

acceleration and jerk of the target along the Xx axis,
respectively. We consider the target initial conditions for
the state and the acceleration vectors as below:

X,=[2165m —80m/s 1250m 25m/s]’ :

UO:[Og Og/sec Og Og/sec]’
X =[2165m —80m/s 1250m 25m/s 0g Og/sec Og 0g/sec]’

The target begins to maneuver as
U,, =[0g -07g/sec 0g 04g/sec|' for 9 (sec)<¢<90 (sec) .
The system matrices are given by
T/2 T°/6 0 0

1 7T 0 0
01 0 0 , T T2 0 0 )
A = BA: 2 3
““loo 1T 0 0 T2 T'I6
00 0 1 0 0 T T%/2
1 T 0 0 1 0]
0100 0 0
C = > H, =
looo1 T o1
00 0 1 00
T°/3 T*/2 0
T/2 T 0 0
" =200 ’
o T 0 0 T°/3 T*/2
0 0 T2 T
T7/252 T°/72 0 0
T°/72 T°/20 0 0
QAY:2aO- 7 6
1T 0 0 T7/252 T°/72
0 0 T°/72 T°/20
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T°/30 T'/24 0 0

4 3
0 =200 /8 TI6 00 b psl0n,
10 0 T°/30 T*'/24
0 0 T'/8 T/6

P'=011,,, " =1, sH!™ = {H‘:|

0
Aﬁﬂg{Aﬂ BA}QF[ o Qku}ﬁ{ B P}
0. C (e 2"y P

where o, =0.09(ms ™) is the variance of the target jerk

2x4
4x4

and « =0.0123(s") is the reciprocal of the jerk time
constant 7 =1/« . The measurement standard deviations of
X and y target positions are: o =10v10 (m), o =20(m) -
Thus, the

1000
R =

matrix  1is

0 } for both methods. The Root Mean Square
400

measurement covariance

0

Error (RMSE) index is used for the results evaluation.
Fig. 1 shows the actual value and the estimation of x
and y and RMS errors of X and y positions estimations

by the proposed OPSKE and the AUSKE.
Fig. 2 shows the actual value and the estimations of
v*,v" and the RMS errors of the X and y velocities

estimations by the proposed method compared with the
augmented method. The actual value and the accelerations
estimations in the x and y directions and their

corresponding averaged RMS errors can be seen in Fig.
3.Fig. 4 displays the actual value and the estimated jerk
parameters are evaluated by the OPSKE and the AUSKE
methodologies.

It is clear that the performance of the proposed OPSKE
is as well as the results obtained by the AUSKE in the
maneuvering target tracking problem. Note that in this
example n=4, m=4 and p=2, and the operation
savings for the OPSKE over the AUSKE and the OTSKE
as shown in Table 3 are 1340 (or 35.7%) and 592 (or
15.7%), respectively.

5. CONCLUSIONS

The OPSKE proposed in [16] was based on a new
partitioned dynamic modeling and intends to overcome the
computational expensiveness drawbacks of the other works
which are based on the augmented methods. The proposed
OPSKE provides the optimal state estimate, which is
equivalent to that of the AUSKE. Comparison with two
estimators shows that the proposed scheme has
computational advantage over the AUSKE and the OTSKE.
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Fig. 1. The actual value and the estimation of the x, y positions and RMS errors estimations by the OPSKE and the AUSKE methods.
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Fig. 2. The actual value and the estimation of y* , v? and RMS errors of x and y velocities estimations by the OPSKE and the AUSKE methods.
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Fig. 3. The actual value and the estimation of acceleration in x and y directions and corresponding RMS errors by the proposed method compared with the augmented methods.
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Fig. 4. The actual value and the estimation of jerk parameters and RMS errors by the OPSKE method compared with the AUSKE method.
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