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Abstract—Diabetic retinopathy is the leading cause of blindness, 
engaging people in different ages. Early detection of the disease, 
although significantly important to control and cure it, is usually 
being overlooked due to the need for experienced examination. 
To this end, automatic diabetic retinopathy diagnostic methods 
are proposed to facilitate the examination process and act as the 
physician’s helper. In this paper, automatic diagnosis of diabetic 
retinopathy using pre-trained convolutional neural networks is 
studied. Pre-trained networks are chosen to avoid the time- and 
resource-consuming training algorithms for designing a 
convolutional neural network from scratch. Each neural network 
is fine-tuned with the pre-processed dataset, and the fine-tuning 
parameters as well as the pre-trained neural networks are 
compared together. The result of this paper, introduces a fast 
approach to fine-tune pre-trained networks, by studying different 
tuning parameters and their effect on the overall system 
performance due to the specific application of diabetic 
retinopathy screening. 

Keywords- Diabetic retinopathy; convolutional neural network;  
deep learning; Inception model. 

I.  INTRODUCTION  

Diabetic Retinopathy (DR) is the leading cause of blindness 
in adult ages from 20 to 74, and exhibits a serious risk for 
general population health. The disease occurs when diabetes 
damages blood vessels in the retina. It is estimated that the 
number of people diagnosed with DR will increase from 126.6 
million in 2010 to 191 million by 2030, and the number of 
people with vision-threatening DR will grow from 37.3 million 
to 56.3 million by the same time [1]. Despite of this worrying 
statistics, evidence shows that early treatment can slow down 
the progression of DR [2]. However, the clinical challenge for 
early-diagnosis and treatment is that the patients with DR may 
not experience any symptoms until it becomes a serious treat 
for their vision.  

The diagnosis of DR requires an experienced 
ophthalmologist to carefully investigate images of the retina (or 
fundus images). Fundus images provide valuable information 
regarding the presence of microaneurysms, hemorrhages, 
neovascularization, and exudates, and the presence of any of 
these can be related to DR. Fig. 1 illustrates a fundus image 

from a patient with DR and demonstrates the injuries to the 
retina [3]. The high cost of physical examination and lack of 
professional experts are two important obstacles for early DR 
diagnosis. Therefore, the common procedure for DR screening 
is not efficient enough and thus, health care providers miss 
large numbers of early stage DR cases [4]. 

Studies have shown that automatic screening systems can 
be utilized to diagnose DR accurately and consistently in early 
stages. There has been an increase in applying various machine 
learning techniques to classify images into DR and NO DR 
classes in the recent years [5]. The majority of these efforts use 
hand-crafted features of retinal images for training their 
systems. Some of these machine learning algorithms are Neural 
Network (NN), Support Vector Machine (SVM), and K-
Nearest Neighbors (KNN) [6]-[9]. A comparative study of 
conventional feature-based machine learning algorithms is 
done which demonstrates the Linear SVM approach to be a 
reliable classification method for DR screening [10]. Extracting 
features from images is a time-consuming and complicated task 
that needs professional experts to study the images and infer 
the most relevant set of features and apply feature extractors to 
the images. These extracted features can be used for image 
classification via different machine learning approaches.  

 

 
Figure 1.   Example of a retinal photo with diabetic retinopathy. 
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 To overcome the feature selection and extraction issues, 
there has been an increase in the studies using Convolutional 
Neural Networks (CNN) for medical image analysis [11]. The 
main advantage of CNN is its ability to extract features 
automatically via deep multiple layers [12]. Based on this 
advantage, CNN has been recently used in multiple medical 
applications mostly related to disease diagnosis. For instance, 
in the technique proposed by Pan et al. CNN was applied to 
MRI images to grade brain tumors [13]. Another CNN-based 
method was conducted by Roth et al., in which multi-level 
deep convolutional network is used for pancreas segmentation 
in computed tomography scans [14]. Related works on DR 
diagnosis utilizing CNN include, using CNN for feature 
extraction and ensemble classification for retinal blood vessel 
segmentation [15], classification of DR severity using CNN 
[16]. And a comparative study of two CNN structures with 
multiple filter sizes for DR recognition [17]. 

