
 
 

Abstract-- The two-stage filtering methods, such as the well-
known augmented state Kalman estimator (AUSKE) and the 
optimal two-stage Kalman estimator (OTSKE), suffer from 
some major drawbacks. These drawbacks stem from assuming 
constant acceleration and assuming the input term is 
observable from the measurement equation. In addition, these 
methodologies are usually computationally expensive. The 
innovative optimal partitioned state Kalman estimator (OPSKE) 
developed to overcome these drawbacks of traditional 
methodologies. In this paper, we compare performance of the 
OPSKE with the OTSKE and the AUSKE in the maneuvering 
target tracking (MTT) problem. We provide some analytic 
results to demonstrate the computational advantages of the 
OPSKE.  

Keywords- Optimal two-stage Kalman estimators; input 
estimation; augmented state Kalman estimators; maneuvering 
target tracking. 

1. INTRODUCTION 
The AUSKE or “full state” method, solves the general 

state estimation problems by including the input parameters 
as a part of an augmented state to be estimated [1], [2]. 
However “reduced state” methods do not augment the state, 
and usually yield a better performance [3]. The AUSKE 
suffers from complexity of computational effort and 
numerical problems when state dimensions are large. The 
input detection and estimation (IDE) algorithm was first 
developed by Chan et al., in [4] using a simplified batch 
least square data. The IDE approach suffers from a major 
deficiency, being that the little prior knowledge is available 
for dynamics estimation [5]. For example we can cite Wang 
et. al., [6] used the IDE approach in the maneuvering target 
tracking problem. In [6], the predicted states for the 
maneuvering target are related to the corresponding states 
without maneuvering assuming constant input or constant 
acceleration (CA). Therefore, the performance of the 
estimation is reduced when target moves with non-constant 
acceleration. In [7] the unknown input defined as a sum of 
elementary time functions. Although this input modeling is 
more general than the constant-input model of the original 
IDE algorithm, the performance is reduced if there is any 
input dynamics. 
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Friedland [8] introduced a method of separating 
estimation of the unknown input from the dynamic variables 
and Blair used this method in the MTT problem [9]. The 
basic idea was to decouple the augmented Kalman filter 
(AKF) into two-stage filters in order to reduce computation 
and memory requirements [10]-[13]. Recently, Hsieh and 
Chen [10], [11] derived an optimal two-stage Kalman 
estimator (OTSKE) for a general case to reduce the 
computational complexity of AUSKE. The two-stage 
filtering method, suggested for MTT problem in [9] suffers 
from two major drawbacks. These drawbacks stem from 
assuming constant acceleration and assuming the input term 
is observable from the measurement equation (also in [10] 
and [13]). 

In this paper, the performance of the OPSKE is analyzed 
and compared with the AUSKE and the OTSKE to show the 
advantage of the proposed algorithm. The OPSKE may serve 
as an alternative solution of the OTSKE proposed in [10]. It 
is shown that the maneuver tracking algorithm proposed in 
[6] and [9] are special case of the OPSKE.  

2. STATEMENT OF THE PROBLEM 
The problem of interest is described by the discretized 
equation set 

x
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Where n
k RX ∈  is the system state, m

k RU ∈  and p
k RZ ∈  

are the input and the measurement vectors, respectively. 
Matrices kA , kB , kC  and kH  are assumed to be known 
functions of the time interval k  and are of appropriate 
dimensions. Matrix kC  is assumed nonsingular. The process 
noises x

kW , u
kW  and the measurement noise kV  are zero-

mean white Gaussian sequences with the following 
covariances: 
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Treating kX   and kU  as the augmented system state [10], 
the AUSKE is described by 
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Where the superscript ‘Aug’ denotes the augmented 
system state, I  denotes the identity matrix of any dimension 
and nm×0  is a nm×  zero matrix. It is clear from (4)-(8) that 
the computational cost of the AUSKE increases with the 
augmented state dimension [14]. The proposed approach in 
[14] intends to relax restrictive assumptions concerning the 
input dynamics modeling and using a new optimal 
partitioned Kalman estimator. The OPSKE formulation is 
based on the following equations (for details see [16]): 
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3. PERFORMANCE EVALUATIONS 
To demonstrate the computational advantage of the 