The main issue with the studies being done with CNN is 
proposing an architecture for the network that on one hand can 
demonstrate acceptable performance in the diagnostic 
application, and on the other hand can be trained considering 
the hardware limitations. The hardware limitations and 
familiarity with the database and images characteristics makes 
it more challenging to develop proper CNN structure and train 
it using the available databases [16]. One approach that has 
been used in the literature to address this issue is fine-tuning 
the pre-trained CNNs and customizing them based on specific 
applications. To this end, in this paper, two well-known pre-
trained CNN architectures named Inception-V3 (also known as 
GoogLeNet) and Xception are employed and evaluated to 
classify fundus images into cases of DR patient or healthy. 
These CNN models were previously trained for classifying the 
ImageNet dataset and their weights have been published for 
future studies [18]. Generally speaking, the first layers of these 
CNNs are mostly related to extracting general information 
from the images such as the edges, while the last layers are 
specifically trained to extract more detailed features related to 
the images dataset specifically. Therefore, in the DR screening 
application the weights of the last layers of these networks are 
fine-tuned to adapt the networks for this application and 
increase the performance accuracy.  

The comparative study which is done in this paper, 
introduces an approach for further research, to select a pre-
trained CNN and fine-tune it such that the application 
requirement is reached with minimum hardware requirements. 
The effects of various parameters are compared in this study. 
The parameters include number of retrained layers, activation 
function, optimization function, and use of data augmentation. 
The results reported in this paper can be utilized as a starting 
point for further research and enhance the accuracy of the DR 
screening approaches using CNN, while being acceptable from 
the practical standpoint. 

The rest of the paper is organized as follows. Section II 
briefly explains preparing the data set that is used for 
classification. Section III discusses the methodology of 
comparison CNN architectures. The results of the simulations 
and the comparison of the classifiers are presented in Section 
IV, while Section V concludes the paper. 

II. DATA PREPARATION 

A. Diabetic Retinopathy Dataset 

The dataset from a recent Kaggle competition is used in this 
paper [19]. Kaggle diabetic retinopathy dataset includes 35126 
retina images, which are taken with different types of cameras. 
Various qualities of the images in the dataset make the feature 
extraction approaches more difficult to implement. For each 
individual, the images of his/her right and left eye are included 
in the dataset. Each image is rated by a clinician for the 
presence of diabetic retinopathy on a scale of 0 to 4. The scales 
of 0, 1, 2, 3, and 4 correspond to No DR, Mild, Moderate, 
Severe, and Proliferative DR, respectively. The aim of this 
study is to detect NO DR images (with the label 0) from DR 
ones (with labels 1-4). Therefore, there are two classes for 
classification in this study. However, the platform can be 
extended for classification of DR stages, as well.  

To employ an image classification CNN, the images should 
be preprocessed to decrease the effects of camera variations as 
well as images quality differences due to different brightness 
and exposure settings. Also, a data augmentation approach is 
needed to enhance the robustness of the network to noises in 
the data (such as rotations in the images). Both preprocessing 
and data augmentation approaches are described in this section.  

B.  Image Preprocessing 

To decrease the variation among images due to different 
camera resolutions and settings, an image preprocessing 
algorithm is applied to the images using OpenCV package. The 
first step of the algorithm is rescaling the images such that all 
the input images have the same size. In the next step, the color 
of each pixel is subtracted by the local average, mapping the 
average to 50% gray. Using this approach, the sharpness of the 
images will be more unified. Finally, the edges of the images 
are clipped to remove the “boundary effects” [20]. 

C. data augmentation 

The most common method to reduce overfitting of the deep 
networks is to enlarge the datasets [21]. For this purpose, the 
dataset is augmented by shifting, rotating, and flipping the 
images in the middle of each training. Flipping the images 
includes horizontal flipping, vertical flipping, and horizontal 
plus vertical flipping. Using this approach, the dataset becomes 
larger, while the augmented images would not be stored into 
the system’s memory and more space would not be needed. 

 Another benefit of this approach is increasing the 
robustness of the trained network to variations in the input 
image. In other words, the CNN is trained for variations of the 
original images to compensate for variations in the images 
taken due to user experience. Furthermore, the number of 
healthy eyes images in the Kaggle dataset are much more than 
the ones with DR. Therefore, the DR dataset is augmented to 
almost the same size as the No DR dataset.        

III. CNN ARCHITECTURES AND  FINE-TUNING 

CNN is a kind of multilayer neural networks which 
typically consists of convolutional, subsampling, and fully 
connected (FC) layers [15]. Convolutional layer is the core of 
the network and works as a feature extraction layer. It performs 
the convolution operation over the input value. Therefore, all 
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neurons in a particular feature map shares the same set of 
weights and the same biases which helps them to detect 
features at the different positions on the input. Moreover, this 
weight sharing reduces the number of parameters that needs to 
be trained. Subsampling layer reduces the dimensionality of 
each feature map but keeps the most important information. 
This layer helps to reduce the amounts of learning parameters 
and is usually placed after the convolutional layer. Two 
common types of pooling layer are max pooling and average 
pooling. The output layer of a CNN is a FC layer of neurons at 
the end of the network. Neurons in a FC layer have full 
connections to all activations in the previous layer, as seen in a 
traditional multilayer neural network [22]-[24].   

A. Fine tuning 

In medical imaging and diagnosis field, it is relatively rare 
to have an image dataset of sufficient size to completely train a 
CNN from scratch [12]. In addition, the state of art 
convolutional neural networks included in the Keras core 
library demonstrates a strong ability to be generalized to 
images outside the ImageNet dataset via transfer learning, such 
as feature extraction and fine-tuning [21]. Therefore, it is very 
common to fine-tune a CNN that has been trained using a large 
labeled dataset from a different application to avoid training 
networks for many general features [25]. Training a CNN from 
scratch require a large amount of data as well as extensive 
computational and memory resources [12]. Besides, training a 
deep network with small dataset often leads to overfitting and 
convergence issues. In this paper, two pre-trained CNN 
architectures are fine-tuned and are used for DR classification. 
These models are Inception-V3 and Xception which are the 
CNN models that had been applied to the well-known 
ImageNet dataset.  

1) Inception-V3 Architecture 
The Inception architecture was first introduced by Szegedy 

et al. [26]. Inception module computes 1×1, 3×3, and 5×5 
convolutions within the same module of the network and 
concatenates the output of the whole process to pass it to the 
next layer of the network. So, the Inception module is called 
“multi-layer feature extractor”, and is shown in Figure 2. In a 
more recent publication Szegedy et al. introduced Inception-
V3. That is an updated inception module to improve 
classification accuracy. Figure 3 demonstrates schematic 
diagram of Inception-V3 [27]. For brevity, a more detailed 
description of the network structure is avoided here, and the 
interested reader may refer to the cited literature. 

2) Xception Architecture 
Xception architecture designed by the extension of the 

Inception module [28]. In this architecture, inception modules 
are replaced with depth wise separable convolutions. In 
Xception architecture data goes through the entry flow, then it 
goes through the middle flow and finally through the exit flow. 
The entry flow includes the convolutional layers to extract 
features of the images, the middle flow is responsible to 
summarize the features extracted and find meaningful 
relationships, while the exit flow will perform the classification 
utilizing the extracted finalized features. The overview of the 
Xception architecture is demonstrated in Fig. 4 [28]. . 

B. Software and Hardware  

The software packages that are used in this paper are, 
Tensorflow, Numpy, h5py, Scikit-learn, OpenCv, and Keras. 
The latter one is an open source neural network library 
in Python, which includes several pre-trained CNN 
architectures. These networks represent some of the highest 
performing and well-known CNNs on the ImageNet dataset 
over the past few years. ImageNet is a large database (over 1.2 
million images) that is used for visual object recognition (1000 
separate object categories). The Tensorflow and Keras 
frameworks are installed on an Ubuntu operating system for 
the ease of implementation of CNN architectures, while the 
other mentioned packages are being used to perform common 
related calculations and image processing in Python. 