OPSKE over the AUSKE, the number of arithmetic 

operations are considered, i.e., multiplications and 
summations, as suggested in [10]. The arithmetic operations 
of a standard Kalman estimator with state dimension n  and 
measurement dimension p , are listed in Table 1. It is clear 
from the equations (4)-(8) and Table 1, that the arithmetic 
operations required for the AUSKE which has state 
dimension mn +  and measurement dimension p , are 

),( pmnM +  for multiplications and ),( pmnS +  for 
summations. Table 2 shows the arithmetic operations of the 
input estimation and the auxiliary matrices needed by the 
OPSKE which has state dimension n , measurement 
dimension p  and input vector dimension m . Note that the 
number of the arithmetic operations of the AUSKE increases 
with the augmented state dimension, which makes the 
algorithm computationally inefficient. In contrast, the 
OPSKE based on the two-stage decoupling technique 
required fewer computations. The efficiency of the OPSKE 
is due to order reduction, i.e., implementing two less order 
n  and m  partitioned filters. This enables the proposed 
algorithm to have much better computational efficiency than 
the AUSKE. So, the arithmetic operations required (AOR) 
for the AUSKE are  
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(25) 

The arithmetic operations required for the input 
estimation and auxiliary matrices, by the OPSKE as shown 
in Table 2 and using equations (15)-(24) are  
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Using (25) and (26), the operational savings, denoted by 
OPSKE
AUSKEOS , of the OPSKE as compared to the AUSKE are 
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and the operational savings of the OTSKE over the AUSKE 
as reported in [10] are 
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Therefore, using (27) and (28) the operational savings of the 
OPSKE over the OTSKE are 
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It is clear from (27) and (29) that for npm ≤and , the 
proposed scheme has computational advantage over the 
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AUSKE and it is comparable to the OTSKE. The operational 
savings discussed here will be tested as an example in the 
simulation results section. To measure the relative 
operational savings of the OPSKE with respect to the 
arithmetic operation required by the AUSKE 
( )(AUSKEAOR ), the percentage of the operational savings 
defined as below:  

100
)(
×=

AUSKEAOR
OS

POS
OPSKE
AUSKEOPSKE

AUSKE
 (30)

Using (27), (29) and (30), the operational savings and the 
percentage of the operational savings, of the OPSKE 
comparing to the OTSKE  and the AUSKE for different 
values of n , m  and p  are shown in Table 3. It can be 
inferred from Table 3 that the OPSKE has better overall 
performance than the AUSKE (averaged 32%) and the 
OTSKE (averaged 7.3%).  
 

TABLE 1:STANDARD KALMAN ESTIMATOR ARITHMETIC OPERATION REQUIREMENTS 
 Variable Number of Multiplications, )p,n(M  Number of summations, )p,n(S  

1 
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TABLE 2:INPUT ESTIMATION AND AUXILIARY MATRICES ARITHMETIC OPERATION REQUIREMENTS FOR THE OPSKE 
 Variable Number of Multiplications )p,m,n(M OP  Number of summations )p,m,n(S OP  
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TABLE 3:THE OPERATIONAL SAVINGS AND THE PERCENTAGE OF THE OPERATIONAL SAVINGS OF THE OPSKE COMPARED TO THE 

AUSKE AND THE OTSKE 
The state vector dimensions OPSKE

AUSKEOS  OPSKE
AUSKEPOS  (%) OPSKE

OTSKEOS  OPSKE
OTSKEPOS  (%) 