Utilizing pre-trained CNNs for classification makes GPUs 
and external memories unnecessary. Utilizing this approach 
although the results may be slightly less accurate than 
designing an individual CNN from scratch but save training 
time and resources for the application, while providing a useful 
insight on the usage of CNN for each application. All the steps 
of the proposed method are done by an Intel i7 core CPU, with 
8GB memory, which is considerably advantageous comparing 
to common CNN training hardware requirements [16], [29].   

 

 

 

 
Figure 2.  The structure of an Inception module [26] 

 
Figure 3.  Schematic diagram of Inception-V3 [27] 
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Figure 4.   Schematic diagram of Xception [28] 

IV. RESULTS AND DISCUSSION 

The dataset contains images with various levels of 
resolution. The first step of this study is to remove the 
variations using image preprocessing algorithms. The result of 
the algorithm described in Section II-B on an image with 
proliferative DR is demonstrated in Fig. 5a and 5b. 

The data from Kaggle is used as the baseline for the 
classification problem, which includes 35126 images in which 
25810 images are assigned as NO DR and the rest of the 
dataset are the images with signs of DR. In order to balance the 
size of images in two classes, various image augmentation 
techniques are applied to DR images randomly as mentioned in 
Section II-C. Therefore, the number of DR images increased to 
25619 which is almost as same as NO DR images. A sample 
image which is horizontally flipped is demonstrated in Fig. 5c. 

For training and testing phases of the classifications, 20 
percent of the available data has been selected randomly as the 
testing set, while the others are being used as the training set. 
The testing and training sets are kept the same for all 
simulations, keeping the results comparable.  

To fine-tune the CNNs, it is very common to retrain the last 
two blocks of the pre trained networks. Therefore, the first 172 
layers of Inception-V3 and the first 115 layers of Xception 
networks have been frozen and the weights and biases of these 
layers are not changing during the training. The training 
process is applied to the rest of layers including Fully 
Connected layer at the end of each network. However, to 
complete the comparative study, two situations for which only 
the fully connected layer is trained while the CNN remained 
fixed, and 4 last blocks are unfrozen and retrained, are also 

tested. Needless to say, the training time varies for each 
experiment, mostly depending on the number of unfrozen 
blocks of the CNNs and is variable from 1 to 6 hours, using the 
mentioned hardware in Section III-B.  

To employ Convolutional Neural Networks for image 
classification tasks, RELU (Rectified Linear Unit) and ELU 
(Exponential Linear Unit) are the two well-known activation 
functions, which are being utilized and compared in this study. 

 

 
(a)                                                       (b) 

 

(c) 

Figure 5.   (a) Proliferative DR image, (b) Preprocessed image, (c) 
horizontally flipped image 
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Also, SGD (Stochastic Gradient Descent) and ADAM 
(Adaptive Moment estimation) optimizers are being widely 
used to train the network. In the comparison stage, different 
activation functions are used while being trained utilizing the 
two common optimization approaches. 

The first step in comparing the mentioned networks is to 
consider the effect of data augmentation. Before that the initial 
CNNs were setup with a RELU activation function for dense 
layer of the fully connected layer, and a SGD (learning 
rate=0.0001 and momentum=0.9) as the optimizer of the 
network. For achieving better performance and to avoid 
overfitting of the network, train dataset is augmented (rotation-
range=40, width-shift-range=0.2, shear-range=0.2, height-shift-
range=0.2, and zoom-range=0.2). The effect of the data 
augmentation on both networks is shown in the first two rows 
of Table I. All the accuracy results reported in Table I are 
based on the accuracy of the trained network for test dataset. 
Because of the promising performance of using data 
augmentation as it is shown in Table I, from now on, similar 
data augmentation is used for all of the proposed models. 

To determine the effect of the activation function of the 
dense layer, both RELU and ELU are applied to the networks, 
while other parameters are kept constant. The accuracy for both 
networks, reported in rows 2 and 3 of Table I, demonstrates 
that RELU acts better than ELU in the DR screening 
application.  

To avoid local minima, a state of art optimizer, ADAM, is 
proposed in literature and is used here to enhance the results of 
SGD. As shown in rows 2 and 4 of Table I, the ADAM 
optimizer shows better results than SGD in both CNN models. 
Therefore, ADAM can be used to improve the accuracy of the 
networks. 

At last, to study the effect of fine tuning the earlier layers or 
only the fully connected layer (while the CNN layers are 
intact), two new cases are studied. In the first case, reported in 
row 5 of Table 1, the first 136 and 95 layers of the Inception-
V3 and Xception have been frozen and the rest of the layers are 
fine-tuned (i.e., 4 sets of blocks are unfrozen for each network). 
For this case, even though more layers of the networks have 
been retrained, but the accuracy results demonstrate a decrease 
in accuracy. The main reasoning behind this issue is that the 
original CNNs are trained for a relatively larger a more 
comprehensive dataset, and the first sets of layers are generally 
tuned to extract less-detailed features of the data set. In other 
word, the pre-trained networks are capable of extracting edges, 
shapes, etc., and retraining these layers with smaller dataset, 
and lower iteration number, will only disturb the pre-trained 
weights and hence it will affect the accuracy results.  In the 
second case, reported in row 6 of Table 1, all of the CNN 
layers are frozen and the retraining is done on the fully 
connected layer only. As the results demonstrate, in this case, 
and due to lack of training for detailed features extraction 
layers (last layers of CNN) the results are showing less 
accurate networks. 

Overall, fine tuning the last two blocks of Inception-V3 
model utilizing RELU as the activation function and ADAM 
optimizer demonstrates the best result of classifying diabetic 
retinopathy cases, with about 87% accuracy on the test dataset. 

The result of this work is significantly better, in terms of 
accuracy of the overall network as well as complexity of the 
hardware needed to re-train the network, than similar works 
reported in [16] and [29]. In these works, similar dataset is 
being used, however, a new CNN architecture is proposed 
which needed extensive GPU-based hardware to train the 
networks. It is worth noting that the purpose of this paper was 
not to design the most accurate DR screening network, but to 
demonstrate the effect of varying parameters in fine-tuning the 
available pre-trained CNN networks. Using the results of this 
study, one may enhance the results by increasing the iteration 
number for training (maximum 200 iterations in this study) or 
by designing a pre- or post-processing algorithm to manipulate 
the images for easier feature extraction or integrating the 
results of different networks to reach a cumulative DR 
screening result. 

TABLE I.   CLASSIFICATION PERFORMANCE FOR DIFFERENT 
EXPERIMENTS (ACCURACY RESULT ON TEST DATASET) 

CNN Fine-Tuning Parameters Inception-V3 Xception 
Unfrozen blocks: 2 
Activation function: RELU 
Optimizer: SGD 
With NO data augmentation 

 
 

0.6048 

 
 

0.6979 

Unfrozen blocks: 2 
Activation function: RELU 
Optimizer: SGD 
With data augmentation 

 
 

0.8074 

 
 

0.7860 

Unfrozen blocks: 2 
Activation function: ELU 
Optimizer: SGD 
With data augmentation 

 
 

0.5341 

 
 

0.5031 

Unfrozen blocks: 2 
Activation function: RELU 
Optimizer: ADAM 
With data augmentation 

 
 

0.8712 

 
 

0.7449 

Unfrozen blocks: 4 
Activation function: RELU 
Optimizer: ADAM 
With data augmentation 

 
 

0.8570 

 
 

0.5742 

Unfrozen blocks: 0 (only fully-
connected layer) 
Activation function: RELU 
Optimizer: ADAM 
With data augmentation 

0.7314 0.6025 

 

V. CONCLUSION 

In this paper, a comparative study on fine-tuning of two 
well-known pre-trained convolutional neural networks is 
presented. The reasoning behind fine-tuning of a pre-trained 
network is to avoid a time- and resource-consuming training 
approach for the convolutional systems, while being able to 
leverage the pre-trained systems for their trained architecture 
on feature extraction. The comparative study is performed to 
demonstrate the effect of variations of different parameters 
(such as retrained layers, activation function, and optimization 
approach) of the networks on their accuracy in screening 
diabetic retinopathy cases. The results of this study can be 
utilized in further research to choose the best network 
parameters, and to propose novel pre- or post-processing 
algorithms to increase the diagnosis accuracy. 
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