244 === p,m,n  1340 35.7 592 15.7 

224 === p,m,n  578 33.7 102 5.9 

124 === p,m,n  553 37.5 155 10.5 
114 === p,m,n  242 27.5 23 2.6 
334 === p,m,n  978 32.7 247 8.2 

2210 === p,m,n  2954 25.1 132 1.12 
Average ≅ 1107 32.0 ≅ 208 7.3 
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4. SIMULATION RESULTS 
To evaluate the proposed algorithm, an example of 

maneuvering target tracking problem which turns, in two-
dimensional space is simulated such as a ship or an aircraft 
with constant elevation. In this simulation example, the 
performance of the OPSKE for the maneuvering target 
tracking has been compared with the work suggested in [2] 
as an example of the AUSKE method. As mentioned before 
in the augmented state method the state vector includes the 
input vector i.e., acceleration and jerk parameter in 
maneuvering target tracking problem. The sampling 
interval is T=0.01 (sec) and target maneuver is applied at 
9th second (900th sample). The initial conditions are selected 
similar for the AUSKE as well as the OPSKE. The state 
vectors are 
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where kx , x
kv , x

ku  and x
kj  denote the position, velocity, 

acceleration and jerk of the target along the x  axis, 
respectively. We consider the target initial conditions for 
the state and the acceleration vectors as below: 
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The target begins to maneuver as 
[ ] ' sec/ 4.00sec/ 7.00900 ggggU −=  for sec)( 90(sec)  9 ≤≤ t . 

The system matrices are given by 
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where )(09.0 3−= msjσ  is the variance of the target jerk 
and )(s 0123.0 -1=α  is the reciprocal of the jerk time 
constant ατ /1= .  The measurement standard deviations of 
x  and y  target positions are: )( 1010 mx =σ , )( 20 my =σ . 
Thus, the measurement covariance matrix is 

⎥
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01000

kR  for both methods. The Root Mean Square 

Error (RMSE) index is used for the results evaluation. 
Fig. 1 shows the actual value and the estimation of x  

and y  and RMS errors of x  and y  positions estimations 
by the proposed OPSKE and the AUSKE. 

Fig. 2 shows the actual value and the estimations of 
yx vv  ,  and the RMS errors of the x  and y  velocities 

estimations by the proposed method compared with the 
augmented method. The actual value and the accelerations 
estimations in the x  and y  directions and their 
corresponding averaged RMS errors can be seen in Fig. 
3.Fig. 4 displays the actual value and the estimated jerk 
parameters are evaluated by the OPSKE and the AUSKE 
methodologies.  

It is clear that the performance of the proposed OPSKE 
is as well as the results obtained by the AUSKE in the 
maneuvering target tracking problem. Note that in this 
example 4=n , 4=m  and 2=p , and the operation 
savings for the OPSKE over the AUSKE and the OTSKE 
as shown in Table 3 are 1340 (or 35.7%) and 592 (or 
15.7%), respectively. 

5. CONCLUSIONS 
The OPSKE proposed in [16] was based on a new 

partitioned dynamic modeling and intends to overcome the 
computational expensiveness drawbacks of the other works 
which are based on the augmented methods. The proposed 
OPSKE provides the optimal state estimate, which is 
equivalent to that of the AUSKE. Comparison with two 
estimators shows that the proposed scheme has 
computational advantage over the AUSKE and the OTSKE. 
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Fig. 1. The actual value and the estimation of the x, y positions and RMS errors estimations by the OPSKE and the AUSKE methods. 
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 Fig.  2. The actual value  and the estimation of  yx v ,v  and RMS errors of x and y velocities estimations by the OPSKE and the AUSKE  methods. 
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  Fig.  3. The actual value and the estimation of acceleration in x and y directions and corresponding RMS errors by the proposed method compared with the augmented methods. 
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  Fig.  4. The actual value and the estimation of jerk parameters and  RMS errors by the OPSKE  method compared with the AUSKE  method. 
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